二元一次方程组不等式与不等式组复习课教案

合集下载

中考数学复习《二元一次方程组》

中考数学复习《二元一次方程组》

中考考点精讲精练
考点1 解二元一次方程组[5年1考:2013年(解答题)]
典型例题
1. 解方程组: x+y=5, 2x+3y=11.
解: x+y=5, ① 2x+3y=11. ②
①×3-②,得x=4. 把x=4代入①,得y=1. 则方程组的解为 x=4,
y=1.
2x+3y=12, 2. 解方程组:
y= -1.
4. 解方程组: x+3y=-1, 3x-2y=8.
解: x+3y=-1, ①
3x-2y=8. ②
由①得x=-1-3y. ③
把③代入②,得3(-1-3y)-2y=8.
解得y=-1.
则x=-1-3×(-1)=2. 故二元一次方程组的解为
x=2, y=-1.
考点点拨: 本考点是广东中考的高频考点,题型一般为计算题,难度简 单. 解答本考点的有关题目,关键在于熟练掌握消元法和代入法 解二元一次方程组. 注意以下要点: (1)用代入消元法解二元一次方程组的步骤; (2)用加减消元法解二元一次方程组的步骤.
பைடு நூலகம்
方法规律
1. 用代入消元法解二元一次方程组的一般步骤(概括为“变, 代,解,回代,联”五步) (1)从方程组中选出一个系数比较简单的方程,将这个方程中
的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示 出来,即写成y=ax+b的形式,即“变”. (2)将y=ax+b代入到另一个方程中,消去y,得到一个关于x的
3. 列二元一次方程组解应用题的一般步骤(概括为“审,找, 列,解,答”五步) (1)审:通过审题,把实际问题抽象成数学问题,分析已知数 和未知数,并用字母表示其中的两个未知数. (2)找:找出能够表示题意的两个相等关系. (3)列:根据这两个相等关系列出必需的代数式,从而列出方 程组. (4)解:解这个方程组,求出两个未知数的值. (5)答:在对求出的方程组的解做出是否合理的判断的基础上, 写出答案.

2025年广西中考数学二轮复习课件:专题1方程(组)与不等式(组)

2025年广西中考数学二轮复习课件:专题1方程(组)与不等式(组)
计划进货“吉祥龙”和“如意龙”两种公仔吉祥物,发现用6 000元购进
的“吉祥龙”的数量是用2 500元购进的“如意龙”的数量的2倍,且每个
“吉祥龙”的进价比每个“如意龙”的进价贵了5元.
(1)求一个“吉祥龙”、一个“如意龙”的进价分别是多少元.
解:设一个“吉祥龙”的进价是x元,则一个“如意龙”的进价是(x-5)
④若该不等式组的解集为1≤x<3,则m的值为___.
8
m≤4
⑤若该不等式组无解,则m的取值范围为______.
8<m≤10
⑥若该不等式组有且只有3个整数解,则m的取值范围为__________.
类型二
考向一
例1
方程(组)及不等式的应用
购买、分配问题(北部湾2020.24)
某校举办知识竞赛,计划去商场为获得一等奖和二等奖的学生分
念品共用200元.
(1)分别求出A,B两款纪念品的进货单价.
解:设A款纪念品的进货单价为x元/个,B款纪念品的进货单价为y元/个.
3-2 = 120,
= 80,
由题意得
解得
= 60.
+ 2 = 200,
答:A款纪念品的进货单价为80元/个,B款纪念品的进货单价为60元/个.
(2)该经销店决定购进这两款纪念品共70个,其总费用不超过5 000元,则
金购买甲、乙两种农机具.已知1件甲种农机具比1件乙种农机具多1万元,
用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.
(1)求购买1件甲种农机具和1件乙种农机具各需多少万元.
解:设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)
15
10
万元.依题意得 = ,

第三讲 二元一次方程及方程组一元一次不等式及不等式组(学生)

第三讲 二元一次方程及方程组一元一次不等式及不等式组(学生)

第三讲 二元一次方程及方程组一元一次不等式及不等式组。

本讲课程目标知识与技能熟练掌握方程的解法,提高分析问题的能力及解题能力,着重训练实际问题的审题、找相等关系并正确地列出方程的能力。

过程与方法 系统复习初一下册、一元一次方程、二元一次方程组、一元一次不等式及不等式组等三章内容,讲练结合。

情感态度价值观本讲课程的重点1.一元一次方程的解法。

2.二元一次方程组的解法。

3.一元一次不等式及不等式组的解法本讲课程的难点1.应用一元一次方程解决实际问题。

2.二元一次方程组的消元技巧。

3.不等式的性质3的符号变换,不等式组的解集的分类。

教学方法建议精讲多练,讲练结合 选材程度及数量课堂精讲例题 搭配课堂训练题 课后作业 A 类( )道( )道( )道B 类 ( )道 ( )道 ( )道C 类( )道( )道( )道—、回顾上一讲知识一:有理数知识的复习★第一步:要点一知识规律或思维方法、解题方法梳理1.正数、负数、有理数、数轴、相反数、绝对值及倒数的概念。

2.有理数的加减法、乘除法、以及乘方的运算法则及运算律(交换律、结合律、分配律)。

3.科学记数法及近似数,以及有理数混合运算的运算顺序。

★第二步:要点一经典例题讲解1.(-61+43-125)⨯)12(-; ( 用分配律)2.B.⎥⎦⎤⎢⎣⎡-÷--⨯---3210)2(322)32(31(答案:0 )★第三步:要点一课堂巩固练习1.B.(-1)2009-(43-61-83)×24-(-2)2×3 (答案:-18 ) 2.B.20103)1(|52|)3(2)2(---+-⨯--。

(答案:0 )二、整式的加减★第一步:要点二知识规律或思维方法、解题方法梳理1.单项式、多项式的概念。

2.整式加减的去括号的方法。

3.合并同类项的方法。

★第二步:要点二经典例题讲解1.B.已知一个多项式与x x 932+的和等于1432-+x x ,则此多项式是 ( B )A .1562---x xB .15--xC .1562++-x x D .15+-x2. C. 已知5,4=-=+c b b a ,则代数式222222a b c ab bc +++-= 41 。

中考数学复习第二章方程组与不等式组讲义

中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。

(系数不为0)的整式方程。

形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。

解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。

一般形式: ax+by=c ,有无数组解。

2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。

⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。

【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。

2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。

(完整版)不等式与不等式组单元复习教案

(完整版)不等式与不等式组单元复习教案

个性化教案 17授课时间:2011年7月22日(2) 备课时间:2011年7月20日年级:八课时:2小时课题:不等式与不等式组学生姓名:胡雪丹教师姓名:宋学文教学目标1、能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。

2、会解简单的一元一次不等式,并能在数轴上表示出解集。

会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。

3、能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题。

难点重点能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题。

教学内容一、基础知识梳理1、叫一元一次不等式,把两个或两个以上的合起来,组成一个一元一次不等式组。

2、一般的,几个不等式的解集的,叫做由它们所组成的不等式组的解集。

3、不等式性质1 :不等式性质2:不等式性质3 :4、解不等式组,取解集的法则:5、老师归纳总结1、不等式的基本性质性质1:不等式的两边都加上或减去同一个数或同一个整式,不等号的方向不变。

如果a>b,则a+c>b+c,a-c>b-c性质2:不等式的两边同时乘以或除以同一个正数,不等号的方向不变。

如果a>b,并且c>0,那么则ac>bc性质3:不等式两边都乘以或除以同一个负数,不等号的方向改变成相反方向。

如果a>b,并且c<0,那么则ac<bc2、不等式组的公共解集,可用口诀:大大取大,小小取小;大小小大取中间;大大小小取不了。

1、已知a>b 用”>”或”<”连接下列各式;(1)a-3 ---- b-3 (2)2a ----2b (3)- a 3 ------b3(4)4a-3 ---- 4b-3 (5)a-b --- 02、在数轴上表示不等式组x>-2x 1⎧⎨≤⎩ 的解,其中正确的是( )3、已知a>b ,⎩⎨⎧b x a x πφ 的解是 ,⎩⎨⎧--b x a x φφ的解是 。

中考数学专题复习《代数应用性问题复习》的教案

中考数学专题复习《代数应用性问题复习》的教案

中考数学专题复习《代数应用性问题复习》的教案第一章:代数应用性问题概述1.1 教学目标让学生了解代数应用性问题的基本概念和特点。

培养学生解决代数应用性问题的基本思路和方法。

1.2 教学内容代数应用性问题的定义和特点。

代数应用性问题解决的步骤和方法。

1.3 教学过程引入代数应用性问题的概念,让学生举例说明。

引导学生分析代数应用性问题的特点,如实际背景、数学模型等。

讲解代数应用性问题解决的步骤,如理解问题、建立方程等。

第二章:一元一次方程的应用2.1 教学目标让学生掌握一元一次方程的基本概念和解法。

培养学生应用一元一次方程解决实际问题的能力。

2.2 教学内容一元一次方程的定义和性质。

一元一次方程的解法和应用。

2.3 教学过程引入一元一次方程的概念,让学生举例说明。

讲解一元一次方程的性质和解法,如加减法、代入法等。

给出实际问题,让学生应用一元一次方程解决。

第三章:二元一次方程组的应用3.1 教学目标让学生掌握二元一次方程组的基本概念和解法。

培养学生应用二元一次方程组解决实际问题的能力。

3.2 教学内容二元一次方程组的定义和性质。

二元一次方程组的解法和应用。

3.3 教学过程引入二元一次方程组的概念,让学生举例说明。

讲解二元一次方程组的性质和解法,如代入法、消元法等。

给出实际问题,让学生应用二元一次方程组解决。

第四章:不等式的应用4.1 教学目标让学生掌握不等式的基本概念和解法。

培养学生应用不等式解决实际问题的能力。

4.2 教学内容不等式的定义和性质。

不等式的解法和应用。

4.3 教学过程引入不等式的概念,让学生举例说明。

讲解不等式的性质和解法,如大小比较、解集表示等。

第五章:整式的应用5.1 教学目标让学生掌握整式的基本概念和运算规则。

培养学生应用整式解决实际问题的能力。

5.2 教学内容整式的定义和性质。

整式的运算规则和应用。

5.3 教学过程引入整式的概念,让学生举例说明。

讲解整式的性质和运算规则,如加减法、乘除法等。

人教版七年级数学下二元一次方程及不等式(组)专题复习

人教版七年级数学下二元一次方程及不等式(组)专题复习

学校: 班级: 姓名: 考号: ………………………………密…………………………………………封………………………………线………………………………第八章 二元一次方程组本章知识结构图:知识要点1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。

