北师大版八年级上册数学[平行线的性质知识点整理及重点题型梳理](提高版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级上册数学
重难点突破
知识点梳理及重点题型巩固练习
平行线的性质知识讲解(提高)
【学习目标】
1. 掌握平行线的性质公理、定理,并能依据平行线的性质公理、定理进行简单的推解;
2. 了解并掌握平行线的性质定理的探究过程;
3.了解平行线的判定与性质的区别和联系.
【要点梳理】
要点一、平行线的公理、定理
公理:两条平行线被第三条直线所截,得到的同位角相等.(简记为:两直线平行,同位角相等).
定理:两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等).
定理:两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁内角互补).
要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.
(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.
要点二、平行线的性质定理的探究过程
1.两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等).
3
21
c
b
a
因为a∥b,
所以∠1=∠2(两直线平行,同位角相等),
又∠3=∠1 (对顶角相等)
所以∠2=∠3.
2.两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁内角互补).
因为a∥b,
所以∠3=∠2(两直线平行,内错角相等),
又∠3+∠1=180°(补角的定义),
所以∠2+∠1=180°.
要点诠释:平行线性质定理的证明,要借助平行线线性质公理,因为公理是人们在生产和生活中总结出来的正确的结论,不需要证明,但是定理、性质或推论到的证明其正确性. 要点三、平行线的性质与判定
(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.
(3)平行线的判定与性质的联系与区别
区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.
联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.
(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.
【典型例题】
类型一、平行线的性质公理、定理的应用
1、如图所示,把一块长方形纸片ABCD沿EF折叠,
∠EFG=50°,求∠DEG和∠BGM的大小.
【思路点拨】根据平行线的性质可求得∠EFC的度数,然
后根据折叠的性质可知∠NFE=∠EFC,∠MEF=∠DEF,继
而可求得∠DEG和∠BGM的度数.
【答案与解析】
解:∵AD∥BC,∠EFG=50°,
∴∠EFC=180°-∠EFG=130°,
由折叠的性质可知,∠NFE=∠EFC,∠MEF=∠DEF,
∴∠DEG=100°,
∴∠EGC=180°-100°=80°,
则∠BGM=∠EGC=80°(对顶角相等).
【总结升华】本题考查了平行线的性质以及折叠的性质,解答本题的关键是由折叠的性质得出∠NFE=∠EFC,∠MEF=∠DEF.
举一反三
【变式】(2015•洛阳一模)如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n
和m上,边BC与直线n所夹的角为25°,则∠α的度数为度.
【答案与解析】
∵m∥n,边BC与直线n所夹的角为25°,
∴∠BCD=25°.
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠ACD=60°﹣25°=35°.
∵l∥m,
∴∠α=∠ACD=35°.
故答案为:35.
2、如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.
【思路点拨】本题考查的是平行线的性质以及平行线的判定定理.
(1),(2)都需要用到辅助线利用两直线平行,内错角相等的定理加以证明;(3),(4)是利用两直线平行,同位角相等的定理和三角形外角的性质加以证明.【答案与解析】
解:
(1)∠A+∠C+∠P=360;
(2)∠A+∠C=∠P;
(3)∠A+∠P=∠C;
(4)∠C+∠P=∠A.
说明理由(以第三个为例):
已知AB∥CD,根据两直线平行,同位角相等及三角形的一个外角等于两不
相邻内角之和,可得∠C=∠A+∠P.
【总结升华】考生应熟知平行线的有关知识点,这是中考常考的题型.
3、(2015•东莞)如图,已知AB∥CD,∠A=36°,∠
C=120°,求∠F-∠E的大小.
【思路点拨】过E作EG∥AB,过F作FH∥AB,可以求出
∠AEG与∠HFC的度数,又EG∥FH,根据两直线平行,
内错角相等,∠GEF=∠EFH,所以∠F-∠E=∠HFC-∠AEG.
【答案与解析】
解:过E作EG∥AB,过F作FH∥AB,
∴∠A=∠1,EG∥FH,
∵∠A=36°,
∴∠1=36°,
∵AB∥CD,FH∥AB,
∴FH∥CD,
∴∠C+∠4=180°,
∵∠C=120°,
∴∠4=60°,
∵EG∥FH,
∴∠2=∠3,
∴∠F-∠E=(∠3+∠4)-(∠1+∠2),
=∠3+∠4-∠1-∠2,
=∠4-∠1,
=60°-36°
=24°.
【总结升华】本题主要考查两直线平行内错角相等和同旁内角互补的性质,作平行线把∠F、∠E分成两个角是解题的突破口,也是关键.
举一反三
【变式】如图,已知且l1∥l2,且l3与l1、l2分别交于A、B两点,点P在直线AB上,
(1)当点P在A、B两点之间运动时,问∠1、∠2、∠3之间的数量关系,请说明理由
(2)如果点P在A、B两点外侧运动时,试探究∠1,∠2,∠3之间的数量关系(点P与A、B不重合)只要写出结论即可,不必证明.