【小学奥数】8-3-1逻辑推理.题库教师版

合集下载

(精品)小学奥数8-5 抽屉原理.专项练习及答案解析

(精品)小学奥数8-5 抽屉原理.专项练习及答案解析

抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法; 2.掌握用抽屉原理解题的基本过程; 3. 能够构造抽屉进行解题; 4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.知识点拨教学目标抽屉原理知识精讲(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【考点】抽屉原理【难度】1星【题型】解答【解析】6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,6511÷=,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【答案】对【巩固】把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】在8个鱼缸里面,每个鱼缸放一条,就是8条金鱼;还剩下的一条,任意放在这8个鱼缸其中的任意一个中,这样至少有一个鱼缸里面会放有两条金鱼.【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】将5名学生看作5个苹果将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉由抽屉原理,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的作业【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【总结】题目中并没有说明什么是“抽屉”,什么是“物品”,解题的关键是制造“抽屉”,确定假设的“物品”,根据“抽屉少,物品多”转化为抽屉原理来解.【答案】从题目可以看出,这道题显然与月份有关.我们知道,一年有12个月,把这12个月看成12个抽屉,这道题就相当于把13个苹果放入12个抽屉中.根据抽屉原理,至少有一个抽屉放了两个苹果.因此至少有两个同学在同一个月过生日.【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】属相共12个,把12个属相作为12个“抽屉”,13个同学按照自己的属相选择相应的“抽屉”,根据抽屉原理,一定有一个“抽屉”中有两个或两个以上同学,也就是说至少有两个同学属相一样【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】一年最多有366天,把366天看作366个“抽屉”,将367名学生看作367个“苹果”.这样,把367个苹果放进366个抽屉里,至少有一个抽屉里不止放一个苹果.这就说明,至少有2名同学的生日相同【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】五种颜色最多只能涂5个不同颜色的面,因为正方体有6个面,还有一个面要选择这五种颜色中的任意一种来涂,不管这个面涂成哪种颜色,都会和前面有一个面颜色相同,这样就有两个面会被涂上相同的颜色.也可以把五种颜色作为5个“抽屉”,六个面作为六个物品,当把六个面随意放入五个抽屉时,根据抽屉原理,一定有一个抽屉中有两个或两个以上的面,也就是至少会有两个面涂色相同【巩固】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】方法一:情况一:这三个小朋友,可能全部是男,那么必有两个小朋友都是男孩的说法是正确的;情况二:这三个小朋友,可能全部是女,那么必有两个小朋友都是女孩的说法是正确的;情况三:这三个小朋友,可能其中1男2女那么必有两个小朋友都是女孩说法是正确的;情况四:这三个小朋友,可能其中2男1女,那么必有两个小朋友都是男孩的说法是正确的.所以,三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩的说法是正确的;方法二:三个小朋友只有两种性别,所以至少有两个人的性别是相同的,所以必有两个小朋友都是男孩或者都是女孩【巩固】试说明400人中至少有两个人的生日相同.【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】将一年中的366天或365天视为366个或365个抽屉,400个人看作400个苹果,从最极端的情况考虑,即每个抽屉都放一个苹果,还有35个或34个苹果必然要放到有一个苹果的抽屉里,所以至少有一个抽屉有至少两个苹果,即至少有两人的生日相同【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】一年最多有366天,可看做366个抽屉,730个学生看做730个苹果.因为÷=,所以,至少有1+1=2(个)学生的生日是同一天7303661364【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

小学奥数题100道及答案

小学奥数题100道及答案

小学奥数题100道及答案1. 简单加法:3 + 7 = ()答案:102. 简单减法:9 5 = ()答案:43. 简单乘法:4 × 6 = ()答案:244. 简单除法:18 ÷ 3 = ()答案:65. 填空题:5 + ()= 12答案:76. 填空题:20 ()= 9答案:117. 填空题:8 × ()= 48答案:68. 填空题:36 ÷ ()= 6答案:69. 应用题:小明有10个苹果,吃掉了3个,还剩几个?答案:7个10. 应用题:小红有5个橘子,妈妈又买了8个,现在一共有多少个橘子?答案:13个11. 逻辑推理题:小华比小刚高,小刚比小明高,请问谁最高?答案:小华12. 逻辑推理题:小猫比小狗轻,小狗比小猪轻,请问谁最重?答案:小猪答案:选项A答案:选项B15. 数字排列题:将1、2、3、4四个数字排列,使它们组成的四位数最小。

答案:16. 数字排列题:将5、6、7、8四个数字排列,使它们组成的四位数最大。

答案:876517. 数字推理题:1、3、5、7、(),请填写下一个数字。

答案:918. 数字推理题:2、4、8、16、(),请填写下一个数字。

答案:3219. 时间计算题:如果现在是上午9点,再过3小时是几点?答案:中午12点20. 时间计算题:如果现在是下午3点,2小时前是几点?答案:下午1点答案:一组是水果(苹果、橘子),另一组是学习用品和体育用品(书本、铅笔、篮球)。

22. 重量比较题:一个西瓜重5千克,一个菠萝重2千克,哪个更重?答案:西瓜更重。

23. 长度比较题:一根绳子长10米,另一根绳子长15米,哪根绳子更长?答案:15米长的绳子更长。

答案:选项C25. 速度计算题:小明骑自行车,每小时行驶15公里,2小时能行驶多远?答案:30公里26. 温度转换题:摄氏度0度等于华氏度多少度?答案:32度27. 面积计算题:一个长方形的长是8厘米,宽是4厘米,它的面积是多少?答案:32平方厘米28. 体积计算题:一个正方体的边长是3厘米,它的体积是多少?答案:27立方厘米29. 平均数计算题:小明、小红、小华的年龄分别是8岁、10岁、12岁,他们的平均年龄是多少?答案:10岁答案:731. 因数分解题:将数字24分解成两个因数的乘积。

小学奥数:8-6 操作找规律.教师版

小学奥数:8-6 操作找规律.教师版

操作找规律知识点拨知识点说明在奥数中有一类“不讲道理”的题目,我们称之为“简单操作找规律”。

有一些对小学生来说很难证明的,但与证明相比,发现却是比较容易的。

这也是数学中的一种重要的思想,在以后的数学学习中会有一种先猜后证的解题方法。

这类题主要考查孩子们的发现能力。

例题精讲模块一,周期规律【例 1】四个小动物换座位.一开始,小鼠坐在第1号位子,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子.第一次上下两排交换.第二次是在第一次交换后再左右两排交换.第三次再上下两排交换.第四次再左右两排交换……这样一直换下去.问:第十次交换位子后,小兔坐在第几号位子上?(参看下图)【考点】操作找规律【难度】2星【题型】解答【关键词】华杯赛,初赛【解析】根据题意将小兔座位变化的规律找出来.可以看出:每一次交换座位,小兔的座位按顺时针方向转动一格,每4次交换座位,小兔的座位又转回原处.知道了这个规律,答案就不难得到了.第十次交换座位后,小兔的座位应该是第2号位子。