2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为c by ax =+(c b a 、、为常数,并且00≠≠b a ,)。

使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。

3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。

使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。

4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。

5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。

6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。

系统复习--方程和不等式,第2课时二元一次方程组,课件

系统复习--方程和不等式,第2课时二元一次方程组,课件
[
典型例题
3x-y=5, ① 例1、解方程组 5x+2y=23. ②
方法二:用代入消元法解方程组. 由①得 y=3x-5,③ 把③代入②得 5x+2(3x-5)=23,即 11x=33,解得 x=3.把 x=3 代入③得 y=4.所以原方程 x=3, 组的解为 y=4.
典型例题
回顾与思考
用代入法解方程组的步骤是什么?
主要步骤:
变形
代入
求解
写解
用一个未知数的代数式 表示另一个未知数 消去一个元 分别求出两个未知数的值 写出方程组的解
回顾与思考
用加减法解方程组的步骤是什么?
主要步骤: 变形 加减 求解 写解 同一个未知数的系数 相同或互为相反数 消去一个元
求出两个未知数的值
3、(2013聊城)夏季来临,天气逐渐炎热起来,某商店将某种碳 酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了 5%。已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳 酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每 瓶各多少元?
答:A 饮料生产了 30 瓶,B 饮料生产了 70 瓶
方法总结 对于含多个未知数的实际问题,利用列方程组来解,一般要 比列一元一次方程解容易.列二元一次方程组,首先要对具体的问题进 行具体分析,从中抽取两个等量关系,再根据相应的等量关系列出方程
巩固练习
D
1 x 4 2.已知方程x-2y=8,用含x的式子表示y,则y =________ ,用含y的式子表 2
1、解二元一次方程组的思路
消元 二元一次方程组 一元一次方程 代入法或加减法
2、用二元一次方程组解决问题时, 要把问题转化为方程组来求解。 3、从这节课中我们能体会到怎样的数学思想方法? 转化思想(化归思想)

2023年人教版七年级数学下册第八章《二元一次方程组复习》导学案

2023年人教版七年级数学下册第八章《二元一次方程组复习》导学案

新人教版七年级数学下册第八章《二元一次方程组复习》导学案
复习案 x+y=5 1.方程组 x-y= -1 的解是
2.若()0322
=+-+-y x x ,则x= ,y= 3.若773+n m b a
和m n b a 2425-是同类项,则m= ,n= 4.若832423=--++b a b a y x 是关于x,y 的二元一次方程,则a= ,b=.
5.若0,0≠≠b a ,且421b a y x +--与y x b a 326+的和等于0,则x= ,y=
6.当a ,b 时,方程2332=++ay x b 是关于x,y 的二元一次方程。

7.二元一次方程4x-3y+5=0时,用含x 的代数式表示y ,则y= ,用含y 的代数式表示x ,则x=
8.已知 x=5+t 用x 的代数式表示y ,则y=
y+1=3-t
9.已知8++y x 与2+-y x 互为相反数,则x= ,y=
知新案
一.解方程组举例
例1. 解方程组 90
725432=-+=-y x y x
7x+9y=m
例2. 已知关于x,y 的方程组 的解也是2x+y= -6的解,求m 的值。

3x-y+29=0
4x+3y=1
例3.若方程组的解x和y的值相等,那么k的值等于()kx+(k-1)y=3
(A)4 (B)10 (C)11 (D)12
x:2=y:3
练习:解方程组
3x-5y=9
学习反思:。

二元一次方程组及不等式典型压轴题讲课稿

二元一次方程组及不等式典型压轴题讲课稿

二元一次方程组及不等式典型压轴题二元一次方程组及不等式难题一.选择题(共11小题)1.(2006•大兴安岭)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买()A.11支B.9支C.7支D.4支2.(2004•苏州)某县响应国家“退耕还林”号召,将一部分耕地改为林地,改还后,林地面积和耕地面积共有180km2,耕地面积是林地面积的25%,设改还后耕地面积为xkm2,林地面积为ykm2,则下列方程组中正确的是()A.B.C.D.3.(2013•潍坊)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是()A.40 B.45 C.51 D.56 4.(2015•大庆校级模拟)若max{S1,S2,…,S n}表示实数S1,S2,…,S n中的最大者.设A=(a1,a2,a3),b=,记A⊗B=max{a1b1,a2b2,a3b3},设A=(x﹣1,x+1,1),,若A⊗B=x﹣1,则x的取值范围为()A.B.C.D.5.(2013•攀枝花模拟)现规定一种运算:a※b=ab+a﹣b,其中a、b为常数,若2※3+m※1=6,则不等式<m的解集是()A.x<﹣2 B.x<﹣1 C.x<0 D.x>2 6.(2012•河池)若a>b>0,则下列不等式不一定成立的是()A.a c>bc B.a+c>b+c C.D.a b>b2 7.(2012•常州)已知a、b、c、d都是正实数,且<,给出下列四个不等式:①<;②<;③;④<其中不等式正确的是()A.①③B.①④C.②④D.②③8.(2012•恩施州)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%9.(2012•大丰市模拟)某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要()A.12120元B.12140元C.12160元D.12200元10.(2012•鼓楼区一模)若关于x的不等式整数解共有2个,则m的取值范围是()A.3≤m<4 B.3<m<4 C.3<m≤4 D.3≤m≤4 11.(2011•菏泽)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折二.填空题(共6小题)12.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是.13.(2009•温州模拟)已知x、y满足方程组,则x﹣y的值为.14.(2010春•厦门校级期中)已知关于x、y的方程组,则x:y= .15.(2001•温州)有一条长度为359mm的铜管料,把它锯成长度分别为59mm和39mm两种不同规格的小铜管(要求没有余料),每锯一次损耗1mm的铜管料,为了使铜管料的损耗最少,应分别锯成59mm的小铜管段,39mm的小铜管段.16.(2012秋•工业园区校级期末)已知:,且3a+2b﹣4c=9,则a+b+c的值等于.17.(填“是”或“不是”)三元一次方程组.三.解答题(共13小题)18.(2007•上海)2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如表二所示,表中缺失了2003年、2007年相关数据.已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中信息,求2003年和2007年的药品降价金额.年份2001 2003 2004 2005 2007降价金额(亿元)54 35 4019.(2007•吉林)王阿姨和李奶奶一起去超市买菜,王阿姨买西红柿、茄子、青椒各1kg,共花12.8元;李奶奶买西红柿2kg、茄子1.5kg,共花15元.已知青椒每千克4.2元,请你求出每千克西红柿、茄子各多少元?20.(2009秋•钟山区期末)某公园的门票价格如下表:购票人数1﹣50人51﹣100人100人以上每人门票数13元11元9元实验学校初二(1)、二(2)两个班的学生共104人去公园游玩,其中二(1)班的人数不到50人,二(2)班的人数有50多人,经估算,如果两个班都以班为单位分别购票,则一共应付1240元,如果两班联合起来,作为一个团体购票,则可节省不少钱,你能否求出两个班共有多少名学生联合起来购票能省多少钱?21.(2003•汕头)某商场按定价销售某种电器时,每台可获利50元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、定价各是多少元?22.(2003•常州)甲、乙两个班的学生到超市上购买苹果,苹果的价格如下:购苹果数不超过30kg 30kg以上但不超过50kg 50kg以上每千克价格 3元 2.5元 2元甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,乙班则一次购买苹果70千克.(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?23.(2002•泰州)某球迷协会组织36名球迷拟租乘汽车赴比赛场地,为首次打进世界杯决赛圈的国家足球队加油助威.可租用的汽车有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的车子不留空座,也不超载.(1)请你给出不同的租车方案(至少三种);(2)若8个座位的车子的租金是300元/天,4个座位的车子的租金是200元/天,请你设计出费用最少的租车方案,并说明理由.24.(2014•泗县校级模拟)甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁”.请你算一算,甲、乙现在各多少岁.25.(2014秋•新洲区期末)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.26.(2009秋•越城区校级期末)某校七年级甲、乙两个班共103人(其中甲班超过50人,乙班不足50人)去景点游玩,如果两班都以班为单位分别购票,那么一共需付486元.(1)两班分别有多少名学生?(2)若两班联合起来,作为一个团体购票,可以节约多少钱?购票人数(人)1﹣50人51﹣100人100人以上每人门票单价5元 4.5元4元27.(2014春•海口期末)小颖和她的爸爸一起玩投篮球游戏.两人商定规则为:小颖投中1个得3分,爸爸投中1个得1分,结果两人一共投中了20个,一计算,发现两人的得分刚好相等,你知道他们两人各投中几个吗?28.(2004•重庆)某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下的未改装车辆每天燃料费用的,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天的燃料费用的.问:(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本?29.(2009秋•巢湖期末)一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16s,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?30.(2004•哈尔滨)“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买;(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.二元一次方程组及不等式难题参考答案一.选择题(共11小题)1.D 2.A 3.C 4.B 5.C 6.A 7.A 8.B 9.C 10.C 11.B二.填空题(共6小题)12.-2或-3 13.2009 14.3:2 15.43 16.-15 17.是三.解答题(共13小题)18.19.20.21.22.23.24.25.26.27.28.29.30.Welcome !!! 欢迎您的下载,资料仅供参考!。

