含参二次函数单调性问题解法探究

合集下载

(完整版)导数讨论含参单调性习题(含详解答案).doc

(完整版)导数讨论含参单调性习题(含详解答案).doc

1.设函数.( 1)当时,函数与在处的切线互相垂直,求的值;( 2)若函数在定义域内不单调,求的取值范围;( 3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.2.已知函数是的导函数,为自然对数的底数.( 1)讨论的单调性;( 2)当时,证明:;( 3)当时,判断函数零点的个数,并说明理由.3.已知函数(其中,).( 1)当时,若在其定义域内为单调函数,求的取值范围;( 2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数.( 1)讨论函数的单调性;( 2)若存在两个极值点,求证:无论实数取什么值都有.5 .已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数 .( 1)求的值;( 2)若在及所在的取值范围上恒成立,求的取值范围;6.已知函数ln , x ,其中.f x ax x F x e ax x 0, a 0( 1)若f x 和 F x 在区间 0,ln3 上具有相同的单调性,求实数 a 的取值范围;( 2)若a , 1 ,且函数 g x xe ax 1 2ax f x 的最小值为 M ,求 M 的e2最小值 .7.已知函数 f ( x) e x m ln x .( 1)如x 1 是函数 f (x) 的极值点,求实数m 的值并讨论的单调性 f (x) ;( 2)若x x0是函数f ( x)的极值点,且f ( x) 0 恒成立,求实数m 的取值范围(注:已知常数 a 满足 a ln a 1 ) .8.已知函数 f x ln 1 mx x2mx ,其中0 m 1 .2( 1)当m 1时,求证: 1 x 0 时, f x x3;3( 2)试讨论函数y f x 的零点个数.9.已知e 是自然对数的底数 , F x 2e x 1 x ln x, f x a x 1 3 .(1)设T x F x f x , 当a 1 2e 1时, 求证: T x 在 0, 上单调递增;(2)若x 1, F x f x , 求实数a的取值范围 .10 .已知函数f x e x ax 2(1)若a 1 ,求函数f x 在区间[ 1,1]的最小值;(2)若a R, 讨论函数 f x 在 (0, ) 的单调性;(3)若对于任意的x1, x2 (0, ), 且 x1 x2,都有 x2 f ( x1) a x1 f ( x2 ) a 成立,求 a 的取值范围。

使用导数来解决含参函数单调性的讨论方法的总结

使用导数来解决含参函数单调性的讨论方法的总结

155使用导数来解决含参函数单调性的讨论方法的总结蓝荣升作者发现,使用导数来解决函数的单调性,它在高中数学试卷中占有相当大的份额。

函数的单调性是求解函数极值,最值(范围)以及零点个数问题的基础,它经常出现在压轴题的第一问,并且存在一定的困难。

求函数单调性的最困难的部分是含参函数的分类讨论,而分类讨论的思想又是高中阶段着重培养的思想方法。

因此,利用分类讨论来解决带参数的函数单调性问题已成为近年来高考的重点和热点。

这类问题的难点在于学生不懂得如何讨论,或者讨论不全面,这里总结了带参函数单调性的分类讨论的一般步骤,在学会之后,没有不知道如何讨论或讨论不全面的情况。

以下是对单调性一般步骤的讨论(解决了讨论的大部分单调性问题):第一步:求定义域,单调区间是定义域的子集,因此求单调区间必须先求定义域,定义域有三种常见的情况需要讨论。

(1)偶次根式,根号下整体不小于0。

(2)分式,分母不等于0。

(3)对数,真数大于0。

第二步:求函数导数,令0)('=x f ,求出它的根21,x x ,根的个数一般有三种情况:无根、一个根,两个根。

导函数是分式一般先通分,并且还要考虑能不能因式分解。

第三步:如果方程有两根,则要考虑4种情况;如果只有一根则只需考虑第一种情况;如果根不能被求解,并且导数不能被判断出正的或负的,那么我们就需要求函数的二阶导数,利用二阶导数的正负来确定一阶导数的单调性,然后利用最值得到一阶导数的正负,进而判断出原函数的单调性。

(1)是否存在根(判断根是否在定义域中),得到参数的讨论点。

(2)21x x =,得到参数的讨论点。

(3)21x x >,得到参数的讨论点。

(4)21x x <,得到参数的讨论点。

第四步:判断21,x x 分定义域的每个区间的导数的正负情况,如果导数大于0,则函数单调递增,如果导数小于0,则函数单调递减。

以下三种常见方法可用来判断导数的正负:(1)数轴穿根法:(2)函数图像法:(3)区域判断法:只需要判断每个因式的正负。

函数单调性之分类讨论

函数单调性之分类讨论

函数单调性之分类讨论本文介绍了含参函数单调性的分类讨论方法。

首先,根据函数的形式(一次函数、二次函数、分式函数、含ex函数)进行分类讨论。

对于一次函数,根据参数k的正负和零来标记数轴上的根,并确定单调区间;对于二次函数,先进行因式分解,然后根据参数a的正负和零以及判别式Δ的大小来确定单调区间;对于分式函数和含ex函数,需要进行通分或提取e 等操作,然后根据参数分类讨论。

接下来,通过两个例题来演示如何使用分类讨论方法讨论函数单调性。

第一个例题中,给定函数f(x)=lnx-ax,根据导数的正负确定函数在定义域上的单调性;第二个例题中,给定函数f(x)=lnx-ax+(a-1)x^2/2,先求导得到导数,然后根据判别式Δ的大小和根的位置确定函数在定义域上的单调性。

总的来说,分类讨论法是一种通用的方法,适用于各种含参函数单调性的讨论。

在具体操作时,需要根据函数的形式和参数的取值进行分类讨论,然后根据导数的正负、判别式的大小和根的位置等来确定函数在定义域上的单调性。

首先需要进行一些符号的修正和排版调整,然后再进行改写。

1.讨论函数$f(x)=ae^x$的单调性。

解析:定义域为$(-\infty。

+\infty)$,函数的导数为$f'(x)=ae^x$。

当$a0$时,$f(x)$在$(-\infty,1)$单调递减,在$(1,+\infty)$单调递增。

2.讨论函数$f(x)=\ln x+ax^2+(2a+1)x$的单调性。

解析:定义域为$(0,+\infty)$,函数的导数为$f'(x)=\frac{1}{x(x+1)}+(4a+2)x+2a+1$。

当$a\geq 0$时,$f(x)$在$(0,+\infty)$单调递增;当$a<0$时,令$f'(x)=0$得到$x_1=-\frac{1}{2a}$和$x_2=-1$,因此$f(x)$在$(0,x_1)$和$(x_2,+\infty)$单调递减,在$(x_1,x_2)$单调递增。

