实验四线性系统的频域分析 -

合集下载

东南大学实验四系统频率特性测试实验报告

东南大学实验四系统频率特性测试实验报告

东南大学实验四系统频率特性测试实验报告东南大学自动控制实验室实验报告课程名称:自动控制原理实验实验名称:实验四系统频率特性的测试院(系):自动化专业:自动化姓名:学号:实验室:417实验组别:同组人员:实验时间:20166年年1122月月202日评定成绩:审阅教师:目录一..实验目的33二.实验原理33三.实验设备33四..实验线路图44五、实验步骤44六、实验数据55七、报告要求66八、预习与回答10九、实验小结10一、实验目的(1)明确测量幅频和相频特性曲线的意义(2)掌握幅频曲线和相频特性曲线的测量方法(3)利用幅频曲线求出系统的传递函数二、实验原理在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的前提和难点。

建模一般有机理建模和辨识建模两种方法。

机理建模就是根据系统的物理关系式,推导出系统的数学模型。

辨识建模主要是人工或计算机通过实验来建立系统数学模型。

两种方法在实际的控制系统设计中,常常是互补运用的。

辨识建模又有多种方法。

本实验采用开环频率特性测试方法,确定系统传递函数,俗称频域法。

还有时域法等。

准确的系统建模是很困难的,要用反复多次,模型还不一定建准。

模型只取主要部分,而不是全部参数。

另外,利用系统的频率特性可用来分析和设计控制系统,用Bode图设计控制系统就是其中一种。

幅频特性就是输出幅度随频率的变化与输入幅度之比,即A=UoUi(),测幅频特性时,改变正弦信号源的频率测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。

测相频有两种方法:(1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T和相位差t,则相位差=∆tT360。

这种方法直观,容易理解。

就模拟示波器而言,这种方法用于高频信号测量比较合适。

(2)李沙育图形法:将系统输入端的正弦信号接示波器的X轴输入,将系统输出端的正弦信号接示波器的Y轴输入,两个正弦波将合成一个椭圆。

自动控制系统实验教案

自动控制系统实验教案

自动控制系统实验教案一、实验目的1. 理解自动控制系统的原理和组成;2. 掌握自动控制系统的分析和设计方法;3. 熟悉自动控制系统的实验操作和调试技巧;4. 培养学生动手能力和团队协作精神。

二、实验原理1. 自动控制系统的基本概念:系统、输入、输出、反馈、控制目标等;2. 自动控制系统的分类:线性系统、非线性系统、时间不变系统、时变系统等;3. 自动控制系统的数学模型:差分方程、微分方程、传递函数、状态空间表示等;4. 自动控制器的设计方法:PID控制、模糊控制、自适应控制等。

三、实验设备与器材1. 实验台:自动控制系统实验台;2. 控制器:可编程逻辑控制器(PLC)、微控制器(MCU)等;3. 传感器:温度传感器、压力传感器、流量传感器等;4. 执行器:电动机、电磁阀、伺服阀等;5. 信号发生器:函数发生器、任意波形发生器等;6. 示波器、频率分析仪等测试仪器。

四、实验内容与步骤1. 实验一:自动控制系统的基本原理与组成(1)了解自动控制系统实验台的基本结构;(2)学习自动控制系统的原理和组成;(3)分析实验台上的控制系统。

2. 实验二:线性系统的时域分析(1)根据实验要求,搭建线性系统实验电路;(2)利用信号发生器和示波器进行实验数据的采集;(3)分析实验数据,得出系统特性。

3. 实验三:线性系统的频域分析(1)搭建线性系统实验电路,并连接频率分析仪;(2)进行频域实验,采集频率响应数据;(3)分析频率响应数据,得出系统特性。

4. 实验四:PID控制器的设计与调试(1)学习PID控制原理;(2)根据系统特性,设计PID控制器参数;(3)搭建PID控制实验电路,并进行调试。

5. 实验五:模糊控制器的设计与调试(1)学习模糊控制原理;(2)根据系统特性,设计模糊控制器参数;(3)搭建模糊控制实验电路,并进行调试。

五、实验要求与评价2. 实验操作:熟悉实验设备的操作,正确进行实验;3. 数据处理:能够正确采集、处理实验数据;4. 分析与总结:对实验结果进行分析,得出合理结论;5. 课堂讨论:积极参与课堂讨论,分享实验心得。

线性系统的频域分析法

线性系统的频域分析法

5.1 频率特性

lg
1 0
2
0.301
3
0.477
4
0.602
5
0.699
6
0.778
7
0.845
8
0.903
9
0.954
10
1
※※
( )
40
20 0dB -20 -40
2、对数频率特性曲线 [ 伯德(Bode)图 ]
L ( ) 20 lg A( ) 20 lg G ( j ) ( dB )
L ( ) 20 lg (T ) 1 20 lg T
2
当 T 即 T 1 时
L(ω)dB 40 20 0dB -20 - 40
1
T
1 T