人教七年级数学二元一次方程组和一元一次不等式组复习讲义

人教七年级数学二元一次方程组和一元一次不等式组复习讲义

⼈教七年级数学⼆元⼀次⽅程组和⼀元⼀次不等式组复习讲义⼆元⼀次⽅程组相关知识归纳1.⼆元⼀次⽅程⼆元⼀次⽅程具备以下四个特征:(1)是⽅程;(2)有且只有两个未知数;(3)⽅程是整式⽅程,即各项都是整式;(4)各项的最⾼次数为1.2.⼆元⼀次⽅程的解.3.⼆元⼀次⽅程组.它有两个特点:⼀是⽅程组中每⼀个⽅程都是⼀次⽅程;⼆是整个⽅程组中含有两个且只含有两个未知数.4.⼆元⼀次⽅程组的解.1概念:将⽅程组中⼀个⽅程的某个未知数⽤含有另⼀个未知数的代数式表⽰出来,代⼊另⼀个⽅程中,消去⼀个未知数,得到⼀个⼀元⼀次⽅程,最后求得⽅程组的解. 这种解⽅程组的⽅法叫做代⼊消元法,简称代⼊法. (2)代⼊法解⼆元⼀次⽅程组的步骤①选取⼀个系数较简单的⼆元⼀次⽅程变形,⽤含有⼀个未知数的代数式表⽰另⼀个未知数;②将变形后的⽅程代⼊另⼀个⽅程中,消去⼀个未知数,得到⼀个⼀元⼀次⽅程(在代⼊时,要注意不能代⼊原⽅程,只能代⼊另⼀个没有变形的⽅程中,以达到消元的⽬的. );③解这个⼀元⼀次⽅程,求出未知数的值;④将求得的未知数的值代⼊①中变形后的⽅程中,求出另⼀个未知数的值;⑤⽤“{”联⽴两个未知数的值,就是⽅程组的解;⑥最后检验求得的结果是否正确(代⼊原⽅程组中进⾏检验,⽅程是否满⾜左边=右边).加减消元法2概念:当⽅程中两个⽅程的某⼀未知数的系数相等或互为相反数时,把这两个⽅程的两边相加或相减来消去这个未知数,从⽽将⼆元⼀次⽅程化为⼀元⼀次⽅程,最后求得⽅程组的解,这种解⽅程组的⽅法叫做加减消元法,简称加减法. (2)加减法解⼆元⼀次⽅程组的步骤①利⽤等式的基本性质,将原⽅程组中某个未知数的系数化成相等或相反数的形式;②再利⽤等式的基本性质将变形后的两个⽅程相加或相减,消去⼀个未知数,得到⼀个⼀元⼀次⽅程(⼀定要将⽅程的两边都乘以同⼀个数,切忌只乘以⼀边,然后若未知数系数相等则⽤减法,若未知数系数互为相反数,则⽤加法);③解这个⼀元⼀次⽅程,求出未知数的值;④将求得的未知数的值代⼊原⽅程组中的任何⼀个⽅程中,求出另⼀个未知数的值;⑤⽤“{”联⽴两个未知数的值,就是⽅程组的解;⑥最后检验求得的结果是否正确(代⼊原⽅程组中进⾏检验,⽅程是否满⾜左边=右边).【⼩结】解⼆元⼀次⽅程组可以⽤代⼊法,也可以⽤加减法.⼀般地说,当⽅程组中有⼀个⽅程的某⼀个未知数的系数的绝对值是1或有⼀个⽅程的常数项是0时,⽤代⼊法⽐较⽅便;当两个⽅程中某⼀未知数的系数的绝对值相等或成整数倍时,⽤加减法⽐较⽅便.(1)、三元⼀次⽅程的概念(2)、三元⼀次⽅程组的概念(3)、三元⼀次⽅程组的解法三元⼀次⽅程组解题的基本步骤:①利⽤代⼊法或加减法,把⽅程组中的⼀个⽅程与另两个⽅程分别组成两组,消去两组中的同⼀个未知数,得到关于另外两个未知数的⼆元⼀次⽅程组。

人教版初一数学下册:《二元一次方程组》全章复习与巩固(提高)知识讲解

人教版初一数学下册:《二元一次方程组》全章复习与巩固(提高)知识讲解

《二元一次方程组》全章复习与巩固(提高)知识讲解【学习目标】1.了解二元一次方程组及其解的有关概念;2.掌握消元法(代入或加减消元法)解二元一次方程组的方法;3.理解和掌握方程组与实际问题的联系以及方程组的解;4.掌握二元一次方程组在解决实际问题中的简单应用;5.通过对二元一次方程组的应用,培养应用数学的理念. 【知识网络】【要点梳理】要点一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零).(2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个.要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程; ③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程; (3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式; ②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去; (2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组. 要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的求知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩ 273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组. 要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组. 2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组; (2)解这个二元一次方程组,求出两个未知数的值; (3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值; (5)将求得的三个未知数的值用“{”合写在一起. 要点诠释: (1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法. (2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解. 3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z )表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; (4)解这个方程组,求出未知数的值; (5)写出答案(包括单位名称). 要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去. (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组. 【典型例题】类型一、二元一次方程组的相关概念1.在下列方程中,只有一个解的是( )A . 1330x y x y +=⎧⎨+=⎩ B . 1332x y x y +=⎧⎨+=-⎩ C . 1334x y x y +=⎧⎨-=⎩ D . 1333x y x y +=⎧⎨+=⎩【思路点拨】逐一求每个选项中方程组的解,便得出正确答案 【答案】C .【解析】选项A 、B 、D 中,将方程1x y +=,两边同乘以3得333x y +=,从而可以判断A 、B 选项中的两个二元一次方程矛盾,所以无解;而D 中两个方程实际是一个二元一次方程,所以有无数组解,排除法得正确答案为C. 【总结升华】在111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 均不为零),(1)当121222a a c a b c =≠时,方程组无解;(2)当121222a a c a b c ==,方程组有无数组解; (3)当1222a a ab ≠,方程组有唯一解. 举一反三:【高清课堂:二元一次方程组章节复习409413 例1(3)】 【变式1】若关于x 、y 的方程()12mm x y ++=是二元一次方程,则m = .【答案】1.【变式2】已知方程组531x y ax y b -=⎧⎨+=-⎩有无数多个解,则a 、b 的值等于 .【答案】a =﹣3,b =﹣14.类型二、二元一次方程组的解法2. (黄冈调考)解方程组2()5335()322x y y x y y ⎧-+=⎪⎪⎨⎪--=-⎪⎩①②【思路点拨】本题结构比较复杂,一般应先化简,再消元.仔细观察题目,不难发现,方程组中的每一个方程都含有(x -y ),因此可以把(x -y )看作一个整体,消去(x -y )可得到一个关于y 的一元一次方程.【答案与解析】解:由①×9得:6(x -y )+9y =45 ③ ②×4得:6(x -y )-10y =-12 ④ ③-④得:19y =57, 解得y =3.把y =3代入①,得x =6.所以原方程组的解是63x y =⎧⎨=⎩.【总结升华】本题巧妙运用整体法求解方程组,显然比加减法或代入法要简单,在平时求方程组的解时,要善于发现方程组的特点,运用整体法求解会收到事半功倍的效果. 举一反三:【变式】(换元思想)解方程组16105610x y x yx y x y +-⎧+=⎪⎪⎨+-⎪-=⎪⎩【答案】 解:设6x y m +=,10x yn -=. 则原方程组可化为15m n m n +=⎧⎨-=⎩,解得32m n =⎧⎨=-⎩.所以36210x y x y +⎧=⎪⎪⎨-⎪=-⎪⎩ 即1820x y x y +=⎧⎨-=-⎩.∴ 119x y =-⎧⎨=⎩.3.(2015•江都市模拟)小明和小文解一个二元一次组小明正确解得小文因抄错了c ,解得已知小文除抄错了c 外没有发生其他错误,求a+b+c的值. 【思路点拨】把代入方程组第一个方程求出c 的值,将x 与y 的两对值代入第二个方程求出a 与b 的值,即可求出a+b+c 的值.【答案与解析】 解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5, 把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.举一反三:【变式】已知二元一次方程组⎪⎪⎩⎪⎪⎨⎧=+=+175194y x y x 的解为a x =,b y =,则=-b a .【答案】11.类型三、实际问题与二元一次方程组4.用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽.60cm【思路点拨】初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为x ,宽为y ,就可以列出一个关于x 、y 的二元一次方程组. 【答案与解析】解:设每块地砖的长为xc m 与宽为ycm ,根据题意得:6023x y x x y +=⎧⎨=+⎩,解得:4515x y =⎧⎨=⎩ 答:每块地砖长为45cm ,宽为15cm【总结升华】有些题目的相等关系不是直接给我们的,这就需要我们仔细阅读题目,设法提炼出题目中隐含的相等关系.举一反三:【变式】如图,长方形ABCD 中放置9个形状、大小都相同的小长方形(尺寸如图),求图中阴影部分的面积.【答案】解:设每个小长方形的长为x ,宽为y ,根据题意得:422(2)37x y x y y +=⎧⎨+-=⎩,解得103x y =⎧⎨=⎩所以阴影部分的面积为:22(73)922(79)910382y xy +-=+-⨯⨯=. 答:图中阴影部分的面积为82.5.(龙岩)已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A 型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题:(1)1辆A 型车和1辆车B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费. 【答案与解析】【总结升华】本题实际上是求二元一次方程组的正整数. 举一反三:【变式1】甲、乙两班学生到集市上购买苹果,价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克。

精品 中考数学一轮综合复习 第03课 方程与不等式(一元一次方程、二元一次方程组)

精品 中考数学一轮综合复习 第03课 方程与不等式(一元一次方程、二元一次方程组)

