北师大版八年级上册数学[平行线的性质知识点整理及重点题型梳理](提高版)
北师大版八上数学7.3平行线的判定知识点精讲
知识点总结1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。
平行用符号“‖”表示,如“AB‖CD”,读作“AB平行于CD”。
同一平面内,两条直线的位置关系只有两种:相交或平行。
注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
简称:同位角相等,两直线平行。
平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
简称:内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
简称:同旁内角互补,两直线平行。
补充平行线的判定方法:(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
公理:同位角相等,两直线平行。
定理1:内错角相等,两直线平行。
条件2:同旁内角互补,两直线平行。
注:这三个判定都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角。
补充平行线的判定方法:(1)平行于同一条直线的两条直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
定理1:两直线平行,同位角相等。
定理2:两直线平行,内错角相等。
定理3:两直线平行,同旁内角互补。
定理:平行于同一条直线的两条直线平行视频讲解:复习提纲1、平行线判定定理1:同位角相等,两直线平行。
如下图所示,只要满足∠1=∠2(或者∠3=∠4;∠5=∠7;∠6=∠8),就可以得到AB//CD。
2、平行线判定定理2:内错角相等,两直线平行。
如上图所示,只要满足∠6=∠2(或者∠5=∠4),就可以得到AB//CD。
北师大版八年级数学(上)第七章 平行线的证明 第5节 平行线的性质
典型例题
例 1:如图,直线 AB∥CD,直线 EF 与 AB 相交于点 P,与 CD 相交于点 Q,且 PM⊥EF,若∠1=68°, 求∠2 的度数.
解:∵AB∥CD,∠1=68°,∴∠1=∠QPA=68°.∵PM⊥EF,∴∠2+∠QPA=90°. ∴∠2+68°=90°,∴∠2=22°.
练习:如图,已知 AB∥CD∥EF,∠A=105°,∠ACE=51°,求∠E 的度数.
例 4:如图,已知直线 AB∥DF,∠D+∠B=180° (1)求证:DE∥BC; (2)如果∠AMD=75°,求∠AGC 的度数.
解:(1)证明:∵AB∥DF,∴∠D+∠BHD=180°, ∵∠D+∠B=180°,∴∠B=∠DHB,∴DE∥BC;
(2)解:∵DE∥BC,∠AMD=75°,∴∠AGB=∠AMD=75°, ∴∠AGC=180°﹣∠AGB=180°﹣75°=105°.
例 2:已知:如图所示,AB∥CD,AE 交 CD 于点 C,DE⊥AE,垂足为 E,∠A+∠1=70°, 求:∠D 的度数.
解:∵AB∥CD,∴∠A=∠1,∵∠A+∠1=70°,∴∠1=∠A=35°, ∴∠ECD=∠1=35°,∵DE⊥AE,∴∠DEC=90°, ∴∠D=180°﹣∠DEC﹣∠ECD=55°.
证明:∵DF∥AC,∴∠C=∠CEF,又∵∠C=∠D,∴∠CEF=∠D, ∴BD∥CE,∴∠3=∠4,又∵∠3=∠2,∠4=∠1,∴∠2=∠1.
练习:如图所示,已知直线 DE∥BC,GF⊥AB 于点 F,∠1=∠2,判断 CD 与 AB 的位置 关系.并说明理由.
解:CD⊥AB,理由为:∵DE∥BC,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB, ∴FG∥CD,∵GF⊥AB,∴CD⊥AB.
平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册
∴EF∥BC(同旁内角互补,两直线平行).
又 ∵AD∥BC,
∴EF∥AD(平行于同一条直线的两条直线平行);
7.4 平行线的性质
重
难
题
型
突
破
返回目录
(2)由(1)知∠FCB=38°,又 CE 平分∠FCB,
∴∠BCE=
∠FCB=19°(角平分线的定义).
在同一平面内,垂直于
同一条直线的两条直线
如图,∵b⊥a,c⊥a,
∴b∥c
平行
其他
方法
如 图 ,∵a ∥b,a ∥c,
平行于同一条直线的
两条直线平行
∴b∥c
7.3 平行线的判定
返回目录
归纳总结
考
点
要判断两条直线是否平行,首先要观察图形中与要判断
清
单 的两条直线有关的同位角、内错角、同旁内角的关系,这是
7.3 平行线的判定
返回目录
[解析]汽车行驶的方向不变,则汽车拐弯前与拐弯后
重
难
题 的行驶路线互相平行,如图所示.先右转后左转的两个角是
型 同位角,根据同位角相等,两直线平行,可知选项 D 正确
突
破 .
[答案] D
7.3 平行线的判定
返回目录
变式衍生 如图,已知∠1=90°,为保证两条铁轨平
重
难
∵∠1=60°(已知),∠ABC=∠1(对顶角相等),
∴∠ABC=60°(等量代换).
∵∠2=120°(已知),
∴∠ABC+∠2=180°,
∴AB∥CD(同旁内角互补,两直线平行).
∵∠2+∠BCD=180°(平角的定义),
北师大版八年级数学上册第七章 平行线的性质
同学们,我们今天学习了平行线的性质和平行公理的推 论,在以后解决问题的过程中要充分挖掘题目中的隐含 条件构造合适的辅助线进行证明和计算.
教材习题:完成课本1Байду номын сангаас7页习题1, 2,3. 作业本作业: .
变式2:将一个含30°角的直角三角板和一把直尺(如图所示)叠放在 一起,如果∠α=40°,那么∠β=___5_0_°___.
例2:如图,已知AB∥CD,BE、CE分别平分∠ABC和∠BCD. 求证:BE⊥CE.
证明:因为AB∥CD,所以∠ABC+∠BCD=180°,
又因为BE平分∠ABC,CE平分∠BCD,
所以∠CBE=
1 2
∠ABC,∠BCE=12
∠BCD,
所以∠CBE+∠BCE=
1 2
(∠ABC+∠BCD)=90°,
所以∠BEC=90°,所以BE⊥CE.
【题型二】利用平行公理的推论进行证明
例3:如图,已知AB∥CD,点E在AB的上方,则∠B、∠D、 ∠BED之间存在怎样的等量关系?说明理由. 解:∠BED=∠D-∠B.理由如下: 过点E作EF∥AB(点F在E的右侧), 所以∠B=∠BEF(两直线平行,内错角相等). 因为AB∥CD(已知),所以EF∥CD(平行于同一条直线的两 条直线平行),所以∠D=∠DEF(两直线平行,内错角相等), 所以∠BED=∠DEF-∠BEF=∠D-∠B(等量代换).
