几何五大模型之四(相似定理)
平面几何常考五大模型---等积变换、鸟头、蝴蝶、相似、 燕尾
平面几何常考五大模型---(解答几何题的五大法宝)等积变换、鸟头、蝴蝶、相似、燕尾思路提示:在求边长之比时常转化为面积之比,求面积之比常转化为边长之比。
模型一:等积变化原理:两个三角形高相等,面积之比等于对应底边之比。
bS 1︰S 2 =a ︰b ;模型一的拓展: 等分点结论(“鸟头定理”):如下图,三角形AED 占三角形ABC 面积的23×14=16模型二:等积变化原理之四边形应用S 4S 3s 2s 1O DC BA141423213S S =S S S S DO OB S S +==+模型三:梯形中比例关系(“梯形蝴蝶定理”)(1)相似图形,面积比等于对应边长比的平方S 1︰S 3=a 2︰b2(2)S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab (3)S 2=S 4 ;(4)141423213S S =S S S S DO OB S S +==+ :模型四:相似三角形性质①a b c hA B C H=== ; ②相似三角形面积之比等于对应连长之比的平方S 1︰S 2=a 2︰A 2hh H cb a CB Aac b HC B模型五:燕尾定理F ED CBAS △ABG :S △AGC =S △BGE :S △GEC =BE :EC ; S △BGA :S △BGC =S △AGF :S △GFC =AF :FC ; S △AGC :S △BCG =S △ADG :S △DGB =AD :DB ;【例1】:如右图,在△ABC 中,BE=3AE ,CD=2AD .若△ADE 的面积是1平方厘米,那么三角形ABC 的面积是多少?【解答】连接BD,S △ABD 和S △ AED 同高,面积比等于底边比,所以三角形ABD 的面积是4,S △ABD 和S △ABC 同高面积比等于底边比,三角形ABC 的面积是ABD 的3倍,是12. 【总结】要找准那两个三角形的高相同。
小学数学五大几何模型
小学数学五大几何模型知识框架一、等积模型DC BA①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、共角定理(鸟头定理)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.:():()ABC ADE S S AB AC AD AE =⨯⨯△△(1)(2)(3)(4)三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.S 4S 3S 2S 1O DC BA梯形中比例关系(“梯形蝴蝶定理”):①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.A BC DO baS 3S 2S 1S 4四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCD ABCDEF G①AD AE DE AFAB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾定理)有一条公共边的三角形叫做共边三角形。
几何的五大模型
几何的五大模型一、等积变换模型(1)等底等高的两个三角形面积相等(2)两个三角形高相等,面积比等于它们的底之比(3)两个三角形底相等,面积比等于它们的高之比如左图S1:S2=a:b(4)夹在一组平行线之间的等积变形,如右上图,S△ABC= S△BAD反之,如果S△ABC= S△BCD,则可知直线AB平行于CD (AB∥CD)二、鸟头定理(共角定理)模型(1)两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
(2)共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图在△ABC中,D,E分别是AB,AC上的点如图.(或D在BA的延长线上,E在AC上),则S△ABC:S△ADE=(AB×AC):(AD×AE)推理过程连接BE,再利用等积变换模型即可。
证明:图(1)中设:过顶点D做底边AE的高为H1;过顶点B做底边AC的高为H2△ABE中S△ADE:S△ABE=AD:AB同理S△ADE:S△ABE=H1:H2 AD:AB= H1:H2又因S△ADE=AE*H1*1/2S△ABC=AC*H2*1/2 得出S△ADE:S△ABC=AE*H1:AC*H2 所以S△ADE:S△ABC=(AB×AC):(AD×AE)图(2)中设过顶点D作底边AE的高为H1,过顶点B做底边AC的高为H2△DBE中,S△ADE:S△ABE=AD:ABS△ADE:S△ABE= H1:H2 AD:AB= H1:H2又因S△ADE=AE*H1*1/2S△ABC=AC*H2*1/2 得出S△ADE:S△ABC=AE*H1:AC*H2所以S△ADE:S△ABC=(AB×AC):(AD×AE)三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”)①S1:S2=S4:S3 或者 S1×S3=S2×S4②AO:OC=(S1+S2):(S4+S3)证明(1):在△ABD中,S1:S2=DO:OB在△DCB中,S4:S3=DO:OB 得到S1:S2=S4:S3或者 S1×S3=S2×S4(十字相乘法)证明(2):设过D点作底边AC的高为H1,过B点作底边AC的高为H2(S1+S2):(S4+S3)=(AO*H1*1/2+AO*H2*1/2):(OC*H1*1/2+ OC*H2*1/2)约分得到:(S1+S2):(S4+S3)=AO:OC蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。
小学奥数平面几何
所以
S△ ADN
1 3
S△
ABN
1 3
1 7
S△
ABC
1 21
S△
ABC
同理
S△BEQ
1 21 S△ABC
在∆ABC中,根据燕尾定理,S△ABP : S△ACP BF : CF 1: 2 S△ABP : S△CBP AI : CI 1: 2
所以 S△ABP
1 5 S△ABC
所以 S五边形DNPQE
A
A
CD E B
FG
CD E
F
G
B
【解析】连接AF,BD, 根据题意可知CF=5+7+15=27,DG=7+15+6;
所以,SBEF
15 27
SCBF
SBEC
12 27
SCBF
SAEG
21 28 SADG
SAED
7 28 SADG
于是:
21 28
SADG
15 27 SCBF
65
7
12
28 SADG 27 SCBF 38
A
B
CD
④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的 平行四边形);
⑤三角形面积等于与它等底等高的平行四边形面积的一半;
⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底 相等,面积比等于它们的高之比.
3
.