9.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置, 按图②方式放置.测量的数据如图,则桌子的高度是( A.73cm B.74cm C.75cm ) D.76cm
10.已知 x=-2 是方程 mx-6=15+m 的解,则 m= ______ 11.已知方程 (n 1) x
36.有一个水池,用两个水管注水.如果单开甲管,2 小时 30 分注满水池,如果单开乙管,5 小时注满水池. (1)如果甲、乙两管先同时注水 20 分钟,然后由乙单独注水.问还需要多少时间才能把水池注满? (2)假设在水池下面安装了排水管丙管,单开丙管 3 小时可以把一满池水放完.如果三管同时开放,多少 小时才能把一空池注满水?
37.张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说: “如果老师买全票一张,则学 生可享受半价优惠。 ”乙旅行社说: “包括老师在内按全票价的 6 折优惠。 ”若全票价为 240 元,当学生 从数为多少人时,两家旅行社的收费一样多?
38.去年秋季以来,我市某镇遭受百年一遇的特大干旱,为支援该镇抗旱,上级下拨专项抗旱资金 80 万元 用于打井.已知用这 80 万元打灌溉用井和生活用井共 58 口, 每口灌溉用井和生活用井分别需要资金 4 万 元和 0.2 万元,求这两种井各打多少口?
39.小华从家里到学校的路是一段平路 和一段下坡路 .假设他始终保持平路每分钟走 60 米,下坡路每分 .... ..... 钟走 80 米,上坡路每分钟走 40 米,从家里到学校需 10 分钟,从学校到家里需 15 分钟.请问小华家离学校 多远?
第 5 页 共 8 页
40.在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价 13%的财政补贴.村 民小李购买了一台 A 型洗衣机,小王购买了一台 B 型洗衣机,两人一共得到财政补贴 351 元,又知 B 型洗 衣机售价比 A 型洗衣机售价多 500 元.求:(1)A 型洗衣机和 B 型洗衣机的售价各是多少元? (2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?

七年级数学二元一次方程组解法教案优秀7篇

七年级数学二元一次方程组解法教案优秀7篇

七年级数学二元一次方程组解法教案优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!七年级数学二元一次方程组解法教案优秀7篇作为一位杰出的老师,可能需要进行教案编写工作,教案有利于教学水平的提高,有助于教研活动的开展。

方程与不等式之二元二次方程组知识点复习

方程与不等式之二元二次方程组知识点复习

∵x<14,
∴不合题意,舍去;
当 y=5 时,x=9,经检验符合题意.
答:这个养鸡场的长为 9m,宽为 5m.
x2 2xy y2 9
3.解方程组:
x
2
y2
5
.
【答案】
x1 y1
2

1
x2 y2
1 2

x3 y3
2 1

x4 y4
1 2
【解析】
试题分析:变形方程组中的①,得两个一元一次方程,与组中的②联立得方程组,求解
【答案】这个养鸡场的长为 9m,宽为 5 m. 【解析】 试题分析:设鸡场的长为 xm,宽为 ym,根据鸡场的面积和周长列出两个等量关系,解方 程组即可,注意鸡场的长小于围墙的长. 解:设鸡场的长为 xm,宽为 ym,由题意可得:
x 3y 2 xy 45
22
,且
x<14,解得
y=3

5;
当 y=3 时,x=15;
10.
2x y 6
x2
xy
2
y2
0
【答案】
x
y
4 2

x
y
2 2
.
【解析】
【分析】
先将原方程组化为两个二元一次方程组,然后求解即可.
【详解】
解:原方程组变形为
2x y 6
x 2y x y 0

2x x 2
y y
6 0

2x y 6 x y 0
∴原方程组的解为
x 4
x2 x
y2 m yn
中求出
m、n
的值,然后再求方程组的另一组
解.
【详解】

初三数学总复习数学《方程(组)及不等式(组)教案

初三数学总复习数学《方程(组)及不等式(组)教案

12-13下学期初三数学总复习《方程(组)与不等式(组)》主备人:汤恒星本章教学分析一、本章教学目标1、方程(组)、一次方程(组)、一次不等式(组)、分式方程的概念及解法2、用方程(组)解决实际问题二、本章教学重难点重点:目标1,2难点:目标2三、学情分析初三复习阶段,学生对本部分内容有接触,但是遗忘比较多,教师在复习的过程中应加强基本技能的训练,适当加以示范。

四、课时安排(共计10 课时)第1节:2课时第2节:2课时第3节:2课时第4节:2课时测评及讲解:2课时五、章节测试命题人安排:汤恒星第一节 一次方程(组)及其应用(2课时)教学目标:1.方程、一元一次方程、方程的解、一元一次方程的解法;2.二元一次方程、二元一次方程组、二元一次方程的解、二元一次方程的解法、利用方程解决生活中的实际问题3. 用一元一次方程和二元一次方程组解决实际问题;4 数学思想方法:消元教学重难点:教学重点:一元一次方程解法、二元一次方程组的解法、用一元一次方程和二元一次方程组解决实际问题难点:用一元一次方程和二元一次方程组解决实际问题教学过程:一、知识点(1) 方程:含有未知数的等式(2) 等式性质:1、等式两边分别加上或减去一个数字或式子,结果仍然是等式;2、等式两边分别乘以或除以一个不为0的数,结果仍然是等式;(3) 方程的解:使方程左右两边相等的未知数的值(4) 一元一次方程的解法:去分母、去括号、移项、合并、系数化为1(5) 二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程为二元一次方程(6) 二元一次方程组:把具有相同未知数的两个二元一次方程合在一起就组成了一个二元一次方程组(7) 二元一次方程组的解:一般地,能使二元一次方程组的两个方程左右两边的值都相等的一对未知数的值,叫做二元一次方程组的解,即二元一次方程组中方程的公共解。

(8) 二元一次方程组的解法:(1)代入消元法:多适用于方程组中有一个未知数的系数是1或-1的情形;(2)加减消元法:多适用于方程组中的两个方程中相同未知数的系数相同或互为相反数的情形(9) 列方程(组)解应用题的一般步骤二、例题精讲例1.下列方程组中,是二元一次方程组的是( ) ⎪⎩⎪⎨⎧=+=+65115y x y x ⎩⎨⎧-=+=+2102y x y x ⎩⎨⎧==+158xy y x ⎩⎨⎧=+=31y x xA. B. C. D.例2.在 中,用x 的代数式表示y ,则y=______________.例3.(1)解方程.x x +--=21152156(2)解二元一次方程组⎩⎨⎧=+=+27271523y x y x 例4.已知a 、b 、c 满足⎩⎨⎧=+-=-+02052c b a c b a ,则a :b :c= . 例5.已知x =-2是关于x 的方程()x m x m -=-284的解,求m 的值.例6.某电厂规定该厂家属区的每户居民如果一个月的用电量不超过A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0.5 元交费.①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示)? .②右表是这户居民 3 月、4 月的用电情况和交费情况:根据右表数据,求电厂规定A 度为 .三、当堂检测1.若关于x 的方程x k =-153的解是x =-3,则k =_________. 2.解下列方程(组): (1)x x -+=-2114135;(2)⎩⎨⎧=+=+832152y x y x 3.当x =-2时,代数式x bx +-22的值是12,求当x =2时,这个代数式的值.4.应用方程解下列问题:初一(4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了5元,后来组长收了每人8元,自己多付了2元,问两副乒乓球板价值多少?四、小结(1)方程的相关概念(2)一次方程(组)的解法(3)用一次方程(组)解应用题五、作业:试题研究教学反思:032=-+y x第二节 一元二次方程及其应用(第2课时)教学目标:1.一元二次方程的相关概念及解法;2. 根的判别式、根与系数的关系3. 用一元二次方程解决实际问题教学重难点:教学重点:一元二次方程的相关概念及解法、根的判别式、根与系数的关系、用一元二次方程解决实际问题难点:根的判别式、根与系数的关系、用一元二次方程解决实际问题教学过程:五、 知识点1. 一元二次方程的概念及一般形式:ax 2+bx +c =0 (a ≠0)2. 一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法3.求根公式:当b 2-4ac ≥0时,一元二次方程ax 2+bx +c =0 (a ≠0)的两根为4.根的判别式: 当b 2-4ac >0时,方程有 实数根.当b 2-4ac=0时, 方程有 实数根.当b 2-4ac <0时,方程 实数根.5.(1)增长率问题;(2)利润问题二、例题精讲例1.选用合适的方法解下列方程:(1) (x-15)2-225=0; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 2+22x=0 例2 .已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3.用22cm 长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?三、当堂检测一、填空1.下列是关于x 的一元二次方程的有_______ ①02x 3x12=-+ aac b b x 242-±-=②01x 2=+③)3x 4)(1x ()1x 2(2--=- ④06x 5x k 22=++ ⑤021x x 2432=-- ⑥0x 22x 32=-+2.一元二次方程3x 2=2x 的解是 .3.一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 .4.已知m 是方程x 2-x-2=0的一个根,那么代数式m 2-m = .5.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根, 则k 的取值范围是__________.6.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是 .三、解下方程:(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x(3)x 2-4x-4=0 (4)x 2+x-1=0四、小结(1)一元二次方程的相关概念及解法;(2)根的判别式及根与系数关系;(3)用一次方程(组)解应用题五、作业:试题研究 教学反思:第三节 分式方程及其应用(2课时)教学目标:1、分式方程的相关概念及解法2. 了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根.3. 列分式方程解决实际问题教学重点:目标1,2,3难点:目标2,3教学过程:一、知识点1.分式方程:分母中含有1个未知数的方程叫做分式方程2.解分式方程的步骤:去分母转化为整式方程,解整式方程,再将整式方程的解代入最公分母中,判断整式方程的解是否为分式方程的增根二、例题精讲例1:(1)013522=--+xx x x (2)41622222-=-+-+-x x x x x 例2 若分式方程xx k x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-2三、当堂检测1.解分式方程. (1)22011x x x -=+- (2) x2)3(x 22x x -=--;(3) 11322x x x -=--- (4)11-x 1x 1x 22=+-- 2. 一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C. D.四、小结(1)解分式方程要注意检验(2)增根是把分式方程转化为整式方程的解五、作业:试题研究教学反思:第四节 一元一次不等式(组)及其应用(2课时) 教学目标:1、 不等式(组)的定义及解法2、 不等式的性质3、 不等式的解集在数轴上表示4、 用不等式解应用题教学重难点:教学重点:目标1,2,3难点:目标4教学过程:一、知识点1.定义:用不等号连接起来的式子2.解集:一个含有未知数的不等式的所有的解的集合3.解集在数轴上表示:(略)4.性质:(1)不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变,即若,b a <则c b c a ±<±(2)不等式的两边都乘以(或除以)同一个整数,不等号的方向不变,即若,b a <且0c >,则bc ac <(或cb c a <) (3)不等式的两边都乘以(或除以)同一个整数,不等号的方向不变,即若,b a <且0c <,则bc ac >(或c b c a >) 二、例题精讲例1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( )A. 0b a >-B. 0ab <C. 0b a <+D.例2. 不等式112x ->的解集是( ) A.12x >- B.2x >- C.2x <- D.12x <- 例3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确A .B .C .D .BA O C 0)c a(b >-1 0 1- 10 1- 1 0 1- 10 1-例4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( ) A .3个 B .4个 C .5个 D .6个例6.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( )A .0B .1C .2D .3 例7.解不等式组:(1)21113x x x +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x x 【当堂检测】1.苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克 元.2. 解不等式723<-x ,将解集在数轴上表示出来,并写出它的正整数解.3. 解不等式组⎪⎩⎪⎨⎧-<+--+≥+224313322x x x x ,并把它的解集在数轴上表示出来.4. 我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运y ,求y 与x 之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.四、小结(1)解不等式时左右两边同时乘以负数时,不等号方向要改变(2)列不等式解应用题是要主要“至少、最多、不低于、不大于、高于”等字样的理解五、作业:试题研究教学反思:欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。