1 T
时 时
20 lg T 0
20 lg T 20
dB
dB
10 T
频 率 特 性 : G ( j ) 1 j T 1
( ) tg T
1
A ( )
1 T 1
2 2
ω 1/10T φ (ω )(度) -5.7 L(ω )(dB)
从到值 取 代入计算,得
对数幅频特性曲线 Bode图如右
1/5T -11.3
1/2T -26.6
2.频域法的基本思想:利用系统的开环频率特 性来分析闭环响应。对系统进行定性分析和定量 计算。
3.频率特性的性质 考察一个系统的好坏,通常用阶跃输入下系统的阶跃响应 来分析系统的动态性能和稳态性能。
有时也用正弦波输入时系统的响应来分析,但这种响应并 不是单看某一个频率正弦波输入时的瞬态响应,而是考察频率 由低到高无数个正弦波输入下所对应的每个输出的稳态响应。 因此,这种响应也叫频率响应。

信号与线性系统课程

信号与线性系统课程

答案信号与线性系统课程设计班级:学号:姓名:东华大学信息学院目录实验一连续信号的时域分析 (3)实验二连续时间系统的时域分析 (8)实验三连续信号的频域分析 (14)实验四连续系统的频域分析 (22)实验五信号采样与重建 (33)实验六离散时间信号和系统分析 (39)实验总结 (46)实验一连续信号的时域分析一、实验目的1、熟悉MATLAB 软件。

2、掌握常用连续信号与离散信号的MATLAB 表示方法。

二、实验设备安装有matlab6.5 以上版本的PC 机一台。

三、实验原理四、实验内容1、用MATLAB表示连续信号:tAe ,Acos(ω0 t +ϕ),Asin(ω0 t +ϕ)。

源程序:clcclearclosesyms t;f1=2*exp(t);f2=2*cos(3*t+4);f3=2*sin(3*t+4);subplot(2,2,1);ezplot(f1,[-10,2]);xlabel('t');title('f(t)=2e^t');grid on;subplot(2,2,2);ezplot(f2,[-5,5]);xlabel('t');title('f(t)=2cos(3t+4)');grid on;subplot(2,2,3);ezplot(f3,[-5,5]);xlabel('t');title('f(t)=2sin(3t+4)');grid on2、用MATLAB表示抽样信号(sinc(t))、矩形脉冲信号(rectpuls(t, width)) 及三角脉冲信号(tripuls(t, width, skew))。

源程序:clcclearcloset=-5:0.01:5;f1=sinc(t);f2=3*rectpuls(t,4);f3=3*tripuls(t,4,0);subplot(2,2,1);plot(t,f1);xlabel('t');title('f(t)=sinc(t)');grid on;subplot(2,2,2)plot(t,f2);xlabel('t');title('f(t)=3rectpuls(t,4)');grid on;axis([-5,5,-1,4]);subplot(2,2,3);plot(t,f3);xlabel('t');title('f(t)=3rectpuls(t,4,0)');grid on;axis([-5,5,-1,4]);3、编写如图3 的函数并用MATLAB 绘出满足下面要求的图形。

自动控制原理MATLAB实验报告

自动控制原理MATLAB实验报告

实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验原理1.比例环节的传递函数为KRKRRRZZsG200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK图形如图1所示。

2.惯性环节的传递函数为ufCKRKRsCRRRZZsG1,200,10012.021)(121121212===+-=+-=-=其对应的模拟电路及SIMULINK图形如图2所示。

图1 比例环节的模拟电路及SIMULINK图形图2惯性环节的模拟电路及SIMULINK图形3.积分环节(I)的传递函数为ufCKRssCRZZsG1,1001.011)(111112==-=-=-=其对应的模拟电路及SIMULINK图形如图3所示。

4.微分环节(D)的传递函数为ufCKRssCRZZsG10,100)(111112==-=-=-=ufCC01.012=<<其对应的模拟电路及SIMULINK图形如图4所示。

5.比例+微分环节(PD)的传递函数为)11.0()1()(111212+-=+-=-=ssCRRRZZsGufCCufCKRR01.010,10012121=<<===其对应的模拟电路及SIMULINK图形如图5所示。

图3 积分环节的模拟电路及及SIMULINK图形图4 微分环节的模拟电路及及SIMULINK图形6.比例+积分环节(PI)的传递函数为)11(1)(11212sRsCRZZsG+-=+-=-=ufCKRR10,100121===其对应的模拟电路及SIMULINK图形如图6所示。