谈谈含参函数单调性的通性通法问题——以导函数是二次函数或类二次函数型为例

谈谈含参函数单调性的通性通法问题——以导函数是二次函数或类二次函数型为例

通法研究Җ㊀广东㊀张㊀科㊀㊀含参函数因引入了参数使得确定的函数变得不确定,其单调性讨论问题常常涉及分类讨论思想的综合运用,能体现数学思维的深度,体现逻辑推理㊁数学运算㊁直观想象等数学核心素养,是近年来高考的高频考点之一.在实际应用中,能否深入理解问题的本质,能否明确分类的逻辑和依据是求解这类问题的难点.下面就以导函数是二次函数(或类二次函数)为例,探讨求解含参函数单调性问题的通性通法.1㊀以导函数零点的大小为分类依据例1㊀已知函数f (x )=13x 3-(1+a )x 2+4a x +24a (a ɪR ),讨论函数f (x )的单调性.依题意得f ᶄ(x )=x 2-2(1+a )x +4a =(x -2)(x -2a ),令f ᶄ(x )=0,得x =2或x =2a .当2a <2,即a <1时,令f ᶄ(x )>0,得x <2a 或x >2;令f ᶄ(x )<0,得2a <x <2.此时,f (x )的单调递增区间是(-ɕ,2a )和(2,+ɕ),单调递减区间是(2a ,2).当2a =2,即a =1时,fᶄ(x )ȡ0恒成立,此时,f (x )的单调递增区间是(-ɕ,+ɕ).当2a >2,即a >1时,令f ᶄ(x )>0,得x <2或x >2a ;令f ᶄ(x )<0,得2<x <2a .因此,f (x )的单调递增区间是(-ɕ,2)和(2a ,+ɕ),单调递减区间是(2,2a ).综上所述,当a >1时,f (x )的单调递增区间是(-ɕ,2),(2a ,+ɕ),单调递减区间是(2,2a );当a =1时,f (x )单调递增区间是(-ɕ,+ɕ);当a <1时,f (x )的单调递增区间是(-ɕ,2a )和(2,+ɕ),单调递减区间是(2a ,2).由此题可以知道,当导函数的零点大小不确定时,讨论函数单调性的基本步骤如图1所示.求函数f (x )的定义域ң求导函数fᶄ(x )ң求导函数的零点ң以比较零点的大小为依据进行分类ң确定函数的单调区间图12㊀以导函数零点是否在定义域内为分类依据例2㊀已知函数f (x )=12x 2-2(1+a )x +4a l n x ,讨论函数f (x )的单调性.依题意可得,f (x )的定义域为(0,+ɕ),fᶄ(x )=x -2(1+a )+㊀㊀㊀㊀4a x =(x -2)(x -2a )x(x >0).当2a ɤ0,即a ɤ0时,由fᶄ(x )>0,x >0,{得x >2;由fᶄ(x )<0,x >0,{得0<x <2.因此f (x )在(2,+ɕ)上单调递增,在(0,2)上单调递减.当0<2a <2,即0<a <1时,由fᶄ(x )>0,x >0,{得0<x <2a 或x >2;由f (x )<0,x >0,{得2a <x <2.因此,f (x )在(0,2a )和(2,+ɕ)上单调递增,在(2a ,2)上单调递减.当2a =2,即a =1时,f ᶄ(x )ȡ0,所以f (x )在(0,+ɕ)上单调递增.当2a >2,即a >1时,由fᶄ(x )>0,x >0,{得0<x <2或x >2a ;由fᶄ(x )<0,x >0,{可得2<x <2a .因此,f (x )在(0,2)和(2a ,+ɕ)上单调递增,在(2,2a )上单调递减.综上所述,当a ɤ0时,f (x )的单调递增区间是(2,+ɕ),单调递减区间是(0,2);当0<a <1时,f (x )的单调递增区间是(0,2a )和(2,+ɕ),单调递01通法研究减区间是(2a ,2);当a =1时,f (x )的单调递增区间是(0,+ɕ);当a >1时,f (x )的单调递增区间是(0,2)和(2a ,+ɕ),单调递减区间是(2,2a ).由此题可知当导函数的零点是否在定义域内不能确定时,讨论函数单调性的基本步骤如图2所示.求函数f (x )的定义域ң求导函数f ᶄ(x )ң求导函数的零点ң优先以导函数的零点是否在定义域内为依据进行分类ң以零点的大小为依据进行分类ң确定函数的单调区间图23㊀以导函数是否存在零点为分类依据例3㊀(2018年全国卷Ⅰ理21(1))已知函数f (x )=1x-x +a l n x ,讨论f (x )的单调性.f (x )的定义域为(0,+ɕ),且知fᶄ(x )=-x 2-a x +1x 2.令f ᶄ(x )=-x 2-a x +1x 2=0,即x 2-a x +1=0.当-2ɤa ɤ2时,Δɤ0,f ᶄ(x )ɤ0,此时,f (x )在(0,+ɕ)上单调递减.当a <-2或a >2时,Δ>0,此时方程x 2-a x +1=0两根为x 1=a -a 2-42,x 2=a +a 2-42.当a <-2时,两根均为负数,所以x >0时,f ᶄ(x )<0,此时,f (x )在(0,+ɕ)上单调递减.当a >2时,两根均为正数,此时,f (x )的单调递减区间是(0,a -a 2-42)和(a +a 2-42,+ɕ),f (x )的单调递增区间是(a -a 2-42,a +a 2-42).综上所述,当a ɤ2时,f (x )的单调递减区间是(0,+ɕ);当a >2时,f (x )的单调递增区间是(a -a 2-42,a +a 2-42),单调递减区间是(0,a -a 2-42)和(a +a 2-42,+ɕ).由此题可知当不确定导函数是否存在零点(或零点的个数)时,讨论函数单调性的基本步骤如图3所示.求函数f (x )的定义域ң求导函数f ᶄ(x )ң优先以导函数是否存在零点以及零点的个数为依据进行分类ң以零点是否在定义域内为依据进行分类ң确定函数的单调区间图34㊀以导函数的类型为分类依据例4㊀已知函数f (x )=l n x +a x 2-(2a +1)x(a ȡ0),讨论函数f (x )的单调性.f (x )的定义域为(0,+ɕ),且知㊀㊀f ᶄ(x )=1x+2a x -2a -1=2a x 2-(2a +1)x +1x.当a =0时,f ᶄ(x )=-(x -1)x(x >0),令f ᶄ(x )<0,得x >1,f (x )的单调递减区间是(1,+ɕ);令f ᶄ(x )>0,得0<x <1,f (x )的单调递增区间是(0,1).当0<a <12,即12a>1时,fᶄ(x )=2a (x -12a)(x -1)x(x >0),令f ᶄ(x )<0,得1<x <12a,f (x )的单调递减区间是(1,12a );令f ᶄ(x )>0,得0<x <1或x >12a ,f (x )的单调递增区间是(0,1)和(12a,+ɕ).当a =12,即12a=1时,fᶄ(x )=(x -1)2xȡ0(x >0),f (x )的单调递增区间是(0,+ɕ).当a >12,即12a<1时,fᶄ(x )=2a (x -12a)(x -1)x(x >0),令f ᶄ(x )<0,得12a<x <1,f (x )的单调递减区间是(12a ,1);令f ᶄ(x )>0,得0<x <12a 或x >1,f (x )的单调递增区间是(0,12a)和(1,+ɕ).11非常道综上所述,当a =0时,f (x )的单调递增区间是(0,1),单调递减区间是(1,+ɕ);当0<a <12时,f (x )的单调递增区间是(0,1)和(12a ,+ɕ),单调递减区间是(1,12a );当a =12时,f (x )的单调递增区间是(0,+ɕ);当a >12时,f (x )的单调递增区间是(0,12a )和(1,+ɕ),单调递减区间是(12a,1).由此题可知当导函数为类二次函数时,若其类型不确定,讨论函数单调性的基本步骤如图4所示.求函数f (x )的定义域ң求导函数f ᶄ(x )ң优先以导函数的类型为依据进行分类ң以零点的大小为依据进行分类ң确定函数的单调区间图4对含参函数单调性问题,求解的关键在于思考,相对于具体函数而言含参函数的不确定性在哪里?分类的逻辑是什么?分类的不同层次及各层次分类的依据又是什么?通过对上述例题的分析㊁求解,可以得出求解含参函数单调性问题的通性通法,即首先要明确题意,确定参数的范围和函数的定义域,其次按照导函数的类型㊁导函数是否存在零点㊁零点是否在定义域内㊁零点的大小进行分类讨论,最后进行整理和总结就能得到正确的结论.含参函数单调性问题的解决是层层递进的,在递进的过程中,因参数在不同位置,使得问题的解决出现了不确定性,为了将不确定的问题转化为确定性的问题,需进行分类讨论.对于导函数为二次型含参函数单调性的讨论,通法如下.第一步,先看二次项系数是否含有参数,若含有参数,则将系数分大于0㊁小于0和等于0三种情况进行讨论;若二次项系数为0,则将问题转化为一次函数问题去解决;若二次项系数不为0,则进入第二步.第二步,对一元二次方程的判别式分Δɤ0或Δ>0两种情况进行讨论,若Δɤ0,则函数在定义域上单调递增或单调递减;若Δ>0,则进入第三步.第三步,求出对应一元二次方程的两个不等实根,判断两根是否在定义域内,若两根都不在定义域内或只有一个实根在定义域内,可以借助二次函数图象来解决;若两根都在定义域内,则进入第四步.第四步,判断两个根的大小,从而使问题得解.(作者单位:广东省广州市第八十六中学)Җ㊀江西㊀吕文彬㊀㊀e xȡx +1和l n (x +1)ɤx 是两个常见的不等式,当且仅当x =0时,等号成立.要证明这两个不等式可以通过移项构造新函数f (x )=e x -x -1或g (x )=l n (x +1)-x ,再利用导数分别求其最小值或最大值的方法.由于证明过程比较简单,这里不再赘述,下面的解题中也将证明省略,将其直接当作结论来用.这两个不等式可直接使用,也可通过代数变形或者换元变形构造新的不等式,不管哪一种方法,在解题中都有着事半功倍的效果,可以轻松解决很多难题,简化解题步骤.下面通过举例说明,以期抛砖引玉.1㊀直接应用例1㊀(2017年全国卷Ⅲ理21)已知函数f (x )=x -1-a l n x .(1)若f (x )ȡ0,求a 的值;(2)设m 为整数,且对于任意正整数n ,(1+12) (1+122) (1+12n )<m ,求m 的最小值.(1)a =1(求解过程略).(2)因为l n (1+x )ɤx ,故取x =12k >0(k =1,2, ,n ),则l n (1+12k )<12k (k =1,2, ,n ).l n (1+12)+l n (1+122)+ +l n (1+12n )<12+122+ +12n =1-12n <1,即(1+12)(1+122) (1+12n )<e .取n =3,可得m >13564>2,而(1+12)(1+122)(1+123)>2,又因为m 为整数,所以m 的最小值为3.此题的第(1)问其实是第(2)问的铺垫,此题将导数与数列结合起来考查.m 为整数就提示我们,只需将结果控制在两个整数之间,观察其形式,很容易联想到这两个常见的不等式.这两个不等式在此题中起放缩作用,可以将含有复杂的指数式或对21。

导数应用之含参函数单调性的讨论(含答案)

导数应用之含参函数单调性的讨论(含答案)

1
导数应用之含参函数单调性的讨论
一.预备知识:
(一)二次方程根的分布:
1.已知方程4x 2+2(m-1)x+(2m+3)=0(m ∈R )有两个正根,求实数m 的取值范围。

2.已知方程2x 2-(m+1)x+m=0有一正根和一负根,求实数m 的取值范围。

(二)穿根法拓展:
1.
02
2
2>--+x x x 2.(e x -1)(x-1)>0 3.(e x -1)(x-1)2>0
4.(e -x -1)(x-1)>0 5.(1-lnx)(x-1)>0
二.导后“一次”型:
1.已知函数f(x)=ax-(a+1)·ln(x+1),a ≥-1,求函数f(x)的单调区间。

