七年级数学:空间里的平行关系(教学示范)
数学教案:空间里的平行关系
数学教案:空间里的平行关系1. 教学目标1.1 知识目标•知道空间中任意两个平面/直线之间的平行关系的定义。
•能够根据已知条件判断平面/直线之间是否平行。
•能够运用平行关系解决实际问题。
1.2 能力目标•具备分析问题、运用公式求解问题的能力。
•能够进行判断和推理,培养逻辑思维能力。
1.3 情感目标•培养学生对数学知识的兴趣。
•培养学生的合作精神和团队意识。
2. 教学重点难点2.1 教学重点•平面/直线之间的平行关系的定义。
•平行关系的性质。
2.2 教学难点•平面/直线之间是否平行的判断。
•如何应用平行关系解决实际问题。
3. 教学内容3.1 概念讲解3.1.1 平行向量定义:若两个非零向量共线,则称它们为平行向量。
性质:•平行向量的方向相同或相反,但模可以不同。
•平行向量的模相等,则方向相同或相反。
3.1.2 平面/直线的平行关系定义:若两个平面/直线没有交点,则称它们为平行的。
性质:•平行的平面/直线不存在交点。
•相交的平面/直线一般不平行。
•平行的平面/直线的法向量平行。
3.2 解决实际问题3.2.1 存在平面/直线的平行关系情境:已知空间中A、B两点和三个平面P1、P2、P3,求证:若P1∥P2,P1∥P3,则P2∥P3。
解法:•若P1与P2平行,则它们的法向量也平行,即n1∥n2。
•若P1与P3平行,则它们的法向量也平行,即n1∥n3。
•因为n1∥n2且n1∥n3,所以n2∥n3,即P2与P3平行。
3.2.2 应用平行关系解决实际问题情境:已知长方体ABCD-A1B1C1D1的AB∥CD,BD∥A1C1,连接A1D1,求证A1D1∥BC。
解法:•连接AC,AD,A1B,B1C,通过画图,我们可以发现三角形ACD与A1B1C1全等。
•进一步观察可以发现,在BC平面上,BD与A1C1平行,因此BD与BC的垂线平行。
•因此,A1D1∥BC。
4. 教学方法4.1 讲授法在黑板上进行讲述和演示,让学生对平行关系的概念和性质有更清晰的认识。
空间里的平行关系数学教案设计
空间里的平行关系数学教案设计第一章:引言1.1 课程目标让学生理解平面的概念让学生掌握平行线的定义让学生能够识别和画出平行线1.2 教学内容平面:介绍平面的定义和性质平行线:介绍平行线的定义和性质平行公理:介绍平行公理及其推论1.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来发现平行关系的性质利用图形和实物模型,帮助学生直观地理解平行的概念1.4 教学资源准备平面和直线模型提供相关的练习题和思考题1.5 教学评估通过课堂讨论和练习题来评估学生对平面和平行线概念的理解程度第二章:平面的定义和性质2.1 教学目标让学生理解平面的定义和性质让学生能够描述和区分不同的平面图形2.2 教学内容平面:介绍平面的定义和性质平面图形:介绍矩形、正方形、三角形等平面图形的性质2.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来发现平面的性质利用图形和实物模型,帮助学生直观地理解平面的概念2.4 教学资源准备平面和直线模型提供相关的练习题和思考题2.5 教学评估通过课堂讨论和练习题来评估学生对平面概念的理解程度第三章:平行线的定义和性质3.1 教学目标让学生掌握平行线的定义和性质让学生能够识别和画出平行线3.2 教学内容平行线:介绍平行线的定义和性质平行线的判定:介绍平行线的判定方法3.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来发现平行线的性质利用图形和实物模型,帮助学生直观地理解平行线的概念3.4 教学资源准备平面和直线模型提供相关的练习题和思考题3.5 教学评估通过课堂讨论和练习题来评估学生对平行线概念的理解程度第四章:平行公理及其推论4.1 教学目标让学生理解平行公理及其推论让学生能够运用平行公理解决实际问题4.2 教学内容平行公理:介绍平行公理的定义和证明平行公理的推论:介绍平行公理的推论及其应用4.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来发现平行公理的性质利用图形和实物模型,帮助学生直观地理解平行公理的概念4.4 教学资源准备平面和直线模型提供相关的练习题和思考题4.5 教学评估通过课堂讨论和练习题来评估学生对平行公理及其推论的理解程度第五章:练习与应用5.1 教学目标让学生巩固对平面和平行线的理解让学生能够运用所学的知识解决实际问题5.2 教学内容练习题:提供相关的练习题,帮助学生巩固对平面和平行线的理解实际问题:提供一些实际问题,让学生运用所学的知识解决问题5.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来解决实际问题利用图形和实物模型,帮助学生直观地理解平面和平行线的概念5.4 教学资源提供相关的练习题和思考题提供一些实际问题5.5 教学评估通过课堂讨论和练习题来评估学生对平面和平行线的理解程度第六章:实际问题中的平行关系6.1 教学目标让学生能够将实际问题抽象为平面和平行线的问题让学生运用所学的知识解决实际问题6.2 教学内容实际问题:提供一些实际问题,让学生运用所学的知识解决问题问题解决策略:介绍如何将实际问题转化为平面和平行线的问题,并运用平行关系来解决6.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来解决实际问题利用图形和实物模型,帮助学生直观地理解平面和平行线的概念6.4 教学资源提供相关的实际问题提供解决问题的指导和方法6.5 教学评估通过课堂讨论和练习题来评估学生对实际问题中平行关系的理解程度第七章:平行线的判定与证明7.1 教学目标让学生掌握平行线的判定方法让学生能够运用平行线的判定方法进行证明7.2 教学内容平行线的判定方法:介绍同位角相等、内错角相等、同旁内角互补等判定方法平行线的证明:介绍如何运用判定方法进行平行线的证明7.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来发现平行线的判定方法利用图形和实物模型,帮助学生直观地理解平行线的判定方法7.4 教学资源提供相关的图形和实例提供证明题和思考题7.5 教学评估通过课堂讨论和练习题来评估学生对平行线的判定与证明的理解程度第八章:平行线的应用让学生能够运用平行线的知识解决实际问题让学生能够运用平行线的知识进行几何图形的分析和设计8.2 教学内容平行线的应用问题:提供一些应用问题,让学生运用所学的知识解决问题几何图形的分析与设计:介绍如何运用平行线的知识进行几何图形的分析和设计8.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来解决实际问题利用图形和实物模型,帮助学生直观地理解平行线的应用8.4 教学资源提供相关的应用问题提供几何图形的分析和设计指导8.5 教学评估通过课堂讨论和练习题来评估学生对平行线的应用的理解程度第九章:复习与巩固9.1 教学目标让学生复习和巩固对平面和平行线的理解让学生能够运用所学的知识解决实际问题9.2 教学内容复习平面和平行线的概念和性质复习平行线的判定与证明方法提供一些实际问题,让学生运用所学的知识解决问题采用问题驱动的教学方法,引导学生通过观察和思考来复习和巩固知识利用图形和实物模型,帮助学生直观地理解平面和平行线的概念9.4 教学资源提供相关的图形和实例提供复习题和思考题9.5 教学评估通过课堂讨论和练习题来评估学生对平面和平行线的理解程度第十章:总结与拓展10.1 教学目标让学生总结对空间里的平行关系的理解让学生能够拓展所学的知识,探索更深层次的平行关系10.2 教学内容总结平面和平行线的概念、性质、判定和应用拓展平行关系的深入探索,如空间中的平行线、异面直线等10.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来总结和拓展知识利用图形和实物模型,帮助学生直观地理解平行关系的深入探索10.4 教学资源提供相关的图形和实例提供总结和拓展的指导材料10.5 教学评估通过课堂讨论和练习题来评估学生对空间里的平行关系的理解程度,以及学生对平行关系拓展知识的探索程度。
七年级数学:空间里的平行关系(教学实录)
( 数学教案 )学校:_________________________年级:_________________________教师:_________________________教案设计 / 精品文档 / 文字可改七年级数学:空间里的平行关系(教学实录)Mathematics is a tool subject, it is the basis for learning other subjects, and it is also a subject that improves people's judgment, analysis, and comprehension abilities.七年级数学:空间里的平行关系(教学实录)教学建议一、知识结构在平行线知识的基础上,教科书以学生对长方体的直观认识为基础,通过观察长方体的某些棱与面、面与面的不相交,进而把它们想象成空间里的直线与平面、平面与平面的不相交,来建立空间里平行的概念.培养学生的空间观念.二、重点、难点分析能认识空间里直线与直线、直线与平面、平面与平面的平行关系既是本节教学重点也是难点.本节知识是线线平行的相关知识的延续,对培养学生的空间观念,进一步研究空间中的点、线、面、体的关系具有重要的意义.1.我们知道在同一平面内的两条直线的位置关系有两种:相交或平行,由于垂直和平行这两种关系与人类的生产、生活密切相关,所以这两种空间位置关系历来受到人们的关注,前面我们学过在平面内直线与直线垂直的情况,以及在空间里直线与平面,平面与平面的垂直关系.2.例如:在图中长方体的棱AA'与面ABCD垂直,面A'ABB'与面ABCD互相垂直并且当时我们还从观察中得出下面两个结论:(1)一条棱垂直于一个面内两条相交的棱,这条棱与这个面就互相垂直.(2)一个面经过另一个面的一条垂直的棱,这两个面就互相垂直.正如上述,在空间里有垂直情况一样,在空间里也有平行的情况,首先看棱AB与面A'B'C'D'的位置关系,把棱AB向两方延长,面A'B'C'D'向各个方向延伸,它们总也不会相交,像这样的棱和面就是互相平行的,同样,棱AB与面DD'C'C是互相平行的,棱AA'与面BB'C'C、与面DD'C'C也是互相平行的.再看面ABCD与A'B'C'D',这两个面无论怎样延展,它们总也不会相交,像这样的两个面是互相平行的,面AA'B'B与DD'C'C也是互相平行的.3.直线与平面、平面与平面平行的判定(1)不在平面内的一条直线,只要与平面内的某一条直线平行,那么,这条直线与这个平面平行。
