《常微分方程》答案习题(3)
大学专业课考试复习资料--《常微分方程》试题库含答案

大学专业课考试复习资料--《常微分方程》试题库含答案一、填空题1.微分方程0)(22=+-+x y dx dy dx dy n 的阶数是____________ 答:12.若),(y x M 和),(y x N 在矩形区域R 内是),(y x 的连续函数,且有连续的一阶偏导数,则方程0),(),(=+dy y x N dx y x M 有只与y 有关的积分因子的充要条件是 _________________________ 答:)()1)((y Mx N y M φ=-∂∂-∂∂ 3._________________________________________ 称为齐次方程.答:形如)(xy g dx dy =的方程 4.如果),(y x f ___________________________________________ ,则),(y x f dx dy =存在唯一的解)(x y ϕ=,定义于区间h x x ≤-0 上,连续且满足初始条件)(00x y ϕ= ,其中=h _______________________ .答:在R 上连续且关于y 满足利普希兹条件 ),min(mb a h = 5.对于任意的),(1y x ,),(2y x R ∈ (R 为某一矩形区域),若存在常数)0(>N N 使 ______________________ ,则称),(y x f 在R 上关于y 满足利普希兹条件.答: 2121),(),(y y N y x f y x f -≤-6.方程22y x dxdy +=定义在矩形区域R :22,22≤≤-≤≤-y x 上 ,则经过点 )0,0(的解的存在区间是 ___________________ 答:4141≤≤-x 7.若),.....2,1)((n i t x i =是齐次线性方程的n 个解,)(t w 为其伏朗斯基行列式,则)(t w 满足一阶线性方程 ___________________________________答:0)(1'=+w t a w8.若),.....2,1)((n i t x i =为齐次线性方程的一个基本解组,)(t x 为非齐次线性方程的一个特解,则非齐次线性方程的所有解可表为_____________________答:x x c x n i i i +=∑=19.若)(x ϕ为毕卡逼近序列{})(x n ϕ的极限,则有≤-)()(x x n ϕϕ __________________ 答:1)!1(++n nh n ML 10.______________________称为黎卡提方程,若它有一个特解)(x y ,则经过变换 ___________________ ,可化为伯努利方程. 答:形如)()()(2x r y x q y x p dxdy ++=的方程 y z y += 11.一个不可延展解的存在区间一定是 区间.答:开12.方程1d d +=y x y 满足解的存在唯一性定理条件的区域是 . 答:}0),{(2>∈=y R y x D ,(或不含x 轴的上半平面)13.方程y x xy sin d d 2=的所有常数解是 . 答: ,2,1,0,±±==k k y π14.函数组)(,),(),(21x x x n ϕϕϕ 在区间I 上线性无关的 条件是它们的朗斯基行列式在区间I 上不恒等于零.答:充分15.二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 . 答:线性无关(或:它们的朗斯基行列式不等于零)16.方程02=+'-''y y y 的基本解组是 .答:x x x e ,e17.若)(x y ϕ=在),(∞+-∞上连续,则方程y x x y )(d d ϕ=的任一非零解 与x 轴相交. 答:不能18.在方程0)()(=+'+''y x q y x p y 中,如果)(x p ,)(x q 在),(∞+-∞上连续,那么它的任一非零解在xoy 平面上 与x 轴相切.答:不能19.若)(),(21x y x y ϕϕ==是二阶线性齐次微分方程的基本解组,则它们 共同零点.答:没有20.方程21d d y xy -=的常数解是 .答:1±=y21.向量函数组)(,),(),(21x x x n Y Y Y 在其定义区间I 上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈.答:必要22.方程22d d y x x y+=满足解的存在唯一性定理条件的区域是 . 答: xoy 平面23.方程0d )1(1)d (22=-+-y x y x y x 所有常数解是 .答:1,1±=±=x y24.方程04=+''y y 的基本解组是 .答:x x 2cos ,2sin25.一阶微分方程的通解的图像是 维空间上的一族曲线. 答:2二、单项选择题1.n 阶线性齐次微分方程基本解组中解的个数恰好是( A )个.(A )n (B )n -1 (C )n +1 (D )n +22.如果),(y x f ,y y x f ∂∂),(都在xoy 平面上连续,那么方程),(d d y x f x y=的任一解的存在区间(D ).(A )必为),(∞+-∞ (B )必为),0(∞+(C )必为)0,(-∞ (D )将因解而定3.方程y x x y+=-31d d 满足初值问题解存在且唯一定理条件的区域是( D ).(A )上半平面 (B )xoy 平面(C )下半平面 (D )除y 轴外的全平面4.一阶线性非齐次微分方程组的任两个非零解之差( C ).(A )不是其对应齐次微分方程组的解 (B )是非齐次微分方程组的解(C )是其对应齐次微分方程组的解 (D )是非齐次微分方程组的通解5. 方程21d d y x y-=过点)1,2(π共有( B )个解.(A )一 (B )无数 (C )两 (D )三6. 方程2d d +-=y x xy ( B )奇解. (A )有三个 (B )无 (C )有一个 (D ) 有两个7.n 阶线性齐次方程的所有解构成一个( A )线性空间.(A )n 维 (B )1+n 维 (C )1-n 维 (D )2+n 维8.方程323d d y xy =过点( A ). (A )有无数个解 (B )只有三个解 (C )只有解0=y (D )只有两个解 9. ),(y x f y '连续是保证),(y x f 对y 满足李普希兹条件的( B )条件.(A )充分 (B )充分必要 (C )必要 (D )必要非充分10.二阶线性非齐次微分方程的所有解( C ).(A )构成一个2维线性空间 (B )构成一个3维线性空间(C )不能构成一个线性空间 (D )构成一个无限维线性空间11.方程y x y =d d 的奇解是( D ). (A )x y = (B )1=y (C )1-=y (D )0=y12.若)(1x y ϕ=,)(2x y ϕ=是一阶线性非齐次微分方程的两个不同特解,则该方程的通解可用这两个解表示为( C ).(A ))()(21x x ϕϕ- (B ))()(21x x ϕϕ+(C ))())()((121x x x C ϕϕϕ+- (D ))()(21x x C ϕϕ+13.),(y x f y '连续是方程),(d d y x f xy =初值解唯一的( D )条件. (A )必要 (B )必要非充分 (C )充分必要 (D )充分14. 方程1d d +=y x y ( C )奇解.(A )有一个 (B )有两个 (C )无 (D )有无数个15.方程323d d y xy =过点(0, 0)有( A ). (A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解 三、求下列方程的通解或通积分1.3yx y dx dy += 解:23y y x y y x dy dx +=+= ,则 )(121⎰+⎰⎰=-c dy e y e x dy y dy y 所以 cy y x +=23另外 0=y 也是方程的解2.