【答案】第2号【例 2】在1989后面写一串数字。

从第5个数字开始,每个数字都是它前面两个数字乘积的个位数字。

这样得到一串数字:1 9 8 9 2 8 6 8 8 4 2 ……那么这串数字中,前2005个数字的和是____________。

【考点】操作找规律【难度】2星【题型】填空【关键词】迎春杯,中年级,初试【解析】由题意知,这串数字从第5个数字开始,只要后面的连续两个数字与前面的连续两个数字相同,后面的数字将会循环出现。

1989︱286884︱28……由上图知,从第5个数字开始,按2,8,6,8,8,4循环出现。

()-÷=⋯,前2005个数字和是2005463333()()()+++++++++⨯+++271198816120311989286884333286=++=。

【答案】12031【例 3】先写出一个两位数62,接着在62右端写这两个数字的和8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:628101123…,则这个整数的数字之和是。

小学奥数:8-4 体育比赛.教师版

小学奥数:8-4 体育比赛.教师版

体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。

有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。

【例 1】 三年级四个班进行足球比赛,每两个班之间都要赛一场,那么每个班要赛几场?一共要进行多少场比赛? (如果参赛队每两队之间都要赛一场,这种比赛称为单循环赛)【考点】体育比赛 【难度】1星 【题型】解答【解析】 (法一)题意要求每两个点之间都连一条线段.先考虑点A (如图),它与B 、C 、D 三点能且只能连接三条线段AB 、AC 、AD ;同样,从点B 也可以连出三条线段BA 、BC 、BD ;从点C 可以连出三条线段CA 、CB 、CD ;从点D 可以连出三条线段DA 、DB ,DC .因此,从一个点可以连三条线段.从每个点都连出三条线段,共有四个点.3412⨯=(条)注意到线段AB 既是由A 点连出的,也是由B 点连出的,并且每一条线段都是这样(如图),所以,线段的总数应为:6(条).(法二)从点A 引出三条线.AB 、AC 、AD ,为避免重复计数,从B 点引出的线段只计BC 、BD 两条,由C 点引出的只有CD 一条.因此,线段的总数为3216++=(条).通过例题的讲解,对于这个问题,我们就可以很轻松地解决了.一共有四个队,每个队都要比赛413-=场,一共有比赛3426⨯÷=场.【点拨】我们可以将上面的问题如下表述:下面的四个点,每两个点之间都连一条线段,那么,从一个点可以连出几条线段?一共可以连多少条线段?【答案】6场【巩固】 市里举行足球联赛,有5个区参加比赛,每个区出2个代表队.每个队都要与其他队赛一场,这些比赛分别在5个区的体育场进行,那么平均每个体育场都要举行多少场比赛?【考点】体育比赛 【难度】1星 【题型】解答【解析】 一共有5210⨯=(个)队参加比赛,共赛10(101)245⨯-÷=(场),平均每个体育场都要举行4559÷=(场)比赛.【答案】9场【巩固】 二年级六个班进行拔河单循环赛,每个班要进行几场比赛?一共要进行几场比赛?【考点】体育比赛 【难度】1星 【题型】解答【解析】 每个班要进行5场,一共要进行65215⨯÷=(场)比赛.【答案】每个班要进行5场,一共要进行15场比赛例题精讲 知识点拨体育比赛问题【巩固】20名羽毛球运动员参加单打比赛,两两配对进行单单循环赛,那么冠军一共要比赛多少场?【考点】体育比赛【难度】1星【题型】解答【解析】假设20名羽毛球运动员中的甲是冠军,那么甲与其他19名运动员都赛过了,也就是一共赛了19场.【答案】一共赛了19场【例2】8只球队进行淘汰赛,为了决出冠军,需要进行多少场比赛?【考点】体育比赛【难度】2星【题型】解答【解析】方法一:8进4进行了4场,4进2进行2场,最后决赛是1场,因此共进行了4217++=(场)比赛.方法二:每进行一场比赛就淘汰一支球队,最后只剩下冠军了,也就是说淘汰了7只球队,因此进行了7场比赛.【答案】7场比赛【例3】学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了36场比赛,有人参加了选拔赛.A.8B.9C.10【考点】体育比赛【难度】2星【题型】选择【关键词】2008,第四届,IMC国际数学邀请赛,新加坡,初赛【解析】三个人比赛,可以比赛3223⨯÷=场;如果有五个⨯÷=场;如果四个人比赛,可以比赛4326人比赛,那么可以比赛54210⨯÷=场,所以⨯÷=场;如果有9个人比赛,那么可以比赛98236答案是B.【答案】答案是B【巩固】朝阳区的几个学校举行篮球比赛,每两个学校都要赛一场,共赛了28场,那么有几个学校参加了比赛?【考点】体育比赛【难度】2星【题型】解答【解析】假设有n个学校参加比赛,那么就有(1)2n=,也n n⨯-÷场比赛,现在已知共赛了28场,那么8就是有8个学校参加了比赛.【答案】8个学校【例4】有8个选手进行乒乓球单循环赛,结果每人获胜局数各不相同,那么冠军胜了几局?【考点】体育比赛【难度】2星【题型】解答【解析】8个选手进行乒乓球单循环赛,每个选手都要参加7场比赛,而且每人获胜局数各不相同,所以每人获胜的局数分别为0~7局,那么冠军胜了7局.【答案】冠军胜了7局【例5】A、B、C、D、E五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,A已经赛4盘,B赛3盘,C赛2盘,D赛1盘.问:此时E同学赛了几盘?【考点】体育比赛【难度】2星【题型】解答【解析】画5个点表示五位同学,两点之间连一条线段表示赛一场,建议教师让学生动手按要求画一画.A根据题意,A已经赛4盘,说明A与B、C、D、E各赛一盘,A应与B、C、D、E点相连.D 赛1盘,是与A点相连的.B赛3盘,是与A、C、E点相连的.C赛2盘,是与A、B点相连的.从图上E点的连线条数可知,E同学赛了2盘.【答案】E同学赛了2盘【巩固】八一队、北京队、江苏队、山东队、广东队五队进行象棋友谊赛,每两个队都要赛一场,一个月过后,八一队赛了4场,北京队赛了3场,江苏队赛了2场,山东队赛了1场.那么广东队赛了几场?【考点】体育比赛【难度】2星【题型】解答【解析】八一队赛了4场,说明八一队和其它四队都赛过了.山东队赛了1场,说明只和八一队赛过.北京队赛了3场,说明与八一队、江苏队、广东队赛过.江苏队赛了2场,说明与八一队、北京队赛过.由此可知,广东队只和八一队、北京队赛过,赛了2场.【答案】赛了2场【巩固】A、B、C、D、E、F六人赛棋,采用单循环制。