4 平行线的性质
1. 通过阅读课本,探索平行线的性质,并掌握它们的图形 语言、文字语言、符号语言;了解平行线的性质和判定 的区别,提高学生的分析能力和归纳总结能力.
2.通过学生观察、动手操作,培养他们主动探索与合作的 能力,使学生领会数形结合、转化的数学思想,从而提 高学生分析问题和解决问题的能力.
北师大版数学八年级上册第一章平行线定理知识点归纳及例题
北师大版数学八年级上册第一章平行线定
理知识点归纳及例题
1. 平行线定理知识点归纳:
- 平行线定义:在同一个平面内,永远不相交的两条直线称为
平行线。
- 平行线的判定:
- 同一边内角相等定理:如果两条直线被一组平行线分成两对
同位内角,那么两对同位内角分别相等。
- 顶角相等定理:如果两条直线被一组平行线分成两对同位外角,那么两对同位外角分别相等。
- 平行线的性质:
- 平行线与横截线的交角等于对顶角。
- 平行线与平行线之间的交角相等。
- 平行线的平行线仍然是平行线。
2. 平行线定理例题:
例题1:
已知 AB∥CD,∠BCD=65°,求∠ADB的度数。
解析:根据顶角相等定理,∠BCD=∠ADB,所以∠ADB=65°。
例题2:
在平行四边形 ABCD 中,已知∠ABD=50°,求∠CBA 的度数。
解析:根据同一边内角相等定理,∠CBA=∠ABD=50°。
例题3:
已知 m∠1=75°,m∠2=105°,且∠1和∠2是同位内角,求∠3的度数。
解析:根据同一边内角相等定理,∠1=∠3,所以∠3=75°。
以上是北师大版数学八年级上册第一章平行线定理知识点的归
纳及例题。
北师大版八年级上册数学[命题、证明及平行线的判定定理(提高版)知识点整理及重点题型梳理](1)
北师大版八年级上册数学重难点突破知识点梳理及重点题型巩固练习命题、证明及平行线的判定定理(提高)知识讲解【学习目标】1.了解定义、命题的含义,会区分命题的条件(题设)和结论;2. 体会检验数学结论的常用方法:实验验证、举出反例、推理;4.了解公理和定理的定义,并能正确的写出已知和求证,掌握证明的基本步骤和书写格式;5.掌握平行线的判定方法,并能简单应用这些结论.【要点梳理】要点一、定义与命题1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.要点诠释:(1)定义实际上就是一种规定.(2)定义的条件和结论互换后的命题仍是真命题.2.命题:判断一件事情的句子叫做命题.真命题:正确的命题叫做真命题.假命题:不正确的命题叫做假命题.要点诠释:(1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果……那么……”的形式,其中“如果”开始的部分是条件,“那么”后面是结论.(2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立.要点二、证明的必要性要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理. 推理的过程叫做证明.要点三、公理与定理1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理.要点诠释:欧几里得将“两点确定一条直线”等基本事实作为公理.2.定理:通过推理得到证实的真命题叫做定理.要点诠释:证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程.要点四、平行公理及平行线的判定定理1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.2.平行线的判定定理判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、定义与命题1.说出下列命题的条件和结论,并判断它是真命题还是假命题:(1)在同一个三角形中,等角对等边;(2)两角和其中一角的对边对应相等的两个三角形全等;(3)有两边对应成比例,且有任意一角对应相等的两个三角形相似.【答案与解析】解:(1)先把这个命题写成“如果……那么……”的形式:如果在同一个三角形中,有两个角相等,那么这两个角所对的边也相等.条件:同一个三角形中的两个角相等;结论:这两个角所对的两条边相等.它是真命题.(2)原命题可以写成:如果两个三角形有两个角和其中一角的对边对应相等,那么这两个三角形全等.条件:两个三角形有两个角和其中一角的对边对应相等;结论:这两个三角形全等.它是真命题.(3)原命题可以写成:如果两个三角形两边对应成比例,且有任意一角对应相等,那么这两个三角形相似.条件:两个三角形两边对应成比例,且有任意一角对应相等;结论:这两个三角形相似.它是假命题,反例:如下图:【总结升华】要判断一个命题是假命题,只要能够举出一个例子,使之具备命题的条件,而不具备命题的结论,就可以说明这一命题是假命题,这种例子通常称为反例.举一反三:【变式】下列语句中,哪些是命题,哪些不是命题,如果是命题的话,请指出是真命题还是假命题?(1)三角形的三条高交于一点;(2)解方程0322=--x x ; (3)1+2≠3.【答案】(2)不是命题;(1)(3)是命题,其中(1)是真命题,(3)是假命题.【变式2】下列真命题的个数是 ( )(1)直线a 、b 、c 、d ,如果a ∥b 、c ∥b 、c ∥d ,则a ∥d.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A .1个B .2个C .3个D .4个【答案】B类型二、公理、定理及证明2.证明:对顶角相等.【思路点拨】如果题目中没有明确出“条件”和“结论”,应先写出已知、求证、证明,如果需要的话并画出图形,再证明.【答案与解析】已知:如图,直线AB ,CD 相交于点O ,∠1和∠2是对顶角.求证:∠1=∠2.证明:∵∠1和∠2是对顶角(已知),∴OA 与OB 互为反向延长线(对顶角的意义).∴∠AOB 是平角(平角的定义).同理,∠COD 也是平角.∴∠1和∠2都是∠AOC 的补角(补角的定义).∴∠1=∠2(等角的补角相等).【总结升华】“对顶角相等”是一个定理,而不是公理.举一反三:【变式】证明:相似三角形的周长比等于相似比.【答案】已知:如图,△ADE∽△ABC, AE∶AC=k求证:C△ADE :C△ABC=k证明:∵△ADE∽△ABC∴AE:AC=AD:AB=DE:BC= k∴(AE+AD+DE):(AC+AB+BC)=k∴C△ADE :C△ABC=k类型三、平行公理及平行线的判定3.(2015春•无锡)一副直角三角板叠放如图所示,现将含45°角的三角板ADE固定不动,把含30°角的三角板ABC绕顶点A顺时针旋转∠α(α=∠BAD且0°<α<180°),使两块三角板至少有一组边平行.(1)如图①,α=°时,BC∥DE;(2)请你分别在图②、图③的指定框内,各画一种符合要求的图形,标出α,并完成各项填空:图②中α=°时,∥;图③中α=°时,∥.【思路点拨】(1)利用两直线平行同位角相等,并求得α=45°﹣30°=15°;(2)利用平行线的性质及旋转不变量求得旋转角即可.【答案与解析】解:(1)图①中α=15°时,BC∥DE,∵BC∥DE,∴∠1=∠B=60°,∵∠1=∠D+∠α,∠D=45°,∴∠α=15°α=∠CAD﹣∠CAB=45°﹣30°=15°.(2)图②中α=60°时,BC∥DA,∵∠BAC=30°,∠α=60°,∴∠DAC=90°=∠C,∴∠DAC+∠C=180°,∴BC∥DA;图③中α=105°时,BC∥EA.∵∠α=105°,∠DAE=45°,∴∠EAB=60°,∵∠B=60°,∴∠EAB=∠B,∴BC∥EA.