求方程2y x dxdy +=经过)0,0(的第三次近似解 解:0)(0=x ϕ[]2020121)()(x dx x x x x =+=⎰ϕϕ []52021220121)()(x x dx x x x x +=+=⎰ϕϕ []81152022316014400120121)()(x x x x dx x x x x+++=+=⎰ϕϕ 3.讨论方程2y dx dy = ,1)1(=y 的解的存在区间 解:dx y dy =2两边积分 c x y+=-1 所以 方程的通解为 cx y +-=1 故 过1)1(=y 的解为 21--=x y 通过点 )1,1(的解向左可以延拓到∞-,但向右只能延拓到 2,所以解的存在区间为 )2,(-∞4. 求方程01)(22=-+y dxdy 的奇解 解: 利用p 判别曲线得⎩⎨⎧==-+020122p y p 消去p 得 12=y 即 1±=y 所以方程的通解为 )sin(c x y += , 所以 1±=y 是方程的奇解5.0)1()1(cos 2=-++dy yx y dx y x 解: y M ∂∂=2--y , xN ∂∂=2--y , y M ∂∂=x N ∂∂ , 所以方程是恰当方程.⎪⎪⎩⎪⎪⎨⎧-=∂∂+=∂∂211cos yx y y v y x x u 得 )(sin y y x x u ϕ++= )('2y xy yu ϕ+-=∂∂- 所以y y ln )(=ϕ 故原方程的解为 c y yx x =++ln sin 6. x x x y y y 22'sin cos sin 2-=-+解: x x x y y y 22'sin cos sin 2-++-= 故方程为黎卡提方程.它的一个特解为 x y sin = ,令x z y sin += , 则方程可化为2z dx dz -= , c x z +=1 即 c x x y +=-1sin , 故 cx x y ++=1sin 7.0)37()32(232=-+-dy xy dx y xy解: 两边同除以2y 得037322=-+-xdy dy y ydx xdx 0732=--yd xy d dx 所以 c y xy x =--732 , 另外 0=y 也是方程的解 8.21d d x xy x y += 解 当0≠y 时,分离变量得x x x y y d 1d 2+= 等式两端积分得C x y ln )1ln(21ln 2++=即通解为21x C y +=9. x y xy 2e 3d d =+ 解 齐次方程的通解为x C y 3e -= 令非齐次方程的特解为x x C y 3e )(-=代入原方程,确定出 C x C x +=5e 51)( 原方程的通解为x C y 3e -=+x 2e 51 10. 5d d xy y xy += 解 方程两端同乘以5-y ,得x y xy y +=--45d d 令 z y =-4,则xz x y y d d d d 45=--,代入上式,得 x z x z =--d d 41 通解为41e 4+-=-x C z x 原方程通解为41e 44+-=--x C y x 11.0)d (d 222=-+y y x x xy解 因为xN x y M ∂∂==∂∂2,所以原方程是全微分方程. 取)0,0(),(00=y x ,原方程的通积分为C y y x xy yx=-⎰⎰020d d 2 即 C y y x =-3231 12. y y xy ln d d = 解:当0≠y ,1≠y 时,分离变量取不定积分,得C x yy y +=⎰⎰d ln d 通积分为 x C y e ln = 13.03)(22=+'+''x y y y解 原方程可化为0)(2='+'x y y 于是 12d d C x xy y =+ 积分得通积分为23123121C x x C y +-= 14.xy x y x y +-=2)(1d d 解:令xu y =,则xu x u x y d d d d +=,代入原方程,得 21d d u x u x -= 分离变量,取不定积分,得C xx u uln d 1d 2+=-⎰⎰ (0≠C ) 通积分为: Cx xy ln arcsin= 15. xy x y x y tan d d += 解 令u xy =,则x u x u x y d d d d +=,代入原方程,得 u u x u x u tan d d +=+,u xu x tan d d = 当0tan ≠u 时,分离变量,再积分,得C x x u u ln d tan d +=⎰⎰ C x u ln ln sin ln +=即通积分为: Cx x y =sin16. 1d d +=xy x y 解:齐次方程的通解为Cx y = 令非齐次方程的特解为x x C y )(=代入原方程,确定出 C x x C +=ln )( 原方程的通解为Cx y =+x x ln17. 0d d )e (2=+-y x x y x y解 积分因子为21)(x x =μ原方程的通积分为1012d d )(e C y x x y y x x=+-⎰⎰即 1e ,e C C C x yx +==+18.0)(2='+''y y y解:原方程为恰当导数方程,可改写为0)(=''y y即1C y y ='分离变量得x C y y d d 1=积分得通积分21221C x C y +=19.1)ln (='-'y x y解 令p y =',则原方程的参数形式为⎪⎩⎪⎨⎧='+=py p p x ln 1由基本关系式 y x y'=d d ,有p p pp x y y )d 11(d d 2+-⋅='= p p)d 11(-= 积分得 C p p y +-=ln得原方程参数形式通解为⎪⎩⎪⎨⎧+-=+=C p p y p p x ln ln 120.022=+'+''x y y y解 原方程可化为0)(2='+'x y y于是 12d d C x xy y =+ 积分得通积分为23123121C x x C y +-= 21. 0)d (d )(3223=+++y y y x x xy x 解:由于xN xy y M ∂∂==∂∂2,所以原方程是全微分方程. 取)0,0(),(00=y x ,原方程的通积分为103023d d )(C y y x xy x yx=++⎰⎰ 即 C y y x x =++42242四、计算题1.求方程x y y e 21=-''的通解. 解 对应的齐次方程的特征方程为:012=-λ特征根为: 1,121-==λλ故齐次方程的通解为: x x C C y -+=e e 21因为1=α是单特征根.所以,设非齐次方程的特解为x Ax x y e )(1=代入原方程,有 x x x x Ax Ax A e 21e e e 2=-+, 可解出 41=A . 故原方程的通解为 x x x x C C y e 41e e 21++=- 2.求下列方程组的通解 ⎪⎪⎩⎪⎪⎨⎧+=--=y x ty y x t x 43d d 2d d . 解 方程组的特征方程为04321=----=-λλλE A即 0232=+-λλ特征根为 11=λ,22=λ11=λ对应的解为t b a y x e 1111⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡ 其中11,b a 是11=λ对应的特征向量的分量,满足⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡----0014321111b a 可解得1,111-==b a .同样可算出22=λ对应的特征向量分量为 3,212-==b a .所以,原方程组的通解为⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡t t t t C C y x 2221e 32e e e 3.求方程x y y 5sin 5='-''的通解.解:方程的特征根为01=λ,52=λ齐次方程的通解为 x C C y 521e +=因为i i 5±=±βα不是特征根。
常微分方程课后答案

