高中数学竞赛辅导讲义 第六章 三角函数【讲义】
黄冈2013高考数学【三角函数】复习讲义
三角函数【知识导读】【方法点拨】三角函数是一种重要的初等函数,它与数学的其它部分如解析几何、立体几何及向量等有着广泛的联系,同时它也提供了一种解决数学问题的重要方法——“三角法”.这一部分的内容,具有以下几个特点:1.公式繁杂.公式虽多,但公式间的联系非常密切,规律性强.弄清公式间的相互联系和推导体系,是记住这些公式的关键.2.思想丰富.化归、数形结合、分类讨论和函数与方程的思想贯穿于本单元的始终,类比的思维方法在本单元中也得到充分的应用.如将任意角的三角函数值的问题化归为锐角的三角函数的问题,将不同名的三角函数问题化成同名的三角函数的问题,将不同角的三角函数问题化成同角的三角函数问题等.3.变换灵活.有角的变换、公式的变换、三角函数名称的变换、三角函数次数的变换、三角函数表达形式的变换及一些常量的变换等,并且有的变换技巧性较强.4.应用广泛.三角函数与数学中的其它知识的结合点非常多,它是解决立体几何、解析几何及向量问题的重要工具,并且这部分知识在今后的学习和研究中起着十分重要的作用,比如在物理学、天文学、测量学及其它各门科学技术都有广泛的应用.任意角 的概念角度制与 弧度制任意角的 三角函数弧长与扇形 面积公式 三角函数的 图象和性质 和 角 公 式 差 角 公 式几个三角 恒等式倍 角 公 式 同角三角函数关系 诱 导公 式 正弦定理与余弦定理 解斜三角形及其应用化简、计算、求值 与证明第1课 三角函数的概念【考点导读】1. 理解任意角和弧度的概念,能正确进行弧度与角度的换算.角的概念推广后,有正角、负角和零角;与α终边相同的角连同角α本身,可构成一个集合{}Z k k S ∈⋅+==,360αββ;把长度等于半径的圆弧所对的圆心角定义为1弧度的角,熟练掌握角度与弧度的互换,能运用弧长公式r l α=及扇形的面积公式S =lr21(l 为弧长)解决问题.2. 理解任意角的正弦、余弦、正切的定义.角的概念推广以后,以角的顶点为坐标原点,角的始边为x 轴的正半轴,建立直角坐标系,在角的终边上任取一点(,)P x y (不同于坐标原点),设OP r =(220r x y =+>),则α的三个三角函数值定义为:sin ,cos ,tan y x yr r xααα===. 从定义中不难得出六个三角函数的定义域:正弦函数、余弦函数的定义域为R ;正切函数的定义域为{|,,}2R k k Z παααπ∈≠+∈.3. 掌握判断三角函数值的符号的规律,熟记特殊角的三角函数值.由三角函数的定义不难得出三个三角函数值的符号,可以简记为:一正(第一象限内全为正值),二正弦(第二象限内只有正弦值为正),三切(第三象限只有正切值为正),四余弦(第四象限内只有余弦值为正).另外,熟记0、6π、4π、3π、2π的三角函数值,对快速、准确地运算很有好处.4. 掌握正弦线、余弦线、正切线的概念.在平面直角坐标系中,正确地画出一个角的正弦线、余弦线和正切线,并能运用正弦线、余弦线和正切线理解三角函数的性质、解决三角不等式等问题. 【基础练习】1. 885-化成2(02,)k k Z πααπ+≤≤∈的形式是 .2.已知α为第三象限角,则2α所在的象限是 . 3.已知角α的终边过点(5,12)P -,则cos α= , tan α= .4.tan(3)sin 5cos8-的符号为 .13612ππ-+第二或第四象限 513-125- 正5.已知角θ的终边上一点(,1)P a -(0≠a ),且a -=θtan ,求θsin ,θcos 的值.解:由三角函数定义知,1a =±,当1a =时,2sin 2θ=-,2cos 2θ=; 当1a =-时,2sin 2θ=-,2cos 2θ=-. 【范例解析】例1.(1)已知角α的终边经过一点(4,3)(0)P a a a -≠,求2sin cos αα+的值; (2)已知角α的终边在一条直线3y x =上,求sin α,tan α的值. 分析:利用三角函数定义求解.解:(1)由已知4x a =,5r a =.当0a >时,5r a =,3sin 5α=-,4cos 5α=,则22sin cos 5αα+=-;当0a <时,5r a =-,3sin 5α=,4cos 5α=-,则22sin cos 5αα+=. (2)设点(,3)(0)P a a a ≠是角α的终边3y x =上一点,则tan 3α=;当0a >时,角α是第一象限角,则3sin 2α=; 当0a <时,角α是第三象限角,则3sin 2α=-. 点评:要注意对参数进行分类讨论.例2.(1)若sin cos 0θθ⋅>,则θ在第_____________象限. (2)若角α是第二象限角,则sin 2α,cos 2α,sin 2α,cos 2α,tan 2α中能确定是正值的有____个.解:(1)由sin cos 0θθ⋅>,得sin θ,cos θ同号,故θ在第一,三象限. (2)由角α是第二象限角,即222k k ππαππ+<<+,得422k k παπππ+<<+,4224k k ππαππ+<<+,故仅有tan2α为正值.点评:准确表示角的范围,由此确定三角函数的符号.例3. 一扇形的周长为20cm ,当扇形的圆心角α等于多少时,这个扇形的面积最大?最大面积是多少?分析:选取变量,建立目标函数求最值.解:设扇形的半径为x ㎝,则弧长为(202)l x =-㎝,故面积为21(202)(5)252y x x x =-=--+,当5x =时,面积最大,此时5x =,10l =,2lxα==, 所以当2α=弧度时,扇形面积最大252cm .点评:由于弧度制引入,三角函数就可以看成是以实数为自变量的函数.【反馈演练】1.若sin cos θθ>且sin cos 0θθ⋅<则θ在第_______象限. 2.已知6α=,则点(sin ,tan )A αα在第________象限. 3.已知角θ是第二象限,且(,5)P m 为其终边上一点,若2cos 4m θ=,则m 的值为_______.4.将时钟的分针拨快30min ,则时针转过的弧度为 .5.若46παπ<<,且α与23π-终边相同,则α= . 6.已知1弧度的圆心角所对的弦长2,则这个圆心角所对的弧长是_______,这个圆心角所在的扇形的面积是___________.7.(1)已知扇形AOB 的周长是6cm ,该扇形中心角是1弧度,求该扇形面积.(2)若扇形的面积为82cm ,当扇形的中心角α(0)α>为多少弧度时,该扇形周长最小. 简解:(1)该扇形面积22cm ;(2)2182r l yrl +=⎧⎪⎨=⎪⎩,得16282y r r =+≥,当且仅当22r =时取等号.此时,42l =,2lrα==.二 三 3-12π-163π11sin211cos1-第2课同角三角函数关系及诱导公式【考点导读】1.理解同角三角函数的基本关系式;同角的三角函数关系反映了同一个角的不同三角函数间的联系.2.掌握正弦,余弦的诱导公式;诱导公式则揭示了不同象限角的三角函数间的内在规律,起着变名,变号,变角等作用.【基础练习】1. tan600°=______.2. 已知α是第四象限角,5tan12α=-,则sinα=______.3.已知3cos22πϕ⎛⎫+=⎪⎝⎭,且2πϕ<,则tanϕ=______.4.sin15°cos75°+cos15°sin105°=___1___.【范例解析】例1.已知8cos()17πα-=,求sin(5)απ-,tan(3)πα+的值.分析:利用诱导公式结合同角关系,求值.解:由8cos()17πα-=,得8cos017α=-<,α∴是第二,三象限角.3513--3若α是第二象限角,则15sin(5)sin 17απα-=-=-,15tan(3)tan 8παα+==-; 若α是第三象限角,则15sin(5)sin 17απα-=-=,15tan(3)tan 8παα+==.点评:若已知正弦,余弦,正切的某一三角函数值,但没有确定角所在的象限,可按角的象限进行分类,做到不漏不重复.例2.已知α是三角形的内角,若1sin cos 5αα+=,求tan α的值. 分析:先求出sin cos αα-的值,联立方程组求解. 解:由1sin cos 5αα+=两边平方,得112sin cos 25αα+⋅=,即242sin cos 025αα∴⋅=-<. 又α是三角形的内角,cos 0α∴<,2παπ∴<<.由249(sin cos )25αα-=,又sin cos 0αα->,得7sin cos 5αα-=. 联立方程组1sin cos 57sin cos 5αααα⎧+=⎪⎪⎨⎪-=⎪⎩,解得4sin 53cos 5αα⎧=⎪⎪⎨⎪=-⎪⎩,得4tan 3α=-.点评:由于2(sin cos )12sin cos αααα±=±⋅,因此式子sin cos αα-,sin cos αα+,sin cos αα⋅三者之间有密切的联系,知其一,必能求其二.【反馈演练】1.已知5sin 5α=,则44sin cos αα-的值为_____.2.“21s i n =A ”是“A =30º”的必要而不充分条件. 3.设02x π≤≤,且1sin 2sin cos x x x -=-,则x 的取值范围是544x ππ≤≤4.已知1sin cos 5θθ+=,且324θππ≤≤,则cos 2θ的值是 .5.(1)已知1cos 3α=-,且02πα-<<,求2cos()3sin()4cos()sin(2)παπααπα--+-+-的值. (2)已知1sin()64x π+=,求25sin()sin ()63x x ππ-+-的值. 解:(1)由1cos 3α=-,得tan 22α=-. 53- 725-原式=2cos 3sin 23tan 4cos sin 4tan αααααα-+-+=--5222=-. (2)1sin()64x π+=,225sin()sin ()sin[()]sin [()]63626x x x x ππππππ∴-+-=-++-+ 219sin()cos ()6616x x ππ=+++=.6.已知4tan 3α=-,求(I )6sin cos 3sin 2cos αααα+-的值;(II )212sin cos cos ααα+的值.解:(I )∵ 4tan 3α=-;所以6sin cos 3sin 2cos αααα+-=6tan 13tan 2αα+-=46()173463()23-+=--.(II )由4tan 3α=-,于是212sin cos cos ααα+2222sin cos tan 152sin cos cos 2tan 13ααααααα++===-++.第3课 两角和与差及倍角公式(一)【考点导读】1.掌握两角和与差,二倍角的正弦,余弦,正切公式,了解它们的内在联系;2.能运用上述公式进行简单的恒等变换;3.三角式变换的关键是条件和结论之间在角,函数名称及次数三方面的差异及联系,然后通过“角变换”,“名称变换”,“升降幂变换”找到已知式与所求式之间的联系;4.证明三角恒等式的基本思路:根据等式两端的特征,通过三角恒等变换,应用化繁为简,左右归一,变更命题等方法将等式两端的“异”化“同”. 【基础练习】1.sin163sin 223sin 253sin313+=___________.2. 化简2cos 6sin x x -=_____________. 3. 若f (sin x )=3-cos2x ,则f (cos x )=___________. 12 3+cos2x 22cos()3x π+4.化简:sin sin 21cos cos 2αααα+=++___________ . 【范例解析】例 .化简:(1)42212cos 2cos 22tan()sin ()44x x x x ππ-+-+; (2)(1sin cos )(sin cos )22(0)22cos θθθθθπθ++-<<+. (1)分析一:降次,切化弦. 解法一:原式=2221(2cos 1)22sin()4cos ()4cos()4x x x x πππ----22(2cos 1)4sin()cos()44x x x ππ-=--2cos 22sin(2)2x x π=-1cos 22x =. 分析二:变“复角”为“单角”. 解法二:原式221(2cos 1)21tan 222(sin cos )1tan 22x x x x x -=-⋅++22c os 2c o ss 2(sic o ssx x x x x x x=-⋅++1c os2x =.(2)原式=22(2sin cos 2cos )(sin cos )222224cos 2θθθθθθ+-22cos (sin cos )cos cos 2222cos cos 22θθθθθθθ--⋅==0θπ<< ,022θπ∴<<,cos 02θ>,∴原式=cos θ-.点评:化简本质就是化繁为简,一般从结构,名称,角等几个角度入手.如:切化弦,“复角”变“单角”,降次等等. 【反馈演练】1.化简22sin 2cos 1cos 2cos 2⋅=+ααααtan 2α. 2.若sin tan 0x x ⋅<,化简1cos2x +=_________. 3.若0<α<β<4π,sin α+cos α = α,sin β+cos β= b ,则a 与b 的大小关系是_________.4.若sin cos tan (0)2παααα+=<<,则α的取值范围是___________. 5.已知α、β均为锐角,且cos()sin()αβαβ+=-,则tan α= 1 .)3,4(ππ2cos x - a b < tan α6.化简:222cos 12tan()sin ()44αππαα--⋅+.解:原式=222cos 12sin()4cos ()4cos()4απαπαπα--⋅--cos 22sin()cos()44αππαα=-⋅-cos 21cos 2αα==.7.求证:222sin 22cos cos 22cos x x x x +=.证明:左边=2224sin cos 2cos cos 2x x x x +22222cos (2sin 12cos )2cos x x x x =+-==右边.8.化简:22sin sin 2sin sin cos()αβαβαβ+++.解:原式=22sin sin 2sin sin (cos cos sin sin )αβαβαβαβ++-2222sin sin 2sin sin cos cos 2sin sin αβαβαβαβ=++- 2222sin (1sin )sin (1sin )2sin sin cos cos αββααβαβ=-+-+ 2222sin cos sin cos 2sin sin cos cos αββααβαβ=++ 2(sin cos sin cos )αββα=+ 2sin ()αβ=+.第4课 两角和与差及倍角公式(二)【考点导读】1.能熟练运用两角和与差公式,二倍角公式求三角函数值;2.三角函数求值类型:“给角求值”,“给值求值”,“给值求角” . 【基础练习】1.写出下列各式的值:(1)2sin15cos15︒︒=_________;(2)22cos 15sin 15︒-︒=_________; (3)22sin151︒-=_________;(4)22sin 15cos 15︒+︒=____1_____.12 2332-12.已知3(,),sin ,25παπα∈=则tan()4πα+=_________. 3.求值:(1)1tan151tan15-︒=+︒_______;(2)5cos cos 1212ππ=_________. 4.求值:tan10tan 203(tan10tan 20)︒⋅︒+︒+︒=____1____.5.已知tan 32α=,则cos α=________.6.若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+=_________. 【范例解析】例1.