空间里的平行关系数学教案设计
空间里的平行关系数学教案设计第一章:引言1.1 教学目标让学生了解平行关系的概念。
培养学生观察和识别空间中平行关系的能力。
1.2 教学内容平行关系的定义。
平行关系的性质。
1.3 教学方法观察和分析实际生活中的平行关系实例。
小组讨论和分享观察结果。
1.4 教学资源图片或实物展示平行关系的实例。
1.5 教学步骤1. 引入平行关系的概念,让学生思考在日常生活和学习中是否遇到过平行关系。
2. 展示一些实际生活中的平行关系实例,如教室里的书桌、街道上的交通标志等。
3. 引导学生观察和分析这些实例,发现平行关系的特征。
4. 学生分组讨论,分享观察结果,总结平行关系的性质。
5. 教师进行总结和强调平行关系的重要性。
第二章:平行线的性质2.1 教学目标让学生掌握平行线的性质。
培养学生运用平行线的性质解决问题的能力。
2.2 教学内容平行线的定义。
平行线的性质。
2.3 教学方法观察和分析实际生活中的平行线实例。
小组讨论和分享观察结果。
2.4 教学资源图片或实物展示平行线的实例。
2.5 教学步骤1. 回顾上一章的内容,引导学生思考平行关系的特征。
2. 引入平行线的概念,展示一些实际生活中的平行线实例,如黑板上的两条直线、书桌上的两条直线等。
3. 引导学生观察和分析这些实例,发现平行线的特征。
4. 学生分组讨论,分享观察结果,总结平行线的性质。
5. 教师进行总结和强调平行线的重要性。
第三章:平行公理3.1 教学目标让学生理解平行公理的概念。
培养学生运用平行公理解决问题的能力。
3.2 教学内容平行公理的定义。
平行公理的证明。
3.3 教学方法观察和分析实际生活中的平行关系实例。
小组讨论和分享观察结果。
3.4 教学资源图片或实物展示平行关系的实例。
3.5 教学步骤1. 引导学生回顾上一章的内容,了解平行线的性质。
2. 引入平行公理的概念,解释平行公理的含义。
3. 展示一些实际生活中的平行关系实例,引导学生运用平行公理进行分析。
原创1:1.2.2 空间中的平行关系(三)(讲授式)
C'
观察:观察右边的长方体,平面B′D′与平面BD
平行,平面ABCD内的直线BD与平面B′D′内的直线
有哪些位置关系呢?它们满足什么条件时平行?
D'
A'
B'
C
B
D
A
观察猜想:平面B′D′与平面BD内的直线只有两种位置关系:平行或异面.
平面B′D′∩平面CD′ = C′D′ ,平面BD∩平面CD′=CD,由长方体的性质可知,
平面相交.
④夹在两个平行平面间的所有平行线段相等.
第
一
章
立
体
几
何
初
步
例2 如图,在长方体 − ′′′′中,
求证:平面′//平面’’.
分析:只要证明一个平面内有两条相交直线
和另一个平面平行即可.
− ′ ′ ′ ′ 是正方体,
证明: ∵
∴AB//DC//D’C’且AB=DC=D’C’.
⟹ 是平行四边形.
⟹ BC′//AD′.
线平行的转化策略.
课堂练习
一.判断下列命题的真假;
1.如果两个平面不相交,那么它们就没有共公点;
2.如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行;
3.如果一个平面内的任何一条直线都平行于另一个平面,那么这两个平面平行;
4.已知两个平行平面中的一个平面内有一条直线,
则在另一个平面内有且只有一条直线与已知直线平行;
面面平行⇌线线平行
典例精讲
平面与平面平行判定定理的应用
例5 已知三个平行平面α、β、γ与两条异面直线l,m分别交于
A、B、C 和D、E、F.求证:
空间中的平行关系(优质课)教案
1.5空间中的平行关系(优质课)教案教学目标:了解直线和平面的三种位置关系; 理解并掌握直线与平面平行的判定定理; 理解并掌握直线与平面平行的性质定理; 理解并掌握平面与平面平行的性质定理.教学过程:一、直线与平面的位置关系//a α二、直线和平面平行1.定义:如果一条直线和一个平面没有公共点,那么这条直线与这个平面平行.2.判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭特别说明:1、定理中的三个条件缺一不可.2、该定理的作用:证明线面平行.3、该定理可简记为“线线平行,则线面平行.” 3. 性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.推理模式 ////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭特别说明:1、定理中的三个条件缺一不可.2、该定理的作用:证明线线平行.3、该定理可简记为“线面平行,则线线平行.” 三、平面和平面的位置关系四、平面与平面平行 1.两平面互相平行的定义如果两个平面没有公共点,那么这两个平面平行. 2.两平面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.推理模式:.简言之:线面平行面面平行推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,则这两个平面平行. 3.两个平面平行的性质如果两个平行平面同时和第三个平面相交,那么它们的交线平行.推理模式:////a a b b αβγαγβ⎫⎪=⇒⎬⎪=⎭.简言之:面面平行⇒线线平行特别说明:平面与平面平行的其它性质(1)两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面. (2)夹在两个平行平面之间的平行线段相等.(3)经过平面外一点,有且仅有一个平面和已知平面平行.,//,////a a b b a b A αβαβαβ⊂⎫⎪⊂⇒⎬⎪=⎭⇒a(4)两条直线被三个平行平面所截,截得的对应线段成比例.类型一线面平行例1:b是平面α外的一条直线,可以推出b∥α的条件是()A.b与α内的一条直线不相交B.b与α内的两条直线不相交C.b与α内的无数条直线不相交D.b与α内的任何一条直线都不相交解析:∵b∥α,∴b与α无公共点,从而b与α内任何一条直线无公共点.答案:D练习1:(2014·甘肃天水一中高一期末测试)直线在平面外是指()A.直线与平面没有公共点B.直线与平面相交C.直线与平面平行D.直线与平面最多有一个公共点答案:D练习2:点M、N是正方体ABCD-A1B1C1D1的棱A1A与A1B1的中点,P是正方形ABCD的中心,则MN与平面PCB1的位置关系是()A.平行B.相交C.MN⊂平面PCB1D.以上三种情形都有可能答案:A如图,∵M、N分别为A1A和A1B1中点,∴MN∥AB1,又∵P是正方形ABCD的中心,∴P、A、C三点共线,∴AB1⊂平面PB1C,∵MN⊄平面PB1C,∴MN∥平面PB1C.练习3:在正方体ABCD-A1B1C1D1中和平面C1DB平行的侧面对角线有________条.答案:3例2:(2014江西丰城三中高一期末测试)如图,已知E、F分别是三棱锥A-BCD的侧棱AB、AD的中点,求证:EF∥平面BCD.解析:找到平面BCD中与EF平行的直线,即可由定理证明结论.答案:证明:∵E、F分别是AB、AD的中点,∴EF∥BD.又∵EF⊄平面BCD,BD⊂平面BCD,∴EF∥平面BCD.练习1:((2014·山东济南一中月考)如图所示,已知P是▱ABCD所在平面外的一点,M是PB的中点,求证:PD∥平面MAC.答案:连接BD交AC于点O,连接OM.根据题意,得O是BD的中点,M是PB的中点.∴在△BPD中,OM是中位线,∴OM∥PD.又∵OM⊂平面MAC,PD⊄平面MAC.∴PD∥平面MAC.练习2:(2014·陕西宝鸡园丁中学高一期末测试)如图,已知正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 对角线的交点,求证:C 1O ∥平面AB 1D 1.答案:连接A 1C 1交B 1D 1于点O 1, ∵AO ∥C 1O 1,AO =C 1O∴四边形AOC 1O 1是平行四边形, ∴C 1O ∥AO 1.又∵C 1O ⊄平面AB 1D 1, AO 1⊂平面AB 1D 1, ∴C 1O ∥平面AB 1D 1.例3:已知直线a ∥平面α,a ∥平面β,α∩β=b ,求证a ∥b .解析:若直接证明两条直线a 与b 平行,则相当困难,注意到线面平行的条件,联想到性质定理,则可想到用构造法作辅助平面来帮助证明.答案:在平面α上任取一点A ,在β上任取一点B ,且A 、B 都不在直线b 上.∵a ∥α,a ∥β,∴A ∉a ,B ∉a ,∴由a 与A ,a 与B 可分别确定平面γ1,γ2, 设γ1∩α=c ,γ2∩β=d , 则a ∥c ,且a ∥d ,∴c ∥d . 又d ⊂β,且c ⊄β,∴c ∥β. 又c ⊂α且α∩β=b ,∴c ∥b . 而a ∥c ,∴a ∥b .练习1:三个平面α、β、γ两两相交,有三条交线l 1、l 2、l 3,如果l 1∥l 2.求证:l 3与l 1、l 2平行. 答案:如图,α∩β=l 1,β∩γ=l 2,α∩γ=l 3,l 1∥l 2.⎭⎪⎬⎪⎫⎭⎪⎬⎪⎫l 1∥l 2l 2⊂γl 1⊄γ⇒l 1∥γ l 1⊂α α∩γ=l 3⎭⎪⎬⎪⎫⇒l 1∥l 3 l 1∥l 2⇒l 3∥l 1∥l 2.练习2:如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,N 是PB 的中点,过A 、N 、D 三点的平面交PC 于点M ,求证:AD ∥MN .答案:∵ABCD 为平行四边形,∴AD ∥BC ,又BC ⊂平面PBC , AD ⊄平面PBC ,∴AD ∥平面PBC ,又AD ⊂平面ADMN ,平面PBC ∩平面ADMN =MN ,∴AD ∥MN .