故答案为:(1)15;(2)60;BC;DA;105;BC;AE.【总结升华】本题考查了图形的旋转变化,学生主要看清是顺时针还是逆时针旋转,并判断旋转角为多少度,难度不大,但易错.举一反三:【变式】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ).A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°【答案】A提示:“方向相同”有两层含义,即路线平行且方向相同,在此基础上准确画出示意图.图B显然不同向,因为路线不平行.图C中,∠1=180°-130°=50°,路线平行但不同向.图D中,∠1=180°-130°=50°,路线平行但不同向.只有图A路线平行且同向,故应选A.4.(2016春•太仓市期末)如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.【思路点拨】根据四边形的内角和定理和∠A=∠C=90°,得∠ABC+∠ADC=180°;根据角平分线定义、等角的余角相等易证明和BE与DF两条直线有关的一对同位角相等,从而证明两条直线平行.【答案与解析】解:BE∥DF.理由如下:∵∠A=∠C=90°,∴∠ABC+∠ADC=180°∵BE平分∠ABC,DF平分∠ADC,∴∠1=∠2=∠ABC,∠3=∠4=∠ADC,∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°,又∠1+∠AEB=90°,∴∠3=∠AEB∴BE∥DF【总结升华】此题运用了四边形的内角和是360°、角平分线定义、等角的余角相等和平行线的判定,考察的知识点较多,只有熟练掌握,才能运用自如.举一反三:【变式1】已知,如图,BE平分∠ABD,DE平分∠CDB,且∠1与∠2互余,试判断直线AB、CD的位置关系,请说明理由.【答案】解:AB∥CD,理由如下:∵BE平分∠ABD,DE平分∠CDB,∴∠ABD=2∠1,∠CDB=2∠2.又∵∠1+∠2=90°,∴∠ABD+∠CDB=180°.∴AB∥CD(同旁内角互补,两直线平行).【变式2】(2015•长春一模)如图,直线a与直线b被直线c所截,b⊥c,垂足为点A,∠1=70°.若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转()A.70° B.50° C.30° D.20°【答案】解:∵b⊥c,∴∠2=90°.∵∠1=70°,a∥b,∴直线b绕着点A顺时针旋转的度数=90°﹣70°=20°.故选D.。
北师大版八年级上册 第七章 平行线的证明 复习回顾(知识点+典型题)
八上第七章《平行线的证明》复习回顾一.基本概念(一)定义:对名称和术语的含义加以描述,作出明确的规定,这就是定义。
在表示定义的句子中常有“叫…,称为…,是…”等关键字眼。
(二)命题:判断一件事情的句子,叫做命题 1.它包含两层含义:①命题必须是一个完整的句子,常为陈述句; ②命题必须对某件事作出肯定或否定的判断; 2. 每个命题都由条件和结论两部分组成。
条件是已知的事项,结论是由已知事项推断出来的事项。
一般地,命题都可以写成“如果……,那么……”的形式。
3.命题有真命题、假命题、逆命题之分。
(三)公理:公认的真命题称为公理;公理是不需要经过推理证实的真命题。
(四)定理:经过证明的真命题称为定理;公理和定理都可以作为判断其他命题真假的依据。
(五)证明:推理的过程称为证明 例1.下列命题是真命题的是( )A .若直角三角形其中两边为3和4,则第三边为5B .﹣1的立方根是它本身C .经过一点有且只有一条直线与已知直线平行D .内错角相等 例2.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等;②如果∠1和∠2是对顶角,那么∠1=∠2;③ 三角形的最大角不小于60°;④如果,>02x 那么.0>x A.1个 B.2个 C.3个 D.4个 例3.下列命题中,真命题的是( ) A. 同旁内角互补 B. 相等的角是对顶角 C. 同位角相等,两直线平行 D. 直角三角形两个锐角互补 二.基本性质(一)平行线的性质与判定1.性质①两直线平行,同位角相等; ②两直线平行,内错角相等; ③两直线平行,同旁内角互补; ④平行于同一直线的两直线平行; 2.判定①同位角相等,两直线平行; ②内错角相等,两直线平行; ③同旁内角互补,两直线平行;④在同一平面内,不相交的两直线平行;(定义判别) ⑤平行于同一直线的两直线平行;⑥在同一平面内,垂直于同一直线的两直线平行;例4.在下列图形中,由∠1=∠2能得到AB ∥CD 的是( )A .B .C .D .例5.如图,直线EF 分别交AB 、CD 于点E 、F,EG 平分∠BEF,AB ∥CD.若∠1=72°,则∠2的度数为( ) A.54° B.59° C.72° D.108°例6.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为_________.例7.如图,在△ABC 中,∠ABC 的平分线与∠ACB 的平分线交于点D ,过点D 作BC 的平行线交AB 于点E ,交AC 于点F ,已知∠BED +∠CFD =240∘,则∠BDC =______. 例8.如图,在△ABC 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F ,使得EF =ED ,连CF .(1)求证:CF//AB(2)若∠ABC =50∘,连接BE ,BE 平分∠ABC ,AC 平分∠BCF ,求∠A 的度数.练习:1.如图,已知AB ∥CD ,BC ∥DE ,那么∠B +∠D =__________.2、如图,写出两个能推出直线AB ∥CD 的条件________________________. 3.如图,AD=CD ,AC 平分∠DAB ,求证DC ∥AB .例5图32例6图第2题第1题CAB DE4.已知:如图,AB∥CD,∠BPF与∠CGE是一对内错角,PQ平分∠BPF,GH平分∠CGE.求证:PQ∥GH.5.如图,AD⊥BC,EF⊥BC,∠3=∠C.求证:∠1=∠2.6.如图,AB∥CD,∠1=58°,FG平分∠EFD,求∠FGB的度数7.如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,求∠ECD的度数AB GD F CE132(二)复杂图形中平行线的构造和应用解题关键:遇到拐点处作已知平行线的平行线,然后根据同位角、内错角和同旁内角的关系求角的度数。
北师大出版社初中八年级数学上册第七章平行线的性质
探究新知
7.4 平行线的性质/
一般地,平行线具有如下性质:
性质1:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
几何语言:
∵a∥b(已知),
a
1
b
2
∴∠1=∠2 (两直线平行,同位角相等). c
探究新知
7.4 平行线的性质/
素养考点 利用“两直线平行,同位角相等”求角的度数
连接中考
7.4 平行线的性质/
如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35° 时,∠2的度数为( C )
3
A.35° B.45° C.55° D.65°
课堂检测
7.4 平行线的性质/
基础巩固题 1.如图所示,直线a∥b,直线c与直线a,b相交,若 ∠1=56°,则∠2等于 ( C ) A. 24° B. 34° C. 56° D. 124°
证明:假设∠1 ≠ ∠2,那么我们可 以过点M作直线GH,使∠EMH= ∠2,如图所示.