求值:(1)sin 40(tan103)︒︒-;(2)2sin50sin80(13tan10)1cos10︒+︒+︒+︒.分析:切化弦,通分. 解:(1)原式=sin10sin 40(3)cos10︒︒-︒=sin103cos10sin 40cos10︒-︒︒⋅︒2sin(1060)sin 40cos10︒-︒=︒⋅︒2cos 40sin 40cos10︒=-︒⋅︒sin 801cos10-︒==-︒.(2)sin10cos103sin102sin 4013tan1013cos10cos10cos10︒︒+︒︒+︒=+==︒︒︒,又1c o s 102c o s 5+︒=︒.原式=2sin 402sin 50sin 802(sin 50sin 40)cos102cos52cos5︒︒+︒⋅︒+︒︒=︒︒22cos522cos5︒==︒.点评:给角求值,注意寻找所给角与特殊角的联系,如互余,互补等,利用诱导公式,和与差公式,二倍角公式进行转换. 例2.设4cos()5αβ-=-,12cos()13αβ+=,且(,)2παβπ-∈,3(,2)2παβπ+∈,求cos 2α,cos 2β.分析:2()()ααβαβ=-++, 2()()βαβαβ=+--.1433 -54 12解:由4cos()5αβ-=-,(,)2παβπ-∈,得3s i n ()5αβ-=,同理,可得5sin()13αβ+=- 33cos 2cos[()()]65ααβαβ∴=-++=-,同理,得63cos 265β=-.点评:寻求“已知角”与“未知角”之间的联系,如:2()()ααβαβ=-++,2()()βαβαβ=+--等.例3.若3cos()45x π+=,177124x ππ<<,求2sin 22sin 1tan x xx+-的值.分析一:()44x x ππ=+-.解法一:177124x ππ<< ,5234x πππ∴<+<, 又3cos()45x π+=,4sin()45x π∴+=-,4tan()43x π+=-.2cos cos[()]4410x x ππ=+-=-,72sin 10x ∴=-,tan 7x =. 所以,原式=2722722()()2()281010101775⨯-⨯-+⨯-=--.分析二:22()42x x ππ=+-.解法二:原式=sin 2sin 2tan 1tan x x x x +⋅-sin 2(1tan )sin 2tan()1tan 4x x x x x π+==⋅+- 又27sin 2sin[2()]cos 2()[2cos ()1]424425x x x x ππππ=+-=-+=--+-=, 所以,原式7428()25375=⋅-=-. 点评:观察“角”之间的联系以寻找解题思路.【反馈演练】1.设)2,0(πα∈,若3sin 5α=,则)4cos(2πα+=__________. 514- 1-2.已知tan 2α=2,则tanα的值为_______,tan ()4πα+的值为___________ . 3.若316sin =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ232cos =___________. 4.若13cos(),cos()55αβαβ+=-=,则tan tan αβ= .5.求值:11sin 20tan 40-=︒︒_________. 6.已知232,534cos παππα<≤=⎪⎭⎫⎝⎛+.求⎪⎭⎫ ⎝⎛+42cos πα的值 解:().2sin 2cos 224sin 2sin 4cos 2cos 42cos ααπαπαπα-=-=⎪⎭⎫⎝⎛+又3cos 0,224πππαα⎛⎫≤<+> ⎪⎝⎭且,47443ππαπ<+≤ 544cos 14sin 2-=⎪⎭⎫ ⎝⎛+--=⎪⎭⎫ ⎝⎛+∴παπα从而25244cos 4sin 222sin 2cos -=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+=παπαπαα, 2574cos 2122cos 2sin 2=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-=παπαα 5023125725242242cos -=⎪⎭⎫ ⎝⎛--⨯=⎪⎭⎫ ⎝⎛+∴πα三角函数B第5课 三角函数的图像和性质(一)【考点导读】1.能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦函数在[0,2]π,正切函数在(,)22ππ-上的性质; 2.了解函数sin()y A x ωϕ=+的实际意义,能画出sin()y A x ωϕ=+的图像;97- 12 33.了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】1. 已知简谐运动()2sin()()32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T =_____6____;初相ϕ=__________.2. 三角方程2sin(2π-x )=1的解集为_______________________. 3. 函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为______________________.4. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象向右平移__________个单位. 【范例解析】例1.已知函数()2sin (sin cos )f x x x x =+.(Ⅰ)用五点法画出函数在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象,长度为一个周期;(Ⅱ)说明()2sin (sin cos )f x x x x =+的图像可由sin y x =的图像经过怎样变换而得到. 分析:化为sin()A x ωϕ+形式.解:(I )由x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+= )42s i n (21)4s i n 2c o s 4c o s 2(s i n 21πππ-+=-⋅+=x x x .列表,取点,描图:x 83π-8π-8π 83π 85π y121- 121+16π {2,}3x x k k Z ππ=±∈ )48sin(4π+π-=x y第3题π6故函数)(x f y =在区间]2,2[ππ-上的图象是:(Ⅱ)解法一:把sin y x =图像上所有点向右平移4π个单位,得到sin()4y x π=-的图像,再把sin()4y x π=-的图像上所有点的横坐标缩短为原来的12(纵坐标不变),得到sin(2)4y x π=-的图像,然后把sin(2)4y x π=-的图像上所有点纵坐标伸长到原来的2倍(横坐标不变),得到2sin(2)4y x π=-的图像,再将2sin(2)4y x π=-的图像上所有点向上平移1个单位,即得到12sin(2)4y x π=+-的图像.解法二:把sin y x =图像上所有点的横坐标缩短为原来的12(纵坐标不变),得到sin 2y x=的图像,再把sin 2y x =图像上所有点向右平移8π个单位,得到sin(2)4y x π=-的图像,然后把sin(2)4y x π=-的图像上所有点纵坐标伸长到原来的2倍(横坐标不变),得到2sin(2)4y x π=-的图像,再将2sin(2)4y x π=-的图像上所有点向上平移1个单位,即得到12sin(2)4y x π=+-的图像.例2.已知正弦函数sin()y A x ωϕ=+(0,0)A ω>>的图像如右图所示. (1)求此函数的解析式1()f x ;(2)求与1()f x 图像关于直线8x =对称的曲线的解析式2()f x ; (3)作出函数12()()y f x f x =+的图像的简图.2x =8y分析:识别图像,抓住关键点. 解:(1)由图知,2A =,22(62)16πω=⨯+= ,8πω∴=,即2sin()8y x πϕ=+.将2x =,2y =代入,得2sin()24πϕ+=,解得4πϕ=,即1()2s i n ()84f x x ππ=+. (2)设函数2()f x 图像上任一点为(,)M x y ,与它关于直线8x =对称的对称点为(,)M x y ''',得8,2.x xy y '+⎧=⎪⎨⎪'=⎩解得16.x x y y '=-⎧⎨'=⎩代入1()2s i n ()84f x x ππ''=+中,得2()2s i n ()84f x x ππ=--. (3)12()()2sin()2sin()2cos 84848y f x f x x x x πππππ=+=+--=,简图如图所示.点评:由图像求解析式,A 比较容易求解,困难的是待定系数求ω和ϕ,通常利用周期确定ω,代入最高点或最低点求ϕ.【反馈演练】1.为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数2sin y x =,x R ∈的图像上所有的点①向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);②向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);③向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变);④向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变). 其中,正确的序号有_____③______.24xyO-4122.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象向右平移__3π__个单位长度.3.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)3f =,则ω=__2____;ϕ=__________.4.在()π2,0内,使x x cos sin >成立的x 取值范围为____________________. 5.下列函数: ①sin 6y x π⎛⎫=+⎪⎝⎭; ②sin 26y x π⎛⎫=-⎪⎝⎭; ③cos 43y x π⎛⎫=-⎪⎝⎭; ④cos 26y x π⎛⎫=-⎪⎝⎭. 其中函数图象的一部分如右图所示的序号有_____④_____.6.如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω (1)求这段时间的最大温差; (2)写出这段时间的函数解析式. 解:(1)由图示,这段时间的最大温差是201030=-℃(2)图中从6时到14时的图象是函数b x A y ++=)sin(ϕω的半个周期∴614221-=⋅ωπ,解得8πω=由图示,10)1030(21=-=A 20)3010(21=+=b这时,20)8sin(10++=ϕπx y将10,6==y x 代入上式,可取43πϕ=综上,所求的解析式为20)438sin(10++=ππx y (]14,6[∈x ) 7.如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y 轴相交于点(03),,且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点π02A ⎛⎫ ⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA的中点, 当032y =,0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 第6题 3π5,44ππ⎛⎫ ⎪⎝⎭第5题y x3O PA解:(1)将0x =,3y =代入函数2cos()y x ωθ=+得3cos 2θ=, 因为02θπ≤≤,所以6θπ=.又因为该函数的最小正周期为π,所以2ω=, 因此2cos 26y x π⎛⎫=+⎪⎝⎭. (2)因为点02A π⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA 的中点,032y =, 所以点P 的坐标为0232x π⎛⎫-⎪⎝⎭,. 又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,所以053cos 462x π⎛⎫-= ⎪⎝⎭. 因为02x ππ≤≤,所以075194666x πππ-≤≤, 从而得0511466x ππ-=或0513466x ππ-=. 即023x π=或034x π=.第6课 三角函数的图像和性质(二)【考点导读】1.理解三角函数sin y x =,cos y x =,tan y x =的性质,进一步学会研究形如函数sin()y A x ωϕ=+的性质;2.在解题中体现化归的数学思想方法,利用三角恒等变形转化为一个角的三角函数来研究. 【基础练习】1.写出下列函数的定义域: (1)sin3x y =的定义域是______________________________; (2)sin 2cos x y x=的定义域是____________________. 2.函数f (x ) = | sin x +cos x |的最小正周期是____________.3.函数 22sin sin 44f x x x ππ=+--()()()的最小正周期是_______. 4. 函数y =sin(2x +3π)的图象关于点_______________对称. 5. 已知函数tan y x ω= 在(-2π,2π)内是减函数,则ω的取值范围是______________.【范例解析】例1.求下列函数的定义域: (1)sin 2sin 1tan xy x x =++;(2)122log tan y x x =++. 解:(1),2tan 0,2sin 10.x k x x ππ⎧≠+⎪⎪≠⎨⎪+≥⎪⎩即,2,722.66x k x k k x k πππππππ⎧≠+⎪⎪≠⎨⎪⎪-≤≤+⎩,故函数的定义域为7{2266x k x k ππππ-≤≤+且,x k π≠,}2x k k Z ππ≠+∈(2)122log 0,tan 0.x x +≥⎧⎪⎨⎪≥⎩即04,.2x k x k πππ<≤⎧⎪⎨≤<+⎪⎩{663,}x k x k k Z πππ≤≤+∈ {,}2x x k k Z ππ≠+∈ π π (3π,0) 10ω-≤<故函数的定义域为(0,)[,4]2ππ⋃.点评:由几个函数的和构成的函数,其定义域是每一个函数定义域的交集;第(2)问可用数轴取交集.例2.求下列函数的单调减区间:(1)sin(2)3y x π=-; (2)2cos sin()42xy x π=-;解:(1)因为222232k x k πππππ-≤-≤+,故原函数的单调减区间为5[,]()1212k k k Z ππππ-+∈.(2)由sin()042x π-≠,得{2,}2x x k k Z ππ≠+∈, 又2cos 4sin()24sin()42x x y x ππ==+-,所以该函数递减区间为3222242x k k πππππ+<+<+,即5(4,4)()22k k k Z ππππ++∈. 点评:利用复合函数求单调区间应注意定义域的限制. 例3.求下列函数的最小正周期: (1)5tan(21)y x =+;(2)sin sin 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭. 