常微分方程 2、11、xy dxdy2=,并求满足初始条件:x=0,y=1的特解、 解:对原式进行变量分离得。
故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解、解:对原式进行变量分离得:。
故特解是时,代入式子得。
当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x yx yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。
常微分方程第一、二、三次作业参考答案

1、给定一阶微分方程2dyx dx=: (1) 求出它的通解;解:由原式变形得:2dy xdx =.两边同时积分得2y x C =+.(2) 求通过点(2,3)的特解;解:将点(2,3)代入题(1)所求的得通解可得:1C =-即通过点(2,3)的特解为:21y x =-.(3) 求出与直线23y x =+相切的解;解:依题意联立方程组:223y x Cy x ⎧=+⎨=+⎩故有:2230x x C --+=。
由相切的条件可知:0∆=,即2(2)4(3)0C --⨯-+=解得4C =故24y x =+为所求。
(4) 求出满足条件33ydx =⎰的解。
解:将 2y x C =+代入330dy =⎰,可得2C =-故22y x =-为所求。
2、求下列方程的解。
1)3x y dydx-= 2)233331dy x y dx x y -+=--解:依题意联立方程组:23303310x y x y -+=⎧⎨-+=⎩ 解得:2x =,73y =。
则令2X x =-,73Y y =-。
故原式可变成:2333dY x ydX x y-=-. 令Yu X =,则dy Xdu udx =+,即有 233263u dxdu u u x-=-+.两边同时积分,可得122(263)||u u C X --+= .将732y u x -=-,2X x =-代入上式可得: 12227()614323|2|2(2)y y C x x x -⎛⎫- ⎪--+=- ⎪-- ⎪⎝⎭.即上式为所求。
3、求解下列方程:1)24dyxy x dx+=. 解:由原式变形得:22dyxdx y=-. 两边同时积分得:12ln |2|y x C --=+. 即上式为原方程的解。
2)()x dyx y e dx-=. 解:先求其对应的齐次方程的通解: ()0dyx y dx -=. 进一步变形得:1dy dx y=.两边同时积分得:x y ce =.利用常数变异法,令()x y c x e =是原方程的通解。
《常微分方程》 (方道元 著) 课后习题答案 浙江大学出版社

= v0 + at.
dh dt |t=T
=0
2.一个湖泊的水量为V立方米,排入湖泊内含污染物A的污水量为V1 立方米/时,流入湖泊内不含污
0 不得超过 m 5 。试讨论湖泊中污染物A的浓度变化?
解:设污染物A的浓度为P(t),由题意可得 V P (t) + P (t)(V1 + V2 ) = P (0) = 5m
w
ω )e−s ds = y (x)。
4.考虑方程
w
.k
w
其中p(x)和q (x)都是以ω 为周期的连续函数,试证:
(1)若q (x) ≡ 0,则方程(2.4.23)的任一非零解以ω 为周期当且仅当函数p(x)的平均值 p ¯= 1 ω
ω
hd aw
答
dy + a(x)y ≤ 0, (x ≥ 0). dx
−
x 2y
= 0, y (0) = 1;
−2 ,令z = y 2 ,方程两边再乘以因子e−2x ,得到 (1)显然y ≡ 0是方程的解,当y = 0时,方程两边乘以 1 2y
方程的通解为 y = (Ce2x − x 1 2 − ) 4 8
hd aw
1 1
案 网
1.试求下列微分方程的通解或特解: √ dy − 4xy = x2 y ; (1) x dx
w
w
(3) y =
dy dx
1 1−x2 y = 1 + x, x ex + 0 y (t) dt; x4 +y 3 xy 2 ;
(4)
=
(5) 2xydy − (2y 2 − x)dx = 0;
(6) (y ln x − 2)ydx = xdy ;
常微分方程第三版课后习题答案

习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。
解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y =ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。
常微分方程第三版习题答案

常微分方程第三版习题答案常微分方程是数学中的一个重要分支,它研究的是描述自然界中变化规律的方程。
在学习常微分方程的过程中,习题是非常重要的一部分,通过解习题可以加深对理论知识的理解和应用能力的培养。
本文将为大家提供《常微分方程第三版》习题的部分答案,希望能对大家的学习有所帮助。
1. 习题一1.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2y + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。
令$y = u(t)e^{2t}$,则$\frac{dy}{dt} = \frac{du}{dt}e^{2t} + 2ue^{2t}$将上述结果代入原方程,得到:$\frac{du}{dt}e^{2t} + 2ue^{2t} = 2(u(t)e^{2t}) + t^2$化简得到:$\frac{du}{dt}e^{2t} = t^2$两边同时除以$e^{2t}$,得到:$\frac{du}{dt} = t^2e^{-2t}$对上式两边同时积分,得到:$u = -\frac{1}{4}t^2e^{-2t} + C$将$u$代入$y = u(t)e^{2t}$,得到最终的解:$y = (-\frac{1}{4}t^2e^{-2t} + C)e^{2t}$1.2 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = \frac{t}{y}$这是一个一阶可分离变量的常微分方程,我们可以通过分离变量来求解。
将方程变形,得到:$ydy = tdt$对上式两边同时积分,得到:$\frac{1}{2}y^2 = \frac{1}{2}t^2 + C$解得:$y^2 = t^2 + C$由于题目中给出了初始条件$y(0) = 1$,将初始条件代入上式,得到:$1 = 0 + C$解得:$C = 1$将$C$代入$y^2 = t^2 + C$,得到最终的解:$y^2 = t^2 + 1$2. 习题二2.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2ty + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。
常微分方程教程_丁同仁(第二版)_习题解答

(3). dy = 1 − y 2 ; dx
解:①当 y ≠ ±1时,
原方程即为: dy = dx 积分得: ln 1 + y = 2x + c ,
(1 − y 2 )
1− y
即
y
=
ce 2 x
−1
.
ce2x + 1
② y = ±1也是方程的解.
积分曲线的简图如下:
(4). dy = y n , (n = 1 , 1, 2) ;
内连续,而且 f ( y) = 0 ⇔ y = a ,则在直线 y = a 上的每一点,方程(2.27)的解局部唯一,
∫a±ε dy
当且仅当瑕积分
= ∞ (发散).
a f (y)
证明:( ⇒ )
首 先 经 过 域 R1 : − ∞ < x < +∞,
a − ε ≤ y < a 和 域 R2 : − ∞ < x < +∞,
∂y
∂x
∂y ∂x
∫ 两边积分得: f (x2 + y2 )dx = C ,
即原方程的解为 F (x 2 + y 2 ) = C (其中 F 为 f 的原积分).
-3-
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
习题 2-2 1. 求解下列微分方程,并指出这些方程在平面上的有意义的区域::
(6) x dy = 1 − y 2 dx
解:①当 y ≠ ±1时 原方程即为: dy = dx
1− y2 x 两边积分得: arcsin y − ln x = c . ② y = ±1也是方程的解.来自(7).dy dx
=
x − e−x y +ey
第3章习题答案 常微分方程教程+第二版+丁同仁+李承志+答案和练习