根据“同位角相等,两直线平行”,
可知GH ∥ CD. 又因为AB ∥ CD,这样经过点M
存在两条直线AB和GH都与直线 CD平行.这与基本事实“过直线外
一点有且只有一条直线与这条直线
平行”相矛盾. 这说明∠1 ≠ ∠2的假设不成立,所 以∠1 =∠2.
北师大版 数学 八年级 上册
7.4 平行线的性质/
7.4 平行线的性质
a
21
34
b
65
78
c
导入新知
7.4 平行线的性质/
思考 根据同位角相等可以判定两直线平行,反过 来如果两直线平行,同位角之间有什么关系呢?内 错角、同旁内角之间又有什么关系呢?
北师大版八年级数学上册《平行线的性质》平行线的证明
,
∴AD∥BE(
).
,即∠
栏目索引
=∠
,
答案 BAE;两直线平行,同位角相等;BAE;等量代换;∠1;∠2;BAE; DAC;DAC;内错角相等,两直线平行
4 平行线的性质
栏目索引
6.如图7-4-6,已知∠1+∠2=180° ,∠A=∠C,DA平分∠FDB,试证明∠3= ∠4.
图7-4-6
4 平行线的性质
栏目索引
解析 (1)∵四边形ABCD为长方形,∴AD∥BC, ∴∠1+∠2=180° , ∵∠1=110° ,∴∠2=70° . (2)由折叠的性质得∠D'=90° , 若D'C'∥BC,则有∠EGF=∠D'=90° , ∵AD∥BC, ∴∠2=∠EGF=90° , 则当∠2等于90度时,D'C'∥BC.
图7-4-8
4 平行线的性质
证明 ∵AD⊥BC,EF⊥BC(已知), ∴∠ADC=∠EFD=90° (垂直的定义), ∴AD∥EF(同位角相等,两直线平行), ∴∠3=∠BAD(两直线平行,内错角相等), ∠DAC=∠E(两直线平行,同位角相等), ∵AD平分∠BAC(已知), ∴∠BAD=∠DAC(角平分线的定义), ∴∠E=∠3(等量代换).
4 平行线的性质
栏目索引
3.(2016四川资阳安岳期末) 是大众汽车的标志图案,其中蕴涵着许多 几何知识.如图,已知BC∥AD,BE∥AF.
(1)∠A与∠B相等吗?请说明理由; (2)若∠DOB=135° ,求∠A的度数.
4 平行线的性质
栏目索引
解析 (1)相等.理由:因为BC∥AD(已知),所以∠B=∠DOE(两直线平行, 同位角相等).因为BE∥AF(已知),所以∠A=∠DOE(两直线平行,同位角 相等),所以∠A=∠B(等量代换). (2)因为BC∥AD(已知),所以∠B+∠DOB=180° (两直线平行,同旁内角互 补),又因为∠DOB=135° ,所以∠B=180° -135° =45° ,又∠A=∠B,所以 ∠A=45° .
北师大出版社初中八年级数学上册第七章平行线的判定
探究新知
7.3 平行线的判定/
判定方法3:两条直线被第三条直线所截 ,如果同旁内角互补,那
么这两条直线平行.
简单说成:同旁内角互补,两直线平行. 几何语言:
3
a
1
∵∠1+∠2=180°(已知),
2
b
∴a∥b(同旁内角互补,两直线平行).
探究新知
7.3 平行线的判定/
素养考点 利用同旁内角互补判定两直线平行
b
探究新知
7.3 平行线的判定/
已知: 如图,∠1和∠2是直线a,b被直线c截出的同旁内角,
且∠1与∠2互补.
求证: a∥b.
证明: ∵ ∠1与∠2互补 (已知),
∴∠1+∠2=1800 (两角互补的定义).
又∵∠3+∠1=1800 (平角的定义),
∴∠2=∠3 (同角的补角相等).
∴ a∥b (同位角相等,两直线平行).
7.3 平行线的判定/
(1)画图过程中,什么角始终保持相等?
(2)直线a,b位置关系如何?
A
1
a
b
2
B
探究新知
7.3 平行线的判定/
(3)将其最初和最终的两种特殊位置抽象成几何图形:
A1
l
2
2
l1
B
(4) 由上面的操作过程,你能发现判定两直线平行的方法吗?
探究新知
7.3 平行线的判定/
判定方法1:两条直线被第三条直线所截,如果同位角相等,那么
(2)从∠ABC +∠BCD =180°,可以推出AB∥CD ,
理由是 同旁内角互补,两直线平行 .