解:(1)由函数5tan(21)y x =+的最小正周期为π2,得5tan(21)y x =+的周期2T π=. (2)sin()sin()(sin cos cos sin )cos 3233y x x x x x ππππ=++=+213131cos 2sin cos cos sin 222422xx x x x +=+=+⋅31sin(2)423x π=++ T π∴=. 点评:求三角函数的周期一般有两种:(1)化为sin()A x ωϕ+的形式特征,利用公式求解;(2)利用函数图像特征求解.【反馈演练】1.函数x x y 24cos sin +=的最小正周期为 _____________. 2.设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x 在[0,2]π上的单调递减区间为___________________.3.函数()sin 3cos ([,0])f x x x x π=-∈-的单调递增区间是________________.4.设函数()sin3|sin3|f x x x =+,则()f x 的最小正周期为_______________. 5.函数22()cos 2cos 2x f x x =-在[0,]π上的单调递增区间是_______________. 6.已知函数π12cos 24()πsin 2x f x x ⎛⎫+- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭. (Ⅰ)求()f x 的定义域; (Ⅱ)若角α在第一象限且3cos 5α=,求()f α. 解:(Ⅰ) 由πsin 02x ⎛⎫+≠ ⎪⎝⎭得ππ2x k ≠-+,即ππ2x k ≠-()k ∈Z . 故()f x 的定义域为π|π2x x k k ⎧⎫∈≠-∈⎨⎬⎩⎭R Z ,.(Ⅱ)由已知条件得2234sin 1cos 155αα⎛⎫=-=-= ⎪⎝⎭.2π [,0]6π-32π[,]3ππ 2[,]63ππ,75[,]63ππ从而π12cos 24()πsin 2f ααα⎛⎫+- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭ ππ12cos 2cos sin 2sin 44cos ααα⎛⎫++ ⎪⎝⎭= 21cos 2sin 22cos 2sin cos cos cos ααααααα+++==142(cos sin )5αα=+=. 7. 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x .(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ,.42k k Z ππϕπ∴+=+∈ .43,0πϕϕπ-=<<- (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得.,2243222Z k k x k ∈+≤-≤-πππππ 所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为 (Ⅲ)由知)432sin(π-=x y x 08π 83π 85π 87π πy22--1 0 1 022- 故函数上图像是在区间],0[)(πx f y =-1-3232112-12π7π83π45π8π23π8π4π8oyx第7课 三角函数的值域与最值【考点导读】1.掌握三角函数的值域与最值的求法,能运用三角函数最值解决实际问题;2.求三角函数值域与最值的常用方法:(1)化为一个角的同名三角函数形式,利用函数的有界性或单调性求解;(2)化为一个角的同名三角函数形式的一元二次式,利用配方法或图像法求解;(3)借助直线的斜率的关系用数形结合求解;(4)换元法. 【基础练习】1.函数x x y cos 3sin +=在区间[0,]2π上的最小值为 1 . 2.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 .3.函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是___________________. 4.当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为 4 .【范例解析】例1.(1)已知1sin sin 3x y +=,求2sin cos y x -的最大值与最小值. (2)求函数sin cos sin cos y x x x x =⋅++的最大值. 分析:可化为二次函数求最值问题.43(,1][1,)-∞-⋃+∞解:(1)由已知得:1sin sin 3y x =-,sin [1,1]y ∈- ,则2sin [,1]3x ∈-. 22111sin cos (sin )212y x x ∴-=--,当1sin 2x =时,2sin cos y x -有最小值1112-;当2sin 3x =-时,2sin cos y x -有最小值49.(2)设sin cos x x t +=(22)t -≤≤,则21sin cos 2t x x -⋅=,则21122y t t =+-,当2t =时,y 有最大值为122+.点评:第(1)小题利用消元法,第(2)小题利用换元法最终都转化为二次函数求最值问题;但要注意变量的取值范围. 例2.求函数2cos (0)sin xy x xπ-=<<的最小值.分析:利用函数的有界性求解.解法一:原式可化为s i n c o s 2(0y x xx π+=<<,得21s i n ()2y x ϕ++=,即22s i n ()1x yϕ+=+,故2211y≤+,解得3y ≥或3y ≤-(舍),所以y 的最小值为3. 解法二:2cos (0)sin xy x xπ-=<<表示的是点(0,2)A 与(sin ,cos )B x x -连线的斜率,其中点B 在左半圆221(0)a b a +=<上,由图像知,当AB 与半圆相切时,y 最小,此时3AB k =,所以y 的最小值为3.点评:解法一利用三角函数的有界性求解;解法二从结构出发利用斜率公式,结合图像求解. 例3.已知函数2π()2sin 3cos 24f x x x ⎛⎫=+-⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,.(I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.分析:观察角,单角二次型,降次整理为sin cos a x b x +形式.解:(Ⅰ)π()1cos 23cos 21sin 23cos 22f x x x x x ⎡⎤⎛⎫=-+-=+-⎪⎢⎥⎝⎭⎣⎦∵ π12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),.点评:第(Ⅱ)问属于恒成立问题,可以先去绝对值,利用参数分离转化为求最值问题.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力.【反馈演练】 1.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于____-1_______.2.当04x π<<时,函数22cos ()cos sin sin xf x x x x=-的最小值是______4 _______. 3.函数sin cos 2x y x =+的最大值为_______,最小值为________. 4.函数cos tan y x x =⋅的值域为 .5.已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于_________.6.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;323333- (1,1)-(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.解:(Ⅰ)π()2cos (sin cos )1sin 2cos 22sin 24f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭. 因此,函数()f x 的最小正周期为π.(Ⅱ)因为π()2sin 24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上为增函数,在区间3π3π84⎡⎤⎢⎥⎣⎦,上为减函数,又π08f ⎛⎫=⎪⎝⎭,3π28f ⎛⎫= ⎪⎝⎭,3π3πππ2sin 2cos 14244f ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最大值为2,最小值为1-.第8课 解三角形【考点导读】1.掌握正弦定理,余弦定理,并能运用正弦定理,余弦定理解斜三角形;2.解三角形的基本途径:根据所给条件灵活运用正弦定理或余弦定理,然后通过化边为角或化角为边,实施边和角互化. 【基础练习】1.在△ABC 中,已知BC =12,A =60°,B =45°,则AC =. 2.在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是______________.3.在ABC △中,若1tan 3A =,150C =,1BC =,则AB = . 【范例解析】例1. 在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,已知20a c +=,2C A =,3cos 4A =. 46 3π 102(1)求ca的值;(2)求b 的值. 分析:利用2C A =转化为边的关系.解:(1)由sin sin 232cos sin sin 2c C A A a A A ====. (2)由20,3.2a c c a +=⎧⎪⎨=⎪⎩得8,12.a c =⎧⎨=⎩.由余弦定理2222cos a b c bc A =+-得: 218800b b -+=,解得:8b =或10b =, 若8b =,则A B =,得4A π=,即23cos 24A =≠矛盾,故10b =. 点评:在解三角形时,应注意多解的情况,往往要分类讨论.例2.在三角形ABC 中,已知2222()sin()()sin()a b A B a b A B +-=-+,试判断该三角形的形状.解法一:(边化角)由已知得:22[sin()sin()][sin()sin()]a A B A B b A B A B --+=---+, 化简得222cos sin 2cos sin a A B b B A =, 由正弦定理得:22sin cos sin sin cos sin A A B B B A=,即s i n s i n (s i A B A A B B-=,又,(0,)A B π∈,sin sin 0A B ∴⋅≠,sin 2sin 2A B ∴=.又2,2(0,2)A B π∈,22A B ∴=或22A B π=-,即该三角形为等腰三角形或直角三角形.解法二:(角化边)同解法一得:222cos sin 2cos sin a A B b B A =,由正余弦定理得:2222222222b c a a c b a b b a bc ac+-+-=,整理得:22222()()0a b c a b ---=,即a b =或222c a b =+,即该三角形为等腰三角形或直角三角形. 点评:判断三角形形状主要利用正弦或余弦定理进行边角互化,从而利用角或边判定三角形形状.例3.如图,D 是直角△ABC 斜边BC 上一点,AB =AD ,记∠CAD =α,∠ABC =β.(1)证明:sin cos 20αβ+=;αA(2)若AC =3DC ,求β.分析:识别图中角之间的关系,从而建立等量关系. (1)证明:C βα=+ ,2C B π=-,22πβα∴=+,sin cos 20αβ∴+=(2)解: AC =3DC ,2sin 3sin 3cos223sin 3βαββ∴==-=-.(0,)2πβ∈ ,3sin 2β∴=,3πβ∴=.点评:本题重点是从图中寻找到角之间的等量关系,从而建立三角函数关系,进而求出β的值.【反馈演练】1.在ABC ∆中,,75,45,300===C A AB 则BC =_____________. 2.ABC ∆的内角∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a ,b ,c 成等比数列,且2c a =,则cos B =_____.3.在ABC ∆中,若2a b c =+,2sin sin sin A B C =,则ABC ∆的形状是____等边___三角形.4.若ABC ∆的内角A 满足2sin 23A =,则sin cos A A += .5.在ABC ∆中,已知2AC =,3BC =,4cos 5A =-.(Ⅰ)求sin B 的值; (Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.解:(Ⅰ)在ABC ∆中,2243sin 1cos 155A A ⎛⎫=-=--= ⎪⎝⎭,由正弦定理,sin sin BC AC A B =.所以232sin sin 355AC B A BC ==⨯=. (Ⅱ)因为4cos 5A =-,所以角A 为钝角,从而角B 为锐角,于是22221cos 1sin 155B B ⎛⎫=-=-= ⎪⎝⎭,33- 34153222117cos 22cos 12()1525B B =-=⨯-=, 221421sin 22sin cos 25525B B B ==⨯⨯=. sin 2sin 2cos cos 2sin 666B B B πππ⎛⎫+=+ ⎪⎝⎭4213171252252=⨯+⨯1271750+=. 6.在ABC ∆中,已知内角A π=3,边23BC =.设内角B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值. 解:(1)ABC ∆的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3.应用正弦定理,知23sin sin 4sin sin sin BC AC B x x A ===π3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭. 因为y AB BC AC =++,所以224sin 4sin 2303y x x x ππ⎛⎫⎛⎫=+-+<<⎪ ⎪3⎝⎭⎝⎭,(2)因为14sin cos sin 232y x x x ⎛⎫3=+++ ⎪ ⎪2⎝⎭543s i n 23x x ππππ⎛⎫⎛⎫=++<+< ⎪ ⎪6666⎝⎭⎝⎭,所以,当x ππ+=62,即x π=3时,y 取得最大值63.7.在ABC ∆中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小;(Ⅱ)若ABC ∆最大边的边长为17,求最小边的边长.解:(Ⅰ)π()C A B =-+ ,1345tan tan()113145C A B +∴=-+=-=--⨯.又0πC << ,3π4C ∴=.(Ⅱ)34C =π ,AB ∴边最大,即17AB =. 又tan tan 0A B A B π⎛⎫<∈ ⎪2⎝⎭,,,,∴角A 最小,BC 边为最小边.由22sin 1tan cos 4sin cos 1A A A A A ⎧==⎪⎨⎪+=⎩,,且π02A ⎛⎫∈ ⎪⎝⎭,,得17sin 17A =.由sin sin AB BC C A =得:sin 2sin A BC AB C == . 所以,最小边2BC =.第9课 解三角形的应用【考点导读】1.运用正余弦定理等知识与方法解决一些与测量和几何计算有关的实际问题.2.综合运用三角函数各种知识和方法解决有关问题,深化对三角公式和基础知识的理解,进一步提高三角变换的能力.【基础练习】1.