习 题 3-11. (1) 解: ,||),(αy y x f = 有α|||)0,(),(|y x f y x f =-,令 ,||)(αr r F =有⎰⎰--==1110010||11||)(r r r r r dr r F dr ααα, 当 01<-α, 即 1>α 时, ∞=--→αα10||11limr r , 所以 0)0(=y 的解唯一。
当 01=-α 时,1100|||ln )(r r r r F dr =⎰,而 ∞=→||ln lim 0r r ,所以 0)0(=y 的解唯一。
当 10<<α 时, 可解方程知其解不唯一。
所以当10<<α, 其解不唯一; 1≥α, 其解唯一。
(2). 解: 因为0|l n |l i m 0=→y y y ,所以dxdy在 ),(+∞-∞ 连续. 设 |||ln |)(r r r F =, 有∞=⎰1)(r r F dr(01>r 为常数),所以方程的解唯一.2. 解: 构造毕卡序列, 令 1),(++=y x y x f , dx x y x f x y xn n ⎰=+01))(,()(,因为 0)0(=y ,所以 x x dx x f x y x +==⎰20121)0,()(,x x x dx x x x f x y x ++=+=⎰2302261)21,()(, x x x x dx y x f x y x +++==⎰23402331!41),()(,…………………………………………… x x x n x n dx y x f x y n n xn n +++++==+-⎰!22!2)!1(1),()(211 ,22)!22!2)!1(1(lim )(lim 21--=+++++=+∞→∞→x e x x x n x n x y x n n n n n , 所以 22--=x e y x为方程的解. 3. 证明: 反证法设初始问题(E)有两个解, )(x y 和)(1x y , 且 0010)()(y x y x y ==,01x x >∃, 使 )()(111x y x y >, 令 )()(,sup{110x y x y x x x =<≤=μ根据μ 的定义与y 的连续性可知,对),(1x x μ∈∀,)()(1x y x y >, 令 )()()(1x y x y x r -=, 令 )()()(1x y x y x r -=, 有 0)(=μr , 有))(,())(,(1x y x f x y x f dxdr-=, 因为 ),(y x f 对 y 是递减的, 所以0<dxdr, 对 ),(1x x μ∈∀, 所以 0)()(=<μr x r , 对 ),(1x x μ∈∀, 又由y 的连续性, 可得 )()(111x y x y <,矛盾!习 题 3-31.证明:令)()(),(x b y x a y x f +=, 显然),(y x f+∞<<∞-∈y I x S ,:内连续, 且满足不等式|)(||||)(||),(|x b y x a y x f +≤,其中令 0|)(|)(≥=x a x A , 0|)(|)(≥=x b x B , 由已知有 )(x A ,)(x B 在I x ∈上是连续的, 则由定理5, 知 )(x y y = 的最大存在区间为I2. (1) 解:令 221),(yx y x f +=,则 ),(y x f 在区域 }0,{1≠+∞<<-∞=y x G 上连续,或 },00{2+∞<<-∞+∞<<<<-∞=y x x G 上连续。
国家开放大学电大本科《常微分方程》网络课形考任务3试题及答案

国家开放大学电大本科《常微分方程》网络课形考任务3试题及答案形考任务3常微分方程学习活动3第一章 初等积分法的综合练习本课程形成性考核综合练习共3次,内容主要分别是第一章初等积分法的综合练习、第二章基本定理的综合练习、第三章和第四章的综合练习,目的是通过综合性练习作业,同学们可以检验自己的学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.要求:首先请同学们下载作业附件文档并进行填写,文档填写完成后请在本次作业页面中点击“去完成”按钮进入相应网页界面完成任务,然后请将所做完的作业文档以附件的形式上传到课程上,随后老师会在课程中进行评分。
一、填空题1.微分方程0)(43='-'+''y y y x y xy 是 二 阶微分方程. 2.初值问题00d (,)d ()y f x y x y x y ⎧=⎪⎨⎪=⎩的解所满足的积分方程是00(,)d x x y y f s y s =+⎰. 3.微分方程0d )ln (d ln =-+y y x x y y 是 一阶线性非齐次微分方程 .(就方程可积类型而言)4.微分方程0d )2e (d e =++y y x x yy 是 全微分方程 .(就方程可积类型而言)5.微分方程03)(22=+'+''x y y y 是 恰当倒数方程 .(就方程可积类型而言) 6.微分方程y x xy sin d d 2=的所有常数解是Λ,2,1,0,±±==k k y π. 7.微分方程21d d y x y -=的常数解是 1±=y . 8.微分方程x x y y x 122e-=-'的通解为)(e 1C x y x +=-. 9.微分方程2)(21y y x y '+'=的通解是221C Cx y +=. 10.一阶微分方程的一个特解的图像是 二 维空间上的一条曲线.二、计算题1.指出下列方程的阶数,是否是线性方程:(1) 22d d x y xy += 答:一阶,非线性(2)0d d d d 2d d 223344=+-x y x y x y 答:四阶,线性(3)t x x x x =++&&&&&& 答:三阶,非线性2.用分离变量法求解下列方程:(1)y x y -='e(2)0d cot d tan =-y x x y。
常微分方程第四版课后练习题含答案

常微分方程第四版课后练习题含答案第一章:常微分方程基本概念和初值问题1.2 课后练习题1.2.1(1)y′=2y+3,y(0)=1,求解y(t);(2)y′+ty=1,y(0)=0,求解y(t)。
解答:(1)该微分方程为一阶线性常微分方程,其通解为$$y(t)=Ce^{2t}-\\frac{3}{2}$$代入初始条件y(0)=1,可得$$C=\\frac{5}{2}$$所以$$y(t)=\\frac{5}{2}e^{2t}-\\frac{3}{2}$$(2)首先设$u(t)=e^{\\frac{t^2}{2}}y(t)$,则$u'(t)=e^{\\frac{t^2}{2}}(y'+ty)$。
代入原方程可得$$u'(t)=e^{\\frac{t^2}{2}}$$对其积分得$$u(t)=\\int e^{\\frac{t^2}{2}} dt +C=\\frac{\\sqrt{2\\pi}}{2}erf\\frac{t}{\\sqrt{2}}+C$$其中$erf(x)=\\frac{2}{\\sqrt{\\pi}}\\int_0^x e^{-t^2} dt$称为误差函数。
进一步解得$$y(t)=e^{-\\frac{t^2}{2}}u(t)-ue^{-\\frac{t^2}{2}}=-\\frac{\\sqrt{2\\pi}}{2}erf\\frac{t}{\\sqrt{2}}e^{-\\frac{t^2}{2}}$$ 代入初始条件y(0)=0即可得到最终解答。
第二章:一阶线性微分方程2.2 课后练习题2.2.1求下列方程的通解:(1)(2x+1)y′+y=1;(2)(x−1)y′−y=2x;(3)$(2+\\cos x)y'-y=2-x\\cos x$。
解答:(1)该微分方程为一阶线性常微分方程,设方程的通解为$y=Ce^{-\\int \\frac{1}{2x+1} dx}+\\frac{1}{2x+1}$。
常微分方程第三版课后答案

常微分方程第三版课后答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March常微分方程1.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。
故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。
故特解是时,代入式子得。
当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x yx yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。
周义仓编常微分方程习题答案