二、鸟头定理
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在∆ABC中,D,E分别AB,AC是上的点如图 ⑴(或D在BA的延长线上,E在
小学奥数平面几何五种面积模型[等积,鸟头,蝶形,相似,共边]
小学奥数平面几何五种模型(等积,鸟头,蝶形,相似,共边)目标:熟练掌握五大面积模型等积,鸟头,蝶形,相似(含金字塔模型和沙漏模型),共边(含燕尾模型和风筝模型), 掌握五大面积模型的各种变形 知识点拨一、等积模型①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCBA图⑴ 图⑵ 三、蝶形定理任意四边形中的比例关系(“蝶形定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;b a S 2S 1DC BA S 4S 3S 2S 1O DCBA另一方面,也可以得到与面积对应的对角线的比例关系. 梯形中比例关系(“梯形蝶形定理”):①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AF ABACBCAG===;②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形. 五、共边定理(燕尾模型和风筝模型)在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=.上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径. 典型例题A B CD O ba S 3S 2S 1S 4O FED C BA【例 1】 如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积为 .【解析】 连接DE ,DF ,则长方形EFGH 的面积是三角形DEF 面积的二倍.三角形DEF 的面积等于正方形的面积减去三个三角形的面积,66 1.562262 4.54216.5DEF S =⨯-⨯÷-⨯÷-⨯÷=△,所以长方形EFGH面积为33.【巩固】如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?【解析】 本题主要是让学生会运用等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形).三角形面积等于与它等底等高的平行四边形面积的一半.证明:连接AG .(我们通过ABG △把这两个长方形和正方形联系在一起).∵在正方形ABCD 中,G 12AB S AB AB =⨯⨯△边上的高,∴12ABGABCDS S =△(三角形面积等于与它等底等高的平行四边形面积的一半)同理,12ABG EFGB S S =△.∴正方形ABCD 与长方形E F G B 面积相等. 长方形的宽88106.=⨯÷=(厘米).【例 2】 长方形ABCD 的面积为362cm ,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?_H_G_F_E_D_C_B_ A _A_B_C_D_E_ F_G_H_ A _ B_ G_ C _ E _ F_ D_ A _ B_ G_ C_ E_ F_ DE【解析】 解法一:寻找可利用的条件,连接BH 、HC ,如下图:E可得:12EH B A H BS S ∆∆=、12FHB CHB S S ∆∆=、12DHG DHC S S ∆∆=,而36ABCD AHB CHB CHD S S S S ∆∆∆=++=即11()361822EHB BHF DHG AHB CHB CHDS S S S S S ∆∆∆∆∆∆++=++=⨯=; 而EHB BHF DHG EBFS S S S S ∆∆∆∆++=+阴影,11111()()36 4.522228EBF S BE BF AB BC ∆=⨯⨯=⨯⨯⨯⨯=⨯=.所以阴影部分的面积是:1818 4.513.5EBF S S ∆=-=-=阴影解法二:特殊点法.找H 的特殊点,把H 点与D 点重合,那么图形就可变成右图:GE (H )这样阴影部分的面积就是DEF ∆的面积,根据鸟头定理,则有:11111113636363613.52222222ABCD AED BEF CFD S S S S S ∆∆∆=---=-⨯⨯-⨯⨯⨯-⨯⨯=阴影.【巩固】在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P 点连接,求阴影部分面积.【解析】 (法1)特殊点法.由于P 是正方形内部任意一点,可采用特殊点法,假设P 点与A 点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的14和16,所以阴影部分的面积为2116()1546⨯+=平方厘米.(法2)连接PA 、PC .由于PAD ∆与PBC ∆的面积之和等于正方形ABCD 面积的一半,所以上、下两个阴影三角形的面积之和等于正方形ABCD 面积的14,同理可知左、右两个阴影三角形的面积之和等于正方形ABCD 面积的16,所以阴影部分的面积为2116()1546⨯+=平方厘米.【例 3】 如图所示,长方形ABCD 内的阴影部分的面积之和为70,8AB =,15AD =,四边形EFGO 的面积为 .B【解析】 利用图形中的包含关系可以先求出三角形AOE、DOG 和四边形EFGO 的面积之和,以及三角形AOE 和DOG 的面积之和,进而求出四边形EFGO 的面积.由于长方形ABCD 的面积为158120⨯=,所以三角形BOC 的面积为1120304⨯=,所以三角形AOE和DOG 的面积之和为312070204⨯-=;又三角形AOE 、DOG 和四边形EFGO 的面积之和为111203024⎛⎫⨯-= ⎪⎝⎭,所以四边形EFGO 的面积为302010-=.另解:从整体上来看,四边形EFGO 的面积=三角形AFC 面积+三角形BFD 面积-白色部分的面积,而三角形AFC 面积+三角形BFD 面积为长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即1207050-=,所以四边形的面积为605010-=.【巩固】如图,长方形ABCD 的面积是36,E 是AD 的三等分点,2AE ED =,则阴影部分的面积为 .BB【解析】 如图,连接OE .根据蝶形定理,1:::1:12COE CDE CAE CDE ON ND S S S S ∆∆∆∆===,所以12OE N O EDS S ∆∆=; 1:::1:42BOE BAE BDE BAE OM MA S S S S ∆∆∆∆===,所以15OEM OEA S S ∆∆=.又11334OEDABCD S S ∆=⨯=矩形,26OEA OED S S ∆∆==,所以阴影部分面积为:1136 2.725⨯+⨯=.【例 4】 已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC)B【解析】 因为D 、E 、F 分别为三边的中点,所以DE 、DF 、EF 是三角形ABC 的中位线,也就与对应的边平行,根据面积比例模型,三角形ABN 和三角形AMC 的面积都等于三角形ABC 的一半,即为200.根据图形的容斥关系,有ABC ABN AMC AMHN S S S S S ∆∆∆-=+-丙, 即400 200200AMHN S S -=+-丙,所以AMHN S S =丙. 又ADF AMHN S S S S S ∆+=++乙甲阴影,所以1143400434ADF S S S S S ∆=++-=-⨯=乙甲丙阴影.【例 5】 如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是 .GFE DC BAABC D E FG【解析】 连接AF ,BD .根据题意可知,571527CF =++=;715628DG =++=;所以,1527BE CBF F S S ∆∆=,1227BE CBF C S S ∆∆=,2128AEG ADG S S ∆∆=,728AED ADG S S ∆∆=, 于是:2115652827ADG CBFS S ∆∆+=;712382827ADG CBF S S ∆∆+=; 可得40ADG S ∆=.故三角形ADG 的面积是40.【例 6】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBAEDCBA【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===⨯⨯△△,::4:7(45):(75)ABE ABC S S AE AC ===⨯⨯△△,所以:(24):(7A D E A BC S S =⨯⨯△△,设8ADE S =△份,则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 .【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?EDCBAABCD E【解析】 连接BE .∵3EC AE =∴3ABC ABE S S = 又∵5AB AD =∴515ADE ABE ABC S S S =÷=÷,∴1515ABC ADE S S ==.【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E DCBAABCDE甲乙【解析】 连接AD .∵3BE =,6AE =∴3AB BE =,3ABD BDE S S = 又∵4BD DC ==,∴2ABC ABD S S =,∴6ABC BDE S S =,5S S =乙甲.【例 7】 如图在ABC △中,D 在BA 的延长线上,E 在AC上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBAEDCB A【解析】 连接BE ,::2:5(23):(53)ADE ABE S S AD AB ===⨯⨯△△[]::3:(32)(35):(32)5ABE ABC S S AE AC ==+=⨯+⨯△△,所以[]:(32):5(32)6:25A D E A B C S S =⨯⨯+=△△,设6A D E S =△份,则25ABC S =△份,12ADE S =△平方厘米,所以1份是2平方厘米,25份就是50平方厘米,ABC △的面积是50平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EFHGAB CD EF【解析】 连接AC 、BD .根据共角定理∵在ABC △和BFE △中,ABC ∠与FBE ∠互补,∴111133ABCFBES AB BC S BE BF ⋅⨯===⋅⨯△△.又1ABC S =△,所以3FBE S =△.同理可得8GCF S =△,15DHG S =△,8AEH S =△.所以8815+3+236EFGH AEH CFG DHG BEF ABCD S S S S S S =++++=++=△△△△. 所以213618ABCDEFGHS S ==.【例 9】 如图所示的四边形的面积等于多少?DB13131212【解析】 题目中要求的四边形既不是正方形也不是长方形,难以运用公式直接求面积.