三年级奥数第2次课:横式数字谜(一)(教师版)

三年级奥数第2次课:横式数字谜(一)(教师版)

三年级奥数第2次课:横式数字谜(⼀)(教师版)【我⽣命中最最最重要的朋友们,请你们认真听⽼师讲并且跟着⽼师的思维⾛。

学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。

使⽤】横式数字谜(⼀)⼀、考点、热点回顾1、数字谜题⽬:在⼀个数学式⼦(横式或竖式)中擦去部分数字,或⽤字母、⽂字来代替部分数字的不完整的算式或竖式。

解数字谜题就是求出这些被擦去的数或⽤字母、⽂字代替的数的数值。

2、解横式数字谜,⾸先要熟知下⾯的运算规则:(1)⼀个加数+另⼀个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。

3、数字运算和拆分4、解数字谜问题既能增强数字运⽤能⼒,⼜能加深对运算的理解,还是培养和提⾼分析问题能⼒的有效⽅法。

⼆、典型例题例1、求算式324+□=528中□所代表的数。

根据“加数=和-另⼀个加数”知,□=582-324=258。

例2、求横式中字母A,B所代表的数字。

(1)12-B=5 (2)A-1=3。

显然个位数相减时必须借位,知,B=12-5=7;知,A=3+1=4例3、数字运算和拆分(1)8⽤加法拆分(2)24⽤乘法拆分8=0+8=1+7=2+6=3+5=4+4;24=1×24=2×12=3×8=4×6(两个数之积)=1×2×12=2×2×6=…(三个数之积)=1×2×2×6=2×2×2×3=…(四个数之积)例4、下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6; (2)28-○=15+7;(3)3×△=54; (4)☆÷3=87;(5)56÷*=7。

解:(1)由加法运算规则知,□=13-6-5=2;(2)由减法运算规则知,○=28-(15+7)=6;(3)由乘法运算规则知,△=54÷3=18;(4)由除法运算规则知,☆=87×3=261;(5)由除法运算规则知,*=56÷7=8。

河南省新乡市数学小学奥数系列8-3-1逻辑推理(二)

河南省新乡市数学小学奥数系列8-3-1逻辑推理(二)

河南省新乡市数学小学奥数系列8-3-1逻辑推理(二)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共37题;共163分)1. (1分) (2019六上·南康期末) 六年级1、2、3、4四个班举行拔河比赛,甲、乙、丙三个同学猜测四个班比赛的前三名名次.甲说:1班第三,3班第一;乙说:3班第二,2班第三;丙说:4班第二,1班第一.比赛结果,三个人都猜对了一半.那么,1班第________名,4班第________名.2. (5分)宝宝、贝贝、聪聪每人有两个外号,人们有时以“数学博士”、“短跑健将”、“跳高冠军”、“小画家”、“大作家”和“歌唱家”称呼他们,此外:⑴数学博士夸跳高冠军跳的高⑵跳高冠军和大作家常与宝宝一起看电影⑶短跑健将请小画家画贺年卡⑷数学博士和小画家关系很好⑸贝贝向大作家借过书⑹聪聪下象棋常赢贝贝和小画家问:宝宝、贝贝、聪聪各有哪两个外号吗?3. (1分)六年级四个班进行数学竞赛,小明猜想比赛的结果是:班第一名,班第二名,班第三名,班第四名.小华猜想比赛的结果是:班第一名,班第二名,班第三名,班第四名.结果只有小华猜到的班为第二名是正确的.那么这次竞赛的名次是________班第一名,________班第二名,________班第三名,________班第四名。

4. (5分)振华小学组织了一次投篮比赛,规定投进一球得分,投不进倒扣分.小亮投了个球,投进了个.那么,他应该得多少分?5. (5分)烟鬼甲每天抽50支烟,烟鬼乙每天抽10支烟。

5年后,烟鬼乙抽的烟比烟鬼甲抽的还多,为什么?6. (5分)架子上摆着大、中、小三种皮球,只知道小皮球每只20元,每层皮球的价钱同样多,每只中皮球和大皮球各需要多少元?7. (5分)给三个非常聪明的人各戴了一顶帽子.并且告诉他们,他们的帽子的颜色可能是红色的,也可能是蓝色的,没有其他颜色.且三人中至少有一个人的帽子是红色的.三人互相看了看,没有人能很快地说出自己戴的是什么颜色的帽子.三人又冥思苦想了一阵,几乎同时都猜到了自己戴了什么颜色的帽子.你知道他们三人各戴了什么颜色的帽子吗?请说明理由.8. (5分)甲、乙、丙、丁每人只会中、英、法、日四种语言中的两种,其中有一种语言只有一人会说.他们在一起交谈可有趣啦:⑴乙不会说英语,当甲与丙交谈时,却请他当翻译;⑵甲会日语,丁不会日语,但他们却能相互交谈;⑶乙、丙、丁找不到三人都会的语言;⑷没有人同时会日、法两种语言.请问:甲、乙、丙、丁各会哪两种语言?9. (5分)塑料袋里有六个橘子,如何均分给三个小孩,而塑料袋里仍有二个橘子?(不可以分开橘子)10. (5分)在下表中填入三人的名字。