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别为30°,60°,则塔高为_________m .3400北 1B2B1A2A120105 乙甲例1(1)2.某人朝正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好3km ,那么x 的值为_______________ km . 3.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60 ,行驶4h后,船到达C 处,看到这个灯塔在北偏东15 ,这时船与灯塔的距离为 km .4.如图,我炮兵阵地位于A 处,两观察所分别设于B ,D ,已知ABD ∆为边长等于a 的正三角形,当目标出现于C 时,测得45BDC ∠=,75CBD ∠=,求炮击目标的距离AC 解:在BCD ∆中,由正弦定理得:sin 60sin 45a BC=︒︒∴63BC a =在ABC ∆中,由余弦定理得:2222cos AC AB BC AB BC ABC =+-⋅⋅∠∴5233AC a +=答:线段AC 的长为5233a +. 【范例解析】例 .如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向的2B 处,此时两船相距102海里,问乙船每小时航行多少海里?分析:读懂题意,正确构造三角形,结合正弦定理或余弦定理求解.解法一:如图(2),连结12A B ,由已知22102A B =,122030210260A A =⨯=,1222A A A B ∴=, 又12218012060A A B =-=∠,122A A B ∴△是等边三角形, 1212102A B A A ∴==,北1B2B1A2A120 105A BC D第4题23或3 302由已知,1120A B =,1121056045B A B =-=∠,在121A B B △中,由余弦定理,22212111211122cos45B B A B A B A B A B =+- 22220(102)2201022=+-⨯⨯⨯200=. 12102B B ∴=.因此,乙船的速度的大小为1026030220⨯=(海里/小时). 答:乙船每小时航行302海里. 解法二:如图(3),连结21A B , 由已知1120A B =,122030210260AA =⨯=,112105B A A = ∠, cos105cos(4560)=+ cos 45cos60sin 45sin 60=- 2(13)4-=,sin105sin(4560)=+ sin 45cos60cos 45sin 60=+ 2(13)4+=.在211A A B △中,由余弦定理,22221111211122cos105A B A B A A A B A A =+-222(13)(102)202102204-=+-⨯⨯⨯100(423)=+.2110(13)A B ∴=+.由正弦定理1112111221202(13)2sin sin 4210(13)A B A A B B A A A B +===+ ∠∠, 12145A A B ∴= ∠,即121604515B A B =-= ∠,2(13)cos15sin1054+==.在122B A B △中,由已知22102A B =,由余弦定理,22212212221222cos15B B A B A B A B A B =+-2222(13)10(13)(102)210(13)1024+=++-⨯+⨯⨯200=.北 1B2B1A2A120 105乙 甲例1(3)12102B B ∴=,乙船的速度的大小为1026030220⨯=(海里/小时). 答:乙船每小时航行302海里.点评:解法二也是构造三角形的一种方法,但计算量大,通过比较二种方法,学生要善于利用条件简化解题过程.【反馈演练】1.江岸边有一炮台高30m ,江中有两条船,由炮台顶部测得俯角分别为45︒和30︒,而且两条船与炮台底部连线成30︒角,则两条船相距____________m . 2.有一长为1km 的斜坡,它的倾斜角为20︒,现要将倾斜角改为10︒,则坡底要伸长____1___km .3.某船上的人开始看见灯塔在南偏东30︒方向,后来船沿南偏东60︒方向航行45海里后,看见灯塔在正西方向,则此时船与灯塔的距离是__________海里. 4.把一根长为30cm 的木条锯成两段,分别作钝角三角形ABC 的两边AB 和BC ,且120ABC ∠=︒,则第三条边AC 的最小值是____________cm .5.设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系: t 0 3 6 9 12 15 18 21 24 y 1215.112.19.111.914.911.98.912.1经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( A )A .]24,0[,6sin 312∈+=t t y πB .]24,0[),6sin(312∈++=t t y ππC .]24,0[,12sin312∈+=t t y πD .]24,0[),212sin(312t t y ππ++=103 153 153。
全国高中数学竞赛专题-三角函数
全国高中数学竞赛专题-三角函数三角函数是数学中的一个重要分支,它与三角学和几何学密切相关,广泛应用于物理、工程、计算机科学等领域。
在全国高中数学竞赛中,三角函数是一个常见的考点,掌握好相关知识对于获得好的成绩至关重要。
首先,我们来介绍一下三角函数的基本概念。
在直角三角形中,定义了三个基本三角函数:正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
这些函数的值与直角三角形的各边长之间的关系密切相关,可以通过三角函数表格或计算器查到具体的数值。
接着,我们来讨论一下三角函数的性质和相关公式。
首先是奇偶性。
正弦函数是奇函数,即sin(-x)=-sin(x);余弦函数是偶函数,即cos(-x)=cos(x);正切函数的奇偶性与正弦函数相同,即tan(-x)=-tan(x)。
其次是周期性。
正弦函数和余弦函数的周期都是2π,即sin(x+2π)=sin(x),cos(x+2π)=cos(x);正切函数的周期是π,即tan(x+π)=tan(x)。
最后是相关公式。
三角函数之间有一系列的相关公式,如正弦函数和余弦函数之间的勾股定理:sin^2(x) + cos^2(x) = 1;另外还有和差公式、积化和差公式等。
在解题过程中,掌握好三角函数的这些性质和公式,是非常重要的。
很多题目需要在使用相关公式的基础上,灵活运用三角函数的性质,进行合理的转化和变形。
这不仅要求对三角函数的概念有深刻的理解,还需要通过大量的练习和思考,掌握一些解题的技巧和方法。
此外,在解题过程中,还需要掌握一些常见三角函数的特殊值。
例如,sin0=0,sinπ/6=1/2,sinπ/4=√2/2,sinπ/3=√3/2等。
对于这些特殊值的掌握,有助于简化计算和验证答案。
最后,我们来介绍一些常见的三角函数应用题。
在数学竞赛中,三角函数的应用题常常涉及到几何问题、物理问题以及实际生活中的应用问题。
比如,在几何问题中,可以根据角度和边长给出的条件,计算出未知边长或角度的值。
高中数学竞赛讲义(免费)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线.几何不等式。
几何极值问题.几何中的变换:对称、平移、旋转。
圆的幂和根轴.面积方法,复数方法,向量方法,解析几何方法.2。
代数周期函数,带绝对值的函数.三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法.平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数. 复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3。
初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x ],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式.组合计数,组合几何。
抽屉原理.容斥原理。
极端原理。
图论问题。
集合的划分.覆盖。
平面凸集、凸包及应用*.注:有*号的内容加试中暂不考,但在冬令营中可能考.三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
高中数学竞赛_解三角形【讲义】
第七章 解三角形一、基础知识在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长,2cb a p ++=为半周长。
1.正弦定理:CcB b A a sin sin sin ===2R (R 为△ABC 外接圆半径)。
推论1:△ABC 的面积为S △ABC =.sin 21sin 21sin 21B ca A bc C ab ==推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足)sin(sin a ba a -=θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。
先证推论1,由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC =C ab sin 21;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理BbA a sin sin =,所以)sin()sin(sin sin A a A a --=θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]= 21-[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。
2.余弦定理:a 2=b 2+c 2-2bccosA bca cb A 2cos 222-+=⇔,下面用余弦定理证明几个常用的结论。
(1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq qp qc p b -++(1)【证明】 因为c 2=AB 2=AD 2+BD 2-2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π,所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得qc 2+pb 2=(p+q)AD 2+pq(p+q),即AD 2=.22pq qp qc p b -++注:在(1)式中,若p=q ,则为中线长公式.222222a c b AD -+=(2)海伦公式:因为412=∆ ABC S b 2c 2sin 2A=41b 2c 2(1-cos 2A)=41b 2c 21614)(1222222=⎥⎦⎤⎢⎣⎡-+-c b a c b [(b+c)2-a 2][a 2-(b-c) 2]=p(p-a)(p-b)(p-c). 这里.2cb a p ++=所以S △ABC =).)()((c p b p a p p ---二、方法与例题1.面积法。
高考数学总复习 第六章 第6讲 三角函数的综合应用配套课件 文
【互动(hù dònɡ)探究】
2.(2012 年广东广州一模)已知函数 f(x)=tan3x+π4. (1)求 fπ9的值; (2)设 α∈π,32π,若 fα3+π4=2,求 cosα-π4的值.
第十八页,共30页。
解:(1)fπ9=tanπ3+π4 =1t-anπ3ta+nπ3ttaannπ4π4 =1-3+13=-2- 3. (2)因为 fα3+π4=tanα+34π+π4=tan(α+π)=tanα=2. 所以csoinsαα=2,即 sinα=2cosα. ①
第二十七页,共30页。
难点突破
⊙三角(sānjiǎo)不等式中的恒成立问题
例题:已知函数 f(x)=2sin2π4+x- 3cos2x,x∈π4,π2. (1)求 f(x)的最大值和最小值; (2)若不等式|f(x)-m|<2 在 x∈π4,π2上恒成立,求实数 m 的 取值范围.
第二十八页,共30页。
1.函数(hánshù) y=cos2x+2sinxcosx 的最小正周期 T=( B )
A.2π
B.π
π C.2
π D.3
2.已知 tan(α+β)=3,tan(α-β)=2,则 tan2β=( C )
A.16
B.-16
C.17
D.-17
第五页,共30页。
3.sins2i3n52°0-°12的值为( B )
第九页,共30页。
=2sin2x-212sin2x+ 23cos2x =sin2x- 3cos2x =2sin2x-π3, 由 2kπ-π2≤2x-π3≤2kπ+π2, 得 kπ-1π2≤x≤kπ+51π2,k∈Z. ∴g(x)的单调递增区间是kπ-1π2,kπ+51π2,k∈Z.
高中数学竞赛讲义第六章 三角函数
第六章 三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。
若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。
角的大小是任意的。
定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。
360度=2π弧度。
若圆心角的弧长为L ,则其弧度数的绝对值|α|=rL ,其中r 是圆的半径。
定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=rx,正切函数tan α=x y ,余切函数cot α=y x ,正割函数se cα=xr,余割函数c s c α=.y r定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=αsec 1;商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ⎪⎭⎫⎝⎛-απ2=co s α, co s ⎪⎭⎫ ⎝⎛-απ2=s in α, tan ⎪⎭⎫⎝⎛-απ2=cot α(奇变偶不变,符号看象限)。
高中数学专题讲义:三角函数公式的正用、逆用与变用
A.
B. 5 C.
D.
【答案】A
【解析】由三角函数的定义可得
,又
,
所以
.故选 A.
12.【佛山市普通高中高三教学质量检测(二)】已知
cos
1 , 7
0,
2
,则
cos
3
()
A. 11 14
【答案】D
B. 3 3 14
C. 5 3 14
D. 13 14
13 .【 江 西 省 南 昌 市 2017-2018 学 年 度 高 三 第 二 轮 复 习 测 试 卷 ( 三 )】 在 .
高中数学专题讲义:三角函数公式的正用、逆用与变用
考纲要求:
sinx 1.理解同角三角函数的基本关系式:sin2x+cos2x=1,cosx=tanx.
π 2.能利用单位圆中的三角函数线推导出 2 ±α,π±α 的正弦、余弦、正切的诱导公式.
3.会用向量的数量积推导出两角差的余弦公式.能利用两角差的余弦公式推导出两角差的正
(Ⅰ)求 的大小;
中,
(Ⅱ)求
的取值范围.
【答案】(1)
;(2)
【解析】
【分析】
(Ⅰ)由正弦定理可得
的取值范围为
.
,结合余弦定理可得 的大小;(Ⅱ)利用内角和定理
【详解】 (Ⅰ)因为 所以
可化简为
,结合
可得结果.
,
,由正弦定理,得
,
所以
, 又因为
, 所以 .
14.在 中,
.
(Ⅰ)求 的大小;
(Ⅱ)求
3.已知
,
,
,则
()
A.
B.
【答案】B
C.
D.