我们可以利用旋转的方法对图形实施变换:把三角形OAB 绕顶点O 逆时针旋转,使长为13的两条边重合,此时三角形OAB 将旋转到三角形OCD 的位置.这样,通过旋转后所得到的新图形是一个边长为12的正方形,且这个正方形的面积就是原来四边形的面积.因此,原来四边形的面积为1212144⨯=.(也可以用勾股定理)【例 10】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【解析】 如图,将OAB ∆沿着O 点顺时针旋转90︒,到达OCF ∆的位置.由于90ABC ∠=︒,90AOC ∠=︒,所以180OAB OCB ∠+∠=︒.而OCF OAB ∠=∠, 所以180OCF OCB ∠+∠=︒,那么B 、C 、F 三点在一条直线上.由于OB OF =,90BOF AOC ∠=∠=︒,所以BOF ∆是等腰直角三角形,且斜边BF 为538+=,所以它的面积为218164⨯=.根据面积比例模型,OBC ∆的面积为516108⨯=.【例 11】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.F【解析】 如图,连接DE ,以A 点为中心,将ADE ∆顺时针旋转90︒到ABF ∆的位置.那么90EAF EAB BAF EAB DAE ∠=∠+∠=∠+∠=︒,而AEB ∠也是90︒,所以四边形AFBE 是直角梯形,且3AF AE ==, 所以梯形AFBE 的面积为:()1353122+⨯⨯=(2cm ).又因为ABE ∆是直角三角形,根据勾股定理,222223534AB AE BE =+=+=,所以21172ABD S AB ∆==(2cm ). 那么()17125BDE ABD ABE ADE ABD AFBE S S S S S S ∆∆∆∆∆=-+=-=-=(2cm ), 所以1 2.52OBE BDE S S ∆∆==(2cm ).【例 12】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?FEABDCGFEABDC【解析】 如图,我们将BCD ∆平移使得CD 与AF 重合,将DEF ∆平移使得ED 与AB 重合,这样EF 、BC 都重合到图中的AG 了.这样就组成了一个长方形BGFD ,它的面积与原六边形的面积相等,显然长方形BGFD 的面积为2418432⨯=平方厘米,所以六边形ABCDEF 的面积为432平方厘米.【例 13】 如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FEDCBA33321F EDC BAABCDEF【解析】 方法一:连接CF,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△ 方法二:连接DE ,由题目条件可得到1133ABD ABCS S ==△△, 11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADES BF FE S ==△△,111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABCS S =⨯⨯=△△.所以则四边形DFEC 的面积等于512. 【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?y B CD EGE D CBAEDB A【解析】 设1DEFS =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米.【例 14】 四边形ABCD 的对角线AC与BD 交于点O (如图所示).如果三角形ABD的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.ABCDOH GA BCD O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形.看到题目中给出条件:1:3ABD BCD S S =,这可以向模型一蝶形定理靠拢,于是得出一种解法.又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比.再应用结论:三角形高相同,则面积之比等于底边之比,得出结果.请老师注意比较两种解法,使学生体会到蝶形定理的优势,从而主观上愿意掌握并使用蝶形定理解决问题.解法一:∵::1:3ABD BDC AO OC S S ∆∆==,∴236OC =⨯=,∴:6:32:1O C O D ==.解法二:作AH BD ⊥于H ,CG BD ⊥于G .∵13ABD BCD S S ∆∆=,∴13AH CG =,∴13AODDOC S S ∆∆=, ∴13AO CO =,∴236OC =⨯=,∴:6:32:1OC OD ==.【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC =?B【解析】 ⑴根据蝶形定理,123BGCS⨯=⨯,那么6BGCS=;⑵根据蝶形定理,()():12:361:3AG GC =++=.【例 15】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF△、ODF △、BOE △的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.OGFEDCBA【解析】 ⑴根据题意可知,BCD △的面积为244616+++=,那么BCO △和CDO ∆的面积都是1628÷=,所以OCF △的面积为844-=;⑵由于BCO △的面积为8,BOE △的面积为6,所以OCE △的面积为862-=,根据蝶形定理,::2:4C O EC O F E G F G S S ∆∆===,所以::1:2GCE GCF S S EG FG ∆∆==,那么11221233GCE CEF S S ∆∆==⨯=+.【例 16】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.ABCD EF GABCD EF G【解析】 连接AE ,FE .因为:2B E EC =,:1:2DF FC =,所以3111()53210DEFABCD ABCD SS S =⨯⨯=长方形长方形. 因为12AEDABCD S S =长方形,11::5:1210AG GF ==,所以510AGD GDF S S ==平方厘米,所以12AFD S =平方厘米.因为16AFDABCD S S =长方形,所以长方形ABCD 的面积是72平方厘米.【例 17】 如图,正方形ABCD面积为3平方厘米,M 是AD 边上的中点.求图中阴影部分的面积.CBA【解析】 因为M 是AD 边上的中点,所以:1:2AM BC =,根据梯形蝶形定理可以知道22:::1:12:12:21:2:2:4AMG ABG MCG BCG S S S S =⨯⨯=△△△△()(),设1A G M S =△份,则123M C D S =+=△ 份,所以正方形的面积为1224312++++=份,224S =+=阴影份,所以:1:3S S =阴影正方形,所以1S =阴影平方厘米.【巩固】在下图的正方形ABCD 中,E 是BC 边的中点,AE 与BD 相交于F 点,三角形BEF 的面积为1平方厘米,那么正方形ABCD 面积是 平方厘米.A BCDEF【解析】 连接DE ,根据题意可知:1:2BE AD =,根据蝶形定理得2129S =+=梯形()(平方厘米),3ECD S =△(平方厘米),那么12ABCD S =(平方厘米).【例 18】 已知ABCD 是平行四边形,:3:2BC CE =,三角形ODE的面积为6平方厘米.则阴影部分的面积是 平方厘米.BB【解析】 连接AC.由于ABCD 是平行四边形,:3:2BC CE =,所以:2:3CE AD =,根据梯形蝶形定理,22:::2:23:23:34:6:6:9COE AOC DOE AOD S S S S =⨯⨯=,所以6AOC S =(平方厘米),9AOD S =(平方厘米),又691A B C A C DS S ==+=(平方厘米),阴影部分面积为61521+=(平方厘米).【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.BB【分析】 连接AE.由于AD 与BC是平行的,所以AECD也是梯形,那么OCDOAE S S ∆∆=.根据蝶形定理,4936OCD OAE OCE OAD S S S S ∆∆∆∆⨯=⨯=⨯=,故236OCD S ∆=, 所以6OCD S ∆=(平方厘米).【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.BB【解析】 连接AE.由于AD 与BC 是平行的,所以AECD也是梯形,那么OCD OAE S S ∆∆=.根据蝶形定理,2816OCD OAE OCE OAD S S S S ∆∆∆∆⨯=⨯=⨯=,故216OCD S ∆=,所以4OCD S ∆=(平方厘米).另解:在平行四边形ABED 中,()111681222ADE ABEDS S∆==⨯+=(平方厘米), 所以1284AOE ADE AOD S S S ∆∆∆=-=-=(平方厘米),根据蝶形定理,阴影部分的面积为8244⨯÷=(平方厘米).【例 19】 如图,长方形ABCD 被CE、DF 分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积为___________平方厘米.?852O A BCDEF?852O A BC DEF【解析】 连接DE 、CF .四边形EDCF 为梯形,所以EOD FOC S S ∆=,又根据蝶形定理,EOD FOC EOF COD S S S S ∆∆∆∆⋅=⋅,所以2816EOD FOC EOF COD S S S S ∆∆∆∆⋅=⋅=⨯=,所以4EOD S ∆=(平方厘米),4812ECD S ∆=+=(平方厘米).那么长方形ABCD 的面积为12224⨯=平方厘米,四边形OFBC 的面积为245289---=(平方厘米).【例 20】 如图,ABC ∆是等腰直角三角形,DEFG 是正方形,线段AB 与CD 相交于K 点.已知正方形DEFG 的面积48,:1:3AK KB =,则BKD ∆的面积是多少?BB【解析】 由于DEFG 是正方形,所以DA 与BC 平行,那么四边形ADBC是梯形.在梯形ADBC 中,BDK ∆和ACK ∆的面积是相等的.而:1:3AK KB =,所以ACK ∆的面积是ABC ∆面积的11134=+,那么BDK ∆的面积也是ABC ∆面积的14.由于ABC ∆是等腰直角三角形,如果过A 作BC 的垂线,M 为垂足,那么M 是BC 的中点,而且AM D E =,可见ABM ∆和ACM ∆的面积都等于正方形DEFG 面积的一半,所以ABC ∆的面积与正方形DEFG 的面积相等,为48.那么BDK ∆的面积为148124⨯=.【例 21】 下图中,四边形ABCD 都是边长为1的正方形,E 、F 、G 、H 分别是AB ,BC ,CD ,DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数m n,那么,()m n +的值等于 .E【解析】 左、右两个图中的阴影部分都是不规则图形,不方便直接求面积,观察发现两个图中的空白部分面积都比较好求,所以可以先求出空白部分的面积,再求阴影部分的面积.