[小学奥数专题15】2-1-1等量代换_题库教师版

[小学奥数专题15】2-1-1等量代换_题库教师版

[小学奥数专题15】2-1-1等量代换_题库教师版work Information Technology Company.2020YEAR2-1 等量代换教学目标1、利用生活的相等关系进行推理,并进行等量代换2、通过等量代换思想学习图文算式,培养学生的逆向思维和发散思维3、在代换中锻炼学生的分析问题能力和推理判断能力知识精讲生活中有很多相等的量,如平衡的天平、平衡的跷跷板两边的重量相等.我们可以根据这些相等的关系进行推理,进而可以等量代换,找到答案.这一节课我们就引导学生来学习等量代换中推理的方法,让学生能对较复杂的物体进行代换,在代换的过程中培养学生的思维能力.模块一、看的见的等量代换【例 1】看下图,右边要站几只小鸟跷跷板才能平衡.【解析】1只小兔的重量等于6只鸟的重量,右边要放6只鸟,跷跷板才能保持平衡.【巩固】下图中第三个盘子应放几个小方块才能保持平衡【巩固】【解析】1个香蕉的重量=3个方块的重量,右边要放3个方块天平才能保持平衡.【巩固】下图中0,1,2,3,4,5,6,7,8,9十个兄弟玩跷跷板,8和6先坐在一头,让哪两个兄弟坐在另一头,才能使跷跷板平衡?【解析】右边8+6=14,左边只能放9和5,9+5=14.【巩固】一个苹果等于()个草莓.【解析】一个苹果等于4个草莓.【巩固】第三个盘子应放几个玻璃球才能保持平衡.【解析】第三个盘子应放6个玻璃球才能保持平衡.【例 2】水果兄弟们也组成了各种不同的图文算式,它们各代表一个数,你能猜出它们各代表几吗?【解析】这是一个很基础的题,通过这个题的练习,可让学生初步掌握代换的方法,为后面的学习打下基础.(1)因为,所以,又因为3+3+3=9,所以=3.(2)根据,想12+8=20,那么可以推出,因为4+4=8,所以可以得出一个=4.(3)因为,,这样我们可以得出=5+5+5+5=20.(4)根据得,观察算式,就相当于没加也没减还得0,这样我们就可以得出=25. 【巩固】下面的花朵各表示什么数?【解析】=9,=3.【巩固】有一天,小狗老师要在动物学校挑选队员参加数学竞赛,小松鼠很高兴也跑来了.小狗老师说:“那我就来考考你!你把下面的题做对了就可以参加了.”小松鼠看了半天说:“老师,你写的这是什么”小狗老师说:“哈哈!看来你要好好学一学图文算式了,欢迎你下次再来.”小朋友们,上面的题你会吗?【解析】通过这个故事引入新课,在这里不要求学生能马上做出来,可放在最后来解决.如果学生的能力较强,也可把这两个题作为引入新课的切入点进行讲解.(1)因为,所以=5,又因为,把=5替换,就变成,这样我们就可以得出=10.(2)我们把上下两个算式进行比较,我们发现下面比上面多了一个,得数多了18-14=4,所以我们可以推断出=4,,根据第一个算式我们可以得出;那么=5.【巩固】下面的符号各代表一个数,相同的符号代表相同的数,它们各代表几呢?【解析】根据两个算式来进行推理,通常我们要先根据一个算式的得数推理出其中一个符号表示的数,然后再把这个得数代换到另一个算式里,求出另外一个符号表示的数.具体分析如下:(1)根据●+●=6,想3+3=6,可推出●=3,把●=3替换▲+●=8,可得到新的算式▲+3=8,这样我们就可得出▲=5.(2)根据第二个算式12-■=5,可得■=7;把■=7替换第一个算式◆+■=15的◆+7=15,可以得出◆=8.【巩固】下面的符号各代表一个数,相同的符号代表相同的数,它们各代表几呢?【解析】根据两个算式来进行推理,通常我们要先根据一个算式的得数推理出其中一个符号表示的数,然后再把这个得数代换到另一个算式里,求出另外一个符号表示的数.具体分析如下:(1)根据●+●=6,想3+3=6,可推出●=3,把●=3替换▲+●=8,可得到新的算式▲+3=8,这样我们就可得出▲=5.(2)根据第二个算式12-■=5,可得■=7;把■=7替换第一个算式◆+■=15的◆+7=15,可以得出◆=8.【巩固】根据下面的算式,你知道、、各代表数字几?【巩固】【解析】根据第三个算式:圆柱体+圆柱体=球,我们可以替换第一个算式中的球可得:正方体+圆柱体+圆柱体=10,我们把这个算式和第二个算式:圆柱体+正方体=8进行比较,发现多了一个圆柱体,而得数多了10-8=2,这样我们就可以得出:圆柱体=2,根据第三个算式就得:球=2+2=4,根据第一个算式得:正方体+4=10,于是可推出:正方体=6.答案:正方体=6,球=4,圆柱体=2.【巩固】根据下面算式,算出△、○、□各表示几?【解析】根据三个算式的等量关系通过等量代换,分别算出△、○、□的得数,△=2、○=3、□=1.【巩固】下面的图形各表示什么数?【解析】(1)○=11,□=2;(2)○=4,△=5;(3)△=6,□=2.【巩固】求下面图形所表示的数.【解析】(1)△=( 9 ),○=( 6 ),☆=( 7 );(2)△=( 3 ),□=( 4 ). 【例 3】你能根据下面的三个算式,算出●、▲、■各代表什么数吗?【解析】根据第一个算式11-4=●,我们可以得出●=7;把●=7代入到第二个算式●-5=▲,可得7-5=▲,这样可以得出▲=2,最后根据第三个算式我们就能得出■=7+2=9.【巩固】和是一对好朋友,它们各代表一个数,你知道它们是几吗?【巩固】【解析】从第一个算式可以看出西瓜比菠萝大6,而菠萝加上西瓜又得12,我们把10以内符合要求的数分组列举:10和4,9和3,8和2,7和1,发现只有9+3=12符合要求,所以西瓜=9,菠萝=3.模块二、简单的等量代换【例 4】1头大象的重量等于4头牛的重量,l头牛的重量等于3匹马的重量,则1头大象的重量等于多少匹马的重量?【例 5】【解析】因为1头大象的重量=4头牛的重量,1头牛的重量=3匹马的重量,那么4头牛的重量=12匹马的重量,所以1头大象的重量等于12匹马的重量.【巩固】1头猪的重量等于8只兔的重量,而1只兔的重量又等于2只公鸡的重量,那么1只猪的重量是几只公鸡的重量?【巩固】【解析】1头猪的重量等于8只兔子的重量,而1只兔子的重量又等于2只公鸡的重量.那么8只兔子的重量就等于2816⨯= (只)公鸡的重量,而1头猪的重量等于8只兔子也就是16只公鸡的重量.