高中数学第二章等式与不等式2.1.3方程组的解集新人教B新人教B高一第一册数学教案

高中数学第二章等式与不等式2.1.3方程组的解集新人教B新人教B高一第一册数学教案

2.1.3 方程组的解集 考点 学习目标 核心素养 二元一次方程组的解法 会利用代入消元法或加减消元法解二元一次方程组数学运算三元一次方程组的解法会选用合适的消元法求解三元一次方程组数学运算 二元二次方程组的解法灵活运用具体方法求解“二·一”型和“二·二”型的二元二次方程组数学运算问题导学预习教材P51-P54的内容,思考以下问题:1.什么是方程组?2.什么是方程组的解集?1.方程组一般地,将多个方程联立,就能得到方程组.2.方程组的解集方程组中,由每个方程的解集得到的交集称为这个方程组的解集.■名师点拨 当方程组中未知数的个数大于方程的个数时,方程组的解集可能有无穷多个元素,此时,如果将其中一些未知数看成常数,那么其他未知数往往能用这些未知数表示出来.由方程组⎩⎪⎨⎪⎧x +m =4,y -3=m 可得x 与y 的关系是( ) A .x +y =1B .x +y =-1C .x +y =7D .x +y =-7解析:选C.由⎩⎪⎨⎪⎧x +m =4, ①y -3=m , ②,将②代入①得 x +y -3=4,即x +y =7.若|x +y -5|+(x -y -9)2=0,则x ,y 的值分别为( )A .-2,7B .7,-2C .-7,2D .2,-7解析:选B.由题意知⎩⎪⎨⎪⎧x +y -5=0, ①x -y -9=0, ② ①+②得2x -14=0,即x =7,①-②得2y +4=0,即y =-2.方程组⎩⎪⎨⎪⎧x +6y =12,3x -2y =8的解集为________. 解析:⎩⎪⎨⎪⎧x +6y =12, ①3x -2y =8, ② ②×3得9x -6y =24 ③①+③得10x =36,即x =185, 将x =185代入①得y =75, 所以方程组的解集为⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎝ ⎛⎭⎪⎫185,75. 答案:⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎝ ⎛⎭⎪⎫185,75 方程组⎩⎪⎨⎪⎧x +y -z =0, ①y +z -x =7, ②z +x -y =9 ③的解集为________.解析:①+②+③得x +y +z =16 ④④-①,得z =8;④-②,得x =4.5;④-③,得y =3.5.所以原方程组的解集为{(x ,y ,z )|(4.5,3.5,8)}.答案:{(x ,y ,z )|(4.5,3.5,8)}二元一次方程组的解法选择合适的方法解下列方程组:(1)⎩⎪⎨⎪⎧2x -y =3, ①3x +4y =10. ② (2)⎩⎪⎨⎪⎧x +2y =3, ①3x -4y =4. ② 【解】 (1)由①,得y =2x -3, ③把③代入②,得3x +4(2x -3)=10,解得x =2.把x =2代入③,得y =1.所以原方程组的解集为{(x ,y )|(2,1)}.(2)①×2,得2x +4y =6, ③③+②,得5x =10,解得x =2.把x =2代入①,得2+2y =3,解得y =12. 所以原方程组的解集为⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎝ ⎛⎭⎪⎫2,12.解二元一次方程组看系数选方法当方程中有未知数的系数为1(或-1)时,可直接用代入法消元.否则观察相同未知数的系数,当系数互为相反数时,相加消元;当系数相等时,相减消元;当系数既不相等,又不互为相反数时,需要通过变形使同一个未知数的系数相等或互为相反数再相减或相加消元.1.若x ,y 满足方程组⎩⎪⎨⎪⎧2x +y =7,x +2y =8,则x +y 的值是( ) A .5 B .-1 C .0 D .1解析:选A.⎩⎪⎨⎪⎧2x +y =7, ①x +2y =8. ② 法一:②×2-①,得3y =9,解得y =3.把y =3代入②,得x =2.所以x +y =2+3=5.法二:由①+②,得3x +3y =15.化简,得x +y =5.故选A.2.用适当的方法解方程组:⎩⎪⎨⎪⎧3(x +y )-4(x -y )=4, ①x +y 2+x -y 6=1. ② 解:由②×6,得3(x +y )+(x -y )=6. ③ ③-①,得5(x -y )=2,即x -y =25. 把x -y =25代入③,得x +y =2815.解方程组⎩⎪⎨⎪⎧x +y =2815,x -y =25,得⎩⎪⎨⎪⎧x =1715,y =1115.所以原方程组的解集为⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎝ ⎛⎭⎪⎫1715,1115. 三元一次方程组的解法角度一 一般型三元一次方程组的解法解方程组⎩⎪⎨⎪⎧x +y +z =12, ①x +2y +5z =22, ②x =4y . ③【解】 把③分别代入①②,得⎩⎪⎨⎪⎧5y +z =12,6y +5z =22,解得⎩⎪⎨⎪⎧y =2,z =2. 把y =2代入③,得x =8.所以原方程组的解集为{(x ,y ,z )|(8,2,2)}.消元法解三元一次方程组的两个注意点(1)在确定消去哪个未知数时,要从整体考虑,一般选择消去后可以使计算量相对较小的未知数.(2)消去的未知数一定是同一未知数,否则就达不到消元的目的.角度二 轮换型三元一次方程组的解法解方程组⎩⎪⎨⎪⎧x +y =3, ①y +z =5, ②z +x =4. ③【解】 ①+②+③,得2(x +y +z )=12,即x +y +z =6. ④④-①,得z =3;④-②,得x =1;④-③,得y =2.所以原方程组的解集为{(x ,y ,z )|(1,2,3)}.解三元一次方程组时,应具体问题具体分析,找出其结构特点及系数之间的关系,灵活巧妙地消元.本例中,由于未知数的系数都相同,故采用了整体代入来消元的方法,简化了运算.角度三 连等型三元一次方程组的解法解方程组⎩⎪⎨⎪⎧x 3=y 4=z 5, ①x -y +2z =18. ②【解】 设x 3=y 4=z5=k (k 为常数,k ≠0), 则x =3k ,y =4k ,z =5k .将它们代入②中,得3k -4k +10k =18,解得k =2.所以x =6,y =8,z =10,所以原方程组的解集为{(x ,y ,z )|(6,8,10)}.用参数法解连等形式的方程组解连等形式的方程组时,通常采用参数法,用同一个字母表示方程组中各个未知数,根据题目所给的条件一步就可求出字母的值.此外,比例形式的方程也可运用参数法.通过参数法达到消元的目的,使运算更加简便,且不易出错.已知二次函数的图像过点(1,0),(2,3),(3,28),求这个二次函数的解析式.解:设函数解析式为y =ax 2+bx +c (a ≠0),由题意, 得⎩⎪⎨⎪⎧a +b +c =0, ①4a +2b +c =3, ②9a +3b +c =28. ③②-①,得3a +b =3, ④③-②,得5a +b =25, ⑤由④和⑤组成方程组⎩⎪⎨⎪⎧3a +b =3,5a +b =25. 解得a =11,b =-30,把a =11,b =-30代入①,得11-30+c =0,解得c =19.所以a =11,b =-30,c =19.所以所求函数解析式为y =11x 2-30x +19.二元二次方程组的解法角度一 “二·一”型的二元二次方程组解方程组⎩⎪⎨⎪⎧x 2+2xy +y 2=4, ①x -2y =5. ②【解】 法一:由②得x =2y +5, ③将③代入①,得(2y +5)2+2y (2y +5)+y 2=4.整理,得3y 2+10y +7=0.解得y 1=-73,y 2=-1. 把y 1=-73代入③,得x 1=13, 把y 2=-1代入③,得x 2=3. 所以原方程组的解是⎩⎪⎨⎪⎧x 1=13,y 1=-73,⎩⎪⎨⎪⎧x 2=3,y 2=-1. 所以方程组的解集为⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎝ ⎛⎭⎪⎫13,-73,(3,-1). 法二:由①得(x +y )2=4,即x +y =2或x +y =-2.原方程组转化为⎩⎪⎨⎪⎧x +y =2,x -2y =5.或⎩⎪⎨⎪⎧x +y =-2,x -2y =5. 解得⎩⎪⎨⎪⎧x 1=3,y 1=-1,⎩⎪⎨⎪⎧x 1=13,y 2=-73. 所以方程组的解集为⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎝ ⎛⎭⎪⎫13,-73,(3,-1).“二·一”型的二元二次方程组的实数解有三种情况:有一解、两解和没有解.把一元一次方程代入二元二次方程,消去一个未知数之后,得到一个一元二次方程.由根的判别式可知,解的情况可能是有两个不相等的实数解,两个相等的实数解或无实数解,这样的二元二次方程组的解也就相应地有三种情况.简言之,有一个二元一次方程的二元二次方程组的实数解的情况,一般可通过一元二次方程的根的判别式来判断.角度二 “二·二”型的二元二次方程组解方程组⎩⎪⎨⎪⎧x 2-3xy -4y 2=0, ①x 2+4xy +4y 2=1. ② 【解】 由①得(x -4y )(x +y )=0,所以x -4y =0或x +y =0,由②得(x +2y )2=1,所以x +2y =1或x +2y =-1.原方程可化为以下四个方程组:⎩⎪⎨⎪⎧x -4y =0,x +2y =1,⎩⎪⎨⎪⎧x -4y =0,x +2y =-1,⎩⎪⎨⎪⎧x +y =0,x +2y =1,⎩⎪⎨⎪⎧x +y =0,x +2y =-1. 解这四个方程组,得原方程组的四个解是:⎩⎪⎨⎪⎧x 1=23,y 1=16,⎩⎪⎨⎪⎧x 2=-23,y 2=-16,⎩⎪⎨⎪⎧x 3=-1,y 3=1,⎩⎪⎨⎪⎧x 4=1,y 4=-1. 所以方程组的解集为{(x ,y )|⎝ ⎛⎭⎪⎫23,16,⎝ ⎛⎭⎪⎫-23,-16,(-1,1),(1,-1)}.解“二·二”型方程组的基本思想仍是“转化”,转化的方法是“降次”“消元”.它的一般解法是:(1)当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解这两个“二·一”型方程组,所得的解都是原方程组的解.(2)当方程组中两个二元二次方程都可分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程分别与第二个二元二次方程分解所得的每一个二元一次方程组成方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程组的解.1.解方程组⎩⎪⎨⎪⎧x +y =8, ①xy =12. ② 解:法一:由①得y =8-x , ③把③代入②,整理得x 2-8x +12=0,解得x 1=2,x 2=6.把x 1=2代入③,得y 1=6.把x 2=6代入③,得y 2=2.所以原方程组的解集为{(x ,y )|(2,6),(6,2)}.法二:根据方程中根与系数的关系可知,x ,y 是一元二次方程z 2-8z +12=0的两个根,解这个方程,得z 1=2,z 2=6.所以原方程组的解集为{(x ,y )|(2,6),(6,2)}.2.