三、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。

实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。

3.熟练掌握系统的稳定性的判断方法。

二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

自动控制原理第5章

自动控制原理第5章

jY (ω )
ω =∞
X (ω )
ω
积分环节的Nyquist图 积分环节的Bode图
幅频特性与角频率ω成反比,相频特性恒为-90° 成反比, 90° 对数幅频特性为一条斜率为 - 20dB/dec的直线,此 线通过L(ω)=0,ω=1的点
三、微分环节 微分环节的频率特性为
G ( jω ) = jω = ωe
奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 了反馈系统稳定性。 极坐标图(Polar 极坐标图(Polar plot) =幅相频率特性曲线=幅相曲线 幅相频率特性曲线=
G ( jω )
可用幅值 G( jω ) 和相角ϕ (ω ) 的向量表示。
当输入信号的频率 ω → 0 ~ ∞ 变化时,向量 G ( jω ) 的幅值和相位也随之作相应的变化,其端点在复平面 上移动的轨迹称为极坐标图。
jY (ω )
ω →∞
ϕ (ω ) A(ω )
ω = 0 X (ω )
ω
RC网络对数频率特性 RC网络频率特性
5.2 典型环节的频率特性
用频域分析法研究控制系统的稳定性和动态 响应时,是根据系统的开环频率特性进行的, 响应时,是根据系统的开环频率特性进行的, 而控制系统的开环频率特性通常是由若干典 型环节的频率特性组成的。 型环节的频率特性组成的。 本节介绍八种常用的典型环节。 本节介绍八种常用的典型环节。
频率响应: 正弦输入信号作用下, 系统输出的稳态分量。 频率响应 : 正弦输入信号作用下,系统输出的稳态分量。 (控制系统中的信号可以表示为不同频率正弦信号的合成) 控制系统中的信号可以表示为不同频率正弦信号的合成) 频率特性: 系统频率响应和正弦输入信号之间的关系, 频率特性 : 系统频率响应和正弦输入信号之间的关系,它 和传递函数一样表示了系统或环节的动态特性。 和传递函数一样表示了系统或环节的动态特性。 数学基础:控制系统的频率特性反映正弦输入下系统响应 数学基础:控制系统的频率特性反映正弦输入下系统响应 的性能。研究其的数学基础是Fourier变换。 的性能。研究其的数学基础是Fourier变换。 频域分析法:应用频率特性研究线性系统的经典方法。 频域分析法:应用频率特性研究线性系统的经典方法。

实验四 线性系统的频域分析

实验四 线性系统的频域分析

实验四线性系统的频域分析
线性系统的频域分析是一种利用线性系统的响应特性来提高系统性能的有效手段,它
在系统设计中起着重要的作用。

其主要思想是将系统的响应特性根据其与频率之间的关系
进行分割,从而更好地理解该响应的物理规律。

本文的目的是介绍线性系统的频域分析方法。

线性系统的频域分析分为时域分析和频域分析两种技术。

时域分析是检测一个系统在
其他变量没有变化时,系统输出信号形状及其随时间变化趋势的一种分析方法。

时域分析中,将系统的输入和输出逐样本放入示波器进行分析及测试。

频域分析是通过将系统的输
入和输出信号进行频谱分析,将它们映射到频率轴上进行分析的一种方法。

在频域分析中,我们可以通过频谱分析仪、傅里叶变换、系统增益、阶跃响应等技术来检测系统响应的特性,得出系统的频率响应函数,从而研究系统是否属于线性系统。

线性系统的频域分析一般步骤如下:
1、定义时域函数并将其傅里叶变换,从而得到其频域函数;
2、计算系统的增益及其全频响应曲线,以便了解频率和增益之间的关系;
3、根据阶跃响应的拟合结果,利用积分和微分的技巧,确定系统的阶跃函数;
4、选择优化算法,进行系统参数优化调整,使系统达到所需要的设计目标。

以上就是线性系统的频域分析方法介绍,从分析输入输出信号,到频域拟合分析,再
到进行参数优化调整,这一系列的步骤可以帮助我们更好的理解系统的物理机理,实现系
统的最佳设计性能。

信号与系统分析实验报告

信号与系统分析实验报告

信号与系统分析实验报告信号与系统分析实验报告引言:信号与系统分析是电子工程领域中的重要课程之一,通过实验可以更好地理解信号与系统的基本概念和原理。

本实验报告将对信号与系统分析实验进行详细的描述和分析。

实验一:信号的采集与重构在这个实验中,我们学习了信号的采集与重构。

首先,我们使用示波器采集了一个正弦信号,并通过数学方法计算出了信号的频率和幅值。

然后,我们使用数字信号处理器对采集到的信号进行重构,并与原始信号进行比较。

实验结果表明,重构后的信号与原始信号非常接近,证明了信号的采集与重构的有效性。

实验二:线性系统的时域响应本实验旨在研究线性系统的时域响应。

我们使用了一个线性系统,通过输入不同的信号,观察输出信号的变化。

实验结果显示,线性系统对于不同的输入信号有不同的响应,但都遵循线性叠加的原则。

通过分析输出信号与输入信号的关系,我们可以得出线性系统的传递函数,并进一步研究系统的稳定性和频率响应。

实验三:频域特性分析在这个实验中,我们研究了信号的频域特性。

通过使用傅里叶变换,我们将时域信号转换为频域信号,并观察信号的频谱。

实验结果显示,不同频率的信号在频域上有不同的分布特性。

我们还学习了滤波器的设计和应用,通过设计一个低通滤波器,我们成功地去除了高频噪声,并得到了干净的信号。

实验四:系统辨识本实验旨在研究系统的辨识方法。

我们使用了一组输入信号和对应的输出信号,通过数学建模的方法,推导出了系统的传递函数。

实验结果表明,通过系统辨识可以准确地描述系统的特性,并为系统的控制和优化提供了基础。

结论:通过本次实验,我们深入学习了信号与系统分析的基本概念和原理。

实验结果证明了信号的采集与重构的有效性,线性系统的时域响应的线性叠加原则,信号的频域特性和滤波器的设计方法,以及系统辨识的重要性。

这些知识和技能对于我们理解和应用信号与系统分析具有重要的意义。

通过实验的实际操作和分析,我们对信号与系统的理论有了更深入的理解,为我们今后的学习和研究打下了坚实的基础。

机电控制工程基础实验报告(4实验)参考模板

机电控制工程基础实验报告(4实验)参考模板

西华大学实验报告(理工类)开课学院及实验室:电气信息专业实验中心 6a-201 实验时间 :2016年 5 月 日一、实验目的1、 通过模拟实验,定性和定量地分析二阶系统的两个参数T 和ζ对二阶系统动态性能的影响。