所以l头猪的重量等于16只公鸡的重量.【巩固】已知买1个汉堡包的钱可以买2个冰激凌,买1个冰激凌的钱可以买3杯牛奶:求:(1)买60杯牛奶的钱可以买几个汉堡包?(2)买60个汉堡包的钱可以买多少杯牛奶?【解析】可引导学生读题、审题,找三者之间的数量关系,再通过倍数关系进行求解.可得出:236⨯= (杯),即买1个汉堡包的钱和买6杯牛奶的钱一样多.由此可以进行推算.⑴60杯牛奶是6杯牛奶的10倍.所以60杯牛奶的钱可以买10个汉堡包.⑵60个汉堡包相当于6个60杯牛奶的钱.60+60+60+60+60+60=360(杯)或660360⨯=(杯),所以买60个汉堡包的钱可以买360杯牛奶.【例 6】巳知=60克,求=?克.【例 7】【解析】从左边的图可得:3个白球=2个黑球的重量,也就是等于6060120+=(克),÷=(克),所以每个白球的重量等于40克.从右图可得:1个正方体=4个白120340球的重量,一个白球的重量等于40克,1个正方体的重量就是:404160⨯=(克).【巩固】第三个盘子应放几个玻璃球才能保持平衡?【详解】⑴4个,⑵15个.【例 8】下面的天平是不平衡的,但除了天平上的砝码,周围已找不到别的砝码了.你能通过移动天平上的砝码,使天平平衡吗?【解析】我们可先看看天平两边各有多少克:天平左边:551020++=(克).天平右边:10421118++++= (克).显然,天平左边如果减少1克,放到天平右边,-=(克),18+1=19(克),天平两边就都平衡了,但天平左边没有l克的砝码,20119怎么办?可以用天平左边5克的砝码和天平右边4克的砝码交换一下,就可以达到要求了.这样天平左边是541019++++=(克).++=(克).右边是10521119【巩固】你能通过移动天平上的砝码,使下面的天平平衡吗?【解析】可引用线段图帮助学生理解多的部分给少的部分多少,可达到一样多,然后再讲解此题.左边=1020838++=克,左边比右边多8克.只有从左++=克,右边=1016430边拿4克到右边,两边的重量才一样多.这样可以把左边8克的砝码和右边4克的砝码互换一下,左右两边重量都是34克,天平平衡.【巩固】你能通过移动天平上的砝码,使下面的天平平衡吗?【解析】把左边的3克和右边的6克对换.或把左边的4克和右边的7克对换.【例 9】3只小花猫的重量等于1只狗的重量,1只小花猫等于3只鸭的重量,1只狗重9千克,1只猫与1只鸭各重多少千克?【例 10】【解析】抓住突破口,利用倒推逐步推理.3只猫等于1只狗的重量,1只狗重9千克,3只猫也就重9千克,933÷=(千克),所以1只猫就等于3千克.1只猫等于3只鸭的重量,1只猫重3千克,3只鸭也就重3千克.331÷=(千克),所以1只鸭等于1千克.【巩固】如果1个笔记本的价钱等于5块橡皮的价钱,4个文具盒的价钱等于40块橡皮的价钱.已知1个笔记本的价钱是3元,那么1个文具盒的价钱是多少?【巩固】【解析】由4个文具盒等于40块橡皮知:1个文具盒=10块橡皮,又由1个笔记本=5块橡皮知2个笔记本=10块橡皮,所以,1个文具盒=2个笔记本.1个笔记本的价钱是3元,那么1个文具盒的价钱是326⨯=(元).【巩固】1串葡萄的重量等于3个梨的重量,2个梨的重量等于80克,1串葡萄重多少克?【巩固】【解析】2个梨的重量是80克,那么1个梨的重量就是40克,1串葡萄的重量等于3个梨的重量,1串葡萄就是403120⨯=克.【例 11】如果20只兔子可换2只羊,9只羊可换3头猪,8头猪可换2头牛,那用1头牛可换多少只兔子?【例 12】【解析】把题目条件列出来:20只兔=2只羊,9只羊=3头猪,8头猪=2头牛,1头牛=几只兔.从这几个式子可得出:1头牛=4头猪,1头猪=3只羊,1只羊=10只兔.因为1头牛可换4头猪,1头猪换3只羊,4头猪就换4312⨯=(只)羊,1只羊可换10只兔,12只羊可换1012120⨯=(只)兔.说明1头牛可换120只兔.【巩固】10只兔子可以换3只鹅,6只鹅可以换1只羊,1只兔子重1千克,1只羊重几千克?【巩固】【解析】1只羊重20千克.【例 13】1个苹果和1个香蕉的重量是7个小铁块的重量,而1个苹果的重量是4个小铁块的重量,1个香蕉的重量是多少个小铁块的重量?【例 14】【解析】简单的代换,可通过画图对学生进行讲解,利用拓展加强学生的认识.题中告诉我们一个苹果和一个香蕉的重量等于7个小正方体的重量.且一个苹果的重量等于4个小正方体的重量,通过比较,我们知道一个香蕉的重量就应该是3个小正方体的重量.【巩固】1瓶可乐等于1杯茶和1杯奶的重量,2杯奶的重量等于1杯茶的重量,1瓶可乐相当于多少杯牛奶的重量?【巩固】【解析】因为1瓶可乐=1杯茶+1杯牛奶,且1杯茶=2杯牛奶,两式联合起来:1瓶可乐=2杯牛奶+1杯牛奶=3杯牛奶.【例 15】1个的重量等于3个小的重量,2个的重量等于2个大和2个小的重量和,1个大等于几个小的重量?【解析】因为1个=3个小,那么2个=6个小,又因为2个=2个大+2个小,所以2个大=6个小-2个小=4个小,1个大=2个小.【例 16】1只鸡的重量等于2只小鸭的重量,3只鸡的重量等于1只小鸭和1只小猪的重量,1只小熊等于2只小猪的重量,算一算1只小熊的重量与几只小鸭的重量一样重?【例 17】【解析】引导学生,根据条件适当扩大鸡的倍数,使前后数目一致,进行计算.因为1只鸡的重量等于2只小鸭的重量,所以可以变成6只鸭的重量等于1只小鸭和1头小猪的重量;这样我们就可以算出1头小猪的重量等于5只小鸭的重量.我们又知道1只小熊的重量等于2头小猪的重量,因为2头小猪的重量等于10只小鸭的重量,所以1只小熊的重量等于10只小鸭的重量.【巩固】1只猴子的体重等于3只猫的体重,3只狗的体重等于9只猫的体重.如果1只猴子重3千克,请问1只狗重多少千克?【巩固】【解析】由3只狗的体重=9只猫的体重,得1只狗的体重=3只猫的体重.又1只猴子的体重=3只猫的体重,1只狗的体重=1只猴子的体重.1只猴子重3千克,1只狗重3千克.【巩固】观察下图,看看谁最重.【解析】从第一个图中可以看出2只兔子的重量=1只兔子+2只鸡的重量.从这个等式可推出1只兔子=2只鸡的重量.