A
3
D
1
4
B
北师大版八年级上册 7.3 平行线的判定与性质 课件
A.20° B.30° C.Байду номын сангаас0° D.70°
2 (中考·河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,
则∠ACD=( C )
A.120° B.130° C.140° D.150°
知识点 2 平行线的性质与判定的关系
平行线的判定与平行线的性质的区别: ①平行线的判定是根据两角的数量关系得到两条直线
解:∠P=∠Q. 理由:∵∠ABC与∠ECB互补(已知), ∴AB∥ED(同旁内角互补,两直线平行).
∴∠ABC=∠BCD(两直线平行,内错角相等). ∵∠1=∠2(已知), ∴∠ABC-∠1=∠BCD-∠2(等式的性质), 即∠PBC=∠BCQ. ∴PB∥CQ(内错角相等,两直线平行). ∴∠P=∠Q(两直线平行,内错角相等).
∴∠2=∠1(两直线平行,同位角 相等).
∵c//a(已知), ∴∠3=∠1(两直线平行,同位角相等). ∴∠2 = ∠ 3(等量代换). ∴b//c(同位角相等,两直线平行).
(来自教材)
归纳
一般地,我们有如下的定理: 定理 平行于同一条直线的两条直线平行.
1 (中考·恩施州)如图,已知AB∥DE,∠ABC=70°,
平行线的性质 平行线的性质与判定的关系
(2)性质1:两条平行直线被第三条直线所截,同 位角相等.
简称:两直线平行,同位角相等. 表达方式:如图,因为a∥b,(已知)
所以∠1=∠2.(两直线平行,同 位角相等)
知1-讲
(2)性质2:两条平行直线被第三条直线所截,内错角 相等.
简称:两直线平行,内错角相等. 表达方式:如图,因为a∥b (已知) ,
的位置关系,而平行线的性质是根据两条直线的位 置关系得到两角的数量关系; ②平行线的判定的条件是平行线的性质的结论,而平 行线的判定的结论是平行线的性质的条件.
北师大版八年级上册数学[平行线的性质知识点整理及重点题型梳理](提高版)
北师大版八年级上册数学重难点突破知识点梳理及重点题型巩固练习平行线的性质知识讲解(提高)【学习目标】1. 掌握平行线的性质公理、定理,并能依据平行线的性质公理、定理进行简单的推解;2. 了解并掌握平行线的性质定理的探究过程;3.了解平行线的判定与性质的区别和联系.【要点梳理】要点一、平行线的公理、定理公理:两条平行线被第三条直线所截,得到的同位角相等.(简记为:两直线平行,同位角相等).定理:两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等).定理:两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁内角互补).要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、平行线的性质定理的探究过程1.两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等).321cba因为a∥b,所以∠1=∠2(两直线平行,同位角相等),又∠3=∠1 (对顶角相等)所以∠2=∠3.2.两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁内角互补).因为a∥b,所以∠3=∠2(两直线平行,内错角相等),又∠3+∠1=180°(补角的定义),所以∠2+∠1=180°.要点诠释:平行线性质定理的证明,要借助平行线线性质公理,因为公理是人们在生产和生活中总结出来的正确的结论,不需要证明,但是定理、性质或推论到的证明其正确性. 要点三、平行线的性质与判定(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.【典型例题】类型一、平行线的性质公理、定理的应用1、如图所示,把一块长方形纸片ABCD沿EF折叠,∠EFG=50°,求∠DEG和∠BGM的大小.【思路点拨】根据平行线的性质可求得∠EFC的度数,然后根据折叠的性质可知∠NFE=∠EFC,∠MEF=∠DEF,继而可求得∠DEG和∠BGM的度数.【答案与解析】解:∵AD∥BC,∠EFG=50°,∴∠EFC=180°-∠EFG=130°,由折叠的性质可知,∠NFE=∠EFC,∠MEF=∠DEF,∴∠DEG=100°,∴∠EGC=180°-100°=80°,则∠BGM=∠EGC=80°(对顶角相等).【总结升华】本题考查了平行线的性质以及折叠的性质,解答本题的关键是由折叠的性质得出∠NFE=∠EFC,∠MEF=∠DEF.举一反三【变式】(2015•洛阳一模)如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为度.【答案与解析】∵m∥n,边BC与直线n所夹的角为25°,∴∠BCD=25°.∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACD=60°﹣25°=35°.∵l∥m,∴∠α=∠ACD=35°.故答案为:35.2、如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.【思路点拨】本题考查的是平行线的性质以及平行线的判定定理.(1),(2)都需要用到辅助线利用两直线平行,内错角相等的定理加以证明;(3),(4)是利用两直线平行,同位角相等的定理和三角形外角的性质加以证明.【答案与解析】解:(1)∠A+∠C+∠P=360;(2)∠A+∠C=∠P;(3)∠A+∠P=∠C;(4)∠C+∠P=∠A.说明理由(以第三个为例):已知AB∥CD,根据两直线平行,同位角相等及三角形的一个外角等于两不相邻内角之和,可得∠C=∠A+∠P.【总结升华】考生应熟知平行线的有关知识点,这是中考常考的题型.3、(2015•东莞)如图,已知AB∥CD,∠A=36°,∠C=120°,求∠F-∠E的大小.【思路点拨】过E作EG∥AB,过F作FH∥AB,可以求出∠AEG与∠HFC的度数,又EG∥FH,根据两直线平行,内错角相等,∠GEF=∠EFH,所以∠F-∠E=∠HFC-∠AEG.