2、 通过模拟实验,定性和定量地分析系统开环增益K 对系统稳定性的影响。

二、实验原理1.典型的二阶系统稳定性分析结构框图如下图所示。

图1-1系统开环传递函数为:先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图1-2),系统闭环传递函数为:其中自然振荡角频率:阻尼比:对应的模拟电路图:如图1-2所示。

(其中R 取10 K Ω,50 K Ω,160 K Ω,200 K Ω)图1-2三、实验设备、仪器及材料TDN-AC/ACS 教学实验系统、导线四、实验步骤(按照实际操作过程)1. 典型二阶系统瞬态性能指标的测试(1) 按模拟电路图1-2接线,将阶跃信号接至输入端,取R = 10K 。

(2) 用示波器观察系统响应曲线C(t),测量并记录超调M P 、峰值时间t p 和调节时间t S 。

(3) 分别按R = 50K ;160K ;200K ;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标M P 、t p 和t S ,及系统的稳定性。

并将测量值和计算值(实验前必须按公式计算出)进行比较。

将实验结果填入表1-1中。

五、实验过程记录(数据、图表、计算等) 参数项目RKΩKl/sωnl/sC(t p) C(∞)pM tp t s阶跃响应曲线计算值测量值计算值测量值计算值测量值0<ζ<1欠阻尼1050ζ=1临界阻尼160ζ>1过阻尼200表1-1六、实验结果分析及问题讨论西华大学实验报告(理工类)开课学院及实验室:电气信息专业实验中心 6a-201 实验时间:2016年5 月日一、实验目的掌握波特图的绘制方法及由波特图来确定系统开环传函。

信号_频域分析实验报告(3篇)

信号_频域分析实验报告(3篇)