2.已知函数f(x)=e x -ax ,讨论函数f(x)的单调性。

三.导后“二次型”:
3.已知函数f(x)=lnx+x 2-ax(a ∈R),求函数f(x)的单调区间。

2
4.已知函数f(x)=m ·ln(x+2)+2
1x 2
+1,讨论函数f(x)的单调性。

5.求函数f(x)=(1-a)lnx-x+2
2
ax 的单调区间。

6.已知函数f(x)=(ax 2-x)·lnx-2
1ax 2
+x ,讨论f(x)的单调性。

四.导后求导型
7.已知函数f(x)=e x -x 2,求函数f(x)的单调区间。

8.已知函数f(x)=
x
e
x 1
ln ,求函数f(x)的单调区间。

9.已知函数f(x)=e mx +x 2-mx ,讨论函数f(x)的单调性。

3
4。

含参型函数单调性求解技巧

含参型函数单调性求解技巧

含参型函数单调性求解技巧单调性是函数在某个定义域上的递增或递减性质。

当一个函数在某个区间上单调递增时,函数的值随着自变量的增大而增大;当一个函数在某个区间上单调递减时,函数的值随着自变量的增大而减小。

要判断一个含参型函数的单调性,可以运用微积分和函数性质的知识。

下面介绍一些常见的求解技巧。

一、求导法1. 单调递增区间如果一个函数在某个区间上的导数大于零,则函数在该区间上单调递增。

即 f'(x) > 0。

2. 单调递减区间如果一个函数在某个区间上的导数小于零,则函数在该区间上单调递减。

即 f'(x) < 0。

判断函数的单调性时,可以求出函数的导数,并根据导数的正负来判断单调性的性质。

例如,对于函数 f(x) = x^2 + 3x + 2,我们可以求出它的导数 f'(x) = 2x + 3。

根据导数 f'(x) 的正负,可以判断函数 f(x) 的单调性。

二、函数性质法有些函数具有特殊的数学性质,可以利用这些性质来判断函数的单调性。

1. 二次函数二次函数是形如 f(x) = ax^2 + bx + c 的函数,其中a, b, c 是常数,并且 a ≠ 0。

当 a > 0 时,二次函数的图像是一个开口向上的抛物线,函数在抛物线开口的两侧上单调递增;当a < 0 时,二次函数的图像是一个开口向下的抛物线,函数在抛物线开口的两侧上单调递减。

例如,对于函数 f(x) = x^2 + 3x + 2,它是一个开口向上的抛物线,函数在整个定义域上单调递增。

2. 反函数如果一个函数在整个定义域上单调递增或单调递减,则它的反函数在整个值域上也单调递增或单调递减。

例如,对于函数f(x) = e^x,它是一个在整个定义域上单调递增的指数函数。

其反函数为f^{-1}(x) = \\ln x,它在整个值域上也单调递增。

三、初等函数的单调性规律对于一些常见的初等函数,也存在一些单调性的规律,可以用来判断函数的单调性。

对含参函数单调性的讨论优秀教学设计

对含参函数单调性的讨论优秀教学设计

《对含参函数单调性的讨论》教学设计一、教材分析高考中导数类的题目占据了重要地位,而其中对含参函数的考查必不可少。

利用导数分析含参函数的单调性,进而分析极值,最值,零点及趋势图像是解题的基础。

高二选修课教材中给出了对具体函数单调性的求解范例,对含参函数论述较少。

含参函数因加入了参数使得确定的函数变得不确定,对于含参函数的单调性求解一般要进行分类讨论,分类讨论的关键是要明确分类讨论的依据,做到分类准确恰当,不重不漏。

二、学情分析本节课是高三的一轮复习课。

高三的学生虽然经过高二的学习,但面对含参函数时常常思路不够清晰,特别在思考分类次序,明确分类依据,准确划分类别等方面存在困难,难以做到分类准确恰当,不重不漏。

本节课以题组的形式对两大类常见题型给予针对性讲解和训练,以期突破难点。

三、教学目标1、知识与技能:利用分类讨论思想进行含参函数单调性的讨论2、过程与方法:分类讨论思想的应用3、情态与价值:探究问题与解决问题的意识与能力三、教学重难点教学重点:利用分类讨论思想进行含参函数单调性的讨论教学难点:明确分类讨论的依据四、课时安排:1课时五、教学策略:题组探究,分类总结六、教学设计:1、提出问题含参函数因加入了参数使得确定的函数变得不确定,对于含参函数的单调性求解一般要进行分类讨论,分类讨论最难就是要做到不重不漏,今天我们重点来看看如何把握常见的含参函数单调性的分类讨论依据。

问题1、回顾具体函数的单调性的求解步骤是什么?[设计意图] 引导学生回顾具体函数单调性求解的解题步骤,有助于学生思考比较含参函数在求解过程中所遇到的不确定性,明确为什么要进行分类讨论。

2、方法统领,明确方向问题2、含参函数相对于具体函数而言,不确定的因素可能存在于哪里?我们讨论的次序是怎样的?[设计意图] 此处预留空间让学生思考,讨论,激发学生的探究热情。

即使学生回答得不全面也没有关系,教师后面可做补充,并概述要讨论的四个方面。

3、题组探究,分类总结问题3、对于以下题组,观察参数在导函数中的位置,思考:不确定的因素可能在哪里?要分多少个层次进行讨论,每个层次分类的依据是什么?是否能做到不重不漏?题组一、导函数是非二次函数型例1、(2016.山东卷节选),2()ln (2-1),f x x x ax a x a R =-+∈设'()(),()g x f x g x =令求的单调区间例2、(2017全国I 卷节选)2()(),0,()x x f x e e a a x a f x =--≤其中参数讨论的单调性例3、(2016全国I 卷改编)2()(2)(1),()x f x x e a x f x =-+-已知函数讨论的单调性调性[师生活动]学生思考,尝试完成以上各题,小组交流,展示思考及解题过程,教师给予完善和评价。

函数与导数重点题型01:含参函数单调性、极值、零点问题研究

函数与导数重点题型01:含参函数单调性、极值、零点问题研究

重点题型一:含参函数的单调性、极值、最值及零点问题【问题分析】含参函数的单调性、极值点及零点问题,在高考中考查频次非常高,主要考查利用分类讨论来研究函数单调性和由函数极值、最值及零点求解参数范围。

此类问题难度较大,经常出现在试卷T20或T21,属于高考压轴题型。

该题型主要考查考生的分类讨论思想、等价转化思想。

解决此类问题的本质就是确定函数定义域上的单调性,基本思想就是“分类讨论”,解题的关键就是参数“分界点”的确定。

所以,要解决好此类问题,首先要明确参数“分界点”,其次确定在参数不同的分段区间上函数的单调性,进而可以确定函数的极值点、最值及零点,达到解题目的。

图1-1 含参函数问题解题思路【知识回顾】图1-2 函数f (x )单调性、极值、最值及零点关系图特别提醒:1.函数f (x )单调性、极值、最值及零点必须在函数定义域内研究,所以解决问题之前,必须先确定函数的定义域。

2.函数f (x )的极值点为其导函数变号的点,亦即导函数f ′(x )的变号零点。

3.函数f (x )的极值点为函数单调区间的“分界点”,经过极大值点函数由增变减,经过极小值点函数由减变增。

函数f(x)的单调性函数f(x)的极值点导函数f ′(x)的变号零点函数f(x)的最值确定分界点有影响分类讨论函数单调性参数导函数f ′(x)值/f ′(x )=0的根函数f(x)4. 函数f (x )单调区间不能写成并集,也不能用“或”连接,只能用逗号“,”或“和”连接。

【“分界点”确认】参数对导函数f ′(x )的值符号有影响,就必须根据参数对导函数的影响确定参数“分界点”,然后在进行分类讨论函数的单调性。

常见的“分界点”确认方法如下: 1.观察法:解决问题的过程中,我们会发现导函数形式比较简单的情况下,我们可以通过观察直接确定参数的“分界点”,例如:当导函数f ′(x )的值与y =x 2+a 函数有关,可以直接观察得到:当a ≥0时,y ≥0;当a <0时,y =0有两个根x 1=−√−a,x 2=√−a,当x ∈(−∞,−√−a)∪(√−a,+∞)时,y >0,当x ∈(−√−a,√−a)时,y <0.所以我们可以根据常见函数的性质及其之间的不等关系,通过直接观察确定“分界点”,常见函数性质及其之间的关系如下: ①x 2≥0 (x ∈R ), 完全平方式不小于0 ②tanx >x >sinx (0<x <π2)③e x ≥x +1 (x ∈R ),仅当x =0时,等号成立e x =x +1 ④lnx ≤x −1 (x >0),仅当x =1时,等号成立lnx =x −1 ⑤lnx <x <e x (x >0) ⑥a x >0 (x ∈R )2.由二次函数引发的“分界点”当函数f (x )求导后,导函数f ′(x )值符号由一个含参的二次函数(二次三项式)决定,一般可以从两个方面进行“分界点”的确定:(1)通过二次函数(一元二次方程)的∆判别式进行“分界点”的确定. 对于一个二次函数y =ax 2+bx +c (a ≠0): ① {a >0∆≤0⟹y ≥0或{a <0∆≤0⟹y ≤0.② {a >0∆>0⟹二次函数有两个零点(或二次方程y =0有两个不同实根)x 1,x 2(x 1<x 2),x 在两根之外函数大于0,两根之内函数小于0.③ {a <0∆>0⟹二次函数有两个零点(或二次方程y =0有两个不同实根)x 1,x 2(x 1<x 2),x 在两根之外函数小于0,两根之内函数大于0. 特别提醒:当二次函数有两个零点时,需要确定两个零点是否在函数定义域之内,若不在需要舍弃. (2)由二次函数零点分布(一元二次方程实根分布)进行“分界点”确定设x 1,x 2(x 1<x 2)是二次函数y =ax 2+bx +c (a >0)的两个零点(一元二次方程ax 2+bx +c =0(a >0)的两个根),则x 1,x 2的分布情况与二次函数系数之间的关系如下(k,k 1,k 2∈R,k 1<k 2):零点分布函数图像等价条件x 1<x 2<k{∆>0f (k )>0−b 2a<kk <x 1<x 2{∆>0f (k )>0−b 2a>kx 1<k <x 2f (k )<0k 1<x 1<x 2<k 2{∆>0f (k 1)>0f (k 2)>0k 1<−b 2a<k2 x 1,x 2中仅有一个在(k 1,k 2)内\f (k 1)∙f (k 2)<0或f (k 1)=0,k 1<−b2a <k 1+k 22或f (k 2)=0,k 1+k 22<−b2a <k 2或{∆=0k 1<−b 2a<k 2当二次函数定义域受限,可以根据上表情况进行“分界点”确认,进而进行分类讨论。