如下图所示,在左图中连接EG .设AG 与DE 的交点为M .左图中AEGD 为长方形,可知AM D ∆的面积为长方形AEGD 面积的14,所以三角形AMD 的面积为21111248⨯⨯=.又左图中四个空白三角形的面积是相等的,所以左图中阴影部分的面积为111482-⨯=.BEE如上图所示,在右图中连接AC 、EF .设AF 、EC 的交点为N . 可知EF ∥AC 且2AC EF =.那么三角形BEF 的面积为三角形ABC 面积的14,所以三角形BEF 的面积为21111248⨯⨯=,梯形AEFC 的面积为113288-=.在梯形AEFC 中,由于:1:2EF AC =,根据梯形蝶形定理,其四部分的面积比为:221:12:12:21:2:2:4⨯⨯=,所以三角形EFN 的面积为3118122424⨯=+++,那么四边形BENF 的面积为1118246+=.而右图中四个空白四边形的面积是相等的,所以右图中阴影部分的面积为111463-⨯=.那么左图中阴影部分面积与右图中阴影部分面积之比为11:3:223=,即32m n=,那么325m n +=+=.【例 22】 如图, ABC △中,DE ,FG,BC 互相平行,AD DF FB ==,则::ADE DEGF FGCB S S S =△四边形四边形 .EGF A D CB【解析】 设1ADE S =△份,根据面积比等于相似比的平方,所以22::1:4ADE AFG S S AD AF ==△△,22::1:9ADE ABC S S AD AB ==△△, 因此4AFG S =△份,9ABC S =△份,进而有3DEGF S =四边形份,5FGCB S =四边形份,所以::1:3:5ADE DEGF FGCB S S S =△四边形四边形【巩固】如图,DE 平行BC ,且2AD =,5AB =,4AE =,求AC 的长.A ED CB【解析】 由金字塔模型得:::2:5AD AB AE AC DE BC ===,所以42510AC =÷⨯=【巩固】如图, ABC △中,DE ,FG ,MN ,PQ ,BC 互相平行,AD D F FM M P PB ====,则::::ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形. 【解析】 设1ADE S =△份,22::1:4ADE AFG S S AD AF ==△△,因此4AFG S =△份,进而有3DEGF S =四边形份,同理有5F G N M S =四边形份,7MNQP S =四边形份,9PQCB S =四边形份.所以有::::1:3:5:7:9ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形【例 23】 如图,已知正方形ABCD 的边长为4,F是BC 边的中点,E 是DC 边上的点,且:1:3DE EC =,AF 与BE 相交于点G ,求ABG S △GFAEDC BM GFAEDCBGFAEDCB【解析】 方法一:连接AE ,延长AF ,DC 两条线交于点M ,构造出两个沙漏,所以有::1:1AB CM BF FC ==,因此4CM =,根据题意有3CE =,再根据另一个沙漏有::G B G E A B E M==,所以4432(442)471111AB GAB E S S ==⨯⨯÷=+△△. 方法二:连接,AE EF,分别求4224ABF S =⨯÷=△,4441232247AEF S =⨯-⨯÷-⨯÷-=△,根据蝶形定理::AB F A EFS S BG G E ==△△,所以4432(442)471111ABG ABE S S ==⨯⨯÷=+△△.【例 24】 如图所示,已知平行四边形ABCD 的面积是1,E 、F 是AB 、AD 的中点,BF 交EC 于M ,求BMG ∆的面积.Q E GNMFPA DCBMHGF E DCBAA【解析】 解法一:由题意可得,E、F 是AB 、AD 的中点,得//EF BD ,而::1:2F D B C F H H C ==,::1:2EB CD BG GD ==所以::2:3CH CF GH EF ==,并得G 、H 是BD 的三等分点,所以BG GH =,所以::2:3BG EF BM MF ==,所以25BM BF =,11112224BFDABD ABCDS S S ∆∆==⨯=; 又因为13BG BD =,所以1212113535430BMG BFD S S ∆∆=⨯⨯=⨯⨯=. 解法二:延长CE 交DA 于I ,如右图,可得,::1:1AI BC AE EB ==,从而可以确定M 的点的位置, ::2:3BM MF BC IF ==,25BM BF =,13BG BD =(鸟头定理),可得2121115353430BMG BDF ABCDS S S ∆∆=⨯=⨯⨯=【例 25】 如图,ABCD 为正方形,1cm AM NB DE FC ====且2cm MN =,请问四边形PQRS 的面积为多少?CACA 【解析】 (法1)由//AB CD ,有MP PC MNDC=,所以2PC PM =,又MQ MB QC EC =,所以12MQ QC MC ==,所以111236PQ MC MC MC =-=,所以SPQR S 占AMCF S 的16,所以121(112)63SPQR S =⨯⨯++=2(cm ).(法2)如图,连结AE ,则14482ABE S ∆=⨯⨯=(2cm ),而RB ER ABEF=,所以2RB AB EFEF ==,22168333ABR ABE S S ∆∆==⨯=(2cm ).而1134322MBQ ANS S S ∆∆==⨯⨯⨯=(2cm ),因为MN MP DC PC=,所以13MP MC =,则11424233MNP S ∆=⨯⨯⨯=(2cm ),阴影部分面积等于164233333ABR ANS MBQ MNP S S S S ∆∆∆∆--+=--+=(2cm ).【例 26】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 27】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDCBAI HG FEDCBA【分析】 连接AH 、BI 、CG.由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==;根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=; 那么2248551995AGE AGC S S ∆∆==⨯=; 同样分析可得919ACH S ∆=,则::4A C G AC HE GE H S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:E G G H H B =,同样分析可得::10:5A G G II D =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=. 【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI的面积是1,求三角形ABC 的面积.IH G FEDCBA IH G FEDCBA【解析】 连接BG ,AGCS △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGCABCS S =△△, 同理连接AI 、CH 得619ABHABCS S =△△,619BIC ABC S S =△△,所以1966611919GHI ABC S S ---==△△三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】如图,ABC ∆中2BD D A =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BCCB【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACIS S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==,所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DBECFA===,求GHI ABC △的面积△的面积的值.IHG FEDCBAIHG FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△,所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【例 28】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC被分成9部分,请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2A B P C B P S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△ 同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPMS =△121BDM S =△,所以1239273570PQMN S =--=四边形,13953357042MNEDS =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC边的三等分点,那么四边形JKIH 的面积是多少?K J IHABC D EF GKJI HABCD EFG【解析】 连接CK、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==, 所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==. 类似分析可得215AGI S ∆=. 又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=. 那么,111742184CGKJS =-=. 根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABE S S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 29】 右图,ABC △中,G是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EFNMGA BC D EF【解析】 连接CM、CN .