第1篇一、实验目的1. 理解信号的频域分析方法及其在信号处理中的应用。

2. 掌握傅里叶变换的基本原理和计算方法。

3. 学习使用MATLAB进行信号的频域分析。

4. 分析不同信号在频域中的特性,理解频域分析在实际问题中的应用。

二、实验原理频域分析是信号处理中一种重要的分析方法,它将信号从时域转换到频域,从而揭示信号的频率结构。

傅里叶变换是频域分析的核心工具,它可以将任何信号分解为不同频率的正弦波和余弦波的线性组合。

三、实验内容及步骤1. 信号生成与傅里叶变换- 使用MATLAB生成一个简单的正弦波信号,频率为50Hz,采样频率为1000Hz。

- 对生成的正弦波信号进行傅里叶变换,得到其频谱图。

2. 频谱分析- 分析正弦波信号的频谱图,观察其频率成分和幅度分布。

- 改变正弦波信号的频率和幅度,观察频谱图的变化,验证傅里叶变换的性质。

3. 信号叠加- 将两个不同频率的正弦波信号叠加,生成一个复合信号。

- 对复合信号进行傅里叶变换,分析其频谱图,验证频谱叠加原理。

4. 窗函数- 使用不同类型的窗函数(如矩形窗、汉宁窗、汉明窗等)对信号进行截取,观察窗函数对频谱的影响。

- 分析不同窗函数的频率分辨率和旁瓣抑制能力。

5. 信号滤波- 设计一个低通滤波器,对信号进行滤波处理,观察滤波器对信号频谱的影响。

- 分析滤波器对信号时域和频域特性的影响。

6. MATLAB工具箱- 使用MATLAB信号处理工具箱中的函数,如`fft`、`ifft`、`filter`等,进行信号的频域分析。

- 学习MATLAB工具箱中的函数调用方法和参数设置。

四、实验结果与分析1. 正弦波信号的频谱分析实验结果显示,正弦波信号的频谱图只有一个峰值,位于50Hz处,说明信号只包含一个频率成分。

2. 信号叠加的频谱分析实验结果显示,复合信号的频谱图包含两个峰值,分别对应两个正弦波信号的频率。

验证了频谱叠加原理。

3. 窗函数对频谱的影响实验结果显示,不同类型的窗函数对频谱的影响不同。

自动控制原理实验指导

自动控制原理实验指导

自动控制原理与智能控制目录第1篇自动控制原理模拟实验 (1)实验一控制系统典型环节的模拟 (1)实验二一阶系统的时域响应及参数测定 (5)实验三二阶系统的瞬态响应分析 (7)实验四三阶系统的瞬态响应及稳定性分析 (9)实验五PID控制器的动态特性 (11)实验六控制系统的动态校正 (13)实验七典型环节频率特性的测试 (17)实验八线性系统频率特性的测试 (21)第2篇自动控制原理MATLAB仿真实验 (24)实验一典型环节的MATLAB仿真 (24)实验二线性系统时域响应分析 (28)实验三线性系统的根轨迹 (34)实验四线性系统的频域分析 (39)实验五线性系统串联校正 (43)实验六数字PID控制 (49)第3篇智能控制一模糊控制 (53)实验一认识实验 (53)实验二模糊逻辑工具箱的应用 (55)实验三模糊PD控制器设计 (57)实验四模糊PID控制器设计 (59)第4篇智能控制二神经网络 (63)实验一BP神经网络设计 (63)实验二基于BP神经网络自整定PID控制 (65)图1-1 运放的反馈连接第1篇 自动控制原理模拟实验实验一 控制系统典型环节的模拟一、实验目的(1)熟悉超低频扫描示波器的使用方法。

(2)掌握用运放组成控制系统典型环节的模拟电路。

(3)测量典型环节的阶跃响应曲线。

(4)通过实验了解典型环节中参数的变化对输出动态性能的影响。

二、实验所需挂件及附件三、实验线路及原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。

图中Z1和Z2为复数阻抗,它们都是由R 、C 构成。

基于图中A 点的电位为虚地,略去流入运放的电流,则由图1-1得:21()o i u Z G s u Z -==(1) 由上式可求得,由下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。

(1)比例环节比例环节的模拟电路如图1-2所示:21820()2410Z KG s Z K===(2)惯性环节惯性环节的模拟电路如图1-3所示。

信号与系统 实验四、五 实验报告

信号与系统 实验四、五 实验报告

实验五:基于Matlab的连续信号生成及时频域分析一、实验要求1、通过这次实验,学生应能掌握Matlab软件信号表示与系统分析的常用方法。

2、通过实验,学生应能够对连续信号与系统的时频域分析方法有更全面的认识。

二、实验内容一周期连续信号1)正弦信号:产生一个幅度为2,频率为4Hz,相位为π/6的正弦信号;2)周期方波:产生一个幅度为1,基频为3Hz,占空比为20%的周期方波。

非周期连续信号3)阶跃信号;4)指数信号:产生一个时间常数为10的指数信号;5)矩形脉冲信号:产生一个高度为1、宽度为3、延时为2s的矩形脉冲信号。

三、实验过程一1)t=0:0.001:1;ft1=2*sin(8*pi*t+pi/6);plot(t,ft1);2)t=0:0.001:2;ft1=square(6*pi*t,20);plot(t,ft1),axis([0,2,-1.5,1.5]);3)t=-2:0.001:2;y=(t>0);ft1=y;plot(t,ft1),axis([-2,2,-1,2]);4)t=0:0.001:30;ft1=exp(-1/10*t);plot(t,ft1),axis([0,30,0,1]);5)t=-2:0.001:6;ft1=rectpuls(t-2,3);plot(t,ft1),axis([-2,6,-0.5,1.5]);四、实验内容二1)信号的尺度变换、翻转、时移(平移)已知三角波f(t),用MATLAB画信号f(t)、f(2t)和f(2-2t) 波形,三角波波形自定。

2)信号的相加与相乘相加用算术运算符“+”实现,相乘用数组运算符“.*”实现。

已知信号x(t)=exp(-0.4*t),y(t)=2cos(2pi*t),画出信号x(t)+y(t)、x(t)*y(t)的波形。

3)离散序列的差分与求和、连续信号的微分与积分已知三角波f(t),画出其微分与积分的波形,三角波波形自定。

实验四线性时不变离散时间系统的频域分析

实验四线性时不变离散时间系统的频域分析

实验四线性时不变离散时间系统的频域分析一、引言离散时间系统是指输入和输出都以离散的时间点进行采样的系统。

频域分析是通过将时域信号转换到频域来研究系统的特性和性能的一种方法。

实验四旨在通过频域分析方法研究线性时不变离散时间系统的特性。

二、理论分析线性时不变离散时间系统的输入输出关系可以表示为:y[n]=H(e^(jω))*x[n]其中,H(e^(jω))表示系统的频率响应,是输入和输出的傅里叶变换之比。