含参单调性的讨论

含参单调性的讨论

4a
2a
4a 4a
2a 2a
设g(x) ln x x 1,则g'(x) 1 1. x
当x (0,1)时,g'(x) 0;当x (1, )时,g'(x) 0.
所以g(x)在(0,1)单调递增,在(1,)单调递减,在x 1处g(x)有最大值g(1) 0. 所以当x 0时,g(x) 0.
【2017】解:(1) f (x)的定义域为(0,), f '(x) 1 2ax 2a 1 (x 1)(2ax 1)
x
x
若a 0,则当x (0,)时,f '(x) 0,故f (x)在(0,)上单调递增;
若a 0,则当x (0, 1 )时,f '(x) 0;当x ( 1 ,)时,f '(x) 0.
令f
'(x)
0得x1
0,
x2
2 a
.
(1)a 0时,当x 0或x 2 时,f '(x) 0;当0 x 2 时,f '(x) 0.
a
a
f (x)的增区间是(,0),( 2 ,);减区间是(0, 2).
a
a
(2)a 0时,当x 0或x 2 时,f '(x) 0;当 2 x 0时,f '(x) 0.
2
2
所以f (x)在(0, a )递增,在( a ,)递减。
2
2
例2 讨论f (x) (a 1) ln x x a 的单调性。 x
不要只顾着比较两根1与-a大小,而要注意定义域大于0 的限制!
思考题2 f (x) 1 x2 ax (a 1) ln x 2
解:x 0. f '(x) x a a 1 x2 ax (a 1) (x 1)[x (a 1)]

二次函数的单调性1

二次函数的单调性1

(3)y=-x2+2x,x∈[2,3]
(4)y=-2x2+5x-1,x∈[-1,1]
解:(4)∵a=-2<0, ∴开口向下. 1
对称轴x= 5 [ 1, 1] -1 0
4
-1
123
所以,函数的增区间是[-1, 1],无减区间
求二次函数单调区间的步骤:
第一步:看开口方向。
第二步:分析对称轴与定义域的相对位置,得 出结论。
二次函数单调区间的求法
单位:甘肃省白银市第九中学 制作人:袁欣楠
1
研究函数单调性的方法:
(1)定义法 (2)图像法
从左向右,当图像向上延伸时,是减函 数,当图像向下延伸时,是减函数。
任务1:
a>0
函数y=ax2+bx+c,x∈R
a<0

y
y

o
x
o
x
开口
向上
对称轴
x=- b
2a
减区间为( - ∞ ,- b ]
再 见!
感谢您的阅读收藏,谢谢!
单调
2a
区间 增区间为[ - b ,+ ∞ )
2a
向下
x=- b
减区间为
[-
b2
a
,+

)
2a
增区间为 ( - ∞ ,- b ]
2a
因此:求二次函数的单调区间
1.看开口方向 2.需求对称轴
任务2:
例:求下列函数的单调区间
(1)y=x2-x,,3]
1
解:(1) ∵a=1>0, ∴开口向上.
-1 0
对称轴x = 1
-1
2