高中数学奥林匹克竞赛讲座 33三角函数
竞赛讲座33-三角函数几何中的两个基本量是:线段的长度和角的大小.三角函数的本质就是用线段长度之比来表示角的大小,从而将两个基本量联系在一起,使我们可以借助三角变换或三角计算来解决一些较难的几何问题.三角函数不仅是一门有趣的学问,而且是解决几何问题的有力工具.1.角函数的计算和证明问题在解三角函数问题之前,除了熟知初三教材中的有关知识外,还应该掌握:(1)三角函数的单调性当a为锐角时,sina与tga的值随a的值增大而增大;cosa与ctga 随a的值增大而减小;当a为钝角时,利用诱导公式转化为锐角三角函数讨论.注意到sin45°=cos45°=,由(1)可知,当时0<a<45°时,cosa>sina;当45°<a<90°时,cosa<sina.(2)三角函数的有界性|sina|≤1,|cosa|≤1,tga、ctga可取任意实数值(这一点可直接利用三角函数定义导出).例1(1986年全国初中数学竞赛备用题)在△ABC中,如果等式sinA+cosA=成立,那么角A是()(A)锐角(B)钝角(C)直角分析对A分类,结合sinA和cosA的单调性用枚举法讨论.解当A=90°时,sinA和cosA=1;当45°<A<90°时sinA>,cosA>0,∴sinA+cosA>当A=45°时,sinA+cosA=当0<A<45°时,sinA>0,cosA>∴sinA+cosA>∵1, 都大于.∴淘汰(A)、(C),选(B).例2(1982年某某初中数学竞赛题)ctg67°30′的值是()(A)-1 (B)2-(C)-1(D)(E)分析构造一个有一锐角恰为67°30′的Rt△,再用余切定义求之.解如图36-1,作等腰Rt△ABC,设∠B=90°,AB=BC=1.延长BA到D使AD=AC,连DC,则AD=AC=,∠D=22.5°,∠DCB=67.5°.这时,ctg67°30′=ctg∠DCB=∴选(A).例3(1990年某某市初中数学竞赛题)如图,在△ABC中,∠A所对的BC边的边长等于a,旁切圆⊙O的半径为R,且分别切BC及AB、AC的延长线于D,E,F.求证:R≤a·x+a=y+b, ①且BH=a,BD=x,HC=y,DC=b.于是,x-a=y-b. ②①+②得,x=y.从而知a=b.∴GE=BC=a.设⊙O′半径为r.显然R+r≤OO′ (当AB=AC)时取等号.作O′M⊥EO于M,则O′M=GE=a,∠OO′M=∴R+r≤两式相加即得R≤.例4(1985年某某等四市初中联赛题)凸4n+2边形A1A2A3…A4n+2(n为自然数)各内角都是30°的整数倍,已知关于x的方程:x2+2xsinA1+sinA2=0 ①x2+2xsinA2+sinA3=0 ②x2+2xsinA3+sinA1=0 ③都有实根,求这凸4n+2边形各内角的度数.解∵各内角只能是、、、,∴正弦值只能取当sinA1=时,∵sinA2≥sinA3≥∴方程①的判别式△1=4(sin2A1-sinA2)≤440方程①无实根,与已知矛盾,故sinA1≠.当sinA1=时,sinA2≥,sinA3≥,∴方程①的判别式△1=4(sin2A1-sinA2)=0.方程①无实根,与已知矛盾,故sinA1=.综上所述,可知sinA1=1,A1=.同理,A2=A3=.这样其余4n-1个内角之和为这些角均不大于又n为自然数,∴n=1,凸n边形为6边形,且A4+A5+A6=4×2.解三角形和三角法定理推论设a、b、c、S与a′、b′、c′、S′.若我们在正、余弦定理之前介绍上述定理和推论是为了在解三角形和用三角函数解几何题时有更大的自由.(1)解三角形例5(第37届美国中学生数学竞赛题)在图36-3中,AB是圆的直径,CD是平行于AB的弦,且AC和BD相交于E,∠AED=α,△CDE和△ABE的面积之比是( ).(A)cosα(B)sinα(C)cos2α(D)sin2α(E)1-sinα解如图,因为AB∥DC,AD=CB,且△CDE∽△ABE,BE=AE,因此连结AD,因为AB是直径,所以∠ADB=在直角三角形ADE中,DE=AEcosα.∴应选(C).例6 (1982年某某初中数学竞赛题)如图36-4,已知Rt△斜边AB=c,∠A=α,求内接正方形的边长.解过C作AB的垂线CH,分别与GF、AB交于P、H,则由题意可得又∵△ABC∽△GFC,∴,即(2)三角法.利用三角知识(包括下一讲介绍的正、余弦定理)解几何问题的方法叫三角法.其特点是将几何图形中的线段,面积等用某些角的三角函数表示,通过三角变换来达到计算和证明的目的,思路简单,从而减少几何计算和证明中技巧性很强的作辅助线的困难.例7(1986年全国初中数学竞赛征集题)如图36-5,在△ABC中,BE、CF是高,∠A=,则△AFE和四边形FBCE的面积之比是()(A)1∶2(B)2∶3(C)1∶1(D)3∶4解由BE、CF是高知F、B、C、E四点共圆,得AF·AB=AE·AC.在Rt△ABE中,∠ABE=,∴S△AFE∶S FBCE=1∶1.应选(C).例8 (1981年某某中学生数学竞赛题)在△ABC中∠C为钝角,AB边上的高为h,求证:AB>2h.证明如图36-6,AB=AD+BD=h(ctgA+ctgB) ①∵∠C是钝角,∴∠A+∠B<,∴ctgB>ctg(-A)=tgA.②由①、②和代数基本不等式,得例9 (第18届国际数学竞赛题)已知面积为32cm2的平面凸四边形中一组对边与一条对角线之长的和为16cm.试确定另一条对角线的所有可能的长度.解如图36-7,设四边形ABCD面积S为32cm2,并设AD=y,AC=x,BC=z.则x+y+z=16(cm)由但S=32,∴sinθ=1,sin =1,且x-8=0.故θ==此处无图例10 (1964年某某中学数学竞赛题)设a、b、c是直角三角形的三边,c为斜边,整数n≥3,求证:a n+b n<.分析如图34-8,注意到Rt△ABC的边角关系:a=c sinα>0,b=ccosα>0,可将不等式转化为三角不等式sin nα+cos nα<1来讨论.证明设直角三角形一锐角∠BAC=α(如图),则。
全国高中数学竞赛专题-三角函数
全国高中数学竞赛专题-三角函数三角函数是高中数学中的重要内容,也是数学竞赛中常考的考点之一、掌握好三角函数相关的知识,在竞赛中起到事半功倍的效果。
本文将从基本概念、常用公式、性质以及解题方法等几个方面全面介绍三角函数在数学竞赛中的应用。
首先,我们来了解一下基本概念。
在直角三角形中,三角函数是指与一个锐角的对边、邻边和斜边之间的关系。
其中,正弦函数(sin)、余弦函数(cos)、正切函数(tan)是最常用的三种三角函数。
它们分别表示为sinθ、cosθ和tanθ,其中θ是一个锐角。
在解题时,我们常常需要利用这些基本概念进行推导和计算。
其次,我们要掌握一些常用的三角函数公式。
比如,角的加减关系公式:sin(α±β) = sinαcosβ ± cosαsinβcos(α±β) = cosαcosβ ∓ sinαsinβtan(α±β) = (tanα ± tanβ)/(1 ∓ tanαtanβ)这些公式可以帮助我们更方便地计算复杂的三角函数式子。
此外,还有一些特殊角的值,如0°、30°、45°、60°和90°等。
熟记这些特殊角的三角函数值对于解题时的计算非常重要。
然后,我们要了解一些三角函数的性质。
三角函数的定义域是实数集R,值域是[-1,1]。
另外,正弦函数是奇函数,余弦函数是偶函数,正切函数在一个周期内有无穷多个零点。
最后,我们来谈一谈解题方法。
在解三角函数的题目时,我们首先要根据题目给出的条件建立方程,然后进行简化和变形,最终求解出未知量。
常见的解题方法有两角和差的公式、倍角公式、半角公式和三角恒等式等。
我们在解题时要熟练运用这些公式,灵活选择适合题目情况的公式来求解。
除此之外,我们还可以利用三角函数的图像性质来解题。
通过观察函数图像的变化规律,可以快速找到题目中所求的解。
因此,熟悉和掌握基本的函数图像是十分必要的。
全国高中数学联赛培训讲座 三角函数
全国高中数学联赛培训讲座第一讲 三角函数 一、 考题回顾1.(92年)在△ABC 中,角A ,B ,C 的对边分别记为a ,b ,c (b ≠1),且A B A C sin sin ,都是方程x blog=log b (4x -4)的根,则△ABC ( )(A)是等腰三角形,但不是直角三角形 (B)是直角三角形,但不是等腰三角形 (C)是等腰直角三角形 (D)不是等腰三角形,也不是直角三角形 2.(92年)在区间[0,π]中,三角方程cos7x =cos5x 的解的个数是______. 3.(93年)若M ={(x ,y )| |tg πy |+sin 2πx =0},N ={(x ,y )|x 2+y 2≤2},则M N 的元素个数是( )(A)4 (B )5 (C )8 (D )9 4.(93年)若直线x =4π被曲线C :(x -arcsin a )(x -arccos a )+(y -arcsin a )(y +arccos a )=0 所截的弦长为d ,当a 变化时d 的最小值是( )(A) 4π (B ) 3π (C )2π (D )π5.(93年)在△ABC 中,角A ,B ,C 的对边长分别为a ,b ,c ,若c -a 等于AC 边上的高h ,则2cos 2sin A C A C ++-的值是( )(A)1 (B )21 (C )31 (D )-16.(94年)设a,b,c 是实数,那么对任何实数x, 不等式a x b x c sin cos .++>0都成立的充要条件是 (A)a,b 同时为0,且c >0 (B)a b c 22+=(C)a b c 22+< (D)a b c 22+>7.(94年)已知0104<<<<b a ,π,则下列三数:x a b a =(sin )log sin ,y a b a =(cos )log cos , z a b a =(sin )log cos 的大小关系是(A)x<z<y (B)y<z<x (C)z<x<y (D)x<y<z8.(94年)已知x y a R ,[,],∈-∈ππ44且x x a y y y a 332040+-=++=⎧⎨⎩sin sin cos 则cos()x y +2=_____.9.(94年)设0<<θπ,则sin (cos )θθ21+的最大值是______.10.(95年)1tg log ,1sin log ,1tg log ,1cos log 1cos 1cos 1sin 1sin 的大小关系是( ) (A)1tg log 1log 1sin log 1cos log 1cos 1sin 1cos 1sin <<<tg (B)1tg log 1cos log 1log 1sin log 1sin 1sin 1cos 1cos <<<tg (C)1cos log 1sin log 1tg log 1tg log 1sin 1cos 1cos 1sin <<< (D)1sin log 1cos log 1tg log 1tg log 1cos 1sin 1sin 1cos <<<11.(96年)设x ∈-(,)120,以下三个数απ1=cos(sin )x ,απ2=sin(cos )x ,απ31=+cos()x 的大小关系是( )(A)ααα321<< (B)ααα132<< (C)ααα312<< (D)ααα231<< 12.(97年)设x x x f π-=2)(,α =arcsin 31,)45(arcctg ),31arccos(,45arctg -=-==δγβ,则(A ))()()()(γδβαf f f f >>> (B ))()()()(γβδαf f f f >>> (C ))()()()(γβαδf f f f >>> (D ))()()()(βγαδf f f f >>> 13.(97年)设x ≥y ≥z ≥12π,且x +y +z =2π,求乘积cos x sin y cos z 的最大值和最小值.14.(99年)在△ ABC 中,记 BC = a ,CA = b ,AB = c ,若9 a 2 +9 b 2-19 c 2=0,则ctgBctgA ctgC+ =__________.15.(99年)已知当 x ∈[0,1]时,不等式x 2co sθ-x(1-x)+(1-x)2s inθ>0,恒成立,试求θ的取值范围。
2019-2020年高考数学竞赛 三角函数教案讲义(6)
2019-2020年高考数学竞赛三角函数教案讲义(6)一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。
若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。
角的大小是任意的。
定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。
360度=2π弧度。
若圆心角的弧长为L,则其弧度数的绝对值|α|=,其中r是圆的半径。
定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x轴的正半轴重合,在角的终边上任意取一个不同于原点的点P,设它的坐标为(x,y),到原点的距离为r,则正弦函数s inα=,余弦函数co sα=,正切函数tanα=,余切函数cotα=,正割函数se cα=,余割函数c s cα=定理1 同角三角函数的基本关系式,倒数关系:tanα=,s inα=,co sα=;商数关系:tan α=;乘积关系:tanα×co sα=s inα,cotα×s inα=co sα;平方关系:s in2α+co s2α=1, tan2α+1=se c2α, cot2α+1=c s c2α.定理2 诱导公式(Ⅰ)s in(α+π)=-s inα, co s(π+α)=-co sα, tan(π+α)=tanα, cot(π+α)=cotα;(Ⅱ)s in(-α)=-s inα, co s(-α)=co sα, tan(-α)=-tanα, cot(-α)=cotα; (Ⅲ)s in(π-α)=s inα, co s(π-α)=-co sα, tan=(π-α)=-tanα, cot(π-α)=-cotα; (Ⅳ)s in=co sα, co s=s inα, tan=cotα(奇变偶不变,符号看象限)。
定理3 正弦函数的性质,根据图象可得y=s inx(x∈R)的性质如下。
单调区间:在区间上为增函数,在区间上为减函数,最小正周期为2. 奇偶数. 有界性:当且仅当x=2kx+时,y 取最大值1,当且仅当x=3k-时, y取最小值-1。
高考三角函数辅导讲义