【答案与解析】解:过E作EG∥AB,过F作FH∥AB,∴∠A=∠1,EG∥FH,∵∠A=36°,∴∠1=36°,∵AB∥CD,FH∥AB,∴FH∥CD,∴∠C+∠4=180°,∵∠C=120°,∴∠4=60°,∵EG∥FH,∴∠2=∠3,∴∠F-∠E=(∠3+∠4)-(∠1+∠2),=∠3+∠4-∠1-∠2,=∠4-∠1,=60°-36°=24°.【总结升华】本题主要考查两直线平行内错角相等和同旁内角互补的性质,作平行线把∠F、∠E分成两个角是解题的突破口,也是关键.举一反三【变式】如图,已知且l1∥l2,且l3与l1、l2分别交于A、B两点,点P在直线AB上,(1)当点P在A、B两点之间运动时,问∠1、∠2、∠3之间的数量关系,请说明理由(2)如果点P在A、B两点外侧运动时,试探究∠1,∠2,∠3之间的数量关系(点P与A、B不重合)只要写出结论即可,不必证明.【答案】解:(1)∠1+∠2=∠3;理由:如图1,过点P作l1的平行线,∵l1∥l2,∴l1∥l2∥PQ,∴∠1=∠4,∠2=∠5,∵∠4+∠5=∠3,∴∠1+∠2=∠3;(2)∠1-∠2=∠3或∠2-∠1=∠3.理由:如图2,当点P在下侧时,过点P作l1的平行线PQ,∵l1∥l2,∴l1∥l2∥PQ,∴∠2=∠4,∠1=∠3+∠4,∴∠1-∠2=∠3;当点P在上侧时,同理可得∠2-∠1=∠3.类型二、平行的性质与判定综合应用4、(2016春•玉州区期末)如图,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°(1)求∠GFC的度数:(2)求证:DM∥BC.【思路点拨】(1)由BD⊥AC,EF⊥AC,得到BD∥EF,根据平行线的性质得到∠EFG=∠1=35°,再根据角的和差关系可求∠GFC的度数;(2)根据平行线的性质得到∠2=∠CBD,等量代换得到∠1=∠CBD,根据平行线的判定定理得到GF∥BC,证得MD∥GF,根据平行线的性质即可得到结论.【答案与解析】解:(1)∵BD⊥AC,EF⊥AC,∴∠BDC=∠EFC∴BD∥EF,∴∠EFG=∠1=35°,∴∠GFC=90°+35°=125°;(2)∵BD∥EF,∴∠2=∠CBD,∴∠1=∠CBD,∴GF∥BC,∵∠AMD=∠AGF,∴MD∥GF,∴DM∥BC.【总结升华】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.举一反三【变式】如图,已知∠1+∠2=180°,∠DEF=∠A,求证:∠ACB=∠DEB.【答案】证明:∵∠2+∠BDC=180°,∠1+∠2=180°,∴∠1=∠BDC,∴EF∥AB,∴∠DEF=∠BDE,∵∠DEF=∠A,∴∠BDE=∠A,∴DE∥AC,∴∠ACB=∠DEB.5、如图,已知:∠FED=∠AHD,∠GFA=40°,∠HAQ=15°,∠ACB=70°,且AQ平分∠FAC,求证:BD∥GE∥AH.【思路点拨】由同位角∠FED=∠AHD,推知AH∥GE,再根据平行线的性质、角平分线的定义证得内错角∠HAC=55°+15°=70°=∠ACB,所以BD∥AH,最后由平行线的递进关系证得BD∥GE∥AH.【答案与解析】证明:∵∠FED=∠AHD,∴AH∥GE,∴∠GFA=∠FAH.∵∠GFA=40°,∴∠FAH=40°,∴∠FAQ=∠FAH+∠HAQ,∴∠FAQ=55°.又∵AQ平分∠FAC,∴∠QAC=∠FAQ=55°,∵∠HAC=∠QAC+∠HAQ,∴∠HAC=55°+15°=70°=∠ACB,∴BD∥AH,∴BD∥GE∥AH.【总结升华】本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.。
北师大版八上数学7.4平行线的性质知识点精讲
知识点总结平行线的性质1. 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3 . 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
平行线的传递性如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行线间的距离两条平行线中,任意一条直线上的所有点到另一条直线的距离都是一个定值,这个定值叫做这两条平行线间的距离.★要点提示★1.由性质1推导性质2,进一步导出性质3,再运用平行线的知识得出平行线的传递性,体现了几何演绎的思想和方法,要逐步领会和掌握.2.几何学习要注意“看图说话”、“用图说话”,要逐步学会文字语言、图形语言、符号语言的转换和各自功效.如平行线的传递性,可用符号语言表示为:对于直线a、b、c,如果a∥b,b∥c,则a∥c.3.有了平行线间的距离,至此就学了几何中的三种距离:两点间的距离,点到直线的距离,两平行线间的距离.两点间的距离是两点间线段的长度,后两种都可转化为两点间的距离.两平行线间的距离是一条直线上任意点到另一条直线的距离(点到直线的距离),而点到直线的距离是该点到直线的垂线段的长度,即点到垂足(点到点)的距离.复习提纲1. 平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补。
几何符号语言:∵AB∥CD∴∠1=∠2(两直线平行,内错角相等)∵AB∥CD∴∠3=∠2(两直线平行,同位角相等)∵AB∥CD∴∠4+∠2=180°(两直线平行,同旁内角互补)2.两直线平行的判定方法方法一两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简称:同位角相等,两直线平行。
2024八年级数学上册第七章平行线的证明4平行线的性质习题课件新版北师大版
∠ EFG ,∠ CED =∠ GHD .
(2)试判断∠ AED 与∠ D 之间的数量关系,并说明理由;
1
2
3
4
5
6
7
8
9
10
(2)解:∠ AED +∠ D =180°.理由如下:
∵ CE ∥ GF ,∴∠ C =∠ FGD .
第七章
4
平行线的证明
平行线的性质
CONTENTS
目
录
01
1星题
落实四基
02
2星题
提升四能
03
3星题
发展素养
知识点1平行线的性质
1. 如图,已知直线 a ∥ b .
(1)根据“两直线平行,同位角相等”,可得
∠1=∠ 5
∠ 6
,∠4=∠ 8
,∠3=∠
1
2
3
,∠2=
7 ;
4
5
6
7
8
9
10
1. 如图,已知直线 a ∥ b .