高考数学复习,二次函数单调性的应用,重要题型解析

高考数学复习,二次函数单调性的应用,重要题型解析

高考数学复习,二次函数单调性的应用,重要题型解析
高考数学复习,二次函数单调性的应用,重要题型解析。

题目内容:已知函数y=x^2-(a-1)x-2在区间(1/2, 1)上是增函数,求a 的范围。

抛物线的对称轴是二次函数增减区间的分界线,当抛物线开口向上时,在对称轴的左侧函数单调递减,右侧单调递增;开口向下时,在对称轴的左侧函数单调递增,右侧单调递减。

第1题:
第1题是基础题,考查抛物线开口向上时的特点:二次函数在对称轴的右侧单调递增,则题中的区间必须位于对称轴的右侧。

第2题:
解析:由于二次项系数含有参数a,当a等于0时是一次函数,a 不等于0时是二次函数,故要分两种情况讨论。

第3题:
和上题一样,要讨论a等于0和不等于0这两种情况。

第4题:
抛物线开口向上,比较二次函数函数值的大小,只需比较自变量的取值到对称轴的距离,距离越远,对应的函数值就越大。

高中、高考、基础、提高、真题讲解,专题解析;孙老师数学,全力辅助你成为数学解题高手。

加油!。

函数单调性和二次函数解析版

函数单调性和二次函数解析版

专题3 函数的单调性【知识回顾】1.函数在区间上增加(减少)的定义2.单调区间、单调性和单调函数的概念 (1)函数的单调区间如果y =f (x )在区间A 上是增加的或是减少的,那么称A 为单调区间.在单调区间上,如果函数是增加的,那么它的图像是上升的;如果函数是减少的,那么它的图像是下降的.(2)函数的单调性如果函数y =f (x )在定义域的某个子集上是增加的或减少的,那么就称函数y =f (x )在这个子集上具有单调性.(3)单调函数如果函数y =f (x )在整个定义域内是增加的或是减少的,我们分别称这个函数为增函数或减函数,统称为单调函数.【典例应用】类型一 用定义判断或证明函数的单调性【例1】 证明函数f (x )=x +1x 在(0,1)上为减函数.[思路探究] 在(0,1)上任取x 1,x 2且x 1<x 2,通过作差比较法证明f (x 1)>f (x 2). [解] 任取x 1,x 2∈(0,1),且x 1<x 2, 则f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫x 2+1x 2-⎝ ⎛⎭⎪⎫x 1+1x 1 =(x 2-x 1)(x 1x 2-1)x 1x 2,由0<x 1<x 2<1,得x 2-x 1>0,x 1x 2-1<0,x 1x 2>0, 所以,f (x 2)-f (x 1)<0, 于是f (x 2)<f (x 1).根据减函数的定义知,f (x )在(0,1)上为减函数.练习:对于例1中的函数,证明其在区间(1,+∞)内是增函数.[证明] 任取x 1,x 2∈(1,+∞),且x 1<x 2,则 f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫x 2+1x 2-⎝ ⎛⎭⎪⎫x 1+1x 1=(x 2-x 1)(x 1x 2-1)x 1x 2,由x 2>x 1>1,得x 2-x 1>0,x 1x 2-1>0,x 1x 2>0, 所以f (x 2)-f (x 1)>0, 于是f (x 2)>f (x 1),根据增函数的定义知,f (x )在(1,+∞)上是增函数. 类型二 已知函数的单调性求参数的取值范围【例2】 已知函数f (x )=x 2+2(a -1)x +1在区间(-∞,4]上单调递减,求实数a 的取值范围.[思路探究] 求出f (x )的单调递减区间,利用集合之间的关系求解. [解] ∵f (x )=[x +(a -1)]2-(a -1)2+1. ∴f (x )的单调递减区间是(-∞,1-a ]. 又f (x )在区间(-∞,4]上单调递减, 则(-∞,4]⊆(-∞,1-a ], ∴1-a ≥4,解得a ≤-3.练习1.设函数f (x )=(1-2a )x +1是R 上的增函数,则有( ) A .a <12 B .a >12 C .a <-12D .a >-12A [依题意,1-2a >0,解得a <12.]2.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1ax ,x >1是R 上的增函数,则a 的取值范围是________.-3≤a ≤-2 [依题意,⎩⎪⎨⎪⎧-a2≥1,a <0,-12-a ×1-5≤a1,类型三 利用单调性求函数的最大(小)值【例3】 求函数f (x )=2x +1x +1在区间[1,3]上的最大值与最小值.[思路探究] 先判断函数f (x )在区间[1,3]上的单调性,再利用单调性求最值. [解] f (x )=2x +1x +1=2(x +1)-1x +1=2+-1x +1.其图像如下:由上图知,f (x )在区间[1,3]上递增, 所以,f (x )max =f (3)=2+-13+1=74; f (x )min =f (1)=2+-11+1=32. 练习 求函数f (x )=xx -1在区间[2,5]上的最值. [解] f (x )=x x -1=(x -1)+1x -1=1+1x -1.其图像如下:由上图知,f(x)在[2,5]上递减,所以,f(x)max=f(2)=2;f(x)min=f(5)=5 4.【等级过关练】1.函数f(x)的部分图像如图所示,则此函数在[-2,2]上的最小值、最大值分别是()A.-1,3B.0,2C.-1,2 D.3,2C[当x∈[-2,2]时,由题图可知,x=-2时,f(x)的最小值为f(-2)=-1;x=1时,f(x)的最大值为2.故选C.]2.下列函数中,在区间(0,2)上为增函数的是()A.y=3-x B.y=x2+1C.y=1x D.y=-|x+1|B[y=3-x,y=1x,y=-|x+1|在(0,2)上都是减函数,只有y=x2+1在(0,2)上是增函数.]3.已知函数y=ax和y=-bx在(0,+∞)上都是减函数,则函数f(x)=bx+a在R上是()A.减函数且f(0)<0 B.增函数且f(0)<0 C.减函数且f(0)>0 D.增函数且f(0)>0A[因为y=ax和y=-bx在(0,+∞)上都是减函数,所以a <0,b <0,f (x )=bx +a 为减函数且f (0)=a <0,故选A.] 4.设函数f (x )在(-∞,+∞)上为减函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+a )<f (a )D .f (a 2+1)<f (a )D [因为a 2+1-a =⎝ ⎛⎭⎪⎫a -122+34≥34,所以a 2+1>a ,又f (x )在(-∞,+∞)上为减函数,所以f (a 2+1)<f (a ).] 5.已知函数f (x )是R 上的增函数,A (0,-1),B (3,1)是其图像上的两点,那么|f (x +1)|<1的解集是( )A .(1,4)B .(-1,2)C .(-∞,1)∪(4,+∞)D .(-∞,-1)∪(2,+∞) B [因为|f (x +1)|<1,所以-1<f (x +1)<1,由题意知,0<x +1<3, 所以-1<x <2.]6.设函数f (x )满足:对任意的x 1,x 2∈R 都有(x 1-x 2)·[f (x 1)-f (x 2)]>0,则f (-3)与f (-π)的大小关系是________.f (-3)>f (-π) [由(x 1-x 2)[f (x 1)-f (x 2)]>0, 可知函数f (x )为增函数,又因为-3>-π, 所以f (-3)>f (-π).]7.对a ,b ∈R ,记max{a ,b }=⎩⎨⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{x +1,3-x }(x ∈R )的最小值是________.2 [函数f (x )的图像如图(实线部分),故f (x )的最小值为2.]8.若函数y =kx +1在区间[1,3]上的最大值为4,则k =________.1 [当k >0时,y =kx +1是增函数,所以,3k +1=4,k =1; 当k =0时,不合题意;当k <0时,y =kx +1是减函数,所以,k +1=4,k =3(舍去). 综上得,k =1.]9.用定义证明函数f (x )=1x是减函数. [证明] f (x )的定义域是(0,+∞),任取x 1,x 2∈(0,+∞),且x 1<x 2,则 f (x 2)-f (x 1)=1x 2-1x 1=x 1-x 2x 1x 2=x 1-x 2(x 1+x 2)x 1x 2,由x 2>x 1>0,得x 1-x 2<0,x 1+x 2>0,x 1x 2>0, 所以,f (x 2)-f (x 1)<0, 于是f (x 2)<f (x 1).根据减函数的定义知,f (x )是减函数. 10.判断函数f (x )=x -2x +1(x ≥0)的单调性,并求出值域. [解] f (x )=x -2x +1=x +1-3x +1=1-3x +1,设0≤x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫1-3x 1+1-⎝ ⎛⎭⎪⎫1-3x 2+1=3x 2+1-3x 1+1=3(x 1-x 2)(x 1+1)(x 2+1),因为0≤x 1<x 2,所以x 1-x 2<0,x 1+1>0,x 2+1>0,于是f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故函数f (x )=x -2x +1在[0,+∞)上为增函数.f (x )min =f (0)=-2,无最大值. 画出函数的大致图像,如图所示,知函数f (x )=x -2x +1(x ≥0)的值域为[-2,1). 专题4 二次函数的图像【知识回顾】1.函数y =x 2与函数y =ax 2(a ≠0)的图像间的关系二次函数y =ax 2(a ≠0)的图像可由y =x 2的图像各点的横坐标不变,纵坐标变为原来的a 倍得到.其中a 决定了图像的开口方向和在同一直角坐标系中的开口大小. |a |越大,开口越小.2.函数y =ax 2(a ≠0)与函数y =a (x +h )2+k (a ≠0)的图像 y =ax 2――――――――――――→h >0向左平移h 个单位h <0,向右平移|h |个单位y =a (x +h )2――――――――――――→k >0,向上平移k 个单位k <0,向下平移|k |个单位y =a (x +h )2+k .【典例应用】类型一 二次函数图像间的变换【例1】 若把函数y =x 2-6x +6图像的横坐标缩小到原来的12倍,得到图像C 1,再把C 1的纵坐标扩大到原来的2倍,得到图像为C 2,试写出图像C 2的解析式.[解] y =x 2-6x +6―――――――→横坐标缩小到原来的12倍y =(2x )2-12x +6=4x 2-12x +6――――――→纵坐标扩大到原来的2倍y 2=4x 2-12x +6,即y =8x 2-24x +12.所以图像C 2的解析式为y =8x 2-24x +12.练习 二次函数y =x 2+bx +c 的图像向左平移2个单位长度,再向上平移3个单位长度,得到二次函数y =x 2-2x +1的图像,则b =________,c =________.-6 6 [二次函数y =x 2+bx +c 的图像向左平移2个单位长度,再向上平移3个单位长度,得到的函数为y =(x +2)2+b (x +2)+c +3.整理得,y =x 2+(b +4)x +7+2b +c , 又y =x 2-2x +1, 则⎩⎨⎧b +4=-2,7+2b +c =1, 解得⎩⎨⎧b =-6,c =6,∴b =-6,c =6.]类型二 求二次函数的解析式【例2】 已知二次函数的图像的顶点坐标是(1,-3),且过点P (2,0),求这个函数的解析式.[思路探究] 已知二次函数的图像的顶点(1,-3),可设其解析式为y =a (x -1)2-3,再利用其图像过点(2,0)求a .[解] 因为二次函数的图像的顶点坐标是(1,-3), 所以,可设其解析式为y =a (x -1)2-3. 又其图像过点P (2,0), 则a (2-1)2-3=0, 解得a =3.所以,这个函数的解析式为y =3(x -1)2-3.练习1.已知二次函数的图像与x 轴的交点为A (-1,0)和B (1,0),且与y 轴的交点为(0,-1),求这个函数的解析式.[解] 因为二次函数的图像与x 轴的交点为A (-1,0)和B (1,0), 所以,可设其解析式为y =a (x -1)(x +1). 又其图像与y 轴的交点为(0,-1), 则a (0-1)(0+1)=-1, 解得a =1.所以,这个函数的解析式为y =(x -1)(x +1)=x 2-1.2.已知二次函数的图像过点A (1,1),B (0,2),C (3,5),求这个函数的解析式. [解] 设这个函数的解析式y =ax 2+bx +c (a ≠0),依题意,得⎩⎨⎧ a +b +c =1,c =2,9a +3b +c =5,∴⎩⎨⎧a =1,b =-2,c =2,所以,这个函数的解析式为y =x 2-2x +2. 类型三 二次函数图像的应用【例3】 求函数f (x )=x |x -1|的单调区间.[思路探究] 画出函数f (x )的图像,通过观察函数的图像求其单调区间. [解] f (x )=x |x -1|=⎩⎨⎧x 2-x ,x ≥1,-x 2+x ,x <1.其图像如下:观察图像,得f (x )的递增区间是⎝ ⎛⎦⎥⎤-∞,12,[1,+∞).递减区间是⎝ ⎛⎭⎪⎫12,1.练习:如图是二次函数y =ax 2+bx +c 图像的一部分,图像过点A (-3,0),对称轴为直线x =-1,给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b . 其中正确的序号是________.①④ [由该函数图像与x 轴交于两点,得b 2>4ac .①正确;因为对称轴为直线x=-1,所以-b2a=-1,即2a-b=0.②错误;结合图像,当x=-1时,y>0,即a-b+c>0,③错误;因为图像开口向下,所以,a<0,所以5a<2a=b.④正确.]【等级过关练】1.用配方法将函数y=12x2-2x+1写成y=a(x-h)2+k的形式是()A.y=12(x-2)2-1B.y=12(x-1)2-1C.y=12(x-2)2-3 D.y=12(x-1)2-3A[y=12x2-2x+1=12(x2-4x+4)-1=12(x-2)2-1.]2.已知函数y=ax2+bx+c的图像如图,则此函数的解析式可能为()A.y=12x2-12x-3B.y=12x2-12x+3C.y=-12x2+12x-3D.y=-12x2-12x+3A[由图像可知,抛物线开口向上,a>0,顶点的横坐标为x=-b2a>0,故b<0,图像与y轴交于负半轴,故c<0.]3.已知二次函数y=ax2+bx+c的图像的顶点坐标为(2,-1),与y轴交点坐标为(0,11),则()A.a=1,b=-4,c=-11B.a=3,b=12,c=11C.a=3,b=-6,c=11D.a=3,b=-12,c=11D [由题意c =11,-b 2a =2,44a -b 24a =-1,所以a =3,b =-12.]4.将抛物线y =2(x -4)2-1如何平移可得到抛物线y =2x 2( )A .向右平移4个单位长度,再向上平移1个单位长度B .向左平移4个单位长度,再向下平移1个单位长度C .向左平移4个单位长度,再向上平移1个单位长度D .向右平移4个单位长度,再向下平移1个单位长度C [抛物线y =2(x -4)2-1的顶点是(4,-1),抛物线y =2x 2的顶点是(0,0),图像平移时,把点(4,-1)平移至(0,0).故选C.]5.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图像可能是( )C [当a >0时,y =ax 2+bx +1开口向上,y =ax +1递增且过(0,1)点,D 不符合,C 符合要求.当a <0时,y =ax 2+bx +1开口向下,y =ax +1递减且过(0,1)点,A 、B 不符合,故选C.]6.若函数f (x )=ax 2+2x -4的图像位于x 轴下方,则a 的取值范围是________.a <-14 [依题意,⎩⎨⎧a <0,Δ=4+16a <0,解得a <-14.] 7.如果一条抛物线的形状与y =13x 2+2的图像形状相同,且顶点坐标为(4,-2),则它的解析式是________.y =±13(x -4)2-2 [依题意,二次项系数为±13,又顶点为(4,-2),故其解析式为y =±13(x -4)2-2.]8.把函数y =x 2+m 的图像向下平移2个单位长度,得到函数y =x 2-1的图像,则实数m =________.1 [依题意,m -2=-1,解得m =1.]9.通过配方,把二次函数由一般式化成顶点式,并写出对称轴方程与顶点坐标.[解] 设y =ax 2+bx +c (a ≠0),则y =a ⎝ ⎛⎭⎪⎫x 2+b a x +c =a ⎣⎢⎡⎦⎥⎤x 2+b a x +⎝ ⎛⎭⎪⎫b 2a 2-⎝ ⎛⎭⎪⎫b 2a 2+c =a ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +b 2a 2-b 24a 2+c =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a , 其对称轴方程为x =-b 2a ,顶点坐标为⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a . 10.由函数y =2(x -1)2+1的图像通过怎样的变换可以得到函数y =x 2的图像?[解] y =2(x -1)2+1――――――――――→向左平移1个单位长度y =2x 2+1――→向下平移1个单位长度y =2x 2――――――――――→横坐标不变纵坐标变为原来的12倍y =x 2.。

导数专题:含参函数单调性讨论问题(解析版)

导数专题:含参函数单调性讨论问题(解析版)