线性时不变离散时间系统的频率响应可以通过离散傅里叶变换(DFT)来求得。

DFT是时域序列经过离散采样后进行离散傅里叶变换得到频域表示的方法。

DFT的定义如下:X(k) = Σ[x(n)e^(-j2πkn/N)]其中,x(n)为时域序列,X(k)为频域序列,N为采样点数。

通过DFT可以将时域序列转换为频域序列,从而得到系统的频谱特性,包括幅度和相位。

三、实验步骤1.准备实验设备和软件:计算机、MATLAB软件。

2.设置实验输入信号:生成离散时间序列x[n]。

3.进行离散傅里叶变换:使用MATLAB软件进行离散傅里叶变换,得到频域序列X(k)。

4.计算幅度谱和相位谱:根据频域序列X(k)计算幅度谱和相位谱。

5.绘制频谱图:根据幅度谱和相位谱绘制频谱图。

6.分析系统特性:根据频谱图分析系统的频率响应特性。

四、实验注意事项1.在进行离散傅里叶变换时,注意采样点数N的选择,一般应满足N>2L,其中L为时域信号的长度。

2.在绘制频谱图时,注意选择适当的频率范围,以便观察频域特性。

五、实验结果分析实验通过离散傅里叶变换将时域信号转换为频域信号,得到了系统的频谱特性。

根据频谱图可以分析系统的频率响应,包括系统的幅度响应和相位响应。

六、实验总结通过实验四的实验,我们学习了线性时不变离散时间系统的频域分析方法。

通过离散傅里叶变换,我们可以将时域序列转换为频域序列,从而得到系统的频谱特性。

通过分析频谱图,我们可以了解系统的幅度响应和相位响应,进一步了解系统的特性和性能。

实验四、线性控制系统的时域响应分析

实验四、线性控制系统的时域响应分析

(2)[y,t]=step(num,den) [y,t]=step(G)
t:由系统模型特征自动生成时间向量
(3)[y,x,t]=step(A,B,C,D,iu)
A,B,C,D:为系统的状态空间描述矩阵。 iu:用来指明输入变量的序号 x:系统返回的状态轨迹。 如果不需要具体的响应值,只想绘制系统的阶跃响应曲线,可以采用 step(num,den,t)、 step(G,t) 、step(num,den) 、step(G) step(A,B,C,D,iu) 的格式进行函数调用。
[例1]设单位负反馈系统的开环传递函数为: G(s) = 试求系统单位阶跃响应。 方法一
0.3S + 1 s(s + 0.5)
方法二
分析:以上两种方法均可绘制系统响应曲线,所不同的是,前者返回了参数 并调用其他函数绘制曲线,后者不还回参数而直接绘制。如果不关心还回 数据,用后者更方便,而前者还回参数为进一步的分析提供了方便。
1.6 绘图
实验四 线性控制系统的时域响应分析
连续系统的单位阶跃响应(step)
1、单位阶跃响应函数step
已知G=tf(num,den) 单位阶跃响应函数step的常见用法: (1)y=step(num,den,t) y=step(G,t)
返回值y:系统在仿真中所得输出组成的矩阵。 t:选定的仿真时间向量,一般可以由t=0:step:end产生。
2预习
预习matlab中关于线性控制系统的频域响应分析的命令。 1、Bode图; 2、Nyquist图; 3、根轨迹;
系统动态性能指标还可以通过编程的方式实现,详见实验二的附录。
k [例3]已知单位负反馈二阶系统,其开环传递函数: G(s) = s(Ts 其中T=1,试绘制k分别为0.1,0.5,1 时,其单位负反馈系+1) 统的单位阶跃曲线(绘制在同一张用鼠标放置的文字注释命令。当输入命令后, 可以在屏幕上得到一个光标,单击鼠标后文字注释将放置在光标所指处。

频域分析法

频域分析法

1
1
U0 (s) Ts 1Ui (s) Ts 1
Ui s2 2
对上式取拉氏反变换,得输出时域解为
u0
(t
)
1
UiT T 2
2
t
eT
Ui sin(t arctanT) 1 T 22
2021年4月15日3时14分
当t→∞时,第一项趋于0,这时电路的稳态输出为
u0 (t)
Ui
1 T 22
sin(t
arctan
T2
T1 2 1 T2 2 1
A
K
T1 2 1 T2 2 12arctan T1
arctan T2
2021年4月15日3时14分
4.2 频率特性的几种图示方法
序号 1
名称 幅相频率特性曲线
图形常用名 奈奎斯特图
坐标系 极坐标
2 对数幅值频率特性曲线 对数相角频率特性曲线
伯德图
4.1 频率特性 1、频率特性的定义
对于稳定的线性定常系统,其传递函数为G(s),若输 入量为一正弦信号,则其输出响应的稳态分量也是同 频率的正弦信号,但幅值、相位与输入信号的不同。 保持输入信号的幅值不变,逐次改变输入信号的频率, 则可测得一系列稳态输出的幅值和相位。 (输出信 号稳态时的幅值与相位按照系统传递函数的不同随着 输入正弦信号频率的变化而有规律的变化)。
j p
例:试求
Gs
K
s T1s 1 T2s 1
的幅频特性和相频特性。
G
j
K
j T1 j 1T2 j 1
G j K 1 1 1
j T1 j 1 T2 j 1
K
1
ej
2
1
e jarctanT1