根据燕尾定理,::1:1ABM CBMS S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBNS S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGNAFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABC ABC S S -=△△,可得336ABC S =△(平方厘米)【例 30】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.GC BACB【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABMACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△,所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC△中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15A BPABCS S =△△,所以1111152121A B DNBED N PE S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形同理另外两个五边形面积是ABC△面积的11105,所以11113133610570S =-⨯-⨯=阴影【例 31】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.GCBAGCBA【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△, ::1:2ABR CBR S S AI CI ==△△所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△,同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形课后练习: 练习1. 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FED CBA【解析】:():()(11):(23)1:6BDE ABC S S BD BE BA BC =⨯⨯=⨯⨯=△△,:():()(13):(24)3:8CEF ABC S S CE CF CB CA =⨯⨯=⨯⨯=△△:():()(21):(34)1:6ADF ABC S S AD AF AB AC =⨯⨯=⨯⨯=△△ 设24ABC S =△份,则4BDE S =△份,4ADF S =△份,9CEF S =△份,244497DEF S =---=△份,恰好是7平方厘米,所以24ABC S =△平方厘米练习2. 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.H GFED CB A A B CDEFGH【解析】 连接BD .由共角定理得:():()1:2BCD CGF S S CD CB CG CF =⨯⨯=△△,即2C G F CD B S S =△△ 同理:1:2ABD AHE S S =△△,即2AHE ABD S S =△△ 所以2()2AHE CGF CBD ADB ABCD S S S S S +=+=△△△△四边形连接AC ,同理可以得到2DHG BEF ABCD S S S +=△△四边形5AHE CGF HDG BEF EFGH ABCD ABCD S S S S S S S =++++=△△△△四边形四边形四边形 所以66513.2ABCD S =÷=四边形平方米练习3. 正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是 平方厘米.H GFEDCBAM H GFEDCBA【解析】 欲求四边形BGHF 的面积须求出EBG ∆和CHF ∆的面积.由题意可得到:::1:2EG GC EB CD ==,所以可得:13EBG BCE S S ∆∆=将AB 、DF 延长交于M 点,可得: :::1:1BM DC MF FD BF FC ===,而1::():3:22EH HC EM CD AB AB CD ==+=,得25CH CE =,而12CF BC =,所以121255CHF BCE BCE S S S ∆∆∆=⨯=11112030224BCE S AB BC ∆=⨯⨯=⨯=117730141515EBC EBC EBC EBC BGHF S S S S S ∆∆∆∆=--==⨯=四边形.EF ,确定H 的位置(也就是:FH HD )练习4. 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则S ABC ACE CDE S S ∆∆∆++= 2cm .DCEBABCA'C'EDA【解析】 将三角形ABC 绕A 点和C 点分别顺时针和逆时针旋转90,构成三角形'AEC 和'A DC ,再连接''A C ,显然'AC AC ⊥,'AC A C ⊥,''AC A C AC ==,所以''ACA C 是正方形.三角形'AEC 和三角形'A DC 关于正方形的中心O 中心对称,在中心对称图形''ACA C 中有如下等量关系: ''AEC A DC S S ∆∆=;''AEC A DC S S ∆∆=;'CED C DE S S ∆∆=.所以2'''11101050cm 22ABC ACE CDE AEC ACE CDE ACA C S S S S S S S ∆∆∆∆∆∆++=++==⨯⨯=.练习5. 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.EDCBEDCB【解析】 连接BH ,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米).练习6. 如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.。
小学奥数-几何五大模型(相似模型)
模型四 相似三角形模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AF AB AC BC AG===; ②22:ADE ABC S S AF AG =△△:。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线。
三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半。
相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。
在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形。
【例 1】 如图,已知在平行四边形ABCD 中,16AB =,10AD =,4BE =,那么FC 的长度是多少?FEDCBA【解析】 图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题,因为AB 平行于CD ,所以::4:161:4BF FC BE CD ===,所以410814FC =⨯=+.任意四边形、梯形与相似模型【例 2】 如图,测量小玻璃管口径的量具ABC ,AB 的长为15厘米,AC 被分为60等份。
如果小玻璃管口DE 正好对着量具上20等份处(DE 平行AB ),那么小玻璃管口径DE 是多大?605040302010EAD C B【解析】 有一个金字塔模型,所以::DE AB DC AC =,:1540:60DE =,所以10DE =厘米。
【例 3】 如图,DE 平行BC ,若:2:3AD DB =,那么:ADE ECB S S =△△________。
A ED CB【解析】 根据金字塔模型:::2:(23)2:5AD AB AE AC DE BC ===+=,22:2:54:25ADE ABC S S ==△△,设4ADE S =△份,则25ABC S =△份,2553BEC S =÷⨯=△份,所以:4:1A D E E C B S S =△△。
小学奥数几何五大模型
(4)相似模型1、相似三角形:形状相同、大小不相等的两个三角形相似;2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
3、相似三角形性质:①相似三角形的一切对应线段(对应高、对应边)的比等于相似比;②相似三角形周长的比等于相似比;③相似三角形面积的比等于相似比的平方。
相似模型大致分为金字塔模型、沙漏模型这两大类,注意这两大类中都含有DE BC ∥。
(一)金字塔模型 (二) 沙漏模型结论:因为DE BC ∥,所以ADE ABC △∽△,则①AD AE DE==;②22::ADE ABC S S AD AB =△△。
②::ABO BCO S S AE EC =△△;ED C BA E DCB A③::ACO BCO S S AF FB =△△。
二、五大模型经典例题详解 (1)等积变换模型例1、图中的E F G 、、分别是正方形ABCD 三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是多少?GFE D CBA解析:把另外三个三等分点标出之后,正方形的3条边AB BC CD 、、就被分成了相等的三段。
把点H 和这些分点、正方形的顶点连接,这样就把整个正方形分割成了9个形状各不相同的三角形,同时我们把空白部分的6个三角形按顺时针标记1~6。
这9个三角形的底边都是正方形边长的三分之一;阴影部分被分割成了其中的3个三角形。
根据等积变换模型可知,CD 边上的阴影三角形的面积与第1、2个三角形相等;BC 边上的阴影三角形与第3、4个三角形相等;AB 边上的阴影三角形与第5、6个三角形相等。
因此,阴影面积是空白面积的二分之一,是正方形面积的三分之一,即:12×12÷3=48。
例2、如图所示,Q E P M 、、、分别为直角梯形ABCD 两边AB CD 、上的点,且DQ CP ME 、、彼此平行,已知5753AD BC AE EB ====、、、,求阴影部分三角形PQM 的面积。
小学数学几何必考五大模型
今天就为大家推荐一篇小学数学几何五大模型的内容。
一、等积 模①型等底等高的两个三角形面积相等;
AB
②两个三角形高相等,面积比等于它们的底之比;
两个三角形底相等,面积比等于它们的高之S比1 ;S2
典型例题
【例1】如图,正方形ABCD的边长为6,AE= 1.5,CF= 2.长
方形EFGH的面积为?
H
H
A
D
A
D
E
E
G
G
B FC
B
FC
【解析】连接DE,DF,则长方形EFGH的面积是三角形DEF面 积的二倍.
三角形DEF的面积等于正方,所形以的长面方积形减E去FG三H面个积三为角33. 形的面积,
【巩固】如图所示,正方形ABCD的边长为8厘米,长方形EBGF 的长BG为10厘米,那么长方形的宽为几厘米?
【解析】本题主要是让学生会运用等底等高的两个平行四边形面积 相等(长方形和正方形可以看作特殊的平行四边形).三角形面积等 于与它等底等高的平行四边形面积的一半.
【巩固】如图所示,正方形ABCD的边长为8厘米,长方形EBGF 的长BG为10厘米,那么长方形的宽为几厘米?
证明:连接AG(我们通过△ABG把这两个长方形和正方形联系在一起)
∴ 正方形ABCD与长方形EFGB面积相等。长方形的宽=8 ×8÷10=6.4(厘
【例2】长方形ABCD的面积为36cm2,E 、F、G为各边 中点,H为AD边上任意一点,问阴影部分面积是多少 ?