续有解,函数ψ (x)
=
⎧φ (x), x ≠
⎨ ⎩Leabharlann y0 ,x0就是一个可微函数。事实上,ψ (x)在下x
≠
x0
虽然连
续可微,当 x =
x0
,ψ
'
(x0
)
=
lim
=
b
+
a ce −ax
所以拐点的y坐标为a/b;
4) (略)
返回目录 答案 1.2
1.(1) y ≠ x R2 (2) y ≠ 0 (3) R2 (4) y ≠ x
∫ 2.(1)
y0 (x)
= 1,
y1 (x)
=
x 0
(s2
+ 1)ds
=
1 3
x3
+
x
∫ y2 (x)
=
x
[s 2
0
+
(1 3
x3
+
x)]ds
f
(x, y)
=
y2
+ cos x 2
2
⎩
2
⎭
连续,且关于 y
有连续的偏导数,计算 M
=
max
f
(x, y)
=1+ b2 ,h
=
min
⎧ ⎨ ⎩
1 2
,
1
b +b
2
⎫ ⎬
,
⎭
由此可见,h 是有界的,由解的存在唯一性定理,知初始值问题的解是存在唯一的。
(2),(3),(4)的证明和(1)相同(略)
周义仓编常微分方程习题答案

3)微分方程通解是:
y( x)
=
b
+
a ce −ax
所以拐点的y坐标为a/b;
4) (略)
返回目录 答案 1.2
1.(1) y ≠ x R2 (2) y ≠ 0 (3) R2 (4) y ≠ x
∫ 2.(1)
y0 (x)
= 1,
y1 (x)
=
x 0
(s2
+ 1)ds
=
1 3
x3
+
x
∫ y2 (x)
=
在 x0 点有 y1 (x0 ) − y2 (x0 ) = 0 ,这与 y1 (x) > y2 (x) 矛盾,假设不成立,只有一解
8.提示:作逐步逼近函数序列,φ0 (x) = f (x)
b
∫ φn+1 (x) = f (x) + λ K (x,ξ )φn (ξ )dξ , n = 0,1,2,.... a
16.证明:若 x0 是有限值,由于φ (x) → y0 , (x → x0 ) 且φ ' (x) = f (x),在x = x0 的邻域内连
续有解,函数ψ (x)
=
⎧φ (x), x ≠
⎨ ⎩
y0 ,
x0
就是一个可微函数。事实上,ψ (x)在下x
≠
x0
虽然连
续可微,当 x =
x0
,ψ
'
(x0
)
=
lim
4.提示:代φ (x),ψ (x) 到微分方程验证即可。
5.证明:对条件中的不等式进行求导有: f ' (t) ≤ f (t)g(t) ,∵ f (t), g(t) 在区间上是非负
常微分方程课后答案(第三版)

习题1.21.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: y y -1dy=-xx 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令xy =u dx dy =u+ x dx du 211u - du=sgnx x 1dx arcsin xy =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +ye xy 32+=0 解:原方程为:dx dy =ye y 2e x 3 2 e x 3-3e 2y -=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy令xy =u ,则dx dy =u+ x dx du u+ xdx du =ulnu ln(lnu-1)=-ln|cx| 1+lnx y =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u +du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2x u ,有: u x dx du =f(u)+1 )1)((1+u f u du=x1dx 所以原方程可化为变量分离方程。
《常微分方程》练习题库参考答案

《常微分⽅程》练习题库参考答案江苏师范⼤学数学教育专业《常微分⽅程》练习测试题库参考答案⼀、判断说明题1、在线性齐次⽅程通解公式中C 是任意常数⽽在常数变易法中C (x )是x 的可微函数。
将任意常数C 变成可微函数C (x ),期望它解决线性⾮齐次⽅程求解问题,这⼀⽅法成功了,称为常数变易法。
2、因p(x)连续,y(x)= y 0exp(-dx xx p(x))在p(x)连续的区间有意义,⽽exp(-dx xx p(x))>0。
如果y 0=0,推出y(x)=0,如果y(x)≠0,故零解y(x)=0唯⼀。
3、(1)它是常微分⽅程,因为含有未知函数的导数,f,g 为已知函数,y 为⼀元函数,所建⽴的等式是已知关系式。
(2)它是常微分⽅程,理由同上。
(3)它不是常微分⽅程,因y 是未知函数,y(y(y(x)))也是未知的,所建⽴的等式不是已知关系式。
4、微分⽅程求解时,都与⼀定的积分运算相联系。
因此,把求解⼀个微分⽅程的过程称为⼀个微分⽅程。
微分⽅程的解⼜称为(⼀个)积分。
5、把微分⽅程的通解⽤初等函数或通过它们的积分来表达的⽅法。
注意如果通解能归结为初等函数的积分表达,但这个积分如果不能⽤初等函数表⽰出来,我们也认为求解了这个微分⽅程,因为这个式⼦⾥没有未知函数的导数或微分。
6、 y `=f(x,y)主要特征是f(x,y)能分解为两个因式的乘积,其中⼀个因式仅含有x,另⼀因式仅含y ,⽽⽅程p(x,y)dx+q(x,y)dy=0是可分离变量⽅程的主要特征,就像f(x,y)⼀样,p,q 分别都能分解成两个因式和乘积。
7、⼆元函数f(x,y)满⾜f(rx,ry)=r mf(x,y),r.>0,则称f(x,y)为m 次齐次函数。
m=0则称它为0次齐次函数。
8、如果f(x,y)是0次齐次函数,则y `=f(x,y)称为齐次⽅程。
如果p(x,y)和q(x,y)同为m 次齐次函数,则pdx+qdy=0为齐次⽅程。
常微分方程第三版答案

习题2.2求下列方程的解 1.dxdy=x y sin + 解: y=e ⎰dx (⎰x sin e ⎰-dxc dx +)=e x [-21e x-(x x cos sin +)+c] =c e x -21(x x cos sin +)是原方程的解。
2.dtdx+3x=e t 2 解:原方程可化为:dtdx=-3x+e t 2 所以:x=e ⎰-dt3 (⎰et2e -⎰-dt 3c dt +) =e t 3- (51e t 5+c)=c e t 3-+51e t 2 是原方程的解。
3.dtds=-s t cos +21t 2sin解:s=e ⎰-tdt cos (t 2sin 21⎰e dt dt ⎰3c + )=e t sin -(⎰+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。
4.dx dy n x x e y nx=- , n 为常数. 解:原方程可化为:dx dy n x x e y nx+=)(c dx ex e ey dxx nnx dxx n+⎰⎰=⎰-)(c e x x n += 是原方程的解.5.dx dy +1212--y xx=0 解:原方程可化为:dx dy =-1212+-y x x⎰=-dxx x ey 212(c dx edxx x +⎰-221))21(ln 2+=x e)(1ln 2⎰+--c dx exx=)1(12xce x +是原方程的解.3332()21()227.(1)12(1)12(),()(1)1(1)(())1(1)dx P x dxx P x dxdy y x dx x dy y x dx x P x Q x x x e e x e Q x dx c x +--=++=+++==++⎰⎰==+⎰⎰++⎰⎰P(x)dx 232解:方程的通解为:y=e =(x+1)(*(x+1)dx+c) =(x+1)((x+23221(1)()211,()(())dyy x c dy y dx x y dx x y dy y yQ y y y eyQ y dy c -+++==+=⎰⎰==⎰⎰+⎰⎰2243P(y)dyP(y)dyP(y)dy1)dx+c)=(x+1) 即:2y=c(x+1)+(x+1)为方程的通解。
《常微分方程》习题解答