类型二 平面与平面平行例3:如图,在三棱柱ABC -A 1B 1C 1中,E 、F 、G 、H 分别是AB 、AC 、A 1B 1、A 1C 1的中点,求证:平面EFA 1∥平面BCHG .解析:运用平面平行的判定.答案:∵E、F分别为AB、AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.练习1:如图所示,已知正方体ABCD-A1B1C1D1,求证:平面AB1D1∥平面BDC1.答案:∵AB A1B1,C1D1A1B1,∴AB C1D1.∴四边形ABC1D1为平行四边形.∴AD1∥BC1.又AD1⊂平面AB1D1,BC1⊄平面AB1D1,∴BC1∥平面AB1D1.同理BD∥平面AB1D1.又∵BD∩BC1=B,∴平面AB1D1∥平面BDC1.练习2:已知正方体ABCD-A1B1C1D1中,E、F分别是AA1、CC1的中点,求证:平面BDF∥平面B1D1E. 答案:如图,取BB 1的中点G,连接EG、GC1,则有EG A1B1.又A1B1C1D1,∴EG C1D1.∴四边形EGC1D1是平行四边形,∴D1E GC1.又BG C1F,∴四边形BGC1F为平行四边形,∴BF∥C1G,∴BF∥D1E.又BF⊄平面B1D1E,D1E⊂平面B1D1E,∴BF∥平面B1D1E.又BD∥B1D1,同理可得BD∥平面B1D1E.又∵BF∩BD=B,∴由平面与平面平行的判定定理得,平面BDF∥平面B1D1E.练习3:在正方体EFGH-E1F1G1H1中,平面E1FG1与平面EGH1,平面FHG1与平面F1H1G,平面F1H1H与平面FHE1,平面E1HG1与平面EH1G中互相平行的对数为()A.0 B.1C.2 D.3答案:本题考查面面平行的判定.∵EG∥E1G1,FG1∥EH1,EG∩EH1=E,E1G1∩FG1=G1,∴平面EGH1∥平面E1FG1,经验证其他3对均不平行,故选B.例4:将已知:平面α∥平面β,AB 、CD 是夹在这两个平面之间的线段, 且点E 、G 分别为AB 、CD 的中点,AB 不平行于CD ,如图所示. 求证:EG ∥α,EG ∥β.解析:由平面平行的性质除法得到结论.答案:如图所示,过点A 作AH ∥CD ,交平面β于点H ,设F 是AH 的中点,连接HD ,则AH 綊CD , ∴四边形ACDH 为平行四边形. 连接EF 、FG 和BH ,∵E 、F 分别是AB 、AH 的中点,∴EF ∥BH . ∵EF ⊄平面β,且BH ⊂平面β,∴EF ∥β.又F 、G 分别是AH ,CD 的中点,且AC ∥HD , ∴FG ∥HD .又∵FG ⊄平面β,HD ⊂平面β,∴FG ∥β. ∵EF ∩FG =F ,∴平面EFG ∥β, 又α∥β,∴平面EFG ∥α.∵EG ⊂平面EFC ,∴EG ∥α,EG ∥β. 练习1:知平面α、β、γ,α∥β∥γ,异面直线l 、m 分别与平面α、β、γ相交于A 、B 、C 和D 、E 、F .求证:AB BC =DE EF.答案:连接DC ,设DC 与平面β相交于G ,则平面ACD 与平面α、β分别交于AD 、BG , 平面DCF 与平面β、γ分别相交于直线GE 、CF , ∵α∥β,β∥γ,∴BG ∥AD ,GE ∥CF , ∴AB BC =DG GC ,DG GC =DE EF ,∴AB BC =DE EF. 练习2:若平面α∥平面β,直线a ⊂α,直线b ⊂β,那么a 、b 的位置关系是( )A .无公共点B .平行C .既不平行也不相交D .相交 答案:A1.(2014·江西丰城三中高一期末测试)已知直线a 、b 和平面α,下列命题中正确的是( )A .若a ∥α,b ⊂α,则a ∥bB .若a ∥α,b ∥α,则a ∥bC .若a ∥b ,b ⊂α,则a ∥αD .若a ∥b ,a ∥α,则b ⊂α或b ∥α 答案:D2.P 为矩形ABCD 所在平面外一点,矩形对角线交点为O ,M 为PB 的中点,给出四个命题:①OM ∥平面PCD ;②OM ∥平面PBC ;③OM ∥平面PDA ;④OM ∥平面PBA . 其中正确命题的个数是( ) A .1 B .2 C .3 D .4 答案:B3.过平面α外的直线l ,作一组平面与α相交,如果所得的交线为a ,b ,c ,…,则这些交线的位置关系为( )A .都平行B .都相交且交于同一点C .都相交但不一定交于同一点D .都平行或都交于同一点 答案:D4.如图,在空间四边形ABCD 中,M ∈AB ,N ∈AD ,若AM MB =ANND,则MN 与平面BDC 的位置关系是________.答案: 平行5.在下列条件中,可判断平面α与平面β平行的是( )A 、,αβ都垂直于γB 、α内存在不共线的三点到β的距离相等C 、,l m 是α内两条直线,且//,//l m ββD 、,l m 是两条异面直线,且//,//,//,//l m l m ααββ答案:D6. 有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a ,α∩β=b ,且a ∥b (α、β、γ分别表示平面,a 、b 表示直线),则γ∥β; ③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β. 其中正确的有________.(填序号) 答案: ③_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.(2014·江西丰城三中高一期末测试)已知直线a 、b 和平面α,下列命题中正确的是( )A .若a ∥α,b ⊂α,则a ∥bB .若a ∥α,b ∥α,则a ∥bC .若a ∥b ,b ⊂α,则a ∥αD .若a ∥b ,a ∥α,则b ⊂α或b ∥α答案: D 若a ∥α,b ⊂α,则a ∥b 或a 与b 是异面直线;若a ∥α,b ∥α,则a 与b 相交、平行或异面;若a ∥b ,b ⊂α,则a ∥α或a ⊂α,故选D.2.P 为矩形ABCD 所在平面外一点,矩形对角线交点为O ,M 为PB 的中点,给出四个命题:①OM ∥平面PCD ;②OM ∥平面PBC ;③OM ∥平面PDA ;④OM ∥平面PBA . 其中正确命题的个数是( )A.1B.2C.3D.4答案:B由已知OM∥PD,∴OM∥平面PCD且OM∥平面P AD.故正确的只有①③,选B. 3.过平面α外的直线l,作一组平面与α相交,如果所得的交线为a,b,c,…,则这些交线的位置关系为()A.都平行B.都相交且交于同一点C.都相交但不一定交于同一点D.都平行或都交于同一点答案:D4..若平面α∥平面β,直线a⊂α,直线b⊂β,那么a、b的位置关系是()A.无公共点B.平行C.既不平行也不相交D.相交答案:A5.若两直线a、b相交,且a∥平面α,则b与α的位置关系是________.答案:相交或平行能力提升6.若平面α∥β,直线a⊂α,点B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条直线与a平行C.存在无数条直线与a平行D.存在惟一一条与a平行的直线答案:D7.已知a是一条直线,过a作平面β,使β∥平面α,这样的β()A.只能作一个B.至少有一个C.不存在D.至多有一个答案:D8.已知α∥β,O是两平面外一点,过O作三条直线和平面α交于不在同一直线上的A、B、C三点,和平面β交于A′、B′、C′三点,则△ABC与△A′B′C′的关系是________,若AB=a,A′B′=b,B′C′=c,则BC的长是________.答案:相似ac b9.在正方体ABCD-A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC 的中点,点M在四边形EFGH及其内部运动,则M满足________________时,有MN∥平面B1BDD1.答案:M在线段FH上移动10.正方体ABCD-A1B1C1D1中,平面AA1C1C和平面BB1D1D的交线与棱CC1的位置关系是________,截面BA1C1和直线AC的位置关系是________.答案:平行平行11.在正方体ABCD-A1B1C1D1,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点,如图所示.(1)求证:E、F、B、D四点共面;(2)求证:平面AMN∥平面EFBD.答案:(1)分别连接BD、ED、FB,由正方体性质知,B1D1∥BD.∵E、F分别是C1D1和B1C1的中点,∴EF 12B1D1,EF12BD.∴E、F、B、D四点共面.(2)连接A1C1交MN于P点,交EF于点Q,分别连接PA、QO.∵M、N分别为A1B1、A1D1的中点,∴MN∥EF,EF⊂面EFBD,∴MN∥面EFBD.∵PQ AO,∴四边形PAOQ为平行四边形,∴PA∥QO.而QO⊂面EFBD,∵PA∥面EFBD,且PA∩MN=P,PA、MN⊂面AMN,∴平面AMN∥面EFBD.。
空间里的平行关系数学教案
空间里的平行关系数学教案一、教学目标1. 让学生理解平行线的概念,能够识别和描述空间中的平行关系。
2. 培养学生运用平行线的性质解决实际问题的能力。
3. 培养学生的观察能力、动手操作能力和逻辑思维能力。
二、教学内容1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:平行线之间的距离相等;平行线与第三条直线相交,构成的角相等。
3. 平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
三、教学重点与难点1. 教学重点:平行线的定义、性质和判定。
2. 教学难点:平行线的判定方法。
四、教学方法1. 采用直观演示法,通过教具模型展示平行线的特征和性质。
2. 采用分组讨论法,让学生分组探讨平行线的判定方法。
3. 采用练习法,让学生通过实际操作和解决问题,巩固所学知识。
五、教学准备1. 教具:直尺、三角板、量角器、多媒体课件。
2. 学具:每人一套平行线模型、练习题。
教案一、导入新课利用多媒体课件展示生活中的平行关系现象,如电梯按钮、楼梯台阶等,引导学生关注空间中的平行关系,激发学生学习兴趣。
二、自主学习1. 让学生自主探究平行线的定义,引导学生通过观察、操作、总结平行线的特征。
2. 学生分组讨论,总结平行线的性质,如距离相等、角相等。