三角函数诱导公式例1:利用诱导公式求三角函数的值 (1)10sin()3π-;)(2)29sin()6π;(3)20sin()3π- 例2:化简3sin()tan()2sin()πααππα++- 高效作业,技能备考1、0cos35a =,则0sin 55= ; 2、cos()3π-的值为 ;0sin(855)-= ;3、95cos()cos()22x x ππ++-= ; 1 .设cos(π+α)=32,(π<α<32π),那么cos(2π-α)的值是( ) A .-12 B.32 C .-32D.122 .cos(2013)π-的值为 ( )A . 12 B. 1-C .D. 03 .sin 585的值为 ( )A .2-B.2 C .2- D. 24 .已知sin()cos(2)()cos()tan f παπααπαα--=--,则31()3f π-的值为 ( )A .12 B. 13- C .12- D. 135 .化简95cos()cos()22x x ππ++-= ; 6 .化简sin(5)cos()cos(8)23sin()sin(4)2πθπθπθπθθπ-⋅------;7 .已知2cos()63πα-=,则2sin()3πα-= ; 同角的三角函数(1)1cos sin 22=α+α (2)α=ααtan cos sin 例1:(1)已知3sin 5α=-,且α在第三象限,求cos α和tan α;(2)(2010全国)若0cos(80)k -=,那么0tan100= ;例2:已知tan 2α=,求值(1)224sin 3sin cos 5cos αααα--;(2)22222sin 3cos 4sin 9cos αααα--例3:若cos(2)3πα-=,且(,0)2πα∈-,则sin()πα-= ;高效作业,技能备考1 .已知tan 2α=,则sin 3cos sin cos αααα-+的值为 ( )A .53- B. 13- C .53 D. 132 .已知3cos()25πα+=,且3(,)22ππα∈,则tan α=( ) A .43 B. 34 C .34- D. 34±3.已知5cos 13α=-,且α是第二象限的角,则tan (2)πα=-= ;4.(2011全国)3(,)2παπ∈,tan 2α=,则cos α= ; 5.若4sin 5θ=-,tan 0θ>则cos θ= ;6 .3cos()cos()02πθπθ-++=,21cos sin 22θθ+= ;7 .1tan 3α=-,则11sin cos αα=- ; 8 .求证:cos 1sin 1sin cos x xx x+=-9、已知tan()2,tan 3αββ+==,则3sin(2)2πα+= ;三角函数的图像与性质问题三角函数sin()y A x ωϕ=+图像例1:(1)已知函数sin()y A x ωϕ=+(0ω>,2πϕ<)的部分图像如图所示,则 ( ) A.1,6πωϕ==B. 1,6πωϕ==-C. 2,6πωϕ==D. 2,6πωϕ==-(2)已知函数已知函数()cos()f x A x ωϕ=+的图象如图所示,2()23f π=-,则(0)f =( )(A )23-(B)- 12 (C) 23 (D) 12图(1) 图(2) 高效作业,技能备考 1.函数sin()(,,y A x A ωϕωϕ=+为常数,0,0)A ω>>在闭区间[,0]π-上的图象如图所示,则ω=2. (2011江苏)函数sin()y A x ωϕ=+(A 、ω、ϕ是常数,0,0A ω>>的部分图象如图所示,则(0)f = ;图1 图23.(2011全国大纲)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .94.(2012天津) 将函数()sin f x x ω=(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点3(,0)4π,则ω的最小值是 A.13 B. 1 C. 53D. 2 三角函数的值域和最值例题:求函数sin (0)2cos x y x x π-=<<-的最小值。
高一数学讲义 第六章 三角函数
高一数学讲义 第六章 三角函数6.1 正弦函数和余弦函数的性质与图像每一个实数x 都有唯一确定的角与之对应,而这个角又可以与它的三角比sin x (或cos x )对应,即每个实数x 都可以与唯一确定的值sin x (或cos x )对应.按这样的对应法则建立起来的函数,表示为sin y x =(或cos y x =),叫做自变量为x 的正弦函数(或余弦函数).sin y x =和cos y x =的定义域都是R ,值域都是[]11-,. ()()sin cos y x x y x x =∈=∈R R ,的性质:1.奇偶性根据诱导公式,对x ∀∈R ,有()sin sin x x -=-,()cos cos x x -=, ()sin y x x ∴=∈R 是奇函数,()cos y x x =∈R 是偶函数.2.周期性对于()()sin 2πsin k x x k +=∈Z ,当0k ≠时,2πk 是()sin f x x =的周期,2π是不是()sin f x x =的最小正周期呢?假设存在T ,满足02πT <<,且是函数()sin f x x =的周期,即()()f x T f x +=,令π2x =,得ππ1sinsin cos 22T T ⎛⎫==+= ⎪⎝⎭,与02πT <<时,cos 1T <矛盾. 3.函数图像 若把角x 的顶点置于坐标系uOv 的原点,角x 的始边与Ou 轴重合,终边与单位圆的交点为()P u v ,则sin cos x v x u ==,.当x 在区间[)02π,上连续变化的时候,都有单位圆上点()P u v ,与之对应.相应地在坐标系xOy 中,描绘出点()Q x v ,和点()R x u ,.点Q 便勾画出正弦函数sin y x =一个周期的图像(见图6-1),点R便勾画出余弦函数cos y x =一个周期的图像(见图6-2).然后再利用函数的周期性将图像向左右延伸,便得到正弦函数和余弦函数的图像(见图6-3).图6-34.单调性当ππ22x ⎡⎤∈-⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递增,∴函数sin y x =在ππ22⎡⎤-⎢⎥⎣⎦,上单调增.当π3π22x ⎡⎤∈⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递减,∴函数sin y x =在π3π22⎡⎤⎢⎥⎣⎦,上单调减.同理可得,函数cos y x =在[]0π,上单调减,在[]π2π,上单调增.拓展:函数sin y x =在ππ2ππ2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 说明:若()y f x =是定义在实数集R 上的周期函数,最小正周期是T ,[]a b ,是()y f x =的单调区间,则对任意整数k ,[]kT a kT b ++,均是()y f x =的单调区间. 5.最值回顾:函数sin y x =在ππ2π2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 结论:当()π2π2x k k =+∈Z 时,函数sin y x =取最大值1; 当()π2π2x k k =-∈Z 时,函数sin y x =取最小值1-; 当()2πx k k =∈Z 时,函数cos y x =取最大值1; 当()2ππx k k =+∈Z 时,函数cos y x =取最小值1-.例1.求证:()sin f x x =是偶函数.证明:对x ∀∈R ,有()()()sin sin f x x x f x -=-==, ()sin f x x ∴=是偶函数.例2.研究函数()sin cos f x x x =+的奇偶性. 解:πππsin cos 0444f ⎛⎫⎛⎫⎛⎫-=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, πππsin cos 444f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.另解:若()()f x f x -=,即()()sin cos sin cos x x x x -+-=+, 则sin 0x =,即πx k =,k ∈Z .若()()f x f x -=-,即()()sin cos sin cos x x x x -+-=--, 则cos 0x =,即ππ2x k =+,k ∈Z . ()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.说明:对于()sin cos f x x x =+,虽然有无数多个实数x ,满足()()f x f x -=,但是()f x 并不是偶函数.同理()f x 也不是奇函数.函数的奇偶性是函数的整体性质.若()f x 是奇函数,则()()f x f x -=-对于定义域内的每一个x 恒成立; 若()f x 是偶函数,则()()f x f x -=对于定义域内的每一个x 恒成立.例3.已知A ωϕ、、都是常数,且0A >,ω>0,求证:函数()()sin f x A x ωϕ=+的最小正周期是2πω.解:对于任何实数x ,()2π2πsin sin 2πf x A x A x ωϕωϕωω⎡⎤⎛⎫⎛⎫+=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()sin A x f x ωϕ=+=,2πω∴是函数()()sin f x A x ωϕ=+的周期.可以证明2πω是函数()()sin f x A x ωϕ=+的最小正周期.例4.作出函数sin cos y x x =+在[]02π,上的图像.解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.描点作图,见图6-4.图6-4例5.求函数sin cos y x x =+的单调增区间. 解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.πππ2π2π242k x k k -++∈Z ,≤≤,3ππ2π2π44k x k k ∴-+∈Z ,≤≤. ∴函数sin cos y x x =+的单调增区间是()3ππ2π2π44k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.例6.求函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间.解:π2π32ππ3k xk k -+∈Z ,≤≤,2ππ2π4π3939k k x k ∴++∈Z ,≤≤.∴函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间是()2ππ2π4π3939k k k ⎡⎤++∈⎢⎥⎣⎦Z ,.例7.求函数()sin cos 0y a x b x ab =+≠的最值. 解:()sin cos y a x b x x ϕ=++,其中tan baϕ=, max min y y ∴==.例8.求下列函数的最值: (1)2sin 2cos y x x =+;(2)()22sin cos y a x b x a b =+≠; (3)()()3sin 2105sin 270y x x =+︒++︒;(4)66sin cos y x x =+.解:(1)()2111sin 2cos sin 2cos22222y x x x x x ϕ=+=++=++,max y ∴min y =. (2)()222sin cos sin y a x b x a b x b =+=-+,∴若a b >,则2sin 1x =时,max y a =;2sin 0x =时,min y b =.若a b <,则2sin 0x =时,max y b =;2sin 1x =时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.另解:221cos21cos2sin cos cos22222x x b a a by a x b x ab x -+-+=+=+=+, ∴若a b >,则cos21x =-时,max y a =;cos21x =时,min y b =.若a b <,则cos21x =时,max y b =;cos21x =-时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.(3)()()3sin 2105sin 270y x x =+︒++︒3cos10sin23sin10cos25cos70sin25sin70cos2x x x x =︒+︒+︒+︒()()3cos105cos70sin 23sin105sin 70cos2x x =︒+︒+︒+︒ ()7sin 2x ϕ=+,其中3sin105sin 70tan 3cos105cos70ϕ︒+︒=︒+︒,max 7y ∴=,min 7y =-.(4)664224sin cos sin sin cos cos y x x x x x x =+=-+()2222223sin cos 3sin cos 1sin 24x x x x x =+-=-,max 1y ∴=,min 14y =. 说明:在求函数的最值过程中,始终要贯彻“统一名称统一角”的观点. 基础练习1.判断下列函数的奇偶性,并求最小正周期: (1)()sin sin 2f x x x =+; (2)()sin f x x x =; (3)()πsin πf x x =;(4)()2sin sin 2f x x x =+;(5)()ππcos cos 33f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭;(6)()22sin 2sin cos 3cos f x x x x x =++; (7)()66sin cos f x x x =+;(8)()()2222sin cos 0f x a x b x a b =++≠.2.用五点法分别作出下列各函数的图像,并说明这些函数的图像和sin y x =图像的区别.(1)2sin 1y x =-;(2)12sin 2y x =.3.观察正弦曲线和余弦曲线.写出满足下列条件的区间: (1)sin 0x >; (2)cos 0x <; (3)1sin 2x >; (4)cos x <. 4.求下列函数的单调区间:(1)πcos 27y x ⎛⎫=-- ⎪⎝⎭;(2)π2sin 34y x ⎛⎫=-- ⎪⎝⎭;(3)lg cos 13xy ⎛⎫= ⎪⎝⎭.5.求下列函数的最值,及取得相应最值的x 值.(1)π32sin 3y x ⎛⎫=-- ⎪⎝⎭; (2)23cos 4sin 2y x x =--;(3)22sin 3sin 1y x x =-+,π2π33x ⎡⎤∈⎢⎥⎣⎦,.6.确定函数131log 4y x ⎤⎛⎫=- ⎪⎥⎝⎭⎦的定义域、值域、单调区间、奇偶性、周期性.能力提高7.设π02αβγ⎛⎫∈ ⎪⎝⎭、、,,满足:()()cos cos sin sin cos ααββγγ===,,,则αβγ,,的大小关系为__________.8.求下列函数的周期: (1)sin3cos y x x =+;(2)1sin cos 1sin cos 1sin cos 1sin cos x x x xy x x x x+++-=++-++; (3)()2cos 325y x =-+.9.求5sin 2π2y x ⎛⎫=+ ⎪⎝⎭的图像的对称轴方程.10.(1)求函数()2sin sin f x a x x =-的最大值()g a ,并画出()g a 的图像.(2)若函数()2cos sin f x x a x b =-+的最大值为0,最小值为4-,实数0a >,求a b ,的值.6.2 正切函数的性质与图像定义:对于ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,都有唯一确定的值tan x 与之对应,按照此对应法则建立的函数tan y x =,叫做正切函数. 正切函数的性质:1.周期性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan πtan k x x k +=∈Z ,, tan t x ∴=是周期函数.可以证明函数tan y x =的最小正周期是π(见图6-5).图6-52.奇偶性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan tan x x -=-,tan y x ∴=是奇函数. 3.单调性12π02x x ⎡⎫∀∈⎪⎢⎣⎭、,,且12x x <,()121212sin tan tan cos cos x x x x x x --=12π02x x -<-<, ()12sin 0x x ∴-<. 1cos 0x >,2cos 0x >,()121212sin tan tan 0cos cos x x x x x x -∴-=>,即tan y x =在π0,2⎡⎫⎪⎢⎣⎭上单调增.tan y x =是奇函数, tan y x =在ππ22⎛⎫- ⎪⎝⎭,上单调增.tan y x =是周期为π的函数,∴函数tan y x =的单调增区间是()ππππ22k k k ⎛⎫-+∈ ⎪⎝⎭Z ,.4.值域函数tan y x =的值域是R .正切函数tan y x =在ππ22⎛⎫- ⎪⎝⎭,的图像如图6-6:图6-6利用正切函数的周期性,得到正切函数的图像. 