解方程组⎩⎪⎨⎪⎧x 2-y 2=1, ①(x -y )2-2(x -y )-3=0. ② 解:由②得(x -y -3)(x -y +1)=0.所以x -y -3=0或x -y +1=0.所以原方程组可化为两个方程组:⎩⎪⎨⎪⎧x 2-y 2=1,x -y -3=0,⎩⎪⎨⎪⎧x 2-y 2=1,x -y +1=0. 用代入消元法解方程组,分别得⎩⎪⎨⎪⎧x 1=53,y 1=-43,⎩⎪⎨⎪⎧x 2=-1,y 2=0. 所以原方程组的解集为{(x ,y )|⎝ ⎛⎭⎪⎫53,-43,(-1,0)}. 1.解下列方程组:(1)⎩⎪⎨⎪⎧2x +5y =16, ①8x -7y =10; ② (2)⎩⎪⎨⎪⎧x +1=5(y +2),x -32=y +63. 解:(1)由①,得2x =16-5y , ③把③代入②,得4(16-5y )-7y =10,解得y =2.把y =2代入③,得x =3,所以原方程组的解集为{(x ,y )|(3,2)}.(2)⎩⎪⎨⎪⎧x +1=5(y +2),x -32=y +63. 化简方程组,得⎩⎪⎨⎪⎧x -5y =9, ①3x -2y =21. ②②-①×3,得13y =-6,解得y =-613. 把y =-613代入①,得x =8713.故原方程组的解集为⎩⎨⎧⎭⎬⎫(x ,y )|⎝ ⎛⎭⎪⎫8713,-613. 2.解方程组⎩⎪⎨⎪⎧3x -y +z =4, ①x +y +z =6, ②2x +3y -z =12. ③解:①+③,得5x +2y =16. ④②+③,得3x +4y =18. ⑤解由④⑤组成的方程组,得⎩⎪⎨⎪⎧x =2,y =3. 把x =2,y =3代入②,得z =1.所以原方程组的解集为{(x ,y ,z )|(2,3,1)}.3.解方程组⎩⎪⎨⎪⎧x 2-4y 2+x +3y -1=0, ①2x -y -1=0. ② 解:由②,得y =2x -1, ③把③代入①,整理,得15x 2-23x +8=0.解这个方程,得x 1=1,x 2=815. 把x 1=1代入③,得y 1=1;把x 2=815代入③,得y 2=115. 所以原方程组的解集为⎩⎨⎧⎭⎬⎫(x ,y )|(1,1),⎝ ⎛⎭⎪⎫815,115. [A 基础达标]1.若方程组⎩⎪⎨⎪⎧2a -3b =13,3a +5b =30.9的解集为{(a ,b )|(8.3,1.2)},则方程组⎩⎪⎨⎪⎧2(x +2)-3(y -1)=13,3(x +2)+5(y -1)=30.9,的解集为( ) A .{(x ,y )|(6.3,2.2)}B .{(x ,y )|(8.3,1.2)}C .{(x ,y )|(10.3,2.2)}D .{(x ,y )|(10.3,0.2)} 解析:选A.由题意可得⎩⎪⎨⎪⎧x +2=8.3,y -1=1.2.即⎩⎪⎨⎪⎧x =6.3,y =2.2.2.已知|x -z +4|+|z -2y +1|+|x +y -z +1|=0,则x +y +z =( )A .9B .10C .5D .3解析:选A.由题意,得⎩⎪⎨⎪⎧x -z +4=0, ①z -2y +1=0, ②x +y -z +1=0. ③③-①,得y =3.把y =3代入②,得z =5.把z =5代入①,得x =1.所以x +y +z =1+3+5=9.故选A.3.已知关于x ,y的方程组⎩⎪⎨⎪⎧3x -y =5,4ax +5by =-22和⎩⎪⎨⎪⎧2x +3y =-4,ax -by =8有相同的解,则(-a )b 的值为________.解析:因为两方程组有相同的解,所以原方程组可化为①⎩⎪⎨⎪⎧3x -y =5,2x +3y =-4;②⎩⎪⎨⎪⎧4ax +5by =-22,ax -by =8. 解方程组①,得⎩⎪⎨⎪⎧x =1,y =-2. 代入方程组②,得⎩⎪⎨⎪⎧4a -10b =-22,a +2b =8,解得⎩⎪⎨⎪⎧a =2,b =3. 所以(-a )b =(-2)3=-8.答案:-84.若x +43=y +64=z +85,且x +y +z =102,则x =________.解析:由已知得⎩⎪⎨⎪⎧x +43=y +64, ①x +43=z +85, ②x +y +z =102, ③由①得y =4x -23, ④ 由②得z =5x -43, ⑤ 把④⑤代入③并化简,得12x -6=306,解得x =26.答案:265.已知方程组⎩⎪⎨⎪⎧x -y =2,y -z =3,z +x =1的解也是方程3x +my +2z =0的解,则m 的值为________.解析:⎩⎪⎨⎪⎧x -y =2, ①y -z =3, ②z +x =1. ③①+②,得x -z =5, ④将③④组成方程组⎩⎪⎨⎪⎧z +x =1,x -z =5,解得⎩⎪⎨⎪⎧x =3,z =-2. 把x =3代入①,得y =1.故原方程组的解是⎩⎪⎨⎪⎧x =3,y =1,z =-2.代入3x +my +2z =0,得9+m -4=0,解得m =-5.答案:-56.解下列三元一次方程组:(1)⎩⎪⎨⎪⎧z =y +x , ①2x -3y +2z =5, ②x +2y +z =13; ③(2)⎩⎪⎨⎪⎧2x +3y +z =11, ①x +y +z =0, ②3x -y -z =-2. ③解:(1)将①代入②、③,消去z ,得⎩⎪⎨⎪⎧4x -y =5,2x +3y =13. 解得⎩⎪⎨⎪⎧x =2,y =3.把x =2,y =3代入①,得z =5.所以原方程组的解集为{(x ,y ,z )|(2,3,5)}.(2)①-②,得x +2y =11. ④①+③,得5x +2y =9. ⑤④与⑤组成方程组⎩⎪⎨⎪⎧x +2y =11,5x +2y =9.解得⎩⎪⎨⎪⎧x =-12,y =234.把x =-12,y =234代入②,得z =-214. 所以原方程组的解集为{(x ,y ,z )|⎝ ⎛⎭⎪⎫-12,234,-214}. 7.解方程组⎩⎪⎨⎪⎧x 2+xy =12, ①xy +y 2=4. ② 解:①-②×3得x 2+xy -3(xy +y 2)=0,即x 2-2xy -3y 2=0⇒(x -3y )(x +y )=0,所以x -3y =0或x +y =0,所以原方程组可化为两个二元一次方程组:⎩⎪⎨⎪⎧x -3y =0,xy +y 2=4,⎩⎪⎨⎪⎧x +y =0,xy +y 2=4. 用代入法解这两个方程组,得原方程组的解是:⎩⎪⎨⎪⎧x 1=3,y 1=1,⎩⎪⎨⎪⎧x 2=-3,y 2=-1. 所以该方程组的解集为{(x ,y )|(3,1),(-3,-1)}.8.解方程组:(1)⎩⎪⎨⎪⎧xy -x -y +1=0, ①3x 2+4y 2=1; ② (2)⎩⎪⎨⎪⎧3x 2-xy -4y 2-3x +4y =0, ①x 2+y 2=25. ② 解:(1)由①得(x -1)(y -1)=0,即x =1或y =1.(ⅰ)当x =1时,4y 2=-2无解.(ⅱ)当y =1时,3x 2=-3无解,所以原方程组的解集为∅.(2)由①得(3x -4y )(x +y )-(3x -4y )=0,(3x -4y )(x +y -1)=0,即3x -4y =0或x +y -1=0.由⎩⎪⎨⎪⎧3x -4y =0x 2+y 2=25得⎩⎪⎨⎪⎧x =4y =3或⎩⎪⎨⎪⎧x =-4y =-3. 由⎩⎪⎨⎪⎧x +y -1=0x 2+y 2=25得⎩⎪⎨⎪⎧x =4y =-3或⎩⎪⎨⎪⎧x =-3y =4. 所以原方程组的解集为{(x ,y )|(4,3),(-4,-3),(4,-3),(-3,4)}.[B 能力提升]9.解方程组⎩⎪⎨⎪⎧x 2-y 2=5(x +y ), ①x 2+xy +y 2=43. ② 解:由①得,x 2-y 2-5(x +y )=0⇒(x +y )(x -y )-5(x +y )=0⇒(x +y )(x -y -5)=0, 所以x +y =0或x -y -5=0,所以原方程组可化为两个方程组:⎩⎪⎨⎪⎧x -y -5=0,x 2+xy +y 2=43或⎩⎪⎨⎪⎧x +y =0,x 2+xy +y 2=43, 用代入法解这两个方程组,得原方程组的解是:⎩⎪⎨⎪⎧x 1=-1y 1=-6,⎩⎪⎨⎪⎧x 2=6y 2=1或⎩⎨⎧x 3=43y 3=-43,⎩⎨⎧x 4=-43y 4=43, 所以原方程组的解集为{(x ,y )|(-1,-6),(6,1),(43,-43),(-43,43)}.10.解方程组:(1)⎩⎪⎨⎪⎧3x 2+xy +y 2=15, ①3x 2-31xy +5y 2=-45; ② (2)⎩⎪⎨⎪⎧4a 2+4b 2=1, ①16a 2+1b 2=1. ②(a >0,b >0) 解:(1)①×3+②得,3x 2-7xy +2y 2=0,(3x -y )(x -2y )=0,3x -y =0或x -2y =0,将y =3x 代入①得,x 2=1,所以⎩⎪⎨⎪⎧x =1y =3或⎩⎪⎨⎪⎧x =-1y =-3, 将x =2y 代入①得,y 2=1,所以⎩⎪⎨⎪⎧x =2y =1或⎩⎪⎨⎪⎧x =-2y =-1. 所以原方程组的解集为{(x ,y )|(1,3),(-1,-3),(2,1),(-2,-1)}.(2)令x =1a 2,y =1b 2. 所以⎩⎪⎨⎪⎧4x +4y =116x +y =1⇒⎩⎪⎨⎪⎧x =120y =15⇒⎩⎪⎨⎪⎧1a 2=1201b 2=15.所以⎩⎨⎧a =25b =5(因为a >0,b >0). 即原方程组的解集为{(a ,b )|(25,5)}.11.k 为何值时,方程组⎩⎪⎨⎪⎧y =kx +2, ①y 2-4x -2y +1=0. ② (1)有一个实数解,并求出此解;(2)有两个不相等的实数解;(3)没有实数解.解:将①代入②,整理得k 2x 2+(2k -4)x +1=0, ③ Δ=(2k -4)2-4×k 2×1=-16(k -1).(1)当k =0时,y =2,则-4x +1=0,解得x =14, 方程组的解为⎩⎪⎨⎪⎧x =14y =2.当⎩⎪⎨⎪⎧k 2≠0,Δ=0时,原方程组有一个实数解,即k =1时方程组有一个实数解,将k =1代入原方程组得⎩⎪⎨⎪⎧y 2-4x -2y +1=0,y =x +2.解得⎩⎪⎨⎪⎧x =1,y =3. (2)当⎩⎪⎨⎪⎧k 2≠0,Δ=-16(k -1)>0时,原方程组有两个不相等的实数解,即k <1且k ≠0. 所以当k <1且k ≠0时,原方程组有两个不相等的实数解.(3)当⎩⎪⎨⎪⎧k 2≠0,Δ=-16(k -1)<0时,解得k >1,即当k >1时,方程组无实数解. [C 拓展探究]12.规定:⎪⎪⎪⎪⎪⎪a c bd =ad -bc .例如,⎪⎪⎪⎪⎪⎪2 -13 0=2×0-3×(-1)=3. 解方程组⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪3 y 2 x =1,⎪⎪⎪⎪⎪⎪x z -3 5=8,⎪⎪⎪⎪⎪⎪3 z 6 y =-3.解:根据规定,得⎪⎪⎪⎪⎪⎪3 y 2 x =3x -2y =1, ⎪⎪⎪⎪⎪⎪x z -3 5=5x +3z =8, ⎪⎪⎪⎪⎪⎪3 z 6 y =3y -6z =-3,所以⎩⎪⎨⎪⎧3x -2y =1, ①5x +3z =8, ②3y -6z =-3, ③②×2+③,得10x +3y =13. ④将①与④组成二元一次方程组⎩⎪⎨⎪⎧3x -2y =1,10x +3y =13. 解这个方程组,得⎩⎪⎨⎪⎧x =1,y =1. 把y =1代入③,得z =1,所以原方程组的解集为{(x ,y ,z )|(1,1,1)}.。