说明兔子比鸡重;而第二个图可以看出3只鸡=2只鸭的重量,从而可推出鸭的重量大于鸡的重量.那么兔子和鸭哪一个更重呢?我们不妨把兔和鸭都转化成相当于几只鸡来比较.刚才我们由第2个图看出:2只鸭=3只鸡,那么2只兔等于几只鸡的重量呢?因为1只兔=2只鸡,所以2只兔的重量=4只鸡的重量,而2只鸭的重量=3只鸡的重量.兔和鸭同样都是2只,但前者相当于4只鸡重,后者相当于3只鸡重.显然,这里兔子的重量最重.一旦遇到不好比较的情况,我们可以将它们转化成相当于几个同一种事物,这样就便于比较了.【巩固】1个桃子等于5个玻璃球的重量,1个桃子和1个梨的重量等于11个玻璃球的重量,1个梨等于几个玻璃球?【巩固】【解析】1个桃子=5个玻璃球的重量,1个桃子+1个梨=11个玻璃球的重量,那么1个梨=1156-=个玻璃球的重量.【巩固】1只鹅可以换8千克鱼,而4千克鱼可以换50个鸡蛋,10个鸡蛋可以换3个鹅蛋.一只鹅可以换多少个鹅蛋?【巩固】【解析】一只鹅可以换30个鹅蛋.【巩固】1个足球等于几个皮球的价钱?【解析】1个足球等于5个皮球的价钱.【例 18】1个西瓜的重量等于2个哈密瓜的重量,1个哈密瓜的重量等于8个苹果的重量,2个苹果的重量等于3个柿子的重量,那么1个西瓜的重量等于几个柿子的重量?【例 19】【解析】因为2个苹果的重量等于3个柿子的重量,所以8个苹果的重量等于12个柿子的重量.又因为1个哈密瓜的重量等于8个苹果的重量,所以1个哈密瓜的重量等于12个柿子的重量.而1个西瓜的重量等于2个哈密瓜的重量,因此1个西瓜的重量=12224⨯=个柿子的重量.【巩固】2只兔子的重量等于6只小鸡的重量,3只袋鼠的重量相当于4只兔子的重量,那么1只袋鼠的重量相当于多少只小鸡的重量?【巩固】【解析】2只兔相当于6只小鸡的重量,那么4只兔相当于12只小鸡的重量.3只袋鼠的重量相当于4只兔子的重量,所以3只袋鼠相当于12只小鸡的重量.1234÷=,即1只袋鼠相当于4只小鸡的重量.【巩固】一只小猴重4千克,一只小猴的重量等于两只小兔的重量,两只小兔的重量等于4只小猫的重量.一只小兔和一只小猫的重量共多少千克?【解析】一只小猴的重量等于两只兔子的重量,这样可以求出一只兔子的重量.而两只兔子的重量等于4只小猫的重量,可以求出一只小猫的重量.最后一只小兔和一只小猫的总重量就求出来了.一只兔子的重量:422÷=(千克,)一只小猫的重量:441÷=(千克),一只小兔和一只小猫的总重量:213+=(千克)模块三、利用对比分析、和差倍分、整体看问题的思想解题【例 20】 (2008年第八届“春蕾杯”小学数学邀请赛初赛)★+■=24,■+●=30,●+★=36.■=_________ ●=________ ★=_______.【解析】 (243036)245++÷=,所以■表示的数为:45369-=,●表示的数为:452421-=,★表示的数为:453015-=.【巩固】 图书室里的故事书与科技书共有720本,又知故事书比科技书多160本,这两种图书各有多少本?【巩固】【解析】 题目中给出了两个未知量“故事书”和“科技书”的数量关系,即已知故事书与科技书共有720本和故事书与科技书本数之差,属于典型应用题中的“和差问题”,一般用消去法来解.7201602880++-故事书本数科技书本数本故事书本数科技书本数本倍故事书本数本消去科技书本数后,可先求出故事书的本数.列式:(720160)2440+÷=(本)……故事书,440160280-=(本)……科技书.也可以先求出科技书的本数.【例 21】 学校第一次买了3个水瓶和20个茶杯,共用去134元;第二次又买了同样的3个水瓶和16个茶杯,共用去118元.问水瓶和茶杯的单价各是多少元?【例 22】【解析】 引导学生学会审题,找出两次购买的相同点及差异,让学生思考解决.我们用数量关系式来比较对应的未知数量的情况:320134316118416+=+==个水瓶的价钱个茶杯的价钱元-个水瓶的价钱个茶杯的价钱元个茶杯的价钱元比较上面两个等式,我们可以看出,134元和118元的差正好是4个茶杯的价钱.利用这一条件,把3个水瓶的价钱消去,先求出每个茶杯的价钱,再求出每个水瓶的价钱.每个茶杯的价钱:(134118)(2016)-÷-164=÷4=(元)每个水瓶的价钱:(134420)318-⨯÷=(元)或(118416)318-⨯÷=(元)【巩固】 奶奶去买水果,如果她买4千克梨和5千克荔枝,需要花掉58元;如果她买6千克梨和5千克荔枝,需要花掉62元.问1千克梨和1千克荔枝各多少元?【巩固】【解析】 我们可以把两次的情况进行比较:4千克梨的价钱5+千克荔枝的价钱58=(元) ⑴6千克梨的价钱5+千克荔枝的价钱62=(元) ⑵比较⑴和⑵式,发现两式中荔枝的千克数相等.⑵式比⑴式多了642-=千克梨,也就是62584-=元,说明1千克梨的价钱为422÷=元.那么1千克荔枝的价钱也就好求了.(6258)(64)2-÷-=(元),(5824)510-⨯÷=(元)或(6226)510-⨯÷=(元)【巩固】 小芳在文具店买了5枝彩色铅笔和6个练习本,共用去17元.小花买了同样的铅笔8枝和6个练习本,共用去20元.一枝彩色铅笔和一个练习本的价格各是多少?【巩固】【解析】 从题设条件进行比较,小芳和小花都买了6个练习本(同样多),只是买的彩色铅笔枝数不同,引起付款多少不同.因此我们可以采用消去法先消去购买练习本的钱数而只剩下买彩色铅笔的钱数,从而先求出彩笔的单价.86205617303-枝彩色铅笔个练习本共价元枝彩色铅笔个练习本共价元枝彩色铅笔个练习本共价元列式:(2017)(85)1-÷-=(元)……一枝彩笔价格,(2018)62-⨯÷=(元)……一个练习本的价格.【例 23】 李老师第一次买回5个篮球和3个排球,用去318元.第二次又买回7个篮球和6个排球,用去510元.问:一个篮球和一个排球的价格各是多少元?【例 24】【解析】 可引导学生读题、审题,找出此题与例7的不同之处,并转化成例7的模型.此题有篮球单价与排球单价两个未知数量,而从题里所给条件分析,两次购买篮球与排球的数量各不相同,不能直接用消去法消去哪一个未知数,所以解题关键是使篮球或排球中的某一对未知数变换得相同,则可消去其中一个.