频域分析综合实验报告

频域分析综合实验报告

一、实验目的1. 理解和掌握频域分析的基本原理和方法。

2. 熟悉MATLAB在频域分析中的应用。

3. 通过实验,深入理解线性系统在频域中的特性。

4. 培养分析和解决实际问题的能力。

二、实验原理频域分析是研究线性系统的一种重要方法,它将时域信号转换到频域进行分析,从而揭示系统在各个频率分量上的响应特性。

频域分析方法主要包括傅里叶变换、拉普拉斯变换、Z变换等。

1. 傅里叶变换:将时域信号转换到频域的数学方法,适用于连续时间信号。

其逆变换可以将频域信号转换回时域。

2. 拉普拉斯变换:将时域信号转换到复频域的数学方法,适用于连续时间信号。

其逆变换可以将复频域信号转换回时域。

3. Z变换:将时域信号转换到离散时间域的数学方法,适用于离散时间信号。

其逆变换可以将离散时间域信号转换回时域。

三、实验内容及步骤1. 实验一:连续时间信号的频域分析(1)利用MATLAB实现连续时间信号的傅里叶变换和逆变换。

(2)绘制信号的时域波形图、频谱图、相位图等。

(3)分析信号的频率成分、幅度、相位等特性。

2. 实验二:离散时间信号的频域分析(1)利用MATLAB实现离散时间信号的离散傅里叶变换(DFT)和离散傅里叶逆变换(IDFT)。

(2)绘制信号的时域波形图、频谱图、相位图等。

(3)分析信号的频率成分、幅度、相位等特性。

3. 实验三:线性系统的频域分析(1)利用MATLAB绘制系统的幅频特性曲线、相频特性曲线。

(2)分析系统的截止频率、带宽、稳定性等特性。

(3)比较不同系统的频域特性,分析其对信号处理的影响。

四、实验结果与分析1. 实验一:通过傅里叶变换,将时域信号转换到频域,可以直观地观察到信号的频率成分、幅度、相位等特性。

例如,对于正弦信号,其频谱图显示只有一个频率分量,且幅度和相位保持不变。

2. 实验二:离散傅里叶变换(DFT)是离散时间信号频域分析的重要工具。

通过DFT,可以将离散时间信号分解为多个频率分量,从而分析信号的频率特性。

自动控制原理实验四 线性系统的频域分析

自动控制原理实验四 线性系统的频域分析

实验四 线性系统的频域分析一、实验目的1.掌握用MATLAB 语句绘制各种频域曲线。

2.掌握控制系统的频域分析方法。

二、基础知识及MATLAB 函数频域分析法是应用频域特性研究控制系统的一种经典方法。

它是通过研究系统对正的Nyquist 曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。

p =-0.7666 + 1.9227i-0.7666 - 1.9227i-0.4668若上例要求绘制)10,10(32-∈ω间的Nyquist 图,则对应的MATLAB 语句为:num=[2 6];den=[1 2 5 2];w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距离的点nyquist(num,den,w)2)Bode图的绘制与分析系统的Bode图又称为系统频率特性的对数坐标图。

Bode图有两张图,分别绘制开环频率特性的幅值和相位与角频率ω的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。

mag,phase是指系统频率响应的幅值和相角,幅值的单位为dB,它的算式为magdB=20lg10(mag)指定幅值范围和相角范围的MATLABnum=[0 0 15 30];den=[1 16 100 0];w=logspace(-2,3,100);[mag,phase,w]=bode(num,den,w); %指定Bode图的幅值范围和相角范围图4-2(a) 幅值和相角范围自动确定的Bode图图4-2(b) 指定幅值和相角范围的Bode图subplot(2,1,1); %将图形窗口分为2*1个子图,在第1个子图处绘制图形semilogx(w,20*log10(mag)); %使用半对数刻度绘图,X轴为log10刻度,Y轴为线性刻度grid onxlabel(‘w/s^-1’); ylabel(‘L(w)/dB’);title(‘Bode Diagram of G(s)=30(1+0.5s)/[s(s^2+16s+100)]’);subplot(2,1,2);%将图形窗口分为2*1个子图,在第2个子图处绘制图形semilogx(w,phase);grid onxlabel(‘w/s^-1’); ylabel(‘ (0)’);注意:半Bode图的绘制可用semilogx函数实现,其调用格式为semilogx(w,L),其wcp = 1.1936如果已知系统的频域响应数据,还可以由下面的格式调用函数:[Gm,Pm,Wcg,Wcp]=margin(mag,phase,w)其中(mag,phase,w)分别为频域响应的幅值、相位与频率向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉工程大学实验报告
专业电气自动化03班班号 1104150318 组别指导教师陈艳菲
姓名彭雪君同组者个人
三、实验结果分析 1.6=n ω,ζ分别取1.0=ζ,0.3,0.5,0.8,2时,系统的bode 图绘制:
源程序代码及图形:
>> num=[0 0 36];
>> den1=[1 1.2 36];>> den2=[1 3.6 36];
>> den3=[1 6 36];>> den4=[1 9.6 36];
>> den5=[1 24 36];
>> bode(num,den1)
>> grid
>> text(4.2,-15,'Zeta=0.1');
>> hold
>> bode(num,den2)
>> text(3,-22,'0.3');>> bode(num,den3)
>> text(2,-32,'0.5');>> bode(num,den4)
>> text(3,-45,'0.8');>> bode(num,den5)
>> text(1.8,-50,'2');
结果分析:从图中可看出ζ越小,中频段振荡越剧烈。

该二阶系统是典型的振荡环节,谐
振频率)220(21222≤<*-*=ζζωωn r ,谐振峰值)220(121222≤<-**=ζζζr M ,当2
202<<ζ时,r ω,r M 均为ζ的减函数,ζ越小,r M ,r ω越大,振荡幅度越大,超调量越大,过程越不平
稳且系统响应速度越慢,当
12
22
<<ζ时。