三、课堂讲解1. 讲解平行线的定义,强调“在同一平面内,永不相交”的条件。
2. 讲解平行线的性质,通过实例演示和讲解,让学生理解并掌握平行线之间的距离相等、平行线与第三条直线相交构成的角相等。
3. 讲解平行线的判定方法,包括同位角相等、内错角相等、同旁内角互补。
四、课堂练习1. 让学生利用平行线的性质,解决实际问题,如计算平行线之间的距离、求平行线与第三条直线的夹角等。
2. 让学生运用平行线的判定方法,判断给定的两条直线是否平行。
五、总结与反思1. 让学生回顾本节课所学内容,总结平行线的定义、性质和判定方法。
2. 引导学生思考平行线在实际生活中的应用,提高学生的应用能力。
空间里的平行关系数学教案
空间里的平行关系数学教案第一章:平行关系的引入教学目标:1. 理解平行关系的概念。
2. 能够识别和描述平面内的平行线。
教学内容:1. 引入平行关系的概念,通过实际例子说明平行线的特点。
2. 引导学生观察和描述平行线之间的距离和角度关系。
教学活动:1. 利用直尺和铅笔,让学生在纸上画出两条直线,并尝试调整它们的位置,使它们成为平行线。
2. 让学生观察并描述平行线之间的距离和角度关系,引导学生发现平行线的特性。
教学评估:1. 通过观察学生的画作,评估学生对平行线概念的理解程度。
2. 通过学生的描述,评估学生对平行线之间距离和角度关系的理解程度。
第二章:平行线的性质教学目标:1. 掌握平行线的性质。
2. 能够应用平行线的性质解决问题。
教学内容:1. 学习平行线的性质,包括同位角相等、内错角相等和同旁内角互补。
2. 应用平行线的性质解决实际问题。
教学活动:1. 通过示例和练习,让学生了解平行线的性质,并能够应用到实际问题中。
2. 让学生进行小组讨论,分享彼此的应用实例,并互相纠正错误。
教学评估:1. 通过学生的练习题,评估学生对平行线性质的理解和应用能力。
2. 通过小组讨论,评估学生之间的合作和沟通能力。
第三章:平行线的判定教学目标:1. 掌握平行线的判定方法。
2. 能够应用平行线的判定方法解决问题。
教学内容:1. 学习平行线的判定方法,包括同位角相等、内错角相等和同旁内角互补。
2. 应用平行线的判定方法解决实际问题。
教学活动:1. 通过示例和练习,让学生了解平行线的判定方法,并能够应用到实际问题中。
2. 让学生进行小组讨论,分享彼此的应用实例,并互相纠正错误。
教学评估:1. 通过学生的练习题,评估学生对平行线判定方法的理解和应用能力。
2. 通过小组讨论,评估学生之间的合作和沟通能力。
第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。
2. 能够应用平行线的性质和判定方法解决实际问题。
教学内容:1. 学习平行线的应用方法,包括计算平行线之间的距离和角度。
空间里的平行关系数学教案设计
空间里的平行关系数学教案设计一、教学目标知识与技能:1. 让学生理解平行线的概念,能够识别和判断空间中的平行关系。
2. 培养学生运用平行线的性质解决实际问题的能力。
过程与方法:1. 通过观察、操作、交流等活动,让学生体验平行线的特征,培养学生的空间观念。
2. 利用平行线的性质,让学生学会如何画平行线,提高学生的动手操作能力。
情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的创新精神和合作意识。
2. 让学生感受数学在生活中的应用,体验数学的价值。
二、教学内容1. 平行线的概念:在同一平面内,不相交的两条直线叫做平行线。
2. 平行线的性质:在同一平面内,经过直线外一点,有且只有一条直线与已知直线平行。
3. 画平行线的方法:利用直尺和三角板,通过旋转、平移等操作,画出与已知直线平行的直线。
三、教学重点与难点重点:平行线的概念及其性质,画平行线的方法。
难点:如何判断和画出空间中的平行线。
四、教学准备1. 教具:直尺、三角板、多媒体设备。
2. 学具:学生用书、练习本、铅笔、橡皮。
五、教学过程1. 导入新课:通过展示生活中常见的平行关系图片,引导学生发现平行线的特征,激发学生的学习兴趣。
2. 探究新知:(1)学习平行线的概念:在同一平面内,不相交的两条直线叫做平行线。
(2)学习平行线的性质:在同一平面内,经过直线外一点,有且只有一条直线与已知直线平行。
(3)学习画平行线的方法:利用直尺和三角板,通过旋转、平移等操作,画出与已知直线平行的直线。
3. 巩固练习:(1)学生自主完成教材中的练习题,巩固对平行线概念、性质的理解。
(2)教师出示实际问题,引导学生运用平行线的性质解决问题。
4. 课堂小结:回顾本节课所学内容,总结平行线的概念、性质和画法。
5. 布置作业:学生回家后,完成课后练习题,巩固所学知识。
六、教学策略1. 直观演示法:通过实物模型、图形展示,让学生直观地理解平行线的概念和性质。
2. 操作实践法:让学生亲自动手操作,实践画平行线的方法,提高学生的动手能力。
空间里的平行关系数学教案
空间里的平行关系数学教案第一章:引言1.1 教学目标让学生理解平面的基本概念引导学生观察和识别日常生活中的平行关系1.2 教学内容平面及其特性平行关系的定义与性质1.3 教学活动引入平面图形,引导学生观察和描述平面的特性通过实际生活中的例子,让学生识别和解释平行关系1.4 教学评估观察学生对平面概念的理解程度评估学生对平行关系识别和解释的能力第二章:平行线的性质2.1 教学目标让学生掌握平行线的定义和性质培养学生运用平行线解决实际问题的能力2.2 教学内容平行线的定义与判定平行线的性质与推论2.3 教学活动通过图形和实例,引导学生理解和记忆平行线的定义和性质让学生通过实际问题,运用平行线的性质解决问题2.4 教学评估检查学生对平行线定义和性质的理解程度评估学生运用平行线解决实际问题的能力第三章:平行公理3.1 教学目标让学生理解和掌握平行公理的概念培养学生运用平行公理解决几何问题的能力3.2 教学内容平行公理的定义与证明平行公理的应用与推论3.3 教学活动通过图形和实例,引导学生理解和记忆平行公理的概念和证明让学生通过实际问题,运用平行公理解决问题3.4 教学评估检查学生对平行公理的理解程度评估学生运用平行公理解决几何问题的能力第四章:平行线的判定4.1 教学目标让学生掌握平行线的判定方法培养学生运用平行线判定解决几何问题的能力4.2 教学内容平行线判定定理与推论平行线判定在实际问题中的应用4.3 教学活动通过图形和实例,引导学生理解和记忆平行线判定定理和方法让学生通过实际问题,运用平行线判定解决问题4.4 教学评估检查学生对平行线判定定理和方法的理解程度评估学生运用平行线判定解决几何问题的能力第五章:平行关系在实际问题中的应用5.1 教学目标让学生理解平行关系在实际问题中的应用培养学生运用平行关系解决实际问题的能力5.2 教学内容平行关系在实际问题中的例子平行关系在解决几何问题中的应用5.3 教学活动通过实际例子,引导学生理解和识别平行关系在实际问题中的应用让学生通过解决几何问题,运用平行关系解决问题5.4 教学评估检查学生对平行关系在实际问题中的应用的理解程度评估学生运用平行关系解决实际问题的能力第六章:平行四边形的性质6.1 教学目标让学生掌握平行四边形的定义和性质培养学生运用平行四边形性质解决几何问题的能力6.2 教学内容平行四边形的定义与判定平行四边形的性质与推论6.3 教学活动通过图形和实例,引导学生理解和记忆平行四边形的定义和性质让学生通过实际问题,运用平行四边形的性质解决问题6.4 教学评估检查学生对平行四边形定义和性质的理解程度评估学生运用平行四边形解决几何问题的能力第七章:平行四边形的判定7.1 教学目标让学生掌握平行四边形的判定方法培养学生运用平行四边形判定解决几何问题的能力7.2 教学内容平行四边形判定定理与推论平行四边形判定在实际问题中的应用7.3 教学活动通过图形和实例,引导学生理解和记忆平行四边形判定定理和方法让学生通过实际问题,运用平行四边形判定解决问题7.4 教学评估检查学生对平行四边形判定定理和方法的理解程度评估学生运用平行四边形判定解决几何问题的能力第八章:平行关系与坐标系8.1 教学目标让学生理解在坐标系中平行关系的表示和应用培养学生运用坐标系解决与平行关系相关的几何问题8.2 教学内容坐标系中平行线的表示和性质坐标系中平行公理和判定定理的应用8.3 教学活动通过坐标系图形和实例,引导学生理解和记忆平行线在坐标系中的表示和性质让学生通过实际问题,运用坐标系中平行关系解决问题8.4 教学评估检查学生对坐标系中平行关系表示和性质的理解程度评估学生运用坐标系解决与平行关系相关的几何问题的能力第九章:平行关系在几何证明中的应用9.1 教学目标让学生理解平行关系在几何证明中的应用培养学生运用平行关系进行几何证明的能力9.2 教学内容平行关系在几何证明中的重要性运用平行关系进行几何证明的步骤和方法9.3 教学活动通过几何证明实例,引导学生理解和识别平行关系在几何证明中的应用让学生通过解决几何证明问题,运用平行关系进行证明9.4 教学评估检查学生对平行关系在几何证明中应用的理解程度评估学生运用平行关系进行几何证明的能力10.1 教学目标培养学生运用平行关系解决更复杂几何问题的能力10.2 教学内容平行关系在更复杂几何问题中的应用10.3 教学活动让学生通过解决更复杂的几何问题,运用平行关系解决问题10.4 教学评估检查学生对平行关系知识的掌握程度和运用能力评估学生解决更复杂几何问题的能力重点和难点解析重点环节一:第一章引言中的平面概念理解和日常生活中的平行关系识别。
原创1:1.2.2 空间中的平行关系(一)(讲授式)
练一练 空间中点、线、面的位置关系
1.空间两直线平行是指它们( B )
A.无交点
B.共面且无交点
C.和同一条直线垂直 D.以上都不对
2.在空间,如果一个角的两边与另一个角的两边分别平行,则这两个角
(C)
A.相等
B.互补
C.相等或互补
D.既不相等也不互补
3.一条直线与两条平行线中的一条是异面直线,那么它与另一条的位
B'
D
E
在空间中,如果一个角的两边和
C'
A
C
B
∠BAC=∠B’A’C’
∠EAC+∠B’A’C’ =180°
新课讲授
空间四边形
空间四边形:顺次连接不共面 的四点A,B,C,D所构成的图形,
叫做空间四边形.这四个点中的各个点叫做空间四边形的定点;
所连接的相邻顶点间的线段叫做空间四边形的边;连接不相邻的
思考:这两个结论在立体几何中还成立吗?