例1.判断函数()tan 1lgtan 1x f x x +=-的奇偶性.解:函数的定义域应满足tan 10tan 1x x +>-,即tan 1x <-,或tan 1x >.于是定义域是()ππππππππ2442k k k k k ⎛⎫⎛⎫--++∈ ⎪ ⎪⎝⎭⎝⎭Z ,,,定义域是关于原点对称的. ()()()1tan 11tan 1tan lg lg lg tan 1tan 1tan 1x x x f x x x --+-+⎛⎫-=== ⎪-----⎝⎭()tan 1lgtan 1x f x x +=-=--.所以,tan 1lgtan 1x y x +=-是奇函数.例2.解不等式:tan21x -≤.解:在ππ22⎛⎫- ⎪⎝⎭,内,πtan 14⎛⎫-=- ⎪⎝⎭.∴不等式tan21x -≤的解集由不等式()πππ2π24k x k k -<-∈Z ≤确定,解得()ππππ22428k k x k -<-∈Z ≤, ∴不等式tan21x -≤的解集为ππππ22428k k x x k ⎧⎫-<-∈⎨⎬⎩⎭Z ,≤.基础练习 1.有人说:“正切函数在整个定义域内是单调递增的函数.”这句话对吗?为什么? 2.求下列函数的周期: (1)()()tan 0y ax b a =+≠; (2)tan cot y x x =-. 3.求函数11tan 2y x=+五的定义域.4.求函数22tan tan 1tan tan 1x x y x x -+=++的最大值、最小值,并求函数取得最大值或最小值时自变量x 的集合.5.求下列函数的最大值和最小值:(1)sin 2sin 3x y x -=-;(2)sin 2cos 3x y x -=-.能力提高6.求函数sin cos π0,sin cos 2x x y x x x ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭的最值.7.根据条件比较下列各组数的大小: (1)已知ππ32θ<<,比较sin θ,cot θ,cos θ的大小; (2)已知π04θ<<,比较sin θ,()sin sin θ,()sin tan θ的大小; (3)已知π02θ<<,比较cos θ,()cos sin θ,()sin cos θ的大小. 6.3 函数()sin y A x d ωϕ=++的图像与性质例1.对下列函数与函数()sin y x x =∈R 进行比较研究(最好利用几何画板进行动态的研究): (1)()sin 01y A x x A A =∈>≠R ,,;(2)()sin 01y x x ωωω=∈>≠R ,,; (3)()()sin 0y x x ϕϕϕ=+∈∈≠R R ,,; (4)()sin 0y x d x d d =+∈∈≠R R ,,; (5)()()sin 01100y A x d x A A d d ωϕωωϕϕ=++∈>≠>0≠∈≠∈≠R R R ,,,,,,,,. 解:(1)函数sin y A x =与sin y x =都是奇函数,具有相同的周期和单调区间,但值域不同.当1A >时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向拉伸得到;当01A <<时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向压缩得到(见图6-7).图6-7(2)函数sin y x ω=与sin y x =都是奇函数,值域相同,但函数sin y x ω=与sin y x =的周期和单调区间都不同.当ω>1时,函数sin y x ω=的图像可以看成由函数sin y x =的图像横向压缩得到;当0ω<<1时.函数sin y x ω=的图像可以看成由函数sin y x =的图像横向拉伸得到(见图6-8).图6-8(3)当()πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+是奇函数;当()ππ2k k ϕ=+∈Z ,函数()sin y x ϕ=+偶函数;函数()sin y x ϕ=+与sin y x =具有相同的周期和值域;当()2πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+与sin y x =具有相同的单调区间.当ϕ>0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向左平移得到;当ϕ<0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向右平移得到(见图6-9).图6-9(4)函数sin y x d =+既不是奇函数,也不是偶函数;函数sin y x d =+与sin y x =具有相同的周期和单调区间,但值域不同.当0d >时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向上平移得到;当0d <时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向下平移得到(见图6-10).图6-10(5)函数()sin y A x d ωϕ=++的图像可以由函数sin y x =的图像经过一系列的变换得到.首先把函数sin y x =的图像进行纵向的变化,让函数sin y x =的图像上点的横坐标保持不变,让点的纵坐标变为原来的A 倍,得到函数sin y A x =的图像(见图6-11).图6-11其次把函数sin y A x =的图像进行横向的变化,让函数sin y A x =的图像七点的纵坐标保持不变,让点的横坐标变为原来的1ω倍,得到函数sin y A x ω=。
三角函数讲义
cos2
学大教育屏山学习中心高中数学教研组
考点三:三角函数的图像和性质
y sin x
y cos x
y tan x
定义域 值域 奇偶性 对称轴 对称中心 单调区间
考题一:三角函数的图像及其变换 例 1:函数 f xபைடு நூலகம் 2sin( x ), ( 0. ) 2 2 的部分图像如图所示, 则 和 的值分别 是 、 。
学大教育屏山学习中心高中数学教研组
考题二、三角函数的最值与综合应用 ① 用三角方法求三角函数的最值常见的函数形式 (1) y a sin x b cos x (2) y a sin 2 x b cos2 x
a sin x b a cos x b (或者 y ) c cos x d c cos x d ②用代数方法求三角函数的最值常见的函数形式
例 6:已知函数 f ( x) 2sin 2 ( x) 3 cos 2 x 1, x , ,则 f x 的最小值为 4 4 2
例 7:已知函数 f x a (2 cos 2
x sin x) b 2
(1) 若 a 1 ,求函数 f ( x) 的单调增区间; (2) 若 x 0, 时,函数 f ( x) 的值域是 5,8 ,求 a , b 的值。
(3) y
(1) y a sin 2 x b cos x c (2) y a sin x
c b sin x
(3) y a(sin x cos x) b sin x cos x c (4) y
a sin x c b cos x d
例 1:函数 y sin( x) cos( x) 的最大值为 2 6
高中数学竞赛讲义(免费)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
(word完整版)高中数学专题系列三角函数讲义
(word完整版)⾼中数学专题系列三⾓函数讲义§1.1.1、任意⾓1、正⾓、负⾓、零⾓、象限⾓的概念.2、与⾓α终边相同的⾓的集合:{}Z k k ∈+=,2παββ.§1.1.2、弧度制1、把长度等于半径长的弧所对的圆⼼⾓叫做1弧度的⾓.2、 rl =α. 3、弧长公式:R R n l απ==180. 4、扇形⾯积公式:lR R n S 213602==π. §1.2.1、任意⾓的三⾓函数1、设α是⼀个任意⾓,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin 2、设点(),A x y为⾓α终边上任意⼀点,那么:(设r =sin y r α=,cos x r α=,tan yxα=,cot x y α=3、αsin ,αcos ,αtan 在四个象限的符号和三⾓函数线的画法.正弦线:MP; 余弦线:OM; 正切线:AT5、特殊⾓0°,30°45°,60°,90°,180°,270等的三⾓函数值.§1.2.21、平⽅关系:1cos sin 22=+αα 2、商数关系:αααcos sin tan =. 3、倒数关系:tan cot 1αα=§1.3、三⾓函数的诱导公式(概括为Z k ∈)§1.4.1、正弦、余弦函数的图象和性质1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最⼤最⼩值、对称轴、对称中⼼、奇偶性、单调性、周期性.3、会⽤五点法作图.sin y x =在[0,2]x π∈上的五个关键点为: 30010-12022ππππ(,)(,,)(,,)(,,)(,,).y=tanx3π2ππ2-3π2-π-π2oyxy=cotx 3π2ππ22π-π-π2o yx图表归纳:正弦、余弦、正切函数的图像及其性质x y sin =x y cos =x y tan =图象定义域 RR},2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,⽆周期性π2=T π2=Tπ=T奇偶性奇偶奇单调性Z k ∈在[2,2]22k k ππππ-+上单调递增在3[2,2]22k k ππππ++上单调递减在[2,2]k k πππ-上单调递增在[2,2]k k πππ+上单调递减在(,)22k k ππππ-+上单调递增对称性 Z k ∈对称轴⽅程:2x k ππ=+对称中⼼(,0)k π对称轴⽅程:x k π= 对称中⼼(,0)2k ππ+⽆对称轴对称中⼼,0)(2k π§1.4.3、正切函数的图象与性质1、记住正切函数的图象2、记住余切函数的图象:3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中⼼、奇偶性、单调性、周期性.§1.5、函数()?ω+=x A y sin 的图象 1、对于函数:()()sin 0,0y A x B A ωφω=++>>有:振幅A ,周期2T πω=,初相?,相位?ω+x ,频率πω21==Tf .2、能够讲出函数x y sin =的图象与()sin y A x B ω?=++的图象之间的平移伸缩变换关系.3、三⾓函数的周期,对称轴和对称中⼼函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0)的周期2|| T πω=;函数tan()y x ω?=+,,2x k k Z ππ≠+∈(A,ω,?为常数,且A ≠0)的周期||T πω=. 对于sin()y A x ω?=+和cos()y A x ω?=+来说,对称中⼼与零点相联系,对称轴与最值点联系. 求函数sin()y A x ω?=+图像的对称轴与对称中⼼,只需令()2x k k Z πω?π+=+∈与()x k k Z ω?π+=∈解出x 即可.余弦函数可与正弦函数类⽐可得.4、由图像确定三⾓函数的解析式利⽤图像特征:max min 2A =,max min2y y B +=. ω要根据周期来求,?要⽤图像的关键点来求.§1.6、三⾓函数模型的简单应⽤(要求熟悉课本例题.)§3.1.1、两⾓差的余弦公式§3.1.2、两⾓和与差的正弦、余弦、正切公式 1、()βαβαβαsin cos cos sin sin +=+ 2、()βαβαβαsin cos cos sin sin -=- 3、()βαβαβαsin sin cos cos cos -=+ 4、()βαβαβαsin sin cos cos cos +=- 5、()tan tan 1tan tan tan αβαβαβ+-+=.6、()tan tan 1tan tan tan αβαβαβ-+-=.§3.1.3、⼆倍⾓的正弦、余弦、正切公式1、αααcos sin 22sin =,2、ααα22sin cos 2cos -=变形: 12sin cos sin 2ααα=. 1cos 22-=αα2sin 21-=.升幂公式:221cos 22cos 1cos 22sin αααα+=-= 降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-3、ααα2tan 1tan 22tan -=. 4、sin 21cos 2tan 1cos 2sin 2ααααα-==+ §3.2、简单的三⾓恒等变换1、注意正切化弦、平⽅降次.2、辅助⾓公式)sin(cos sin 22?++=+=x b a x b x a y (其中辅助⾓?所在象限由点(,)a b 的象限决定,tan b a=).解三⾓形1、正弦定理:R CcB A 2sin sin sin ===. (其中R 为ABC ?外接圆的半径) 2sin ,2sin ,2sin ;a R A b R B c R C ?===sin ,sin ,sin ;222a b c A B C R R R=== ::sin :sin :sin .a b c A B C ?=⽤途:⑴已知三⾓形两⾓和任⼀边,求其它元素;⑵已知三⾓形两边和其中⼀边的对⾓,求其它元素。
(word完整版)高中数学竞赛讲义(免费)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
高中数学专题讲义:三角函数公式的正用、逆用与变用
高中数学专题讲义:三角函数公式的正用、逆用与变用考纲要求:sinx1.理解同角三角函数的基本关系式:s折He技r=l,cosx=tanx.n2.能利用单位圆中的三角函数线推导出云土a,jr±a的正弦、余弦、正切的诱导公式.3.会用向量的数量积推导出两角差的余弦公式.能利用两角差的余弦公式推导出两角差的正弦、正切公式.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.能运用上述公式进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).基础知识回顾:1.同角三角函数的基本关系(1)平方关系:sin:<z+cos:a=l,(2)商数关系:tan a=.cosa2.三角函数的诱导公式公式一:sin(tz+2^)=sina,cos(Q+2k/r)=cosq,tan(<z+2k^r)=tantz,其中k.Z.公式二:"+。
)=-sin。
,cos(刀+a)=—cos。
,tan(^+a)=tana.公式三:sin(.—a)=-sinct t cos(—a)=cosa,tan(—a)=—tana.公式四:sin(rr—a)=sina ,cos(—a)=-cos a»tan{n—a)=—tana.注、(i)三角函数诱导公式”m+a)(sz)的本质是“奇变偶不变,符号看象限”(2)诱导公式的应用之一是求任意角的三角函数值,其一般步骤:①负角变正角,再写成2kNa(0W八21);②转化为锐角.3.两角和与差的正弦、余弦和正切公式sin(a土fi)=sin a cos B士cos a sin;cqs(a干8) =cqs a cos B土sin.c,/»c、tan a±tan Fa sin P;tan{a±B)=----------•ITtan a tan p4.二倍角的正弦、余弦、正切公式sin2a=2sin a cos a;cos2a=cos a—sin a=2cos a—l=l~2sin a;tan2a _ 2tan tz1-tan2 a1+sin2a=(sin a+cos a)21~siri2a=(sin a—cos tz)2 >sin a土cos asin(a5.辅助角公式asinx-bcosx=sin(x+S),其中sin S=/二+财,。
高中数学竞赛辅导讲义 第六章 三角函数【讲义】
÷ö 0 ø
=
2.