)(ωA 单调减小,此时无谐振峰值和谐振频率,过程较平稳。

2.(1))
5)(15(10)(2+-=s s s s G 的曲线绘制:
① Bode 图的绘制:
程序源代码及图形:
>> num=[0 0 0 0 10];
>> den=[5 24 -5 0 0];
>> bode(num,den)
Grid
②Nyquist 图的绘制:
程序源代码及图形:
>> num=[0 0 0 0 10];
>> den=[5 24 -5 0 0];
>> [z,p,k]=tf2zp(num,den);p
p =
-5.0000
0.2000
>> nyquist(num,den)
>> grid
③Nichols 图的绘制:
程序源代码及图形:
>> num=[0 0 0 0 10]; >> den=[5 24 -5 0 0]; >> [mag,phase]=nichols(num,den);
>> plot(phase,20*log10(mag))
>> ngrid
④Step 曲线的绘制:
源程序代码及图形:
>> num=[0 0 0 0 10];
>> den=[5 24 -5 0 0];
>> step(num,den)
>> grid
⑤结果分析及说明:因为开环传递函数在S 右半平面有一个极点,即P=1,从Nyquist 曲线可看出,奈氏曲线没有包围(-1,0),即R=0,根据奈氏稳定判据,Z=P-R=1,不等于0,所以该系统不稳定,从阶跃响应曲线上也可以看出,系统不稳定。

(2))
106)(15()1(8)(22++++=s s s s s s G 的曲线绘制: ①bode 曲线的绘制:
源程序代码及图形:
>> num=[0 0 0 0 8 8 ];
>> den=[1 21 100 150 0 0];
>> bode(num,den)
>> grid
②Nyquist曲线的绘制:
程序源代码及图形:
>> num=[0 0 0 0 8 8 ];
>> den=[1 21 100 150 0 0]; >> [z,p,k]=tf2zp(num,den);p p =
-15.0000
-3.0000 + 1.0000i
-3.0000 - 1.0000i
>> nyquist(num,den)
>> grid
③Nichols曲线的绘制:
程序源代码及图形:
>> num=[0 0 0 0 8 8 ];
>> den=[1 21 100 150 0 0];
>> [mag,phase]=nichols(num,den); >> plot(phase,20*log10(mag)) >> ngrid
④Step 曲线的绘制:
程序源代码及图形:
>> num=[0 0 0 0 8 8 ];
>> den=[1 21 100 150 0 0];
>> step(num,den)
>> grid
⑤结果分析及说明:因为开环传递函数在S 右半平面没有极点,即P=0,从Nyquist 曲线可看出,奈氏曲线逆时针包围(-1,0)一圈,即R=1,根据奈氏稳定判据,Z=P-R=-1,不等于0,所以该系统不稳定,从阶跃响应曲线上也可以看出,系统不稳定。

(3))
11.0)(105.0)(102.0()13/(4)(++++=s s s s s s G 的曲线绘制: ①bode 的曲线绘制:
程序源代码及图形:
>> num=[0 0 0 1.333 4];
>> den=[0.0001 0.008 0.17 1 0];
>> bode(num,den)
>> grid
②Nyquist 的曲线绘制:
程序源代码及图形:
>> num=[0 0 0 1.333 4];
>> den=[0.0001 0.008 0.17 1 0]; >> [z,p,k]=tf2zp(num,den);p
p =
-50.0000
-20.0000
-10.0000
>> nyquist(num,den)
>> grid
③Nichols的曲线绘制:
程序源代码及图形:
>> num=[0 0 0 1.333 4];
>> den=[0.0001 0.008 0.17 1 0]; >> [mag,phase]=nichols(num,den); >> plot(phase,20*log10(mag)) >> ngrid
④Step的曲线绘制:
程序源代码:
>> num=[0 0 0 1.333 4];
>> den=[0.0001 0.008 0.17 1 0]; >> step(num,den)
>> grid
⑤结果分析及说明:因为开环传递函数在S 右半平面没有极点,即P=0,从Nyquist 曲线可看出,奈氏曲线没有包围(-1,0),即R=0,根据奈氏稳定判据,Z=P-R=0,所以该系统不稳定,从阶跃响应曲线上也可以看出,系统阶跃响应最终趋于稳定,所以系统稳定。

3. 开环传递函数为)
11.0(1)(2++=s s s s G 的系统的稳定性判定: 源程序代码:
>> num=[0 0 1 1 ];
>> den=[0.1 1 0 0 ];
>> [gm,pm,wcg,wcp]=margin(num,den);
>> gm,pm,wcg,wcp
gm =
pm =
44.4594
wcg =
wcp =
1.2647
结果分析及说明:Gm,Pm 分别为系统的幅值裕量和相位裕量,而Wcg,Wcp 分别为幅值裕量和相位裕量处相应的频率值。

从结果中可以得出:相位裕量pm=44.4954>0,所以系统是稳定的;
())arctan()1.0arctan(1800ωωωϕ+--=>=0180-,当且仅当0=ω时0)(=ωϕ,所以其相位穿越频率Wcg=0,幅值裕量)
(1ωA gm =
=0。

相关文档
最新文档