新课讲授
请大家对照
右边的正方体,
思考上面的两
个问题.
公理4 空间平行线的传递性来自(1)过点A '与直线AB平行的直
线只有A' D' . (结论1成立)
D'
A'
(2)已知在正方体中有
平行于同一条直线的两直线互相平行
思考:初中学过的结论“在同一平面内垂直于
同一直线的两条直线平行”在空间中还成立吗?
B'
D
A' D' ∥AD,AD∥BC,
则A' D' ∥ BC. (结论2成立)
C'
A
C
B
空间平行线
的传递性
空间中的平行关系教案
课题:空间中的平行关系授课人:杜仙梅教学目标:1.掌握直线和平面平行的判定定理和性质定理,灵活运用线面平行的判定定理和性质定理实现“线线”“线面”平行的转化。
2.掌握两个平面平行的判定定理及性质定理,灵活运用面面平行的判定定理和性质定理实现“线面”“面面”平行的转化.教学重点、难点:线面平行的判定定理和性质定理的证明及运用;两个平面平行的判定和性质及其灵活运用.教学方法:探究、引导、讲练相结合教学过程:基础知识梳理1.直线与平面平行的判定与性质(1)判定定理:平面外一条直线与_______________平行,则该直线与此平面平行.(此平面内的一条直线)(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线.(平行)2.平面与平面平行的判定与性质(1)判定定理:一个平面内的与另一个平面平行,则这两个平面平行.(两条相交直线)(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线.(平行)思考:能否由线线平行得到面面平行?【思考·提示】可以.只要一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,这两个平面就平行.三基能力强化1.两条直线a、b满足a∥b,b⊂α,则a与平面α的关系是( C )A.a∥αB.a与α相交C.a与α不相交D.a⊂α2.正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为_____.(平行)课堂互动讲练考点一直线与平面平行的判定:判定直线与平面平行,主要有三种方法:(1)利用定义(常用反证法).(2)利用判定定理:关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.(3)利用面面平行的性质定理:当两平面平行时,其中一个平面内的任一直线平行于另一平面.特别提醒:线面平行关系没有传递性,即平行线中的一条平行于一平面,另一条不一定平行于该平面.例1正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.【证明】法一:如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连结MN、PQ.正方形ABCD 和正方形ABEF 有公共边AB ,∴AE =BD .又∵AP =DQ ,∴PE =QB .又∵PM ∥AB ∥QN , ∴PM ∥QN , 即四边形PMNQ 为平行四边形, 又MN ⊂平面BCE ,PQ ⊄平面BCE ,∴PQ ∥平面BCE .法二:如图所示,连结AQ ,并延长交BC 于K ,连结EK .∵AE =BD ,AP =DQ ,∴PE =BQ ,∴HQ ∥AD ,即HQ ∥BC .又PH ∩HQ =H ,BC ∩EB =B ,∴平面PHQ ∥平面BCE ,而PQ ⊂平面PHQ ,∴PQ ∥平面BCE .【点评】 法一、法二均是依据线面平行的判定定理在平面BCE 内寻找一条直线l ,证得它与PQ 平行. 特别注意直线l 的寻找往往是通过过直线PQ 的平面与平面BCE 相交的交线来确定.法三是利用面面平行的性质,即若平面α∥β,l ⊂α,则l ∥β.考点二平面与平面平行的判定(1)利用定义(常用反证法).(2)利用判定定理:转化为判定一个平面内的两条相交直线分别平行于另一个平面.客观题中,也可直接利用一个平面内的两条相交线分别平行于另一个平面内的两条相交线来证明两平面平行.例2如图所示,正三棱柱ABC -A 1B 1C 1各棱长为4,E 、F 、G 、H 分别是AB 、AC 、A 1C 1、A 1B 1的中点,求证:平面A 1EF ∥平面BCGH .【思路点拨】 本题证面面平行,可证明平面A 1EF 内的两条相交直线分别与平面BCGH 平行,然后根据面面平行的判定定理即可证明.∴PM AB =PE AE ,QN DC =QB BD , ∴AP PE =DQ BQ . ① 又∵AD ∥BK ,∴DQ BQ =AQ QK . ② 由①②得AP PE =AQ QK, ∴PQ ∥EK .又PQ ⊄平面BEC ,EK ⊂面BEC , ∴PQ ∥平面BEC . 法三:如图所示,作PH ∥EB 交AB 于H ,连结HQ ,则AH HB =AP PE , ∵AE =BD ,AP =DQ ,∴PE =BQ , ∴AH HB =AP PE =DQ BQ ,(3)利用面面平行的传递性: ⎭⎬⎫α∥βγ∥β⇒α∥γ. (4)利用线面垂直的性质:⎭⎬⎫α⊥l β⊥l ⇒α∥β.【证明】 △ABC 中,E 、F 分别为AB 、AC 的中点,∴EF ∥BC .又∵EF ⊄平面BCGH ,BC ⊂平面BCGH ,∴EF ∥平面BCGH .又∵G 、F 分别为A 1C 1,AC 的中点,∴四边形A 1FCG 为平行四边形.∴A 1F ∥GC .又∵A 1F ⊄平面BCGH ,CG ⊂平面BCGH ,∴A 1F ∥平面BCGH .又∵A 1F ∩EF =F ,∴平面A 1EF ∥平面BCGH .【点评】 利用面面平行的判定定理证明两个平面平行是常用的方法,即若a ⊂α,b ⊂α,a ∥β,b ∥β,a ∩b =O ,则α∥β.考点三直线与平面平行的性质利用线面平行的性质,可以实现由线面平行到线线平行的转化.在平时的解题过程中,若遇到线面平行这一条件,就需在图中找(或作)过已知直线与已知平面相交的平面.这样就可以由性质定理实现平行转化.例3如图,已知四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH.求证:AP ∥GH.【思路点拨】 要证AP ∥GH ,只需证PA ∥面BDM.【证明】 如图,连结AC ,设AC 交BD 于O ,连结MO.∵四边形ABCD 是平行四边形,∴O 是AC 的中点.又∵M 是PC 的中点,∴MO ∥PA.又∵MO ⊂平面BDM ,PA ⊄平面BDM ,∴PA ∥平面BDM.又经过PA 与点G 的平面交平面BDM 于GH ,∴AP ∥GH.【点评】 利用线面平行的性质定理证明线线平行,关键是找出过已知直线的平面与已知平面的交线.考点四平面与平面平行的性质平面与平面平行的判定与性质,同直线与平面平行的判定与性质一样,体现了转化与化归的思想.三种平行关系如图.应用性质过程的转化实施,关键是作辅助平面,通过作辅助平面得到交线,就可把面面平行化为线面平行并进而化为线线平行,注意作平面时要有确定平面的依据.例4 (解题示范)(本题满分12分)如图,直线AC 、DF 被三个平行平面α、β、γ所截.(1)是否一定有AD ∥BE ∥CF?(2)若 =λ, =μ,试判断λ与μ的大小关系.【思路点拨】 本题是开放性题目,是近年来高考热点,利用面面平行的性质证明BG ∥CH ,从而可得λ=μ.【解】 (1)平面α∥平面β,平面α与β没有公共点,但不一定总有AD ∥BE.