通过比较,第一次购买的排球为3个;第二次购买的排球为6个,恰为第一次的2倍.若将第一次购买的排球、篮球各扩大2倍,付的钱也扩大2倍,则能使购买的排球个数与第二次购买的排球个数相同,从而设法消去排球这个未知数量,先求出每个篮球的价格,再求每一个排球的价格.533182106636⨯个篮球个排球元个篮球个排球元106636765103126-个篮球个排球元个篮球个排球元个篮球元列式:(3182510)(527)⨯-÷⨯-126342=÷=(元)……篮球的单价.(318425)3-⨯÷108336=÷=(元)……排球的单价.【巩固】 学校要买足球和排球.买3个足球和4个排球共需190元,如果买6个足球和2个排球需要230元.一个足球和一个排球各需要多少元?【巩固】【解析】 我们可以把两次情况进行比较;3个足球的价钱4+个排球的价钱190=(元) ⑴6个足球的价钱2+个排球的价钱230=(元) ⑵我们发现两组条件不管相加还是相减,都不可能求出足球和排球的单价,因为这里没有一个相同的条件可减去.再观察,我们发现,如果把⑴式扩大2倍,可以得到6个足球和8个排球共380元,即⑴2⨯:6个足球的价钱8+个排球的价钱380=元 ⑶⑶-⑵,可知6个排球的价钱150=元.容易得出排球和足球的价钱各是多少.排球:150625÷=(元),足球:(190254)330-⨯÷=(元)【巩固】3头牛和8只羊每天共吃青草93千克,5头牛和15只羊每天共吃青草165千克.问一头牛和一只羊每天各吃青草多少千克?【巩固】【解析】3头牛吃草的重量8+只羊吃草的重量93=千克⑴5头牛吃草的重量15=千克⑵+只羊吃草的重量165如果把⑴式扩大5倍,⑵式扩大3倍,那么两个式子中牛的数量就一样多了.这样就得到:⑴5⨯:15头牛吃草的重量40+只羊吃草的重量465=千克⑶⑵3⨯:15头牛吃草的重量45+只羊吃草的重量495=千克⑷⑷-⑶:5只羊吃草的重量30=千克1只羊吃草的重量6=千克1头牛每天吃草的重量:(9368)3-⨯÷453=(千克)=÷15【例 25】李宁的妈妈去菜市场买菜,买了6斤土豆和5斤柿子椒,共花了13元5角.己知3斤土豆的价钱与2斤柿子椒的价钱相等.那么1斤土豆和1斤柿子椒各多少钱?【例 26】【解析】可引导学生读题、审题,让学生自己思考解答.老师可以画图进行分析,已知条件为:6斤土豆+5斤柿子椒=13元5角.3斤土豆=2斤柿子椒.从第一个式子不能算出1斤土豆、1斤柿子椒的价钱.若把土豆转化成柿子椒或把柿子椒转化成土豆的价钱就可求该种菜的价钱了.由第二个式子知3斤土豆=2斤柿子椒,则6斤土豆应等于4斤柿子椒的价钱.即:6斤土豆+5斤柿子椒=13元5角,6斤土豆=4斤柿子椒.4斤柿子椒+5斤柿子椒=13元5角,9斤柿子椒=13元5角.13元5角等于135角,135角买了9斤柿子椒,所以1斤柿子椒的价钱为:135915÷=(角)= 1元5角.4斤柿子椒的价钱为:15460÷=(元).所以1斤土豆的⨯= (角)=6(元).1斤土豆的价钱为:661价钱为1元,1斤柿子椒的价钱为1元5角.【巩固】3米绵绸的价格与6米花布的价格相等.王云买了6米绵绸和18米花布,共花费了120元.棉绸和花布的单价各是多少?【巩固】【解析】由题意可知3米棉绸与6米花布的价格相等,由此可推知1米棉绸与2米花布的价格相等.因此可用花布的价格去替换棉绸的价格,而使棉绸价格转变为花布的价格.消去棉绸价格这个未知数量可以先求出花布的单价,进而求出棉绸的单价.120(2618)÷⨯+120304⨯=(元)……每米棉绸=÷=(元)……每米花布的单价428的单价.【例 27】学校买2张桌子和3把椅子共用90元钱,每张桌子的价钱是每把椅子价钱的3倍.每张桌子多少钱?【例 28】【解析】引导学生读题、审题,让学生自己思考解答,教师集体订正.2张桌子的价钱3+把椅子的价钱90=(元) ⑴1张桌子的价钱3=把椅子的价钱⑵将⑵代入⑴式,消去桌子这个未知量,问题就可以解决.(32=(元)⨯)把椅子的价钱3+把椅子的价钱909把椅子的价钱90=(元)1把椅子的价钱10=(元)1张桌子的价钱10330=⨯=(元)【巩固】红、黄、蓝三个纸盒里共有彩票56张,其中红色纸盒里的彩票是黄色纸盒里彩票张数的2倍,蓝色纸盒里的彩票是红色纸盒里彩票张数的2倍.红、黄、蓝三个纸盒里各有多少张彩票?【巩固】【解析】以黄色纸盒里的彩票张数为1倍数.红纸盒里的彩票张数是这样的2倍.蓝纸盒是红纸盒里彩票张数的2倍,也就是黄纸盒里彩票张数的4倍.一共是(124)++倍.这样就可以消去两个未知量而先求出黄纸盒里彩票的张数,再分别求出红色和蓝色盒子里彩票的张数.56(124)÷++567=÷8=(张)……黄盒里的彩票张数,8216⨯=(张)……红盒里的彩票张数,8432⨯=(张)……蓝盒里的彩票张数.【例 29】甲、乙两人共储蓄32元,乙、丙两人共储蓄30元,甲、丙两人共储蓄22元.三人各储蓄多少元?【例 30】【解析】可先让学生自己去思考,教师巡视指正.此题要求三个未知数,甲储蓄多少元乙储蓄多少元丙储蓄多少元关系较为复杂,为了化繁为简,采用消去法来解.首先用加减消去法消去乙和丙,只剩下甲,然后求出甲储蓄多少元,再求乙、丙各储蓄多少元.解法1:()甲乙→32元+甲丙→22元2甲乙丙→54元-乙丙→30元2甲→24元由2倍甲储蓄为24元,可求出甲储蓄多少元.列表:(322230)2+-÷24212=÷=(元)……甲储蓄款.321220-=(元)……乙储蓄款,302010-=(元)……丙储蓄款.此题也可用另一种方法求解.解法2:甲乙+乙丙+甲丙32223084=++=(元),即2倍的(甲+乙+丙)等于84元.甲+乙+丙84242=÷=(元).423210-=(元)……丙储蓄款,423012-=(元)……甲储蓄款,422220-=(元)……乙储蓄款.【巩固】已知1个排球和1个足球共重5千克.1个排球和1个篮球共重6千克.1个足球和1个篮球共重7千克.求每一种球各重多少千克?【巩固】【解析】由5+6+7=18(千克)知:2个排球+2个足球+2个篮球=18千克,那么有1个排球+1个足球+1个篮球=9千克.954-=(千克)……篮球的重量, 963-=(千克)……足球的重量。