二元一次方程组及一元一次不等式组家教辅导学习资料

二元一次方程组及一元一次不等式组家教辅导学习资料

知识构造:第七章二元一次方程组实二二元元二元一次际一一次次方程组的问方方解法程程题组应知一、基本观点二元一次方程:含有两个未知数,而且未知项的最高次数是1的整式方程叫做二元一次方程。

二元一次方程的解:使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

二元一次方程组:两个方程中,每个方程都含有两个未知数(x和y),而且未知数的指数都是1,像这样的方程叫做二元一次方程。

二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

二、基本法例二元一次方程组的解法主要运用“消元”思想。

主要方法有两种:代入消元法:将一个未知数用另一个未知数来表示,而后辈入方程中,消去一个未知数,获得一个一元一次方程。

这种方法叫做代入消元法,简称代入法。

加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减, 就能消去这个未知数,获得一个一元一次方程,这种方法叫做加减消元法,简称加减法。

【注意】更多时候同一未知数的系数需经简单变形后,才成为相反数或相等。

应会列二元一次方程式(组)。

解二元一次方程组。

用二元一次方程组解实质问题。

例题 以下方程组是否是二元一次方程组。

不是的请说明原因。

x 3y 4 xy 4(1)5y7(2)5y72x2xx 3y 4 x 2 3y 4(3)z 7(4)5y 72x2x2.(1)方程(a +2)x+(b-1)y=3是二元一次方程,试求 a 、b 的取值范围.a –1是二元一次方程,试求 a 的值.(2)方程x∣∣+(a-2)y=2已知以下三对值:x =-6x =10 x =10y =-9y =-6y =-1(1)哪几对数值使方程1x-y=6的左、右两边的值相等?2(2)哪几对数值是方程组1x y6的解?231y2x114.x a是方程2x+y=2的解,求8a+4b-3的值。

若by5.解以下方程组:(1)y2x()m n2()3x2y212x y12232m3n123x4y36.已知方程组3xy5的解也是方程组ax2y4的解,则4x7y13x-by5a=_______,b=________,3a+2b=___________。

苏科版2014年中考数学复习:方程与不等式(第6课时 一元一次方程、二元一次方程(组)的解法)

苏科版2014年中考数学复习:方程与不等式(第6课时 一元一次方程、二元一次方程(组)的解法)

第6课时一元一次方程、二元一次方程(组)的解法【学习目标】了解一次方程(组)的有关概念及解法,灵活运用代入消元法、加减消元法解方程组.【课前热身】1.(2013.怀化)方程x+2=7的解为_______.2.(2013.毕节)二元一次方程组213211x yx y+=⎧⎨-=⎩的解是_______.3.(2013.湘潭)湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为_______.4.(2013.江西)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少.设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组_______.5.(2013.滨州)把方程12x=1变形为x=2,其依据是( )A.等式的性质1 B.等式的性质2 C.分式的基本性质D.不等式的性质1 6.(2013.广州)已知两数x,y之和是10,若x比y的3倍大2,则下面所列方程组正确的是( )A.1032x yy x+=⎧⎨=+⎩B.1032x yy x+=⎧⎨=-⎩C.1032x yx y+=⎧⎨=+⎩D.1032x yx y+=⎧⎨=-⎩7.(2013.凉山)已知方程组2425x yx y+=⎧⎨+=⎩则x+y的值为( )A.-1 B.0 C.2 D.3 8.解方程(组):(1)121100.20.5x x+--=;(2) (2013.荆州)用代入消元法解方程组23514x yx y-=⎧⎨+=⎩【课堂互动】知识点1 一元一次方程解的概念例(2013.晋江)若关于x的方程2x-a-5=0的解是x=-2,则a的值为( ) A.1 B.-1 C.9 D.-9跟踪训练1.若3是关于x的方程2x-a=1的解,则a的值是( )A.-5 B.5 C.7 D.22.若关于x的方程4x-3m=2的解是x=m,则m=_______.知识点2 列一次方程(组)例1 (2013.台湾)附表为服饰店贩卖的服饰与原价对照表,某日服饰店举办大拍卖,外套依原价打6折出售,衬衫和裤子依原价打8折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出的一元一次方程式是( )A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200-x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200-x)=24000例2 (2013.宁夏)雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.若设该企业捐助甲种帐篷x顶、乙种帐篷y顶,则下面列出的方程组正确的是( )A.4150048000x yx y+=⎧⎨+=⎩B.4150068000x yx y+=⎧⎨+=⎩C.1500468000x yx y+=⎧⎨+=⎩D.1500648000x yx y+=⎧⎨+=⎩跟踪训练1.(2013.山西)王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33852元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精锐教育学科教师辅导讲义学员编号:年级:课时数:学员姓名:辅导科目:学科教师:授课类型C(二元一次方程组)C(不等式和不等式组)C(方程和不等式的综合)授课日期及时段教学内容一.专题导入<建议用时5分钟!>知识点1.二元一次方程、二元一次方程组及其解的含义:(1)二元一次方程(2)二元一次方程组(3)一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解知识点2.消元-----解二元一次方程用代入消元法和加减消元法解二元一次方程,体会化未知为已知的化归思想,即把二元一次方程转化为已经熟知的一元一次方程,再按解一元一次方程的方法求得二元一次方程的两个未知数的解。