【解析解,】H法C 一,:如寻下找图可:利用的条件,连接BH
如右图
人教版初3数学9年级下册 第27章(相似)几何的五大模型(四)燕尾模型(含答案)
几何的五大模型之燕尾模型☆基础题1、如图,三角形ABC中,AD:DC=2:3,S△ABO=12,求S△BCO。
2、三角形ABC中,AB=49,S△AO C=20,S△BCO=50,求AD的长。
3、如图,三角形ABC中,AE:EC=1:2,BD=DC,S△ABO=18,求S△BDO。
4、如图,三角形ABC中,AE:EB=1:2,AD:DC=1:2,S△BCO=30,求S△AEO。
5、如图,三角形ABC中,AE:EC=1:2,BD=DC,S△AOB=6平方厘米。
那么S△AOE 是多少平方厘米?☆☆提高题1、如图,三角形ABC中,AF:FB=1:2,AE:EC=1:2,S△BOC=10平方厘米。
那么S△ABC是多少平方厘米?2、如图,三角形ABC中,AE:EC=1:2,BD=DC。
若S△ABC=90。
求S四边形EODC。
3、如图,三角形ABC中,已知AD:DC=2:1,BE:EC=2:1。
若S△ABC=120。
求S 四边形EODC。
4、如图,三角形ABC中,AE:EC=1:2,BD:DC=4:3,则AG:GB是多少?5、如图,三角形ABC中,AG:GB=1:2,AE:EC=3:4,则BD:DC是多少?6、如图,三角形ABC中,BO:OE=1:1,AO:OD=2:1,S△ABO=10平方厘米。
则S四边形DCEO为多少平方厘米?☆☆☆竞赛题1、如图所示,正方形ABCD的面积是120平方厘米,E是AB的中点,F是BC的中点,求四边形GHFB的面积?2、如图所示,在△ABC中,BD=2DA,CE=2EB,AF=2FC,那么△ABC的面积是△GHI 面积的几倍?几何的五大模型之燕尾模型能力达标卷答案解析☆基础题1、答案:18解析:在三角形ABC中,根据燕尾模型得:S△ABO:S△BCO=AD:DC=2:3,所以S△BCO=12÷2×3=182、答案:14解析:在三角形ABC中,根据燕尾模型得:AD:DC=S△AOC:S△BCO=20:50=2:5,所以AD=49×225+=14三角形ABC中,AB=49,S△AOC=20,S△BCO=50,求AD的长。
几何五大模型定理
几何五大模型定理
几何学是一个古老的学科,并在数学领域发挥着不可替代的作用。
过去2000多年来,一些极具影响力的几何学家们有力地推动了几何学研究的发展,创造了许多引人注目的几何模型定理。
以下将介绍五大几何模型定理,它们是几何学的代表性研究成果。
第一个几何模型定理是欧几里得定理,也称为“欧几里得尺规定理”,这是古希腊数学家欧几里得著名的定理。
它声明:“三角形内角之和等于180度”。
它是数学基本概念的基础,借此可以证明各种几何图形的构成关系。
第二个几何模型定理是埃及人定理,也称为“埃及三角形定理”。
这是一个基本定理,它宣称:“正三角形的高等于它的底乘以三角形的高”。
第三个几何模型定理是勾股定理,这是古希腊数学家勾股第六世纪首次提出的定理。
它表明:“三角形的斜边的平方等于两常规边的平方之和”。
第四个几何模型定理是朱丽叶定理,由十八世纪法国数学家朱丽叶蒙德拉克提出。
它宣称:“在平面内,给定一个三角形与
它的外接圆,三角形内角周长和半径之比等于外角角度和圆周长的比之和”。
第五个几何模型定理是莱布尼茨定理,由德国数学家马克斯·莱布尼茨于1794年提出的定理。
它声明:“存在唯一的平行四边形,其面积等于任何给定四边形的面积之和”。
以上就是几何学五大模型定理的主要内容,它们的发现和推导象征着几何学的成熟,也为更深入研究几何学提供了基础。
几何的五大模型
5、 想想?正方形ABCD中,还有哪些没有包块进去,及与份数之间旳关系
6、SΔADE =S2+S3,S ΔBCF =S4+S3 想想?为何,用了什么模型
7、∴正方形ABCD被提成了24份 S阴影=S2+S4=6÷24×12=3cm2
例题:相同模型
例题4:如图,长方形ABCD中,E为AD旳中点,AF与BE、BD分别交于
例题:二分之一模型
例题3:如图ABFE和CDEF都是矩形,AB旳长是4厘米,BC旳长是3厘 米,那么图中阴影部分旳面积是多少平方厘米。
分析:阴影部分是一种个三角形,矩形CDEF中阴影 A
B
部分旳三角形底边长度为矩形旳长,高与矩 E
F
形宽相等,根据面积公式可知S阴影=SEDCF÷2
D
C
思索:二分之一模型是什么意思?
分析:SΔ黄+SΔ绿=S长方形÷2(=宽×长÷2)
黄色三角形面积21cm2,占长方形面积百分比
黄
50%-15%=35% 所以,长方形面积=21÷35%=60cm2
红
红
绿
例题:等积变换
例题2:图中ABCD是个直角梯形,以AD为一边向外作长方形ADEF, 其面积为6.36平方厘米,连接BE交AD于P,再连接PC,则图 中阴影部分旳面积是多少平方厘米?
AB
S1 S2
a
b
图1
CD 图2
概念
2、鸟头定理(共角定理)模型
1)两个三角形中有一种角相等或互补,这两个三角形叫做共角三角形
2)共角三角形旳面积比等于相应交(相等或互补角)两夹边旳乘积之比
D
E
A
D
A
A
E D
BC
小升初平面几何常考五大模型
一、等积变换模型1、等底等高的两个三角形面积相等。
2、两个三角形高相等,面积比等于它们的底之比。
3、两个三角形底相等,面积比等于它的的高之比。
二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。
三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。
)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。
相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。
相似三角形的面积比等于它们相似比的平方。
五、燕尾定理模型正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为由题知DC/GP=GC/PK,即DC/(DC-4)=(4+PK)/PK,令DC=a,PK=c,则a=4+c,则S△DEK=a^2+16+c*(4-c)/2+c^2-ac-a(4+a)/2=a^2/2+c^2/2-ac-2a+2c+16=(c+4)^2/2+c^2/2-c( c+4)-2(c+4)+2c+16=16。
1、图17是一个正方形地板砖示意图,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=D D2,中间小正方形 EFGH的面积是16平方厘米,四块蓝色的三角形的面积总和是72平方厘米,那么大正方形ABCD的面积是多少平方厘米?分析与解连AC和BD两条大正方形的对角线,它们相交于O,然后将三角形AOB放在D PC处(如图18和图19)。
已知小正方形EFGH的面积是16平方厘米,所以小正方形EFGH的边长是4厘米。
又知道四个蓝色的三角形的面积总和是72平方厘米,所以两个蓝色三角形的面积是72÷2=36平方厘米,即图19的正方形OCPD中的小正方形的面积是36平方厘米,那么这个正方形的边长就是6厘米。
小学奥数-几何五大模型(相似模型)讲解学习
模型四 相似三角形模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AF AB AC BC AG===; ②22:ADE ABC S S AF AG =△△:。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线。
三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半。
相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。
在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形。
【例 1】如图,已知在平行四边形ABCD 中,16AB =,10AD =,4BE =,那么FC 的长度是多少?FEDCBA【解析】 图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题,因为AB 平行于CD ,任意四边形、梯形与相似模型所以::4:161:4BF FC BE CD ===,所以410814FC =⨯=+.【例 2】 如图,测量小玻璃管口径的量具ABC ,AB 的长为15厘米,AC 被分为60等份。
如果小玻璃管口DE 正好对着量具上20等份处(DE 平行AB ),那么小玻璃管口径DE 是多大?605040302010EA D C B【解析】 有一个金字塔模型,所以::DE AB DC AC =,:1540:60DE =,所以10DE =厘米。
【例 3】如图,DE 平行BC ,若:2:3AD DB =,那么:ADE ECB S S =△△________。
A ED CB【解析】 根据金字塔模型:::2:(23)2:5AD AB AE AC DE BC ===+=,22:2:54:25ADE ABC S S ==△△,设4ADE S =△份,则25ABC S =△份,255315BEC S =÷⨯=△份,所以:4:15ADE ECB S S =△△。
几何的五大模型
利用燕尾定理,连接FC,BFD面积/BFC面积=DE/EC=1/2,如果BFD面积为1份的话,BFC为2份;又DF=FG,所以BFG面积与BFD面积相等也是1份,故FGC面积是2-1=1份,那么BG=GC;再利用燕尾定理,DFC的面积与DFB相等也是1份,BDC的面积是4份=6,故一份面积是6/4=1.5,阴影部分是1+2/3=5/3份,面积是1.5×5/3=2关系是一样的。)
四、相似三角形模型
相似三角形:是形状相同,但大小不同的三角形叫相似三角形。
相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。
相似三角形的面积比等于它们相似比的平方。
五、燕尾定理模型
解析:
因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于10×8÷2+10=50厘米2。
几何的五大模型
一、等积变换模型
1、等底等高的两个三角形面积相等。
2、两个三角形高相等,面积比等于它们的底之比。
3、两个三角形底相等,面积比等于它的的高之比。
二、共角定理模型
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。
三、蝴蝶定理模型
显然,最大的三角形的面积为21公顷.