同理不总有BE ∥CF ,∴不一定有AD ∥BE ∥CF 4分(2)过A 点作DF 的平行线,交β,γ于G ,H 两点,AH ∥DF.过两条平行线AH ,DF 的平面交平面α,BC AB EFDE在△ACH 中,AB BC =AG GH, 而AG =DE ,GH =EF , ∴AB BC =DE EF , 即λ=μ. 12分 β,γ于AD ,GE ,HF.根据两平面平行的性质定理,有AD ∥GE ∥HF , 6分∴AG =DE ,同理GH =EF .又过AC ,AH 两相交直线的平面与平面β,γ的交线为BG ,CH . 9分根据两平面平行的性质定理,有BG ∥CH ,【误区警示】 (1)小题易出错,其原因是把AC 、DF 习惯地认为是相交直线. 规律方法总结1.对线面平行,面面平行的认识一般按照“定义—判定定理—性质定理—应用”的顺序.其中定义中的条件和结论是相互充要的,它既可以作为判定线面平行和面面平行的方法,又可以作为线面平行和面面平行的性质来应用2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.在应用有关定理、定义等解决问题时,应当注意规范性训练,即从定理、定义的每个条件开始,培养一种规范、严密的逻辑推理习惯,切不可只求目标,不顾过程,或言不达意,出现推理“断层”的错误.课后作业⎭⎬⎫AG ∥DE AD ∥GE ⇒AGED 为平行四边形,1.已知直线a 、b 和平面α、β,则在下列命题中,真命题为( )A .若a ∥β,α∥β,则a ∥αB .若α∥β,a ⊂α,则a ∥βC .若α∥β,a ⊂α,b ⊂β,则a ∥bD .若a ∥β,b ∥α,α∥β,则a ∥b答案:B2.(教材习题改编)a ,b ,c 为三条不重合的直线,α,β,γ为三个不重合的平面,现给出六个命题:其中正确的命题是( )A .①②③B .①④⑤C .①④D .①④ 答案:C3.过三棱柱ABC -A 1B 1C 1任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.(6)3.互动探究:正三棱柱ABC -A 1B 1C 1各棱长为4,若D 是BC 上一点,且A 1B ∥平面AC 1D ,D 1是B 1C 1的中点,求证:平面A 1BD 1∥平面AC 1D .证明:如图所示,连结A 1C 交AC 1于点E ,∵四边形A 1ACC 1是平行四边形,∴E 是A 1C 的中点,连结ED ,∵A 1B ∥平面AC 1D ,平面A 1BC ∩平面AC 1D=ED ,∴ A 1B ∥ED ,∵E 是A 1C 的中点,∴D 是BC 的中点,又∵D 1是B 1C 1的中点,∴BD 1∥C 1D ,A 1D 1∥AD ,又A 1D 1∩BD 1=D 1,∴平面A 1BD 1∥平面AC 1D.4.高考检阅: (本题满分12分)如图,已知平面α∥平面β∥平面γ,且β位于α与γ之间,点A 、D ∈α,C 、F ∈γ,AC ∩β=B ,DF ∩β=E.解:(1)证明:如图,连结BM 、EM 、BE .∵β∥γ,平面ACF ∩β=BM ,平面ACF ∩γ=CF ,(1)求证:AB BC =DE EF ; (2)设AF 交β于M ,AD 与CF 不平行,α与β间的距离为h ′,α与γ之间的距离为h ,当h ′h 的值是多少时,△BEM 的面积最大? ①⎩⎨⎧ a ∥c b ∥c ⇒a ∥b ②⎩⎨⎧ a ∥γb ∥γ⇒a ∥b ③⎩⎨⎧ α∥c β∥c ⇒α∥β ④⎩⎨⎧ α∥γβ∥γ⇒α∥β ⑤⎩⎨⎧ α∥c a ∥c ⇒a ∥α ⑥⎩⎨⎧a ∥γα∥γ⇒a ∥α. . ∴BM ∥CF ,∴AB BC =AM MF . 同理AM MF =DE EF , ∴AB BC =DE EF . 4分 (2)由(1)知BM ∥CF ,∴BM CF =AB AC =h ′h ,同理ME AD =h -h ′h , ∴BM ·ME =CF ·AD ·h ′h (1-h ′h). 6分 又S △BEM =12BM ·ME sin ∠BME .据题意 知,AD 与CF 异面,AD 、CF 是常量,只是平面β在α,γ之间平移,AD 、CF 所成的角也是定值,∴sin ∠BME 是常量,令h ′h=x ,只要考查函数y =x (1-x )的最值即可. 9分显然当x =12时,即1-x =x =12时,y =x (1-x )有最大值.故当h ′h=12时,即平面β在α,γ两平面的正中间时,△BEM 的面积最大. 12分。
空间中的平行关系PPT教学课件
2.631020 J
v12
3RT1 M mol
3 8.311273 28 103
1064
m s1
t2
3 2
k
T2
3 1.381023 273 5.651021J 2
v22
3RT2 M mol
38.31 273 28 10 3
493
m s1
t3
3 2
kT3
2.55 10 21
RT
mN mNA
kNA T
NkT
理想气体物态方程:
P nkT
标准状态下的分子数密度:
洛喜密脱数: no 2.69 1025 (m 3 )
例3.1;3.2(p107-108)
§4 气体动理论压强公式
4.1 压强的成因 压强:气体作用于容器壁单位面积上的垂直作用力 分子数密度 31019 个分子/cm3 = 3千亿个亿;
物质的微观结构 + 统计方法 ------称为统计力学 其初级理论称为气体分子运动论(气体动理论) 优点:揭示了热现象的微观本质。 缺点:可靠性、普遍性差。
宏观法与微观法相辅相成。
气体动理论 §1 分子运动的基本概念
一.热力学系统 热力学研究的对象----热力学系统. 热力学系统以外的物体称为外界。 孤立系统:系统和外界完全隔绝的系统
所以DD1E1E是平行四边形。 在△ADE和△A1D1E1中. AD=A1D1, AE=A1E1,DE=D1E1, 于是△ADE≌△A1D1E1, 所以∠BAC=∠B1A1C1.
5. 空间四边形的有关概念:
(1)顺次连结不共面的四点A、B、C、D 所构成的图形,叫做空间四边形; (2)四个点中的各个点叫做空间四边形 的顶点; (3)所连结的相邻顶点间的线段叫做空 间四边形的边; (4)连结不相邻的顶点的线段叫做空间 四边形的对角线。
空间中的平行关系PPT教学课件
D1
C1
利用相似三角形对应边成比例A1 及平行线分线段成比例的性质
PBM∽ AA1 M
PM MA
PB AA1
M D
B1
P N C
PBN ∽CC1N
PN NC
PB CC1
A
B
PM PN CC1 AA1 AC // MN
MA NC MN 面ABCD
MN // 面ABCD
AC 面ABCD
证明2:
(1)文字语言:如果一条直线和一个平
面平行,经过这条直线的平面和这个平
面相交,那么这条直线就和交线平行.
a
(2)图形语言:
b
a//α
(3) 符号语言: a β
α∩β=b
a//b
已知:l //α,l β,α∩β=m,
求证:l //m.
l
证明:因为l //α,所以
m
l与α没有公共点,
又因为m在α内,所以l与m也没有公共点.
3.与直线AD平行的平面是______.
4.
长方体ABCD-A1B1C1D1中,点P BB(1 异于B、B1)
PA BA1 M , PC BC1 N ,
求证:MN // 平面ABCD
D1
C1
问题的关键是证明MN//AC,
A1
B1
在⊿PAC中,证明 PM:MA=PN:NC.
P
M
N
D
C
A
B
证法1
问题探讨:
前面已经学过苯不溶于水,乙醇极 易溶于水,那么同时具有苯环和羟 基的苯酚的溶解性又如何呢?