导数专题:含参函数单调性讨论问题一、导数与函数的单调性1、用导数求函数的单调性的概念:在某个区间(,)a b 内,如果()0f x '≥,那么函数()y f x =在这个区间内单调递增;如果()0f x '≤,那么函数()y f x =在这个区间内单调递减.【注意】(1)在某区间内()0(()0)f x f x ''><是函数()f x 在此区间上为增(减)函数的充分不必要条件.(2)可导函数()f x 在(,)a b 上是增(减)函数的充要条件是对(,)x a b ∀∈,都有()0(()0)f x f x ''><且()f x '在(,)a b 上的任何子区间内都不恒为零.2、确定函数单调区间的求法(1)确定函数()f x 的定义域;(2)求()f x ';(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.二、含参函数单调性讨论依据讨论含参函数的单调性,其本质是导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主。

讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般需要分四个层次来分类:(1)最高次幂的系数是否为0,即“是不是”;(2)导函数是都有变号零点,即“有没有”;(3)导函数的变号零点是否在定义域或指定区间内,即“在不在”;(4)导函数有多个零点时大小关系,即“大不大”。

三、两大类含参导函数的具体方法1、含参一次函数单调性讨论(1)讨论最高次项是否为0,正负情况;(2)求解导函数的根;(3)定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值.2、含参二次函数单调性的讨论(1)确定函数的定义域;(2)讨论最高次项是否为0,正负情况;(3)可因式分解型,解得12,x x (注意讨论12x x =);不可因式分解型,讨论0∆≤及0∆>;(4)讨论1x 和2x 的大小,能因式分解的,注意讨论12x x =;(5)12,x x 将定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值,判断根和区间端点位置关系的方法有3种:端点函数值+对称轴;韦达定理;求根公式。

关于讨论含参函数单调性的一点看法

关于讨论含参函数单调性的一点看法

教学篇•教学反思关于讨论含参函数单调性的一点看法王敏(陕西省汉中市略阳县天津高级中学,陕西汉中)一、方法探寻我们在讨论含参函数单调性时常常借助导数这个工具,我们对原函数求导,最后讨论导函数值的正、负情况,从而确定原函数的单调性,而讨论导函数值的正、负情况归根结底就是讨论导函数图像的正、负分布。

下面我就函数图像正、负分布的分类讨论方法归纳如下几个步骤介绍给大家。

分类点一:讨论图像类型:(1)水平直线型;(2)二次函数型;(3)单调型。

分类点二:讨论根分布:(1)讨论根个数;(2)讨论根与“讨论区间”关系(讨论区间由函数定义域确定);(3)讨论根与根的关系(此步骤至少要有二个根)。

分类点三:讨论图像的“走势”(走势指图像根据参数取值来确定其样子)二、实践应用例:研究f (x )=(x-a )(x +1)在R 上的正、负分布分析:分类点一:讨论图像类型:确定为二次函数型。

分类点二:讨论根分布:①讨论根个数,当a =-1时,一个根。

当a ≠-1时,有两个根x 1=a ,x 2=-1。

②讨论根与“讨论区间”关系,a ,-1∈R ③讨论根与根的关系,a <-1(x 1<x 2),a >-1(x)。

分类点三:讨论图像的“走势”:当a =-1当a <-1当a >-1解:令f (x )=0,则x 1=a ,x 2=-1当a =-1当a <-1时,x ∈(-∞,a )∪(-1,+∞),f (x )>0,x ∈(a ,-1),f (x )<0.当a >-1时,x ∈(-∞,-1)∪(a ,+∞),f (x )>0,x ∈(-1,a ),f (x )<0.从以上过程可以看出,解决此类分类讨论问题,只要严格按照三大分类点,同学们就会分类目标明确,思路清楚,有点可依,而不是无处下手。

三、推广延伸(真题练习)例:讨论函数f (x )=ln (x +1)-x +k 2x 2的单调性分析:f (x )的定义域(-1,+∞),f ′(x )=1x +1-1+kx =kx 2+(k -1)x x +1(x >-1)。

专题02 利用导数研究函数单调性问题(含参数讨论) (解析版)

专题02 利用导数研究函数单调性问题(含参数讨论) (解析版)