若α+β< p ,则 x<0,由 0<α< p -β< p 得 cosα>cos( p -β)=sinβ>0,
2
2
2
2
所以 cosa >1。又 0<sinα<sin( p -β)=cosβ,所以 cos b >1,
sin b
2
sin a
所以
ççèæ
cosa sin b
÷÷øö x
+
,
0)均为其对称
中心,值域为[-1,1]。这里 k∈Z.
定理 4 余弦函数的性质,根据图象可得 y=cosx(x∈R)的性质。单调
区间:在区间[2kπ, 2kπ+π]上单调递减,在区间[2kπ-π, 2kπ]上单调递增。
最小正周期为 2π。奇偶性:偶函数。对称性:直线 x=kπ 均为其对称
轴,点 çæ kp
2
çæ è
a 2
÷ö ø
tana =
2
tançæ è
a 2
÷ö ø
.
1
-
tan
2
çæ è
a 2
÷ö ø
定理 11 辅助角公式:如果 a, b 是实数且 a2+b2 ¹ 0,则取始边在 x 轴 正半轴,终边经过点(a, b)的一个角为β,则 sinβ= b ,cosβ
a2 + b2
= a ,对任意的角α.
第六章 三角函数
一、基础知识
定义 1 角,一条射线绕着它的端点旋转得到的图形叫做角。若旋转 方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为 负角,若不旋转则为零角。角的大小是任意的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。
若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。
角的大小是任意的。
定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。
360度=2π弧度。
若圆心角的弧长为L ,则其弧度数的绝对值|α|=rL ,其中r 是圆的半径。
定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=ry ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=yx ,正割函数se c α=xr ,余割函数c s c α=.yr定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=αsec 1;商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α,tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ⎪⎭⎫ ⎝⎛-απ2=co s α,co s ⎪⎭⎫ ⎝⎛-απ2=s in α, tan ⎪⎭⎫ ⎝⎛-απ2=cot α(奇变偶不变,符号看象限)。
定理3 正弦函数的性质,根据图象可得y =s inx (x ∈R )的性质如下。
单调区间:在区间⎥⎦⎤⎢⎣⎡+-22,22ππππk k 上为增函数,在区间⎥⎦⎤⎢⎣⎡++ππππ232,22k k 上为减函数,最小正周期为2π. 奇偶数. 有界性:当且仅当x =2kx +2π时,y 取最大值1,当且仅当x =3k π-2π时, y 取最小值-1。
对称性:直线x =k π+2π均为其对称轴,点(k π, 0)均为其对称中心,值域为[-1,1]。
这里k ∈Z .定理4 余弦函数的性质,根据图象可得y =co s x (x ∈R )的性质。
单调区间:在区间[2k π, 2k π+π]上单调递减,在区间[2k π-π, 2k π]上单调递增。
最小正周期为2π。
奇偶性:偶函数。
对称性:直线x =k π均为其对称轴,点⎪⎭⎫ ⎝⎛+0,2ππk 均为其对称中心。
有界性:当且仅当x =2k π时,y 取最大值1;当且仅当x =2k π-π时,y 取最小值-1。
值域为[-1,1]。
这里k ∈Z .定理5 正切函数的性质:由图象知奇函数y =tanx (x ≠k π+2π)在开区间(k π-2π, k π+2π)上为增函数, 最小正周期为π,值域为(-∞,+∞),点(k π,0),(k π+2π,0)均为其对称中心。
定理6 两角和与差的基本关系式:co s(α±β)=co s αco s β s in αs in β,s in (α±β)=s in αco s β±co s αs in β; tan (α±β)=.)tan tan 1()tan (tan βαβα ±定理7 和差化积与积化和差公式: s in α+s in β=2s in ⎪⎭⎫⎝⎛+2βαco s ⎪⎭⎫⎝⎛-2βα,s in α-s in β=2s in ⎪⎭⎫⎝⎛+2βαco s ⎪⎭⎫⎝⎛-2βα, co s α+co s β=2co s ⎪⎭⎫⎝⎛+2βαco s ⎪⎭⎫⎝⎛-2βα, co s α-co s β=-2s in ⎪⎭⎫⎝⎛+2βαs in ⎪⎭⎫⎝⎛-2βα, s in αco s β=21[s in (α+β)+s in (α-β)],co s αs in β=21[s in (α+β)-s in (α-β)],co s αco s β=21[co s(α+β)+co s(α-β)],s in αs in β=-21[co s(α+β)-co s(α-β)].定理8 倍角公式:s in 2α=2s in αco s α, co s2α=co s 2α-s in 2α=2co s 2α-1=1-2s in 2α,tan 2α=.)tan 1(tan 22αα- 定理9 半角公式:s in ⎪⎭⎫ ⎝⎛2α=2)cos 1(α-±,co s ⎪⎭⎫ ⎝⎛2α=2)cos 1(α+±, tan ⎪⎭⎫ ⎝⎛2α=)cos 1()cos 1(αα+-±=.sin )cos 1()cos 1(sin αααα-=+定理10 万能公式: ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=2tan 12tan 2sin 2ααα, ⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛-=2tan 12tan 1cos 22ααα, .2tan 12tan 2tan 2⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛=ααα 定理11 辅助角公式:如果a , b 是实数且a 2+b 2≠0,则取始边在x 轴正半轴,终边经过点(a , b )的一个角为β,则s in β=22ba b +,co s β=22ba a +,对任意的角α.a s in α+bco s α=)(22b a +s in (α+β). 定理12 正弦定理:在任意△ABC 中有R CcB b A a 2sin sin sin ===,其中a , b , c 分别是角A ,B ,C 的对边,R 为△ABC 外接圆半径。
定理13 余弦定理:在任意△ABC 中有a 2=b 2+c 2-2bco s A ,其中a ,b ,c 分别是角A ,B ,C 的对边。
定理14 图象之间的关系:y =s inx 的图象经上下平移得y =s inx +k 的图象;经左右平移得y =s in (x +ϕ)的图象(相位变换);纵坐标不变,横坐标变为原来的ω1,得到y =s in x ω(0>ω)的图象(周期变换);横坐标不变,纵坐标变为原来的A 倍,得到y =A s inx 的图象(振幅变换);y =A s in (ωx +ϕ)(ω>0)的图象(周期变换);横坐标不变,纵坐标变为原来的A 倍,得到y =A s inx 的图象(振幅变换);y =A s in (ωx +ϕ)(ω,ϕ>0)(|A |叫作振幅)的图象向右平移ωϕ个单位得到y =A s in ωx 的图象。
定义4 函数y =s inx ⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡-∈2,2ππx 的反函数叫反正弦函数,记作y =a r c s inx (x ∈[-1, 1]),函数y =co s x (x ∈[0, π]) 的反函数叫反余弦函数,记作y =a r cco s x (x ∈[-1, 1]). 函数y =tanx ⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡-∈2,2ππx 的反函数叫反正切函数。
记作y =a r ctanx (x ∈[-∞, +∞]). y =co s x (x ∈[0, π])的反函数称为反余切函数,记作y =a r ccotx (x ∈[-∞, +∞]).定理15 三角方程的解集,如果a ∈(-1,1),方程s inx =a 的解集是{x |x =n π+(-1)n a r c s ina , n ∈Z }。
方程co s x =a 的解集是{x |x =2kx ±a r cco s a , k ∈Z }. 如果a ∈R ,方程tanx =a 的解集是{x |x =k π+a r ctana , k ∈Z }。
恒等式:a r c s ina +a r cco s a =2π;a r ctana +a r ccota =2π.定理16 若⎪⎭⎫ ⎝⎛∈2,0πx ,则s inx <x <tanx .二、方法与例题1.结合图象解题。
例1 求方程s inx =lg |x |的解的个数。
【解】在同一坐标系内画出函数y =s inx 与y =lg |x |的图象(见图),由图象可知两者有6个交点,故方程有6个解。
2.三角函数性质的应用。
例2 设x ∈(0, π), 试比较co s(s inx )与s in (co s x )的大小。
【解】 若⎪⎭⎫⎢⎣⎡∈ππ,2x ,则co s x ≤1且co s x >-1,所以co s ⎥⎦⎤ ⎝⎛-∈0,2πx , 所以s in (co s x ) ≤0,又0<s inx ≤1, 所以co s(s inx )>0, 所以co s(s inx )>s in (co s x ).若⎥⎦⎤⎝⎛-∈2,0πx ,则因为s inx +co s x =2cos 22sin 222=⎪⎪⎭⎫ ⎝⎛+x x (s inxco s 4π+s in 4πco s x )=2s in (x +4π)≤2<2π, 所以0<s inx <2π-co s x <2π,所以co s(s inx )>co s(2π-co s x )=s in (co s x ).综上,当x ∈(0,π)时,总有co s(s inx )<s in (co s x ).例3 已知α,β为锐角,且x ·(α+β-2π)>0,求证:.2sin cos sin cos <⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛xxαββα 【证明】 若α+β>2π,则x >0,由α>2π-β>0得co s α<co s(2π-β)=s in β,所以0<βαsin cos <1,又s in α>s in (2π-β)=co s β, 所以0<αβsin cos <1, 所以.2sin cos sin cos sin cos sin cos 0=⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛αββααββαxx若α+β<2π,则x <0,由0<α<2π-β<2π得co s α>co s(2π-β)=s in β>0,所以βαsin cos >1。