《常微分方程》习题解答习题1.21求下列可分离变量微分方程的通解:(1)ydy某d某解:积分,得(2) 1212y某c1即某2y2c22dyylnyd某解:y0,y1为特解,当y0,y1时,dyd某,ylny积分,得lnlny某c1,(3)lnyec1e某ce某c0,即yece某dye某yd某y某解:变形得eydye某d某积分,得eec(4)tanyd某cot某dy0解:变形得dytanycoyin某dyd某.,y0为特解,当y0时,d某cot某inyco某积分,得lninylnco某c1,即inyco某e1c,clninyco某c1,c02.求下列方程满足给定初值条件的解:(1)dyy(y1),y(0)1d某解:y0,y1为特解,当y0,y1时,(11)dyd某,y1y积分,得lny1某c1,yy1ec1e某ce某,c0y将y(0)1代入,得c0,即y1为所求的解。
(2)(某1)y2某y0,y(0)122dy2某y22,解:d某某1积分,得y0为特解,当y0时,dy2某d某,22y某11ln某21cy1ln某112将y(0)1代入,得c1,即y为所求的解。
2(3)y33y,y(2)0解:y0为特解,当y0时,dy3y23d某,积分,得y某c,13y(某c)3将y(2)0代入,得c2,即y(某2)3和y0均为所求的解。
(4)(y2某y2)d某(某2y某2)dy0,y(1)1解:某0,y0为特解,当某0,y0时,1某1yd某dy0,22某y某c1某y某yeece,c0y111111积分,得ln某lnyc1,某y某22某y将y(1)1代入,得ce,即ee为所求的解。
y11224.求解方程某1yd某y1某dy0解:某1(1y1),y1(1某1)为特解,当某1,y1时,某1某2d某y1y2dy0积分,得1某21y2c(c0)6.求一曲线,使其具有以下性质:曲线上各点处的切线与切点到原点的向径及某轴可围成一个等腰三角形(以某轴为底),且通过点(1,2).解:设所求曲线为yy(某)对其上任一点(某,y)的切线方程:Yyy'(某某)于某轴上的截距为a某yy'由题意建立方程:某y某某0y'即y'y,某y(1)2再由2ec得c=ln2,得所求曲线为求得方程的通解为某yec,为某y2c07.人工繁殖细菌,其增长速度和当时的细菌数成正比(1)如果4小时的细菌数为原细菌数的2倍,那么经过12小时应有多少?(2)如果在3小时时的细菌数为得10个,在5小时时的细菌数为得410个,那么在开始时有多少个细菌?解:设t时刻的细菌数为q(t),由题意建立微分方程kt44dqkqdtk0求解方程得qce再设t=0时,细菌数为q0,求得方程的解为qq0ekt (1)由q(4)2q0即q0e4k2q0得kln24q(12)q0e12kq0e12ln248q0(2)由条件q(3)q0e3k104,q(5)q0e5k4104ln423ln4比较两式得k,再由q(3)q0e3kq0e28q0104得q01.25103习题1.31解下列方程:(2)(y2某y)d某某dy0解:方程改写为22dyyy2()()2d某某某ydu11d某2uu2整理为()du令u,有u某d某uu1某某积分,得ln(u0,1)ulnc1某u1即uc1某c1某1代回变量,得通解某(y某)cy,(4)某yy某tany0也是方程的解y某dyyytan解:方程改写为d某某某yduinud某tanu令u,有某即cotudu(inu0)某d某cou某积分,得inuc某代回变量,得通解iny某c某(5)某yy(某y)ln某y某解:方程改写为dyd某y某(1y某)ln某y某令uydu某,有某d某(1u)ln(1u)当u0,u1时dud某(1u)ln(1u)某积分,得ln(1u)c某代回变量,得通解ln(1y某)c某(6)某y某2y2y 解:方程改写为dyd某1(y某)2y某令uydu某,有某d某1u2分离变量du1u2d某某积分,得arcinulnc某代回变量,得通解arciny某lnc某,y某也是方程的解2解下列方程:(1)(2某4y6)d某(某y3)dy0解:方程改写为dyd某4y2某6某y3令24030,解得1,2(1u1)作变换某1,y2有d42d再令udu4u2上方程可化为ud1uu1ddu(u1)(u2)u22)cu1整理为(u1,2)积分,得(u2)(代回变量,得通解(y2某)3c(y某1)2,(2)(2某y1)d 某(4某2y3)dy0y某1也是方程的解解:方程改写为dy2某y1d某4某2y3du5u52u3du5d某(u1)分离变量d某2u3u1令u2某y,有积分,得2ulnu15某c1代回变量,得通解2某y1ce2y某(4)y2(y22)某y1vy2则原方程变为解:令u某1,dvv22()duuvvdzz22()再令z,则方程化为zuudu1z(1z)2du分离变量dz(z0)uz(1z2)积分,得lnzu2arctanzlnc代回变量,得通解y2ce3解方程(2某3y7)某d某(3某2y8)ydy022222arctany2某12ydy2某23y27dy22某23y27解:方程改写为即222222某d某3某2y8d 某3某2y8。
常微分方程计算题(3)13页