导数及其应用专题二:利用导数研究函数单调性问题(含参数讨论)一、知识储备往往首先考虑是否导数恒大于零或恒小于零,再考虑可能大于零小于零的情况。

常与含参数的一元二次不等式的解法有关,首先讨论二次项系数,再就是根的大小或判别式,能表示出对应一元二次方程的根时讨论根的大小、端点实数的大小,不能时讨论判别式。

二、例题讲解1.(2022·山东莱州一中高三开学考试)已知函数()1ln f x x a x =--(其中a 为参数). (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求导可得()af x x x'-=,分0a ≤和0a >进行讨论即可; 【详解】 (1)()af x x x'-=,(0,)x ∈+∞, 当0a ≤时,()0f x '>,()f x ∴在(0,)+∞上递增, 当0a >时,令()0f x '=,得x a =,()0,x a ∈时,()f x 单调递减, (,)x a ∈+∞时,()f x 单调递增;综上:0a ≤时,()f x 在(0,)+∞上递增,无减区间,当0a >时,()f x 的单调递减区间为()0,a ,单调递增区间为(,)a +∞;2.(2022·宁夏银川一中高三月考(文))已知函数2()(2)ln f x x a x a x =---(a R ∈) (1)求函数()y f x =的单调区间; 【分析】(1)先求出函数的定义域,然后对函数求导,分0a ≤和0a >两种情况判断导数的正负,从而可求得函数的单调区间, 【详解】(1)函数()f x 的定义域是(0,)+∞,(1)(2)()2(2)a x x a f x x a x x'+-=---= 当0a ≤时,()0f x '>对任意(0,)x ∈+∞恒成立, 所以,函数()f x 在区间(0,)+∞单调递增; 当0a >时,由()0f x '>得2a x >,由()0f x '<,得02ax <<, 所以,函数在区间,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间0,2a ⎛⎫ ⎪⎝⎭上单调递减;综上:0a ≤时,()f x 的单调增区间为(0,)+∞,无单调减区间. 0a >时,()f x 的单调增区间为,2a ⎛⎫+∞ ⎪,单调减区间为0,2a ⎛⎫ ⎪.3.(2022·广西高三开学考试(理))函数()322f x x x ax =++,(1)讨论()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调性.【详解】(1)()'234f x x x a =++,1612a ∆=-①若43a ≥,则0∆≤,()'0f x ≥;()f x 单调递增; ②若43a <则0∆>,当x <x >()'0f x >,()f x 单调递增;x <<,()'0f x <,()f x 单调递减; 【点睛】若函数的导函数含有参数,则需要对参数进行分类讨论,分类讨论要做到不重不漏.三、实战练习1.(2022·全国高三月考)设函数()()()21ln 11f x x x ax x a =++--+-,a R ∈.(1)求()f x '的单调区间 【答案】(1)答案见解析; 【分析】(1)先对函数()f x 进行求导,构造函数再分0a ≤,0a >两种情况进行讨论,利用导数研究函数的单调性即可求解; 【详解】(1)由题意可得()f x 的定义域为{}1x x >-,()()ln 12f x x ax +'=-. 令()()()ln 121g x x ax x =+->-, 则()1122211a axg x a x x --=-='++. 当0a ≤时,当()1,x ∈-+∞时,()0g x '>,函数()g x 单调递增; 当0a >时,当11,12x a ⎛⎫∈-- ⎪⎝⎭时,()0g x '>,函数()g x 单调递增;当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x '<,函数()g x 单调递减,所以当0a ≤时,()f x '的单调递增区间为()1,-+∞; 当0a >时,()f x '的单调递增区间为11,12a ⎛⎫-- ⎪⎝⎭,单调递减区间为11,2a ⎛⎫-+∞ ⎪⎝⎭.2.(2022·浙江舟山中学高三月考)已知函数()22ln (R)f x x x a x a =-+∈(1)当0a >时,求函数()f x 的单调区间; 【答案】(1)当12a ≥时,函数在()0+∞,递增;当102a <<时,函数在()10,x 递增,()12,x x 递减,()2,x +∞递增其中12x x =; 【分析】(1)求()f x ',令()0f x '=可得2220x x a -+=,分别讨论0∆≤和0∆>时,求不等式()0f x '>,()0f x '<的解集,即可求解;【详解】(1)()22ln (R)f x x x a x a =-+∈定义域为()0,∞+, ()22222a x x af x x x x-+'=-+=()0x >, 令()0f x '=可得2220x x a -+=, 当480a ∆=-≤即12a ≥时,()0f x '≥对于()0,x ∈+∞恒成立, 所以()f x 在()0,∞+上单调递增,当480a ∆=->即102a <<时,由2220x x a -+=可得:x =,由()0f x '>可得:0x <<或x >由()0f x '<x <<所以()f x 在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减, 综上所述:当12a ≥时,()f x 的单调递增区间为()0,∞+;当102a <<时,()f x 的单调递增区间为⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭单调递减区间为⎝⎭. 3.(2022·山东济宁一中)已知函数()ln f x x a x =-,a ∈R . (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)对函数求导,进而讨论a 的范围,最后得到函数的单调区间; 【详解】(1)函数()f x 的定义域为{}0x x >,()1a x a f x x x'-=-=0a ≤时,()0f x '>恒成立,函数()f x 在()0,∞+上单调递增;0a >时,令()0f x '=,得x a =.当0x a <<时,()0f x '<,函数()f x 为减函数; 当x a >时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≤时,函数()f x 的单调递增区间为()0,∞+,无单调递减区间; 当0a >时,函数()x 的单调递减区间为()0,a ,单调递增区间为(),a +∞. 4.(2022·仪征市精诚高级中学高三月考)已知函数()()1n f x x ax a =-∈R . (1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性; 【详解】 (1)11()(0)axf x a x xx-'=-=> 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增, 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.5.(2022·嘉峪关市第一中学高三模拟预测(理))已知函数()21xf x e ax =--,()()2ln 1g x a x =+,a R ∈.(1)求()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求出函数()f x 的导函数()f x ',按a 分类解不等式()0f x '<、()0f x '>即得;【详解】(1)对函数()21x f x e ax =--求导得,()2xf x e a '=-,当0a ≤时,()0f x '>,()f x 在R 上为增函数,当0a >时,由()20xf x e a '=-=,解得:()ln 2x a =,而()f x '在R 上单调递增,于是得当(,ln(2))∈-∞x a 时,()0f x '<,()f x 在(,ln(2))a -∞上为减函数, 当()()ln 2,x a ∈+∞时,()0f x '>,()f x 在()()ln 2,a +∞上为增函数, 所以,当0a ≤时,()f x 的单调递增区间为R ,当0a >时,()f x 的单调递减区间是(,ln(2))a -∞,单调递增区间是()()ln 2,a +∞;6.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【分析】(1)求出导函数()212121ax x f x ax x x -'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 7.(2022·嘉峪关市第一中学高三三模(理))设函数()2ln f x ax a x =--,其中a ∈R .(1)讨论()f x 的单调性; 【答案】(1)答案见解析; 【分析】(1)求导,当0a ≤时,可得()0f x '<,()f x 为单调递减函数;当0a >时,令()0f x '=,可得极值点,分别讨论在⎛ ⎝和+⎫∞⎪⎭上,()'f x 的正负,可得()f x 的单调区间,即可得答案.【详解】(1)()()212120.ax f x ax x x x-'=-=>当0a ≤时,()0f x '<,()f x 在()0,∞+内单调递减. 当0a >时,由()0f x '=,有x =此时,当x ∈⎛⎝时,()0f x '<,()f x 单调递减;当x ∈+⎫∞⎪⎭时,()0f x '>,()f x 单调递增. 综上:当0a ≤时,()f x 在()0,∞+内单调递减,当0a >时,()f x 在⎛ ⎝内单调递减,在+⎫∞⎪⎭单调递增. 8.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性; 【答案】(1)函数()f x 的单调性见解析; 【分析】(1)求出函数()f x 的定义域及导数,再分类讨论导数值为正、为负的x 取值区间即得; 【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得x =,当0x <<()0f x '>,当x >时,()0f x '<,于是得()f x 在上单调递增,在)+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在上单调递增,在)+∞上单调递减;9.(2022·河南(理))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求导得到221()mx mx f x x --'=-,转化为二次函数2()21g x mx mx =--的正负进行讨论,分0∆≤,0∆>两种情况讨论,即得解; 【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>, 令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,故()f x 单调递增;当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减; 当80m -≤<时,()f x 在()0,∞+单调递增.10.(2022·河南高三月考(文))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)求导2121()(21)mx mx f x m x x x --'=--=-,令2()21g x mx mx =--,然后由0∆≤,0∆>讨论求解;【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>,令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,()f x 单调递增; 当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当80m -≤<时, ()f x 在()0,∞+单调递增;当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. 11.(2022·湖南高三模拟预测)设函数1()ln ,()3a f x x g x ax x-=+=-. (1)求函数()()()x f x g x ϕ=+的单调递增区间; 【答案】(1)答案见解析;(2)存在符合题意的整数λ,其最小值为0.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可;【详解】解:(1)函数()ϕx 的定义域为()0,∞+,函数()ϕx 的导数2(1)(1)()x ax a x x ϕ'++-=, 当0a <时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递增,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递减 当01a 时,()ϕx 在R +上单调递增.当1a >时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递减,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递增. 综上可知,当0a <时,()ϕx 的单调递增区间是10,a a -⎛⎫ ⎪⎝⎭;当01a 时,()ϕx 的单调递增区间是(0,)+∞;当1a >时,()ϕx 的单调递增区间是1,a a -⎛⎫+∞ ⎪⎝⎭. 12.(2022·安徽高三月考(文))已知函数21()ln 2f x x a x =-. (1)讨论()f x 的单调性; 【答案】(1)答案不唯一,具体见解析;(2)12a =. 【分析】 (1)求导函数()'f x ,分类讨论确定()'f x 的正负,得单调区间;【详解】解:(1)由题意,可得0x >且2 ()a x a f x x x x-'=-= ①若0a ≤,()0f x '>恒成立,则()f x 在(0,)+∞上是增函数②0a >,则2()a x a f x x x x -==='-所以当x ∈时,()0f x '<,当)x ∈+∞时,()0f x '>则()f x 在上是减函数,在)+∞上是增函数综上所述,若0a ≤,()y f x =在(0,)+∞上是增函数若0a >,()y f x =在上是减函数,在)+∞上是增函数13.(2022·湖北武汉·高三月考)已知函数2()ln (1),2a f x x x a x a R =+-+∈ (1)讨论函数()f x 的单调区间;【答案】(1)答案见解析;【分析】(1)求得(1)(1)()x ax f x x '--=,分0a ≤,01a <<,1a =和1a >四种情况讨论,结合导数的符号,即可求解; 【详解】(1)由题意,函数2()ln (1)2a f x x x a x =+-+的定义域为(0,)+∞, 且21(1)1(1)(1)()(1)ax a x x ax f x ax a x x x-++--=+-+==', ①当0a ≤时,令()0f x '>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;②当01a <<时,令()0f x '>,解得01x <<或1x a>, 令()0f x '<,解得11x a <<, 所以()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减; ③当1a =时,则()0f x '≥,所以在(0,)+∞上()f x 单调递增,④当1a >时,令()0f x '>,解得10x a<<或1x >, 令()0f x '<,解得11x a <<, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 综上,当0a ≤时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当01a <<时,()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减;当1a =时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 14.(2022·双峰县第一中学高三开学考试)已知函数()2()1e x f x x ax =-+.(1)讨论()f x 的单调性;【答案】(1)当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;【分析】(1)先对函数求导,然后结合导数与单调性的关系,讨论0a =,0a >和0a <情况下,导数的正负,即可得到()f x 的单调性;【详解】(1)函数()2()1e x f x x ax =-+,求导()()()()21e 11e 2x x f x x a x a x a x '⎡⎤+=⎣+-⎦=-+-+由()0f x '=,得11x a =-,21x =-①当0a =时,()()21e 0x f x x '+≥=,()f x ∴在R 上单调递增;②当0a <时, 在(),1x a ∈-∞-有()0f x '>,故()f x 单调递增;在()1,1x a ∈--有()0f x '<,故()f x 单调递减;在(1,)x ∈-+∞有()0f x '>,故()f x 单调递增;③当0a >时, 在(),1x ∈-∞-有()0f x '>,故()f x 单调递增;在()1,a 1x ∈--有()0f x '<,故()f x 单调递减;在(1,)x a ∈-+∞有()0f x '>,故()f x 单调递增;综上所述,当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;。

二次函数的单调性与凹凸性

二次函数的单调性与凹凸性

二次函数的单调性与凹凸性二次函数是高中数学中的重要内容,它的单调性与凹凸性是我们在研究二次函数图像时必须要重点关注和理解的概念。

本文将会详细讨论二次函数的单调性与凹凸性,并通过图像和严格的数学证明来展示相关的性质及应用。

一、二次函数的定义与性质回顾二次函数的一般形式可以表示为 f(x) = ax² + bx + c,其中a、b、c 为实数,且a≠0。

我们可以通过一些性质回顾来更好地理解二次函数的单调性与凹凸性。

1. 二次函数的开口方向二次函数的开口方向由系数a的正负决定,当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。

2. 二次函数的顶点二次函数的顶点坐标可以通过顶点公式 x = -b/2a 来求得。

顶点坐标为(x_v, y_v),其中x_v = -b/2a,y_v = f(x_v)。

3. 二次函数的对称轴二次函数的对称轴是通过顶点并与二次曲线对称的一条直线,其方程可以通过对称轴公式 x = -b/2a 来确定。

二、二次函数的单调性二次函数的单调性指的是函数在定义域内的增减性质。

在讨论二次函数的单调性时,我们需要考虑系数a的正负以及函数的开口方向。

1. 当a>0时,二次函数开口向上。

此时,二次函数在定义域内单调递增。

2. 当a<0时,二次函数开口向下。

此时,二次函数在定义域内单调递减。

三、二次函数的凹凸性二次函数的凹凸性指的是函数在定义域内的凹凸性质。

凹凸性可以通过二次函数的二阶导数来判断。

1. 当二次函数的二阶导数大于0时,函数在该区间上为凹函数。

2. 当二次函数的二阶导数小于0时,函数在该区间上为凸函数。

3. 当二次函数的二阶导数等于0时,函数在该点可能为拐点,需要通过其他方法进一步判断。

四、单调性与凹凸性的应用单调性和凹凸性是分析二次函数图像的重要工具,它们在数学和实际问题中都有广泛的应用。

1. 在最优化问题中,通过研究二次函数的单调性和凹凸性,我们可以确定函数的最值点和最优解。

含参二次函数最值单调性零点问题.

含参二次函数最值单调性零点问题.