实验探究一: 苯酚的溶解性
注意:应配置约1520ml苯酚溶液以供后 面的实验使用。
实验条件
初中数学空间里的平行关系教案
初中数学空间里的平行关系教案初中数学空间里的平行关系教案作为一名教师,往往需要进行教案编写工作,教案是教学蓝图,可以有效提高教学效率。
那么大家知道正规的教案是怎么写的吗?下面是店铺精心整理的初中数学空间里的平行关系教案,欢迎阅读,希望大家能够喜欢。
一、学什么1、说课内容:苏教版第三册P63-64练习十五。
2、教学目标的设计:我们来看学生对这部分知识了解了那些?从学生的认知背景分析:线段是一种常见的平面图形。
在实际生活中,含有线段的物体很多,而且,学生在一年级时,对长方形和正方形的四条边也就是线段都有初步的感性认识,但那只是初步形象的认识,要上升到理性认识还有一定的难度。
因此,我对教学目标思考定位为:通过操作,抽象概括线段的特征,发展空间观念。
这是本课应达成的知识性目标,但它已不在是本节课的关键。
重要的是引导学生积极参与数学活动,通过不同形式的学习使不同水平的学生能够在原有的基础上有不同程度的提高。
这才是本课的关键。
(1)对学生后继学习的作用。
认识线段是下一课学习厘米,米、分米及进行测量等实践活动的基础,测量物体的长和宽要根据线段的特征:直的、有两个端点(从这个端点到另一个端点)来确定,对学生来说更加抽象;到四年级学习直线、射线时,不仅要引导学生充分想象,和线段的特征相联系,也要用认识线段的方法做迁移。
因此,本课的能力目标是:不仅认识线段,还要会画不定长的线段。
(2)就其应用价值来分析。
用线段构建的模型可以有效的描述自然现象和社会现象;更为学生提供了语言、思想和方法。
建模的过程,学生能进一步体会到知识来源于实践,用于实践的道理,并对学生空间观念的形成有重要的意义。
因此,本课的情感目标就定为:运用所学的数学知识解决实际问题,以激发学生学习数学的兴趣。
3、学习重点、难点从学生的思维角度出发,他们是以形象思维为主。
所以让学生动手操作主动建构出线段的特征是本课的学习重点。
但二年级学生感知粗糙不精细,思维不够严密,又是第一次接触线段这一概念,往往对线段的几何图形的画法(尤其是两个端点)易忽视,形成片面、肤浅的认识,所以对线段的画法及把周围物体的一些边看作线段成了本课的学习难点。
空间里的平行关系数学教案设计
空间里的平行关系数学教案设计一、教学目标:1. 让学生理解平行线的概念,能够识别和判断空间中的平行关系。
2. 培养学生运用平行线的性质解决实际问题的能力。
3. 提高学生的空间想象力,培养学生的观察能力和思维能力。
二、教学内容:1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:平行线上的任意一对对应角相等,同位角相等,内错角相等。
3. 平行线的判定:如果两条直线上的对应角相等,这两条直线平行。
4. 空间中的平行关系:判断空间中的直线是否平行,运用平行线的性质解决问题。
三、教学重点与难点:重点:平行线的定义、性质和判定。
难点:空间中的平行关系的判断。
四、教学方法:1. 采用问题驱动法,引导学生探究平行线的性质和判定。
2. 运用多媒体演示,帮助学生直观理解平行关系。
3. 采用小组合作学习,培养学生的团队协作能力。
五、教学过程:1. 导入:通过生活中的实例,引导学生认识平行关系,激发学生的学习兴趣。
2. 新课导入:介绍平行线的定义,引导学生理解平行线的概念。
3. 案例分析:分析实际问题,运用平行线的性质解决问题。
4. 课堂练习:布置练习题,让学生巩固平行线的性质和判定。
六、教学评价:1. 评价学生对平行线概念的理解程度。
2. 评价学生运用平行线性质解决实际问题的能力。
3. 评价学生的空间想象力和观察能力。
七、教学资源:1. 多媒体教学课件。
2. 练习题和答案。
3. 教学模型和教具。
八、教学进度安排:1. 第一课时:介绍平行线的定义和性质。
2. 第二课时:讲解平行线的判定和实际应用。
3. 第三课时:练习和巩固平行线的知识。
九、教学反馈:1. 课后收集学生的练习作业,了解学生的掌握情况。
2. 在下一节课开始时,进行简短的测验,检查学生对平行线知识的掌握。
3. 及时与学生沟通,了解他们在学习过程中的困难和问题,给予个别指导。
十、教学改进:1. 根据学生的反馈和教学评价,调整教学方法和内容,以提高教学效果。
空间里的平行关系数学教案设计
空间里的平行关系数学教案设计一、教学目标1. 知识与技能:(1)让学生掌握平行线的定义和性质;(2)培养学生识别和画出空间中的平行线;(3)让学生能够运用平行线的性质解决实际问题。
2. 过程与方法:(1)通过观察、操作、交流等活动,培养学生空间观念;(2)培养学生利用平行线的性质进行推理和解决问题的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生勇于探究、积极思考的科学精神;(3)培养学生合作交流、尊重他人的团队意识。
二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线永不相交;(2)平行线之间的距离相等;(3)平行线可以延伸到无穷远。
3. 识别和画出空间中的平行线:(1)利用尺子和直尺画出平行线;(2)利用模型和实物帮助学生直观地理解平行线。
三、教学重点与难点1. 教学重点:(1)平行线的定义和性质;(2)识别和画出空间中的平行线。
2. 教学难点:(1)理解平行线永不相交的性质;(2)运用平行线的性质解决实际问题。
四、教学准备1. 教具:尺子、直尺、模型、实物等;2. 学具:学生尺子、直尺、练习本等。
五、教学过程1. 导入新课:(1)利用模型和实物引导学生观察平行线;(2)提问学生对平行线的认识,引导学生思考。
2. 探究新知:(1)介绍平行线的定义和性质;(2)让学生通过观察、操作、交流等活动,深入理解平行线的性质;(3)引导学生运用平行线的性质解决实际问题。
3. 巩固练习:(1)设计练习题,让学生独立完成;(2)组织学生进行小组讨论,共同解决问题;(3)引导学生总结解题方法。
4. 拓展与应用:(1)让学生运用平行线的性质解决实际问题;(2)引导学生发现生活中的平行线现象;(3)鼓励学生创造自己的平行线作品。
5. 总结与反思:(1)让学生回顾本节课所学内容,总结平行线的性质;(2)引导学生反思自己在学习过程中的收获和不足;(3)鼓励学生提出问题,为下一节课做好准备。
《空间中的平行关系》教案
《空间中的平行关系》教案教学目标、知识与技能()认识和理解空间平行线的传递性,会证明空间等角定理.()通过直观感知,归纳直线和平面平行及平面和平面平行的判定定理.()掌握直线和平面平行,平面与平面平行的判定定理和性质定理,并能利用这些定理解决空间中的平行关系问题.、过程与方法通过类比和转换的思维方法,将空间中的某些立体图形问题转化为平面图形的问题,从而化难为易,化繁为简,带未知为已知,使问题得到很好的解决(线∥线线∥面面∥面).教学重难点重点:平面的基本性质与推论以及它们的应用;线线平行及平行线的传递性和面面平行的定义与判定.难点:自然语言与数学图形语言和符号语言间的相互转化与应用;如何由平行公理以及其他基本性质推出空间线、线,线、面和面、面平行的判定和性质定理,并掌握这些定理的应用.教学过程一、导入看图观察,图中的关系是什么?二、平面中的平行关系. 平行直线()空间两条直线的位置关系①相交:在同一平面内,有且只有一个公共点;②平行:在同一平面内,没有公共点.()初中几何中的平行公理:过直线外一点有且只有一条直线和这条直线平行.【说明】此结论在空间中仍成立.()公理(空间平行线的传递性):平行于同一条直线的两条直线互相平行.即:如果直线,那么 .【说明】此公理是判定两直线平行的重要方法:寻找第三条直线分别与前两条直线平行.. 等角定理等角定理:如果一个角的两边和另一个角的两边分别对应平行,并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.需要说明的是:对于等角定理中的条件:“方向相同”.()若仅将它改成“方向相反”,则这两个角也相等.()若仅将它改成“一边方向相同,而另一边方向相反”,则这两个角互补.此定理及推论是证明角相等问题的常用方法.. 空间图形的平移如果空间图形的所有点都沿同一方向移动相同的距离到'的位置,则说图形在空间做了一次平移.注意:图形平移后与原图形全等,即对应角和对应两点间的距离保持不变.图形平移有如下性质:()平移前后的两个图形全等;()对应角的大小平移前后不变;()对应两点的距离平移前后不变;()对应两平行直线的位置关系在平移前后不变;()对应两垂直直线的位置关系在平移前后不变.. 证明空间两直线平行的方法()利用定义用定义证明两条直线平行,需证两件事:一是两直线在同一平面内;二是两直线没有公共点.()利用公理用公理证明两条直线平行,只需证一件事:就是需找到直线,使得,同时,由公理得 .. 直线与平面平行()直线和平面的位置关系有三种,用公共点的个数归纳为()线面平行的判定定理:如果不在一个平面内的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.符号表示为:(Ⅰ)该定理常表述为:“线线平行,则线面平行.”(Ⅱ)用该定理判断直线和平面α平行时,必须具备三个条件:①直线不在平面α内,即 .②直线在平面α内,即.③两直线、平行,即 .这三个条件缺一不可.()线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和两平面的交线平行.符号表示:若 ,则 , 即“线面平行,则线线平行”.【说明】. 此定理可以作为直线与直线平行的判定定理. 定理中有个条件:①直线和平面α平行,即α;②平面α、β相交,即α∩β=;③直线在平面β内,即 .三者缺一不可.()线面平行定理的应用应用线面平行的判定定理证明线面平行,关键是找到平面内与平面外相互平行的直线.应用线面平行性质定理解题的关键是利用已知条件作辅助平面,然后把已知中的线面平行转化为直线和交线平行.. 两个平面的位置关系同平面内两条直线的位置关系相类似;可以从有无公共点来区分:①如果两个平面有不共线的三个公共点,那么由公理可知:这两个平面必然重合;②如果两个平面有一个公共点,那么由公理可知:这两个平面相交于过这个点的一条直线;③如果两个平面没有公共点,那么就说这两个平面相互平行.由此可知两个不重合的平面的位置关系:()平行——没有公共点;()相交——至少有一个公共点(或有一条公共直线).. 面面平行的判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行.已知:、,,∥,∥(如图所示)求证:∥证明:用反证法假设∥,,∥同理有∥由公理知∥,这与相矛盾.∥注意:()此定理用符号表示为()应用本定理的关键是:要证面面平行,转化为证线面平行,即在内找两条相交直线、都平行于.()这个定理有推论:“若一个平面内有两条相交直线分别平行于另一个平面内的两条直线,则这两个平面平行.”. 面面平行的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.已知:,平面,(如图所示)求证:证明:没有公共点,而,,、没有公共点又、,注意:()本定理可作为线线平行的判定定理使用.()面面平行的性质还有:①这条性质同时是线面平行的一种判定方法.②夹在两平行平面间的两条平行线段相等.③对三个平面这是平面平行的传递性.三、典例解析例.已知:如图,空间四边形中,分别是边的中点.求证:四边形是平行四边形.证明:在中,分别是中点,则.同理,.所以.所以四边形是平行四边形.例.已知:空间四边形中,分别是的中点.求证:.证明:连接.在中,因为分别是的中点,所以 .又因 .所以 .例.求证:如果过一个平面内一点的直线平行于与该平面平行的一条直线,则这条直线在这个平面内.已知:.求证:.证明:设与确定的平面为,且,则.又知,,由平行公理可知,与重合.所以.四、课后小结应用线面平行的判定定理证明线面平行,关键是找到平面内与平面外相互平行的直线.应用线面平行性质定理解题的关键是利用已知条件作辅助平面,然后把已知中的线面平行转化为直线和交线平行.两平面平行问题常常转化为线面平行,而线面平行又可以转化为线线平行.所以注意转化思想的应用,两平面平行的性质定理是证明空间两直线平行的重要依据,故应切实掌握好.五、课后作业练习、.六、板书设计。
原创1:1.2.2 空间中的平行关系(二)(讲授式)
m
β
新课讲授
直线与平面平行的性质定理的证明
已知: l // α ,l β且 ∩ β =m.