知识点3.实际问题及二元一次方程组找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方方程组的解为⎩⎨⎧==12y x分析:由第一个方程表示出x ,代入第二个方程消去x 得到关于y 的一元一次方程,求出一次方程的解得到y 的值,进而确定出x 的值,即可得到原方程组的解;例4.已知方程组,则x+y 的值为( )A .﹣1B .0C .2D .3分析:把第二个方程乘以2,然后利用加减消元法求解得到x 、y 的值,再相加即可.解答:解:,②×2得,2x+6y=10③,③﹣①得,5y=5,解得y=1,把y=1代入①得,2x+1=5,解得x=2,所以,方程组的解是,所以,x+y=2+1=3.故选D .点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.专题四 应用题例5.某鞋店有甲.乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元.该店促x −by =ay =1∴⎩⎨⎧=-=+a b b a 11 整理得:⎩⎨⎧=+-=-11b a b a 所以,(a+b )2-(a-b )(a+b )=1-(-1)×1=2三.专题过关<建议用时10分钟!>1.已知方程(m-3)x n1-+(n+2)2m 8-=0是关于x 、y 的二元一次方程,求m 、n 的值。

解得:n=2, m=-32.若12x y =⎧⎨=⎩是关于x y 、的二元一次方程31ax y -=的解,则a 的值为( ) A .5- B .1- C .2 D .7分析:将12x y =⎧⎨=⎩代入方程ax -3y =1,得a -6=1,解得a =7,故选D . 解答:D点评:本题主要考查二元一次方程组的解的意义及解一元一次方程知识,将x 、y 的值代入原一元一次方程,即可求出待定系数的值.3.已知x=1,y=-2满足(ax-2y-3)2+4+-by x =0,求a+b 的值解答:由题意得⎩⎨⎧=+-=--04032by x y ax 把x=1,y=-2代入上式可得:⎩⎨⎧-=+=+42134b a , 解得:a=-1,b=-5/2,则a+b=-7/24.解下列方程组:(1)(2)5.学校组织学生乘汽车去自然保护区野营,先以60km/h 的速度走平路,后又以30km/h 的速度爬坡,共用了6.5h ;汽车以40km/h 的速度下坡,又以50km/h 的速度走平路,共用了6h ,问平路和坡路各有多远?解:设平路有x 千米,坡路有y 千米,由题意得:6.5603065040x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:150120x y =⎧⎨=⎩, 答:平路和坡路各有150米、120米.7.已知是二元一次方程组的解,则2m ﹣n 的算术平方根为( C ) A .±2B .C . 2D . 4四.学法提炼<建议用时5分钟!>1.选择合适的方法消元:代入消元法适用于未知数的系数有1或-1的方程组;加减消元法适用于未知数的系数有整数倍的方程组,如果两个特点都没有,用加减法比较好。

2.注意事项:用加减消元法时注意:①变形的方程两边每项都去乘同一个数,不可漏乘,尤其常数项②符号相同的相减,相反的相加③减时,用未知数的系数大的减小的一.专题导入<建议用时10分钟!>知识点1.不等式及其解集:在数轴上表示解集:实心点表示等于号,空心圈表示不等于号 知识点2.解一元一次不等式:类似于解一元一次方程,及其解法有联系又有区别。

知识点3.一元一次不等式解实际问题从实际问题中抽出数学模型,用一元一次不等式解决实际问题,学会分类讨论的数学思想二. 专题精讲 < 建议用时20--25分钟!>专题一 一元一次不等式的定义及性质例1.下列式子中,一元一次不等式有 ( )①3x-1≥4 ②2+31x>6 ③3-x 1<6 ④πx >0 ⑤61 x ≤3 ⑥x+xy ≥y 2⑦x>0 A 5个 B 4个 C 6个 D 3个解析:此题考查的是一元一次不等式的定义和性质,一元一次不等式首先各项只有一个未知数,且各项的次数为一次,然后必须都是不等号连接的代数式,最后未知数不能做分母。

答案: A专题二 解一元一次不等式例2.解不等式:,并把解集表示在数轴上.分析: 首先两边同时乘以6去分母,再利用乘法分配律去括号,移项、合并同类项,最后把x 的系数化为1即可.解答:解:去分母得:2(2x﹣1)﹣(9x+2)≤6,去括号得:4x﹣2﹣9x﹣2≤6,移项得:4x﹣9x≤6+2+2,合并同类项得:﹣5x≤10,把x的系数化为1得:x≥﹣2.点评:此题主要考查了解一元一次不等式,关键是注意去分母时,不要漏乘没有分母的项.例3.巧用分数的基本性质:解不等式:02.02.01.0-x-3<5.01+x解析:考虑如何把各分母化为1,这样不仅可以去分母,而且能把分母中的小数化为整数,起到一箭双雕的作用。

02.02.01.0-x的分子、分母都乘以50,5.01+x的分子、分母都乘以2就可以实现这种转变。

解答:原不等式可化为:50(0.1x-0.2)-3<2(x+1)即5x-10-3<2x+2移项合并,得3x<15系数化为1,得x<5所以不等式的解集为x<5专题三确定不等式中未知字母的值或取值范围例4.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为 4 .分析:先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再及已知解集相比较即可求出m的取值范围.解答:解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.例5.若关于x的一元一次不等式组有解,则m的取值范围为()A.B.m≤C.D.m≤3718684分析:先求出两个不等式的解集,再根据有解列出不等式组求解即可.解答:解:,解不等式①得,x<2m,解不等式②得,x>2﹣m,∵不等式组有解,∴2m>2﹣m,∴m>.故选C.点本题主要考查了一元一次不等式组解集的求法,其简便求法就是评: 用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 专题四 解一元一次不等式组 例6.解不等式组:()461,315,x x x x +>-⎧⎪⎨-≤+⎪⎩并把解集在数轴上表示出来.解析:先分别求出每个不等式的解集,再分别在数轴上表示出来,并根据数轴确定不等式组的解集.解:由不等式4x+6>1-x 得:x>-1, 由不等式3(x-1)≤x+5得:x≤4,所以不等式组的解集为 -1 < x≤4. 在数轴上表示不等式组的解集如图所示.专题五 方程(组)联姻不等式(组)例7.已知关于x 的方程3(x-a)+2=x-a+1的解适合不等式2(x-4)>4a,求a 的取值范围解析:先解方程3(x-a)+2=x-a+1,用含a 的代数式表示x,再将方程的解代入不等式2(x-4)>4a ,转化为关于a 的一元一次不等式,即可求出a 的取值范围。

解答:解方程3(x-a)+2=x-a+1,得x=212-a , 把x=212-a 代入不等式2(x-4)>4a ,得2(212-a -4)>4a, 即2a-1-8>4a,解得a<29-A . x ﹣3>y ﹣3B . ﹣3x >﹣3yC .x +3>y+3 D . >2.点 P (a ,a ﹣3)在第四象限,则a 的取值范围是 0<a <3 .分析: 根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可. 解答:解:∵点P (a ,a ﹣3)在第四象限,∴,解得0<a <3. 故答案为:0<a <3.3.解不等式 (1)(2)105)5.0(223515≥----x x x4.解不等式组– 3(x + 1)–(x – 3)<8 ,①2x + 13 – 1 - x2≤ 1 ② A .x < – 2 B .– 2<x≤27C .– 2<x≤1D .x <– 2或x≥15.若不等式组的解集为3≤x≤4,则不等式ax+b <0的解集为x >.6.学校为家远的同学安排住宿,现有房问若干间,若每间住5人,则还有14人安的解集应为( )排不下;若每间住7人,则有一间房有人住但还余床位.问学校可能有几间房间可以安排同学住宿?住宿的学生可能有多少人?解:设学校有房间x间,则可住宿的学生有(5x+14)人.由题意得:7•(x-1)<(5x+14)<7x,7<x<10.5,由于x取整数,故x可取8、9、10.则相应的住宿人数为54人、59人、64人.四.学法提炼<建议用时5分钟!>1.解不等式的方法和步骤类似一元一次方程,在移项、去分母时,注意不要漏项,符号要变化。

2.不等式和方程联姻时,一般先求出方程(组)的解,再根据题意列出不等式,求出位置字母的值或取值范围,这类题是中考常考问题,需掌握解法。

一、定位测试:<建议用时5分钟!>今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有22 只,兔有11 只.分析:设鸡有x只,兔有y只,就有x+y=33,2x+4y=88,将这两个方程构成方程组求出其解即可.解答:解:设鸡有x 只,兔有y 只,由题意,得,解得:,∴鸡有22只,兔有11只. 故答案为:22,11二.能力培养 <建议用时25分钟!> 调配问题例1.甲组有37人,乙组有23人,现需要从甲乙两组各调出数量相同的人做其他的工作,若使甲组剩下的人数为乙组剩下的人数的2倍,从甲乙各调多少人? 解答:设从甲组调出x 人,从乙组调出y 人根据题意,得⎩⎨⎧-=-=)23(237y x yx 解得⎩⎨⎧==99y x答:从甲乙两组各调出9人。

点评:解决这类问题的关键是从实际问题中找出相等关系。

相关文档
最新文档