解析:
如图所示,设上底为a,则下底为2a,梯形的高为h,则EF= (a+2a)= ,所以,
。所以
阴影部分
= 即 ,梯形 ABCD的面积=
如下图所示,为了方便叙述,将某些点标上字母.
【小升初奥数专题】几何之五大模型(已更新完)
【⼩升初奥数专题】⼏何之五⼤模型(已更新完)在⼩学奥数知识体系中,⼏何五⼤模型是⼏何专题中⾮常重要的⼀块知识点,⽅法性很强,掌握了⼏何的五⼤模型,对于我们解决组合型直图形或者⾮规则图形是⾮常有帮助的,所以⼏何五⼤模型在⼩学⼏何体系中的重中之重!⼏何五⼤模型的难点在于我们要在掌握各个模型适⽤的题型、相应的⽅法、公式的基础上学会灵活运⽤,还有就是有时要根据题意同时运⽤多种模型,从⽽更好的解决问题!接下来e 度徐丽⽼师会针对⼏何五⼤模型进⾏解析,希望能帮助到各位家长,让您的孩⼦在这次⼩升初中⼤战全胜!ps:对于不同题型均会有例题讲解分析以及精选练习题,以供⼤家有针对性学习巩固,相信⼤家对于应⽤题的攻克将不在话下!【⼏何五⼤模型知识点】【⼏何五⼤模型经典例题详解】【⼏何五⼤模型巩固练习】【⼏何五⼤模型巩固练习详解】标签:⼏何 模型 五⼤ ⼩升初 奥数回复 收藏1~3年级奥数每⽇⼀题汇总,含试题详解【每⽇不断更新中】4~5年级奥数每⽇⼀题汇总,含试题详解【每⽇不断更新中】⼩升初奥数天天练汇总,含试题详解【每⽇不断更新中】【徐丽⽼师】⼩升初奥数应⽤题专题汇总【徐丽⽼师】⼩升初奥数⾏程专题汇总【徐丽⽼师】⼩升初奥数⼏何专题汇总【徐丽⽼师】⼩升初奥数数论专题汇总【徐丽⽼师】⼩学数学毕业总复习专题汇总⼏⼏何五⼤模型⼀、五⼤模型简介(1)等积变换模型1、等底等⾼的两个三⾓形⾯积相等;2、两个三⾓形⾼相等,⾯积之⽐等于底之⽐,如图①所⽰,S[sub]1[/sub]:S[sub]2[/sub]=a:b ;3、两个三⾓形底相等,⾯积在之⽐等于⾼之⽐,如图②所⽰,S[sub]1[/sub]:S[sub]2[/sub]=a:b ;4、在⼀组平⾏线之间的等积变形,如图③所⽰,S[sub]△ACD[/sub]=S[sub]△BCD[/sub];反之,如果S[sub]△ACD[/sub]=S[sub]△BCD[/sub],则可知直线AB 平⾏于CD 。
奥数几何-三角形五大模型带解析
奥数几何-三角形五大模型带解析三角形是几何学中的基本图形之一,具有丰富的性质和应用。
在奥数竞赛中,常常会涉及到三角形的题目。
为了更好地应对这类题目,我们需要掌握三角形的五大模型,即:全等模型、相似模型、正弦定理模型、余弦定理模型和面积模型。
下面将对这五大模型进行详细解析。
一、全等模型全等模型是指两个三角形的对应边长和对应角度都相等。
利用全等模型,我们可以简化一些繁杂的计算,直接得到结论。
例如,已知三角形ABC和三角形DEF的对应边长和对应角度分别相等,我们就可以得出它们全等的结论,即△ABC≌△DEF。
利用全等模型,我们可以将问题简化为求解另一个已知三角形的性质,从而得到答案。
二、相似模型相似模型是指两个三角形的对应角度相等,但对应边长不一定相等。
相似模型在解决一些比例问题时非常有用。
例如,已知△ABC和△DEF的对应角度分别相等,我们可以推出它们相似的结论,即△ABC∽△DEF。
利用相似模型,我们可以通过已知比例关系,求解未知的边长或角度。
三、正弦定理模型正弦定理是指在一个三角形中,三个角的正弦值与对应边的长度之间存在着一定的比例关系。
正弦定理模型在求解三角形的边长和角度时非常有用。
正弦定理的公式为:sinA/a = sinB/b = sinC/c,其中A、B、C为三角形的角度,a、b、c为对应边的长度。
利用正弦定理模型,我们可以通过已知的角度和边长,求解未知的边长或角度。
四、余弦定理模型余弦定理是指在一个三角形中,三个角的余弦值与对应边的长度之间存在着一定的比例关系。
余弦定理模型在求解三角形的边长和角度时非常有用。
余弦定理的公式为:c² = a² + b² - 2abcosC,其中a、b、c为三角形的边长,C为对应的角度。
利用余弦定理模型,我们可以通过已知的边长和角度,求解未知的边长或角度。
五、面积模型面积模型是指通过三角形的面积关系求解三角形的边长或角度。
在面积模型中,我们常常使用海伦公式或高度公式来求解三角形的面积。
小学奥数平面几何
4
又三角形AOE、DOG和四边形EFGO的面积之和为
120
1 2
1 4
30
所以四边形EFGO的面积为30-20=10.
【例 4】如图,已知CD=5,DE=7,EF=15,FG=6,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65, 那么三角形ADG的面积是多少?
A
A
CD E B
所以
SABCD 2 1 SEFGH 36 18
【例7】如图所示的四边形的面积等于多少?
【解析】题目中要求的四边形既不是正方形也不是长方形,难以 运用公式直接求面积.我们可以利用旋转的方法对图形实施变换: 把三角形OAB绕顶点O逆时针旋转,使长为13的两条边重合,此 时三角形OAB将旋转到三角形 OCD的位置.这样,通过旋转后所 得到的新图形是一个边长为12的正方形,且这个正方形的面积就 是原来四边形的面积.
AD边上任意一点,问阴影部分面积是多少?