求证: l // m.
l
β
m
证明:因为l//α,所以直线l与平面α没有公共点.
又因为α∩β=m,所以m α 且m β.
所以直线 l 与直线 m 没有公共点.
又因为l β且m β,
所以l//m.
例题2:有一块木料如图,已知棱BC平行于面A′C′.
(1)要经过木料表面A′B′C′D′内的一点P
和棱BC将木料锯开,应怎样画线?
(2)所画的线和面AC有什么关系?
分析:经过木料表面A’C’内一点P和棱BC将木料锯开,实际上是经过BC
及BC外一点P作截面,也就是找出平面与平面的交线.我们可以由直线
与平面平行的性质定理和公理4、公理2作出.
两直线平行的定义是什么?
在同一平面内没有公共点的两条直线.
本质:线面平行⟹线线平行
典例精讲
直线与平面平行判定定理的应用
例题1 已知空间四边形 ABCD,E,F 分别是 AB,AD 的中点.
A
求证:EF // 平面 BCD.
证明:连结 BD,在 △ABD 中,
因为 E,F 分别是 AB,AD 的中点,
E
所以 EF // BD.
又因为 BD 是平面 ABD 与平面 BCD的交线,
EF 平面 BCD,
所以 EF // 平面 BCD.
F
D
B
总结:直线与平面平行的判定定理应用
(1)定理的实质是:线线平行 线面平行;
(2)关键是在面内找一条直线和已知直线平行.
C
典例精讲
直线与平面平行的性质定理的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 数学教案 )
学校:_________________________
年级:_________________________
教师:_________________________
教案设计 / 精品文档 / 文字可改
七年级数学:空间里的平行关系
(教学示范)
Mathematics is a tool subject, it is the basis for learning other subjects, and it is also a subject that improves people's judgment, analysis, and comprehension abilities.
七年级数学:空间里的平行关系(教学示
范)
教学建议
一、知识结构
在平行线知识的基础上,教科书以学生对长方体的直观认识为基础,通过观察长方体的某些棱与面、面与面的不相交,进而把它们想象成空间里的直线与平面、平面与平面的不相交,来建立空间里平行的概念.培养学生的空间观念.
二、重点、难点分析
能认识空间里直线与直线、直线与平面、平面与平面的平行关系既是本节教学重点也是难点.本节知识是线线平行的相关知识的延续,对培养学生的空间观念,进一步研究空间中的点、线、面、
体的关系具有重要的意义.
1.我们知道在同一平面内的两条直线的位置关系有两种:相交或平行,由于垂直和平行这两种关系与人类的生产、生活密切相关,所以这两种空间位置关系历来受到人们的关注,前面我们学过在平面内直线与直线垂直的情况,以及在空间里直线与平面,平面与平面的垂直关系.
2.例如:在图中长方体的棱AA'与面ABCD垂直,面A'ABB'与面ABCD互相垂直并且当时我们还从观察中得出下面两个结论:
(1)一条棱垂直于一个面内两条相交的棱,这条棱与这个面就互相垂直.
(2)一个面经过另一个面的一条垂直的棱,这两个面就互相垂直.
正如上述,在空间里有垂直情况一样,在空间里也有平行的情况,首先看棱AB与面A'B'C'D'的位置关系,把棱AB向两方延长,面A'B'C'D'向各个方向延伸,它们总也不会相交,像这样的棱和面就是互相平行的,同样,棱AB与面DD'C'C是互相平行的,棱AA'与面
BB'C'C、与面DD'C'C也是互相平行的.
再看面ABCD与A'B'C'D',这两个面无论怎样延展,它们总也不会相交,像这样的两个面是互相平行的,面AA'B'B与DD'C'C也是互相平行的.
3.直线与平面、平面与平面平行的判定
(1)不在平面内的一条直线,只要与平面内的某一条直线平行,那么,这条直线与这个平面平行。
(直线与平面平行的判定)(2)如果一个平面内两条直线都与另一个平面平行,那么这两个平面互相平行。
(空间里平面与平面平行的判定)
三、教法建议
1.,是高中学习《立体几何》的重要部分,本节知识在初中阶段让学生积累一些感性的认识.学习这节内容要注意联系实物(如火柴盒,教室)中的线与线、线与面、面与面的关系就容易得多了.2.本节在已有的对长方体的直观认识的基础上,通过对长方体的棱与面、面与面的不相交的观察,介绍了空间里的直线与平面、平面与平面平行的关系.目的主要是培养空间思维,但只是一个初
步的感性认识,只需基本了解,不需要系统地学习.
3.教学时应该注意的是这里所说的平面一定是无限延伸的.两面墙平行,是指两面墙所在的平面平行,不是指墙这一小部分平行.教学设计示例
一、教学目标
1.能借助长方体的棱与面、面与面的平行关系,说出空间里直线与平面、平面与平面的平行关系.
2.此外,在教学“”中,要培养学生的空间想象力.
3.通过平行关系在生活中的应用,培养学生的应用意识.
二、引导性材料
复习提问:
1.平面里,两直线的位置关系有哪些?在空间里,两直线的位置关系又有哪些?
2.试说出两直线平行的意义.
前面,我们在学习“两直线互相垂直”时,曾经学习过空间里的垂直关系.(可让学生以教室为实例,说出一些线与面,面与面的
垂直关系.)
前几节课,又学习了“平行线”的有关知识,在实际生活中常常也说什么与什么“平行”.(教师演示:一根木条或铅笔与桌面平行.)这种“平行”关系是什么样的平行关系呢?你也能举出一些这样的实例吗?这节课就研究这些问题.
三、知识产生和发展过程的教学设计
问题1—1:观察下图(也可要求学生携带一个长方体的包装纸盒)中的长方体,棱AB与面A'B'C'D'的位置关系是什么?如果将棱AB向两边无限伸展,同时也将面A'B'C'D'向各个方向延展,它们之间有无可能相交?
问题1-2:图中,你能以棱AB与面A'B'C'D'为一个具体例子,用类似于定义“平行线”的方法,给直线与平面平行下一个定义吗?
(由学生口答,教师帮助完善,得出定义.)
问题1-3:图中,除了棱AB外,还有与面A'B'C'D'平行的棱吗?有哪几条?
(由学生分别说出棱BC,CD,AD都与面A'B'C'D'平行.)
问题1-4:除了面A'B'C'D'外,棱AB还与哪个平面平行?
问题2—1:如下图的长方体中,面ABCD与面A'B'C'D'能否相交?怎样定义空间里的两平面平行?
问题2-2:观察你自己携带的长方体纸盒,能说出哪些平面平行吗?
(可由学生讨论后,请一位学生带上纸盒,给学生边演示,边讲解.)
四、例题解析
例题:如下图,在长方体中,棱CD与哪些面平行?面A'B'C'D'与哪些棱平行?
答:棱CD与面A'B'BC、面A'B'C'D'平行;
面A'ADD'棱BB、棱BC、棱C'C、棱B'C平行;
面A'B'BA与面D'C'CD平行.
(教师可根据教学的实际情况,对此例进行变式,如提出不同位置的线面.面面平行的问题.也可让学生自己来提出问题.由学生自己借助长方体纸盒解答这些问题,以增强学生对空间平行关系
的感知,发展想象能力.)
五、练习
课本第90页练习第l、2题.
六、小结
本堂课以长方体(教室或纸盒)为实物模型,通过观察长方体的棱与面、面与面的位置关系,并把它们想像成空间里的直线与平面、平面与平面,研究了空间里的线与面、面与面平行的关系.我们生活在空间里,因而要养成用数学的眼光去观察世界的习惯,并逐步地学会用数学知识去研究问题、解决问题.
可在这填写你的名称
YOU CAN FILL IN THE NAME Here。