(
C
)
A. 40°
B. 45°
C. 50°
D. 55°
1
2
3
4
5
6
7
8
9
10
3. [2023济宁]如图, a , b 是直尺的两边, a ∥ b ,把三角板
的直角顶点放在直尺的 b 边上,若∠1=35°,则∠2的度
数是(
B
)
A. 35°
1
2
3
4
5
6
7
8
9
10
知识点2平行线的性质与判定的关系
新北师大版八年级数学上册第七章平行线的证明知识点复习
AB E P DC F平行线的证明知识点复习知识点1:命题(1)判断一件事情的句子,叫_____________. _______的命题是真命题,不正确的命题是___________.(2)公认的真命题称为____________,经过证明的真命题称为_____________.典型练习:1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例:①.若a>b ,则ba 11 . ②.两个锐角的和是锐角.③.同位角相等,两直线平行. ④.一个角的邻补角大于这个角. ⑤.两个负数的差一定是负数.2.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.” 乙说:“是丙闯的祸.”丙说:“乙说的不是实话.” 丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( )A.甲B. 乙C.丙D.丁知识点2:平行线(1).平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行.判定定理2:_______________,两直线平行. 定理:平行于同一直线的两直线___________.(2).平行线的性质公理:两直线平行,同位角___________. 性质定理1:两直线平行,内错角_________.性质定理2:两直线平行,同旁内角__________.典型练习:1、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD2.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。
3、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零 件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平行的,你知道什么原因吗?4.如图,某湖上风景区有两个观望点A,C和两个度假村B,D.度假村D在C的正西方向,度假村B在C的南偏东30°方向,度假村B到两个观望点的距离都等于2km.(1)求道路CD与CB的夹角;(2)如果度假村D到C是直公路,长为1km,D到A是环湖路,度假村B到两个观望点的总路程等于度假村D到两个观望点的总路程.求出环湖路的长;(3)根据题目中的条件,能够判定DC∥AB吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC∥AB.5.与平行线有关的探究题(1)、利用平行线的性质探究:如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.当动点P落在第①部分时,小明同学在研究∠PAC、∠APB、∠PBD三个角的数量关系时,利用图1,过点P 作PQ∥BD,得出结论:∠APB=∠PAC+∠PBD.请你参考小明的方法解决下列问题:(1)当动点P落在第②部分时,在图2中画出图形,写出∠PAC、∠APB、∠PBD三个角的数量关系;(2)当动点P落在第③、第○4部分时,在图3、图4中画出图形,探究∠PAC、∠APB、∠PBD之间的数量关系,写出结论并选择其中一种情形加以证明.知识点三:三角形的内角和外角(1)三角形内角和定理:三角形的内角和等于__________.(2) 定理:三角形的一个外角等于和它不相邻的____________________.(3) 定理:三角形的一个外角大于任何一个和它____________________.典型练习:1.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E;(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?说明你的结论的正确性;(3)把图(2)中的点C向上移到BD上时,如图(3)所示,五个角的和(即∠CAD+∠B+ ∠ACE+∠D+∠E)有无变化?说明你的结论的正确性.2..认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠AB C 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC =90°+21∠A,理由如下: ∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=21∠ABC ,∠2=21∠ACB ∴∠1+∠2=21(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°—∠A∴∠1+∠2=21(180°—∠A )=90°—21∠A ∴∠BOC=180°—(∠1+∠2)=180°—(90°—21∠A ) ∴∠BOC=90°+21∠A 探究2:如图2,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 请说明理由.探究3:如图3,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(只写结论,不需证明)综合测试题:一、填空题1.如上图,AD ∥BC ,AC 与BD 相交于O ,则图中相等的角有_____对.2.如上右图,已知AB ∥CD ,∠1=100°,∠2=120°,则∠α=_____.3.如右图,DAE 是一条直线,DE ∥BC ,则∠BAC =_____.4.“一次函数y=kx-2,当k>0时,y 随x 的增大而增大”是一个_______命题(填“真”或“假”)二、选择题1.下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交 ,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行2.两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交3. 下列句子中,不是命题的是( )A.三角形的内角和等于180度;B.对顶角相等;C.过一点作已知直线的平行线;D.两点确定一条直线.4.如右图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )A.AD ∥BCB.∠B =∠CC.∠2+∠B =180°D.AB ∥CD5.如右图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°三、解答题1.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.2.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?3.如图,如图,在三角形ABC中,∠C=70°,∠B=38°,AE是∠BAC的平分线,AD⊥BC于D.(1)求∠DAE的度数;(2)判定AD是∠EAC的平分线吗?说明理由.(3)若∠C=α°,∠B=β°,试猜想∠DAE与∠C—∠B有何关系,并证明你的猜想.∠DAE的度数.(∠C>∠B)4.如图,y轴的负半轴平分∠AOB,P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB 于点M、N.(1)如图1,MN⊥y轴吗?为什么?(2)如图2,当点P在y轴的负半轴上运动到AB与y轴的交点处,其他条件都不变时,等式∠APM=(∠OBA﹣∠A)是否成立?为什么?(3)当点P在y轴的负半轴上运动到图3处(Q为BA、NM的延长线的交点),其他条件都不变时,试问∠Q、∠OAB、∠OBA之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级上册数学
重难点突破
知识点梳理及重点题型巩固练习
平行线的性质知识讲解(提高)
【学习目标】
1. 掌握平行线的性质公理、定理,并能依据平行线的性质公理、定理进行简单的推解;
2. 了解并掌握平行线的性质定理的探究过程;
3.了解平行线的判定与性质的区别和联系.
【要点梳理】
要点一、平行线的公理、定理
公理:两条平行线被第三条直线所截,得到的同位角相等.(简记为:两直线平行,同位角相等).
定理:两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等).
定理:两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁内角互补).
要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.
(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.
要点二、平行线的性质定理的探究过程
1.两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等).
3
21
c
b
a
因为a∥b,
所以∠1=∠2(两直线平行,同位角相等),
又∠3=∠1 (对顶角相等)
所以∠2=∠3.
2.两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁内角互补).
因为a∥b,
所以∠3=∠2(两直线平行,内错角相等),
又∠3+∠1=180°(补角的定义),
所以∠2+∠1=180°.
要点诠释:平行线性质定理的证明,要借助平行线线性质公理,因为公理是人们在生产和生活中总结出来的正确的结论,不需要证明,但是定理、性质或推论到的证明其正确性. 要点三、平行线的性质与判定
(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.
(3)平行线的判定与性质的联系与区别
区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.
联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.
(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.
【典型例题】
类型一、平行线的性质公理、定理的应用
1、如图所示,把一块长方形纸片ABCD沿EF折叠,
∠EFG=50°,求∠DEG和∠BGM的大小.
【思路点拨】根据平行线的性质可求得∠EFC的度数,然
后根据折叠的性质可知∠NFE=∠EFC,∠MEF=∠DEF,继
而可求得∠DEG和∠BGM的度数.