A
H
D
A
D (H)
E
G
E
G
B
F
C
B
F
C
【解析】特殊点法.找的特殊点,把点H与点D重合,那么图形就 可变成上右图:
这样阴影部分的面积就是∆DEF的面积,根据鸟头定理,则有:
即
【例 3】如图所示,长方形ABCD内的阴 A
D
影部分的面积之和为70,AB=8, AD=15,四边形EFGO的面积为多少?
③ S的对应份数为 a b 2
Aa D S1
S2 O S4
S3
B
C
b
四、相似模型
(一)金字塔模型
A
(二) 沙漏模型
E FD
A
小学奥数-几何五大模型(相似模型)讲解学习
模型四 相似三角形模型(一)金字塔模型所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线。
三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半。
相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。
在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形。
【例1】 如图,已知在平行四边形 ABCD 中,AB 16,AD 10, BE 4,那么FC 的长 度是多少?【解析】图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题, 因为AB 平行于CD ,任意四边形、梯形与相似模型(二)沙漏模型① AD AE AB AC DE AF BC AG② S ^ ADE :ABCAF 2: AG 2。
n【例2】如图,测量小玻璃管口径的量具ABC , AB的长为15厘米,AC被分为60等份。
如果小玻璃管口DE正好对着量具上20等份处(DE平行AB ),那么小玻璃管口径DE是多大?【解析】有一个金字塔模型,所以DE: AB DC : AC,DE :15 40:60,所以DE 10厘米。
【例3】如图,DE平行BC,若AD:DB 2:3,那么S^ADEAD' 「E:S A ECB。
B亠 -------C【解析】根据金字塔2 2S A ADE : S A ABC 2 : 5模型AD : AB4:25 ,AE:AC DE : BC2: (23) 2:5 ,S\ ADE :设S A ADE 4 份,S AECB4:15。
则S A ABC 25 份SA BEC25 5 3 15份,所以【例4】如图,△ ABC中,DE,FG,BC互相平行,AD DF FB,贝y ADE : §四边形DEGF : §四边形FGCB _____________________________________________________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意四边形、梯形与相似模型
模型四 相似三角形模型
(一)金字塔模型 (二) 沙漏模型
G
F E A
B
C
D
A
B C
D
E
F G
①AD AE DE AF AB AC BC AG
===; ②22:ADE ABC S S AF AG =△△:。
所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:
⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;
⑶连接三角形两边中点的线段叫做三角形的中位线。
三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半。
相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。
在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形。
【例 1】 如图,已知在平行四边形ABCD 中,16AB =,10AD =,4BE =,那么FC 的长
度是多少?
F
E
D
C
B
A
【例 2】 如图,测量小玻璃管口径的量具ABC ,AB 的长为15厘米,AC 被分为60等份。
如果小玻璃管口DE 正好对着量具上20等份处(DE 平行AB ),那么小玻璃管口径DE 是多大?
60
5040
30
2010
E
A D C B
【例 3】 如图,DE 平行BC ,若:2:3AD DB =,那么:ADE ECB S S =△△________。
A E
D C
B
【例 4】 如图, ABC △中,DE ,FG ,BC 互相平行,AD DF FB ==,
则::ADE DEGF FGCB S S S =△四边形四边形 。
E
G
F A D C
B
【巩固】如图,DE 平行BC ,且2AD =,5AB =,4AE =,求AC 的长。
A E
D C
B
【巩固】如图, ABC △中,DE ,
FG ,MN ,PQ ,BC 互相平行,AD DF FM MP PB ====, 则::::ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形 。
Q E G
N
M
F P
A D C
B
【例 5】 已知ABC △中,DE 平行BC ,
若:2:3AD DB =,且DBCE S 梯形比ADE S △大28.5cm ,求ABC S △。
A E
D C
B
【例 6】 如图:MN 平行BC , :4:9MPN BCP S S =△△,4cm AM =,求BM 的长度
N
M
P
A C B
【巩固】如图,已知DE 平行BC ,:3:2BO EO =,那么:AD AB =________。
O
E
D C B
A
【例 7】 如图,ABC ∆中,14AE AB =,1
4
AD AC =,ED 与BC 平行,EOD ∆的面积是1
平方厘米。
那么AED ∆的面积是 平方厘米。
A B C
D
E
O
【例 8】 在图中的正方形中,A ,B ,C 分别是所在边的中点,CDO 的面积是ABO 面
积的几倍?
A
B
C
D
O
E
F
A
B
C
D
O
【例 9】 如图,线段AB 与BC 垂直,已知4AD EC ==,6BD BE ==,那么图中阴影部分
面积是多少?
A B
D
A B
D
【例 10】 (2008年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)如图,四边形
ABCD 和EFGH 都是平行四边形,四边形ABCD 的面积是16,:3:1BG GC =,则四边形EFGH 的面积=________.
G E
C
B
A
【例 11】 已知三角形ABC 的面积为a ,:2:1AF FC =,E 是BD 的中点,且EF ∥BC ,
交CD 于G ,求阴影部分的面积.
【例 12】 已知正方形ABCD ,过C 的直线分别交AB 、AD 的延长线于点E 、F ,且
10cm AE =,15cm AF =,求正方形ABCD 的边长.
F
A
E
D
C
B
【例 13】 如图,三角形ABC 是一块锐角三角形余料,边120BC =毫米,高80AD =毫
米,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?
H
G
N
P
A
D C
B
【巩固】如图,在ABC △中,有长方形DEFG ,G 、F 在BC 上,D 、E 分别在AB 、AC
上,AH 是ABC △ 边BC 的高,交DE 于M ,:1:2DG DE =,12BC =厘米,8AH =厘米,求长方形的长和宽.
E H G
M
F
A
D C
B
【例 14】 图中ABCD 是边长为12cm 的正方形,从G 到正方形顶点C 、D 连成一个三角
形,已知这个三角形在AB 上截得的EF 长度为4cm ,那么三角形GDC 的面积是多少?
A
B
C
D E F
G
N
M
A
B
C
D
E F
G
【例 15】 如图,将一个边长为2的正方形两边长分别延长1和3,割出图中的阴影部分,
求阴影部分的面积是多少?
E
【例 16】 (2008年101中学考题)图中的大小正方形的边长均为整数(厘米),它们的面
积之和等于52平方厘米,则阴影部分的面积是 .
H
【例 17】 如图,三角形PDM 的面积是8平方厘米,长方形ABCD 的长是6厘米,宽是
4厘米,M 是BC 的中点,则三角形APD 的面积是 平方厘米.
A
B
C
D
P M
【例 18】 边长为8厘米和12厘米的两个正方形并放在一起,那么图中阴影三角形的面
积是多少平方厘米?
E
D
C
B
【例 19】
如右图,长方形ABCD 中,16EF =,9FG =,求AG 的长.
D
A
B
C E
F
G
课后作业
1、已知ABC △中,DE 平行BC ,若:2:3AD DB =,且DBCE S 梯形比ADE S △大28.5cm ,求ABC S △.
A E
D C
B
2、如图,O 是矩形一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影部分的一块直角三角形的面积是多少?
D
B
3、如图,已知在平行四边形ABCD 中,16AB =,10AD =,4BE =,那么FC 的长度是多少?
F
E
D
C
B
A
4、如图, ABC △中,DE ,FG ,BC 互相平行,AD DF FB ==, 则::ADE DEGF FGCB S S S =
△四边形四边形 .
Q E G
N
M
F P
A D C
B
5、已知正方形ABCD ,过C 的直线分别交AB 、AD 的延长线于点E 、F ,且
10cm AE =,15cm AF =,求正方形ABCD 的边长.
F
A
E
D
C
B
6、如图,三角形ABC 是一块锐角三角形余料,边120BC =毫米,高80AD =毫米,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?
H
G
N
P
A
D C
B。