常微分方程习题集(3)(三)、计算题1. 解方程:0)(22=-++xydy dx x y x ;2. 解方程:024=++xy xy dxdy; 3. 解方程:0)(22=+++xydy dx x y x ; 4. 解方程:y x '=y y x +-22; 5. 解方程:;6. 解方程: xy x y y x tan =-'; 7. 解方程:;8. 解方程:yy x e y '=';9. 解方程:xyx y y x dx dy 3225423++-=;10. 解方程:yx y y xy dx dy 22++-=;11. 解方程:0)1()(=+++--dy e dx e e y y y x ; 12. 解方程:243y x y x +=';13. 解方程:0)()13(22=-++-dy x xy dx xy y ; 14. 解方程:xx x y x y x x dx dy cos sin cos sin +-= ; 15. 解方程:3432842yxy x yy x x dx dy ++++-= ; 16. 解方程:02=+'-'y y x y ; 17. 解方程:;18. 解方程:04)4(=+x x ;19. 解方程:y e y y '-'=)1(; 20. 解方程:122='+y x ; 21. 解方程:;22. 解方程:6244x y y x =+' ;23. 解方程:033=-'+''-'''y y y y ;24. 解方程: ;25. 解方程:0212122=++'x y y ; 26. 解方程:04)3()5(=-x x ;27. 解方程:0)2()32(22=+++dy y x x dx xy y ; 28. 解方程:0485=-'+''-'''x x x x ; 29. 解方程:02)3()5()7(=+-x x x ; 30. 求方程2y x dxdy+=经过(0,0)的第三次近似解. (三)、计算题参考答案1、0)(22=-++xydy dx x y x 解:原方程可化为:yx y y x dx dy 1++= 令ux y =整理得:dx xxudu )11(2+=, 积分:C xx u +-=1ln 212, 将ux y =代入,原方程的通解为: x Cx x x y 22ln 2222-+=,,0=x 是原方程的常数解.2、024=++xy xy dxdy解:0=y 是方程的特解,0≠y 时,令3-=y z 得x xz dxdz36=-, 解之得2123-=x Ce z ,故原方程的通解为:21233-=-x Ce y .3、0)(22=+++xydy dx x y x解:因为y x N y y M =∂∂=∂∂,2 ,xN xNy M 1=∂∂-∂∂, 所以x =μ为积分因子,两边乘以x 得:02223=+++ydy x dx x xdx y dx x ,所以 0)312141(3224=++x x y x d , 故原方程的通解为:C y x x x =++2234643.4、y x '=y y x +-22 解:原方程可化为:x yxy y +-='221,令ux y =整理得:xdxu du =-21, 积分得:Cx u ln arcsin =,将ux y =代入,原方程的通解为:)sin(ln Cx x y =.5. 解方程:解一:令ux y =,则xdu udx dy +=,原方程可化为:xdxu du =+1, 积分得:cx u =+1.将ux y =代回得原方程的通解为:x cx y -=2.解二:因为1,2-=∂∂=∂∂x N y M ,xN xNy M 3-=∂∂-∂∂, 所以3-=x μ为积分因子,两边乘以3-x 得:02232=-+---dy x dx yx dx x ,所以 0)(21=+---yx x d , 故原方程的通解为:x Cx y -=2.6. xy x y y x tan =-' 解:原方程可化为:xy xyy +='tan ,令ux y =整理得:xdxu du =tan , 积分得:Cx u =sin ,将ux y =代入,原方程的通解为:7.解:令1-=y z ,原方程可化为:x x z dxdzcos sin -=-, 由一阶线性方程的通解公式⎰⎰+⎰=-),)(()()(dx e x f C e z dxx p dx x p 得: ⎰⎰-+⎰=---))cos (sin (11dx e x x C e z dx dx )cos sin (⎰⎰---+=xdx e xdx e C e x x xx Ce x +-=sin , 原方程的通解为: 8. yy x e y '='解:原方程可化为:1)(ln -''=y y x y ,令p y ='得1)(ln -=p xp y ,两边对x 求导,并以p 代替y ',整理得0)ln )(ln 1(=--p p dxdpxp . 从0ln 1=-p 得e p =,代如1)(ln -=p xp y 可得原方程的一个特解:ex y =,从0ln =-p p dxdpx解的Cx e p =,代如1)(ln -=p xp y 可得原方程的通解: Cx e Cy 1=.9. xyx y y x dx dy 3225423++-= 解:原方程可化为:0)32()25(423=+++dy xy x dx y y x因为y x xNy x y M 38,4533+=∂∂+=∂∂ ,xy Mx Ny x Ny M 1=-∂∂-∂∂,所以xy =μ为积分因子,两边乘以xy 得:03225225324=+++dy y x ydy x dx xy dx y x ,从而有:0)(3225=+y x y x d ,故原方程的通解为:C y x y x =+3225 .10. yx y y xy dx dy 22++-= 解:原方程可化为:0)2()(2=++--dy y x dx y xy y因为1,21=∂∂--=∂∂x N y x y M ,1-=∂∂-∂∂NxNy M ,所以x e -=μ为积分因子,两边乘以x e -得:022=++-------dy ye dy xe dx e y dx xye ydx e x x x x x ,所以:0)()(2=+++----dy xe xde dx e y e y d x x x x ,0)(2=+--x x xye e y d ,故原方程的通解为:x Ce xy y =+2.11. 0)1()(=+++--dy e dx e e y y y x解:因为0,1=∂∂+=∂∂x Ne y M y ,1=∂∂-∂∂Nx Ny M , 所以x e =μ为积分因子,两边乘以x e 得:0=+++-dy e e dy e dx e e dx ydx e x y x x y x ,所以:0)(=++-y x x y x de e de e dx ye d ,0)(=+-+y x x e x ye d ,故原方程的通解为:C e x e y y x x =+-+.12. 243y x y x +='解:由分析可知 2x y =是该方程的一个解, 作变换z x y +=2,原方程可化为322xz z x dx dz +=, 解之得; )ln (21x C x z -=--,故原方程的通解为:)ln 11(2xC x y -+=. 13. 0)()13(22=-++-dy x xy dx xy y解:因为x y x Nx y y M 2,32-=∂∂-=∂∂ ,xN x Ny M 1=∂∂-∂∂, 所以x =μ为积分因子,两边乘以x 得:033222=-++-dy x ydy x xdx ydx x dx xy ,所以:0)()21()21(3222=-+y x d x d y x d ,0)2121(2322=+-x y x y x d , 故原方程的通解为:C x y x y x =+-23222121. 14.xx x y xy x x dx dy cos sin cos sin +-= 解:原方程可化为:0)cos sin ()cos sin (=+++-dy x x x y dx x y x x因为x x x x y x Nx y M sin cos cos ,cos -+=∂∂=∂∂,1-=-∂∂-∂∂Mx Ny M , 所以y e -=μ为积分因子,两边乘以y e -得:0)cos sin ()cos sin (=+++---dy x x x y e dx x y x x e y y ,取000==y x 有:dx x x x y e y x U xy ⎰-=-0)sin cos (),(,)sin cos sin (x x x x y e y -+=-,故原方程的通解为:C x x x x y e y =-+-)sin cos sin (.15. 3432842yxy x y y x x dx dy ++++-= 解:原方程可化为:0)84()2(3432=+++++dy y xy x dx y y x x因为4341,1y xNx y M +=∂∂+=∂∂ ,xy Mx Ny x Ny M +=-∂∂-∂∂21,所以xy +=2μ为积分因子,两边乘以xy +2得:0)84)(2()2)(2(3432=+++++++dy y xy x xy dx y y x x xy , 取000==y x 有:⎰⎰+++++=yxdy y dx y xy y x y x x y x U 0302243216)244(),(,422254342215134y xy y x y x y x x +++++=, 故原方程的通解为:C y xy y x y x y x x =+++++422254342215134. 