【答案与解析】
解:∵AD∥BC,∠EFG=50°,
∴∠EFC=180°-∠EFG=130°,
由折叠的性质可知,∠NFE=∠EFC,∠MEF=∠DEF,
∴∠DEG=100°,
∴∠EGC=180°-100°=80°,
则∠BGM=∠EGC=80°(对顶角相等).
【总结升华】本题考查了平行线的性质以及折叠的性质,解答本题的关键是由折叠的性质得出∠NFE=∠EFC,∠MEF=∠DEF.
举一反三
【变式】(2015•洛阳一模)如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n
和m上,边BC与直线n所夹的角为25°,则∠α的度数为度.
【答案与解析】
∵m∥n,边BC与直线n所夹的角为25°,
∴∠BCD=25°.
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠ACD=60°﹣25°=35°.
∵l∥m,
∴∠α=∠ACD=35°.
故答案为:35.
2、如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.
【思路点拨】本题考查的是平行线的性质以及平行线的判定定理.
(1),(2)都需要用到辅助线利用两直线平行,内错角相等的定理加以证明;(3),(4)是利用两直线平行,同位角相等的定理和三角形外角的性质加以证明.【答案与解析】
解:
(1)∠A+∠C+∠P=360;
(2)∠A+∠C=∠P;
(3)∠A+∠P=∠C;
(4)∠C+∠P=∠A.
说明理由(以第三个为例):
已知AB∥CD,根据两直线平行,同位角相等及三角形的一个外角等于两不
相邻内角之和,可得∠C=∠A+∠P.
【总结升华】考生应熟知平行线的有关知识点,这是中考常考的题型.
3、(2015•东莞)如图,已知AB∥CD,∠A=36°,∠
C=120°,求∠F-∠E的大小.
【思路点拨】过E作EG∥AB,过F作FH∥AB,可以求出
∠AEG与∠HFC的度数,又EG∥FH,根据两直线平行,
内错角相等,∠GEF=∠EFH,所以∠F-∠E=∠HFC-∠AEG.
【答案与解析】
解:过E作EG∥AB,过F作FH∥AB,
∴∠A=∠1,EG∥FH,
∵∠A=36°,
∴∠1=36°,
∵AB∥CD,FH∥AB,
∴FH∥CD,
∴∠C+∠4=180°,
∵∠C=120°,
∴∠4=60°,
∵EG∥FH,
∴∠2=∠3,
∴∠F-∠E=(∠3+∠4)-(∠1+∠2),
=∠3+∠4-∠1-∠2,
=∠4-∠1,
=60°-36°
=24°.
【总结升华】本题主要考查两直线平行内错角相等和同旁内角互补的性质,作平行线把∠F、∠E分成两个角是解题的突破口,也是关键.
举一反三
【变式】如图,已知且l1∥l2,且l3与l1、l2分别交于A、B两点,点P在直线AB上,
(1)当点P在A、B两点之间运动时,问∠1、∠2、∠3之间的数量关系,请说明理由
(2)如果点P在A、B两点外侧运动时,试探究∠1,∠2,∠3之间的数量关系(点P与A、B不重合)只要写出结论即可,不必证明.
【答案】
解:(1)∠1+∠2=∠3;
理由:如图1,过点P作l1的平行线,
∵l1∥l2,
∴l1∥l2∥PQ,
∴∠1=∠4,∠2=∠5,
∵∠4+∠5=∠3,
∴∠1+∠2=∠3;
(2)∠1-∠2=∠3或∠2-∠1=∠3.
理由:如图2,当点P在下侧时,过点P作l1的平行
线PQ,
∵l1∥l2,
∴l1∥l2∥PQ,
∴∠2=∠4,∠1=∠3+∠4,
∴∠1-∠2=∠3;
当点P在上侧时,同理可得∠2-∠1=∠3.
类型二、平行的性质与判定综合应用
4、(2016春•玉州区期末)如图,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°
(1)求∠GFC的度数:
(2)求证:DM∥BC.
【思路点拨】(1)由BD⊥AC,EF⊥AC,得到BD∥EF,根据平行线的性质得到∠EFG=
∠1=35°,再根据角的和差关系可求∠GFC的度数;
(2)根据平行线的性质得到∠2=∠CBD,等量代换得到∠1=∠CBD,根据平行线的判定定理得到GF∥BC,证得MD∥GF,根据平行线的性质即可得到结论.
【答案与解析】
解:(1)∵BD⊥AC,EF⊥AC,
∴∠BDC=∠EFC
∴BD∥EF,
∴∠EFG=∠1=35°,
∴∠GFC=90°+35°=125°;
(2)∵BD∥EF,
∴∠2=∠CBD,
∴∠1=∠CBD,
∴GF∥BC,
∵∠AMD=∠AGF,
∴MD∥GF,
∴DM∥BC.
【总结升华】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.
举一反三
【变式】如图,已知∠1+∠2=180°,∠DEF=∠A,
求证:∠ACB=∠DEB.
【答案】
证明:∵∠2+∠BDC=180°,∠1+∠2=180°,
∴∠1=∠BDC,
∴EF∥AB,
∴∠DEF=∠BDE,
∵∠DEF=∠A,
∴∠BDE=∠A,
∴DE∥AC,
∴∠ACB=∠DEB.
5、如图,已知:∠FED=∠AHD,∠GFA=40°,∠HAQ=15°,∠ACB=70°,且AQ平分∠FAC,求证:BD∥GE∥AH.
【思路点拨】由同位角∠FED=∠AHD,推知AH∥GE,再根据平行线的性质、角平分线的定义证得内错角∠HAC=55°+15°=70°=∠ACB,所以BD∥AH,最后由平行线的递进关系证得
BD∥GE∥AH.
【答案与解析】
证明:∵∠FED=∠AHD,
∴AH∥GE,
∴∠GFA=∠FAH.
∵∠GFA=40°,
∴∠FAH=40°,
∴∠FAQ=∠FAH+∠HAQ,
∴∠FAQ=55°.
又∵AQ平分∠FAC,
∴∠QAC=∠FAQ=55°,
∵∠HAC=∠QAC+∠HAQ,
∴∠HAC=55°+15°=70°=∠ACB,
∴BD∥AH,
∴BD∥GE∥AH.
【总结升华】本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.。