龙文教育1对1个性化教案教导处签字:日期: 年 月 日学生 蒋伊楠 学 校番禺中学年 级高三教师 赵爱民授课日期 2012.4.3 授课时段 10:00-12:00课题 二次函数相关考点重点 难点 重点:.二次函数在高考是常见考点.难点: 含参二次函数的最值零点等综合性问题. 教 学 步 骤 及 教 学 内 容一. 关于二次函数考点模型在高考中的情况分析. 二. 基本知识互动. 直接写出函数)86(log 221+-=x x y 的单调递增区间:三. 例题讲解. 四. 提高练习. 五. 小结本次内容. 六. 作业.课后评价一、学生对于本次课的评价O 特别满意O 满意O 一般O 差二、教师评定1、学生上次作业评价O好O较好O一般O差2、学生本次上课情况评价O 好O 较好O 一般O 差作业布置教师留言教师签字:家长意见家长签字:日期:年月日上节课知识点深入(2011年高考山东文科10)函数2sin 2xy x =-的图象大致是( )小结此类题型的解题思维.一.关于二次函数考题模型在试题中出现情况分析:二基本知识点互动.1.讲述一元二次方程根的分布,图象和充要条件.2.二次函数最值问题.3.常见二次型函数值域浅谈.直接说出求下列函数的值域的方法.(1)y=;122+--x x xx (2)y=x-x 21-; (3)y=1e 1e +-x x . 4)y=4-223x x -+; (5)y=x+x4;(6)y=4)2(122+-++x x .三.例题分析;例.1 已知二次函数2()(,f x ax bx a b =+为常数,且0)a ≠ 满足条件:(1)(3)f x f x -=-,且方程()2f x x =有等根.(1)求()f x 的解析式;(2)是否存在实数m 、n ()m n <,使()f x 定义域和值域分别为[m ,n ]和[4m ,4n ],如果存在,求出m 、n 的值;如果不存在,说明理由.例2:已知函数f(x)=x 2+|x-a|+1,a ∈R . (1)试判断f(x)的奇偶性; (2)若-21≤a ≤21,求f(x)的最小值.四.提高练习:1.对于函数()f x ,若存在0x ∈R,使00()f x x =成立,则称0x 为()f x 的不动点. 已知函数2()(1)1(0)f x ax b x b a =+++-≠(1)当1,2a b ==-时,求()f x 的不动点;(2)若对任意实数b ,函数()f x 恒有两个相异的不动点,求a 的取值范围;2. 20.已知函数f (x )=ax2+bx+c (a ≠0)满足f (0)=0,对于任意x ∈R 都有f (x )≥x ,且,令g (x )=f (x )-|λx-1|(λ>0). (1)求函数f (x )的表达式; (2)求函数g (x )的单调区间;(3)研究函数g (x )在区间(0,1)上的零点个数.五.小结内容. 六.作业.1.若函数f (x )=x 2-|x +a |为偶函数,则实数a =_______2. 已知函数f (x )的图像与函数h (x )=x +1x+2的图像关于点A (0,1)对称.求f (x )的解析式3.已知函数f(x)的定义域为(0,),且对任意的正实数x、y都有f(xy)=f(x)+f(y),且当x>1时,f(x)>0,f(4)=1.(1)求证:f(1)=0;(2)求:1 () 16 f;(3)解不等式:f(x)+f(x-3)≤1.4..如果实数x、y满足等式(x-2)2+y2=3,那么yx的最大值是( )A. 12B.33C.32D. 31. f (1)=f (-1)得 a =0.2. ∵f (x )的图像与h (x )的图像关于A (0,1)对称,设f (x )图像上任意一点坐标为B (x ,y ),其关于A (0,1)的对称点B ′(x ′,y ′),则⎩⎪⎨⎪⎧x ′+x 2=0,y +y ′2=1,∴⎩⎪⎨⎪⎧x ′=-x ,y ′=2-y .∵B ′(x ′,y ′)在h (x )上,∴y ′=x ′+1x ′+2. ∴2-y =-x -1x+2.∴y =x +1x .即f (x )=x +1x.4.(1)令x =4,y =1,则f (4)=f (4×1)=f (4)+f (1),f (1)=0.(2)f (16)=f (4×4)=f (4)+f (4)=2,f (1)=1(16)16f ⨯=1()16f +f (16)=0,1()16f = -2. (3)设x 1、x 2>0,且x 1>x 2,于是12()xf x >0,1112222()()()()x xf x f x f f x x x ==+ >2()f x ,∴f (x )为(0,)+∞上的增函数.又f (x )+f (x -3)=f [x (x -3)]≤1=f (4),∴0,30,(3)4x x x x ⎧⎪-⇒⎨⎪-⎩>>≤3<x ≤4.1)(1)(12)(1)(1)f kf kf k k -=-+==-=-,1133(2.5)(0.5)()44f f k k k==⋅-=-;(2)当[2,3]x ∈时,2[0,1]x -∈,11()(2)(2)(4)f x f x x x k k=-=--, 当[2,0]x ∈-时,2[0,2]x +∈,()(2)(2)f x kf x k x x =+=+,当[3,2]x ∈--时,4[1,2]x +∈,22()(2)(4)(4)(2)f x kf x k f x k x x =+=+=++,2(4)(2),[3,2)(2),[2,0)()(2),[0,2]1(2)(4),(2,3]k x x x k x x x f x x x x x x x k⎧++∈--⎪+∈-⎪⎪∴=⎨-∈⎪⎪--∈⎪⎩,由k <0知二次函数()f x 在[3,2]--上递增,在[2,1]--上递增,在[1,0]-上递减,在[0,1]上递减,在[1,2]上递增,在[2,3]上递增,又函数在点(2,(2)),(0,(0)),(2,(2))f f f --处是连续的,所以()f x 在[3,1]--上单调递增,在[1,1]-上单调递减,在[1,3]上单调递增;(3)由(2)知,对[3,3]x ∈-,()f x 的最大值在1(1)(3)f k f k-=-=-和中取,()f x 的最小值在2(3)(1)1f k f -=-=-和中取,①若k <-1,则21k -<-,110k k->>->, 2min max ()(3),()(1)f x k f f x k f ∴=-=-=-=-;②若-1<k <0,则21k ->-,11k k -<<-,min max 1()1(1),()(3)f x f f x f k∴=-==-=;③若k =-1,则max ()f x =1(1)(3)f f =-=,min ()f x =1(3)(1)f f -=-=。

二次函数的最值与单调性

二次函数的最值与单调性

二次函数的最值与单调性二次函数是指拥有形如y = ax^2 + bx + c的函数,其中a、b、c是实数且a ≠ 0。

本文将讨论二次函数的最值和单调性。

一、最值二次函数的最值可以通过其抛物线的开口方向来确定。

如果a > 0,抛物线开口向上,该二次函数的最小值就是它的顶点;如果a < 0,抛物线开口向下,该二次函数的最大值同样是它的顶点。

1. 最小值当二次函数的开口向上且a > 0时,我们可以通过求解顶点的坐标来得到最小值。

顶点的x坐标可以通过公式x = -b / (2a)计算得出,而对应的y值即为最小值。

举个例子,考虑函数y = x^2 + 2x + 1,通过计算可得到顶点坐标(-1, 0),因此最小值为0。

2. 最大值当二次函数的开口向下且a < 0时,同样可以通过顶点的坐标来计算最大值。

顶点的求解方式与上述相同,只是它对应的y值即为最大值。

举个例子,考虑函数y = -x^2 + 2x - 1,通过计算可得到顶点坐标(1,0),故最大值为0。

二、单调性二次函数的单调性取决于a的正负性。

当a > 0时,二次函数为增函数;当a < 0时,二次函数为减函数。

1. 增函数当二次函数的a > 0时,表示抛物线开口向上,函数呈现出向上的凸性。

这意味着随着自变量的增大,函数值也随之增大。

举个例子,考虑函数y = x^2,可以看到,随着x的增加,y的值逐渐增大。

2. 减函数当二次函数的a < 0时,表示抛物线开口向下,函数呈现出向下的凹性。

这表明随着自变量的增大,函数值会减小。

举个例子,考虑函数y = -x^2,可以观察到,随着x的增加,y的值逐渐减小。

总结:二次函数的最值和单调性可以通过抛物线的开口方向、顶点以及a 的正负性来确定。

对于最值,当抛物线开口向上时,二次函数的最小值为顶点的纵坐标;当抛物线开口向下时,二次函数的最大值同样为顶点的纵坐标。

对于单调性,当a > 0时,二次函数为增函数;当a < 0时,二次函数为减函数。

含参二次函数单调性问题解法探究

含参二次函数单调性问题解法探究

æ 1 4ù
值范围是 ç , ú .
è 4 5û
策略四:利用化归思想求参数范围
通过对原问题的分析,并联系有关知识,把方程
化成图形,把曲线的交点变成方程组的解,把抽象问
题化为具体问题等,都体现了数学解题的化归策略 .
有了这个策略,才使问题的解决具有可操作性,解答
起来更简捷 . 解析几何中的参数问题具有较强的综合
分离参数、分类讨论、数形结合等方法;三是寻找含有
参数的不等式,将参数范围转化为不等式的解集等 .
(责任编辑 黄桂坚)
数学·解题研究
f ( x ) 在左区间上单调递减,则 -
b
≥ m;若 f ( x ) 在右
2a
b
≤ m.
2a
(2)设 二 次 函 数 f ( x ) = ax2 + bx + c ( a < 0 ),若
题意 .
综上,为满足题意,则应使
实数 m 的取值范围是 ( -∞,4 ] .
m
≤ 2,解得 m ≤ 4. 故
2
图1
图2
图3
评注:本题求解涉及“分类与整合思想”
“ 数形结
合思想”,求解的关键就是让对称轴由左向右运动变
换加以讨论,以便准确构建不等式 .
结合图形进一步分析可知,若将原题中的区间
(2, + ∞ ),变为区间(2,3)或(2,4)或(2,5)等,那么最
变式 1:改变抛物线的开口方向以及区间上的单
调性
[例 1]已知二次函数 y = -x2 + mx + 3 在区间(0,
2)上单调递减,求实数 m 的取值范围 .
分析:由于二次函数 y = -x2 + mx + 3 的图像是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[母题探究]
[规律探ቤተ መጻሕፍቲ ባይዱ]
参考母题的解析过程,做一般性分析可得如下常用规律。
[变式探究]
变式1:改变抛物线的开口方向以及区间上的单调性
变式2:抛物线的开口方向确定,区间上的单调性不确定
变式3:抛物线的开口方向不确定,区间上的单调性确定
变式4:抛物线的开口方向不确定,区间上的单调性也不确定
变式5:二次函数与分段函数单调性交汇
含参二次函数单调性问题解法探究
作者:周军凤
来源:《中学教学参考·理科版》2020年第03期
[摘要]探讨含参二次函数问题及其变式的解题规律,可以帮助学生熟练掌握含参二次函数单调性的特点,并能在解题中加以灵活运用。
[关键词]含参;二次函数;单调性;探究
[中图分类号]G633,6[文献标識码]A [文章编号]1674-6058(2020)08-0018-02
变式6:二次函数与双变量不等式恒成立交汇
相关文档
最新文档