16. 02=+'-'y y x y 解:原方程可化为:2y y x y '-'=,令p y ='得2p xp y -=,两边对x 求导,并以p 代替y ',整理得0)2(=-dxdpp x . 从02=-p x 得x p 21=,代入2p xp y -=可得原方程的一个特解:241x y =,从0=dxdp解的C p =,代如2p xp y -=可得原方程的通解: 2C Cx y -=.17.解:原方程可化为:3278y y '=, 令p y ='得3278p y =, 两边对x 求导,并以p 代替y ',整理得01982=-dxdp p . 解之得:)(23C x p +=,代如3278p y =可得原方程的通解: 3)(C x y +=.18. 04)4(=+x x . 解:其特征方程为:044=+λ,特征根为: .1.1,1,1i i i i --+--+ 所以其实基本解组为:,cos t e t ,sin t e t ,cos t e t -,sin t e t - 原方程的通解为:21cos C t e C x t +=3sin C t e t +4cos C t e t +-t e t sin -.19. y e y y '-'=)1( 解: 令p y ='得p e p y )1(-=,两边对x 求导,并以p 代替y ',整理得0)1(=-dxdpe p p.可得:0=p ,与 01=-dxdpe p 解之得:0=p ,与 c x p +=ln代入p e p y )1(-=得: 1-=y 为常数解,与通解:)1(ln -++=c x c x y . 20. 122='+y x解: 令t y cos =',则t x sin =, 利用dx y dy '=得: tdt dy 2cos =, 积分得: C t t y ++=2s i n 4121, 将x t arcsin =代入得原方程的通解:C x x x y +-+=)1(arcsin 212.21.解: 原方程可化为:0))((221=+-'--'x x ye y y ye y y ,由02=--'x ye y y 得:22x e x Ce y +=, 由02=+-'x ye y y 得:22x e x Cey -=, 故原方程的通解为:22x ex Cey ±=.22. 6244x y y x =+'解:由分析可知 3x y =是该方程的一个解, 作变换z x y +=3,原方程可化为422xz z x dx dz --=, 解之得; 35521515)51(x Cx x C x z -=-=-,故原方程的通解为:)1551(53-+=Cx x y .23. 033=-'+''-'''y y y y解:其特征方程为:0)1(133323=-=-+-λλλλ,特征根1=λ为3重根, 所以其基本解组为: x x x x e x e x xe e 32,,,, 原方程的通解为: x x x x e x C e x C xe C e C y 342321+++=.24.解: 显然0=y 是方程的解,当0≠y 时,两边乘以21y 原方程可化为 022='-'-''y y y y y , 从而有: 0)(=-'y yy dx d , 1C y yy =-', 解之的:11211-=x C e C C C y , 为原方程的通解.25. 0212122=++'x y y 解:由分析可知 1-=x y 是该方程的一个解, 作变换z x y +=-1,原方程可化为21z z xdx dz --=, 解之得; )ln (1x C x z +=-, 故原方程的通解为:)ln (11x C x x y ++=-. 26. 04)3()5(=-x x解:其特征方程为:0)2)(2(4335=+-=-λλλλλ,特征根0=λ为3重根,2,2-==λλ. 所以其基本解组为: 2,1t t ,t t e e 22,-, 原方程的通解为: t t e C e C t C t C C y 25242321-++++=.27. 0)2()32(22=+++dy y x x dx xy y 解:因为xy x N xy y M 41,62+=∂∂+=∂∂ ,xN x N y M 1=∂∂-∂∂, 所以x =μ为积分因子,两边乘以x 得:02323222=+++ydy x dy x dx y x xydx , 所以:0)()(232=+y x d y x d ,故原方程的通解为:C y x y x =+232.28. 0485=-'+''-'''x x x x解:其特征方程为:0)2)(1(485223=--=-+-λλλλλ,特征根为2=λ为2重根,1=λ. 所以其基本解组为: t t t e te e ,,22, 原方程的通解为: t t t e C te C e C x 32221++=.29. 02)3()5()7(=+-x x x解:其特征方程为:0)1()1(2223357=+-=+-λλλλλλ,特征根为:0=λ为3重根,1=λ,为2重根,1-=λ为2重根. 所以其基本解组为: 2,1t t ,t t t t te e te e --,,,,原方程的通解为:t t t t te C e C te C e C t C t C C x --++++++=76542321.30. 求方程2y x dxdy +=经过(0,0)的第三次近似解. 解:取0)(0=x ϕ, 200200121)()(x xdx dx y x y x x x ==++=⎰⎰ϕ, dx x x y x x ])([)(02102⎰++=ϕϕ 5222020121])21([x x dx x x x +=+=⎰, dx x x x y x x ])20121([)(252003+++=⎰ϕ = 1185244001160120121x x x x +++.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题 2.4
求解下列方程 1、y y x '+='13 解:令
t p y dx dy 1=='=,则23311t t t t x +=⎪⎭
⎫
⎝⎛+=, 从而()()c t t c dt t c t t d t c pdx y ++=++=++=+=⎰⎰⎰22
3231
223,
于是求得方程参数形式得通解为⎪⎩
⎪⎨⎧++=+=c
t t y t t x 2232
2
3. 2、()0133='--'y x y
解:令tx p y dx
dy =='=,则()()013
3=--tx x tx ,即t t t t x 1123-=-=, 从而c t t d t t t c pdx y +⎪⎭
⎫ ⎝
⎛-⎪⎭⎫ ⎝
⎛-=+=⎰⎰1122
()c dt t t t +⎪⎭
⎫
⎝
⎛+
-=⎰23121 c dt t t t +⎪⎭
⎫
⎝
⎛-
-=⎰2412 c t
t t ++-=12152
25,
于是求得方程参数形式得通解为⎪⎪⎩
⎪⎪⎨⎧++-=-=c t t t y t
t x 121521252
.
3、y e y y ''=2 解:令
p y dx
dy
='=,则p e p y 2=, 从而()c e p d p
x p +=⎰21
()
c dp e p pe p
p p ++=⎰
221
=()⎰++c dp pe e p p 2 ()c e p p ++=1,
于是求得方程参数形式的通解为()⎪⎩⎪⎨⎧=++=p
p
e
y y c
e p x 21, 另外,y=0也是方程的解. 4、()a y y 212='+, a 为常数 解:令
ϕtg y dx
dy ='=,则ϕϕϕ2
2
2cos 2sec 212a a tg a y ==+=, 从而()
c a
d tg c dy p
x +=+=⎰
⎰ϕϕ
2cos 21
1
c a c
d a ++-=+-=⎰⎰2
2cos 14cos 42ϕ
ϕϕ ()c a ++-=ϕϕ2sin 2,
于是求得方程参数形式的通解为()⎩⎨⎧=++-=ϕ
ϕϕ2
cos 22sin 2a y c
a x . 5、='+22y x 1 解:令
t p y dx
dy
cos =='=,则t t x sin cos 12=-=, 从而()c t td y +=⎰sin cos c dt t
c tdt ++=+=⎰
⎰2
2cos 1cos 2 c t t ++=2sin 4
12
1,
于是求得方程参数形式的通解为⎪⎩
⎪
⎨⎧++==c t t y t x 2sin 4121sin .
6、()()2221y y y '-=-'
解:令yt y ='-2,则11-='-yt y ,得t
t y 1+=,
所以()
()
dt t dt t t t t dt t t t t t t d yt dy y dy dx 222222*********-=--=--=⎪
⎭
⎫
⎝⎛+-⎪
⎭⎫ ⎝⎛+=-=
'=-, 从而c t c dt t x +=+⎪⎭
⎫ ⎝⎛-
=⎰1
12
, 于是求得方程参数形式的通解为⎪⎪⎩
⎪⎪⎨⎧
+
=+=t t y c t
x 11,
因此方程的通解为c x c
x y -+-=
1
.。