小学奥数图形找规律题库教师版

小学奥数图形找规律题库教师版

小学奥数图形找规律题库教师版图形找规律找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化. 对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题. 板块一数量规律【例1】请找出下面哪个图形与其他图形不一样. 【解析】这组图形的共同特征是,连接各边上一点,组成一个复合图形.所不同的是,第四个图形是一个六边形,而其它几个都是四边形,这样,只有(4)与其它不一样【例2】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4.3.?.1的顺序变化的,显然“?”处应填一个圆形。

【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】(方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4.3.?.1的顺序变化的,显然“?”处应填一个三角形△. (方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4.?.2.1的顺序变化,也可以看出“?”处应是三角形△. 【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】(方法一)横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按5.4.3.?.1的顺序变化的,显然“?”处应填一个圆形. (方法二)竖着看,圆形由左而右依次减少,而三角形由左而右依次增加,圆形按照5.4.?.2.1的顺序变化,也可以看出“?”处应是圆形. 【例3】观察下面的图形,按规律在“?”处填上适当的图形. 【解析】本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形. 【例4】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。

8-3-1逻辑推理.题库教师版[1]

8-3-1逻辑推理.题库教师版[1]

1.掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析、数论分析法等2. 培养学生的逻辑推理能力,掌握解不同题型的突破口3. 能够利用所学的数论等知识解复杂的逻辑推理题逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。

对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。

本讲我们主要从各个角度总结逻辑推理的解题方法。

一列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。

有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。

四、计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.模块一、列表推理法 【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【解析】 因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由例题精讲知识点拨教学目标8-3逻辑推理第二盘看出,小红不是马辉的妹妹.将这些关系画在左下表中,由左下表可得右下表.李强马辉刘刚小丽小红小英××××李强马辉刘刚小丽小红小英×√×××××√√刘刚与小红、马辉与小英、李强与小丽分别是兄妹.【巩固】 王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?【解析】 为了能清楚地找到所给条件之间的关系,我们不妨运用列表法,列出下表,在表中“√”表示是,“×”表示不是,在任意一行或一列中,如果一格是“√”,可推出其它两格是“×”由⑴⑶可知张贝、李丽都不是跳伞运动员,可填出第一行,即王文是跳伞运动员;由⑶可知,李丽也不是田径运动员,可填出第三列,即李丽是游泳运动员,则张贝是田径运动员.【巩固】 李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门.现知道:⑴ 顾锋最年轻;⑵ ⑵李波喜欢与体育老师、数学老师交谈;⑶ ⑶体育老师和图画老师都比政治老师年龄大;⑷ ⑷顾锋、音乐老师、语文老师经常一起去游泳;⑸ 刘英与语文老师是邻居.问:各人分别教哪两门课程?【解析】 李波教语文、图画,顾锋教数学、政治,刘英教音乐、体育.由⑴⑶⑷推知顾锋教数学和政治;由⑵推知刘英教体育;由⑶⑸推知李波教图画、语文.【巩固】 王平、宋丹、韩涛三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴韩涛比大队长的成绩好.⑵王平和中队长的成绩不相同.⑶中队长比宋丹的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?【解析】 根据条件⑵和⑶,王平和中队长的成绩不相同,中队长比宋丹的成绩差.,可以断定,王平不是中队长,宋丹也不是中队长,只有韩涛当中队长了.王平和宋丹两人谁是大队长呢?由⑴和⑶,韩涛比大队长的成绩好,中队长比宋丹的成绩差,可以推断出按成绩高低排列的话,宋丹的成绩比中队长(韩涛)的成绩好,韩涛的成绩比大队长的成绩好.这样,宋丹、韩涛就都不是大队长,那么,大队长肯定是王平.【例 2】 张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【解析】 这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表.我们先将题目条件中所给出的关系用下面的表来表示,由条件⑴得到表1,由条件⑵、⑶得到表2,由条件⑷得到表3.因为各表中,每行每列只能有一个“√”,所以表2可填全为表5.由表5知农民在北京工作,又知席辉不是农民,所以席辉不在北京工作,可以将表1可填全完为表4由表4和表5知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住在北京,是农民.方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人,所以席辉不是工人,又不是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明在上海工作,是工人。

广西钦州市数学小学奥数系列8-3-1逻辑推理(三)

广西钦州市数学小学奥数系列8-3-1逻辑推理(三)

广西钦州市数学小学奥数系列8-3-1逻辑推理(三)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共33题;共117分)1. (5分)去年学而思杯颁奖大会上,很多同学都过来领奖了。

崔梦迪老师在让所有获奖的同学就座后,突然突发奇想,让所有同学用一张纸写下来在会场里的其他同学中,自己认识的人数。

崔老师把同学们写好的纸条收走后,看了一遍,说:“真巧,咱们所有同学在这里认识的人数都刚好不一样。

”这时下面有个特别聪明的同学,立刻说道:“不可能,肯定是有人统计错了!”当他解释过自己这样说的原因后,教室里的其他同学们和崔老师都很佩服这个同学。

那么同学们能够说出这个同学这样说的原因吗?2. (5分)给三个非常聪明的人各戴了一顶帽子.并且告诉他们,他们的帽子的颜色可能是红色的,也可能是蓝色的,没有其他颜色.且三人中至少有一个人的帽子是红色的.三人互相看了看,没有人能很快地说出自己戴的是什么颜色的帽子.三人又冥思苦想了一阵,几乎同时都猜到了自己戴了什么颜色的帽子.你知道他们三人各戴了什么颜色的帽子吗?请说明理由.3. (5分)一次象棋比赛共有10名选手参加,他们分别来自甲、乙、丙三个队,每个选手都与其余9名选手各赛1盘,每盘棋的胜者得1分,负者得0分,平局双方各得0.5分.结果,甲队选手平均得4.5分,乙队选手平均得3.6分,丙队选手平均得9分.那么,甲、乙、丙三队参加比赛的选手人数各多少?4. (5分)桌子上放着55根火柴,甲、乙二人轮流每次取走1~3根,规定谁取走最后一根火柴谁获胜.如果双方都采用最佳方法,甲先取,那么谁将获胜?5. (5分)在下面的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。

B、C 应该是几?C4B3142A6. (5分)塑料袋里有六个橘子,如何均分给三个小孩,而塑料袋里仍有二个橘子?(不可以分开橘子)7. (1分) (2019二下·中期末) 3个小朋友,分别出生在北京、苏州和沈阳。

小学奥数教师版(合辑):5-1-3-1 数阵图(一).教师版

小学奥数教师版(合辑):5-1-3-1 数阵图(一).教师版
【答案】
【例 10】将1~16分别填入下图(1)中圆圈内,要求每个扇形上四个数之和及中间正方形的四个数之和都为34,图中已填好八个数,请将其余的数填完.
【考点】封闭型数阵图 【难度】4星 【题型】填空
【解析】为了叙述方便,将圆圈内先填上字母,如图(2)所示:
9+15+a+c=34,5+10+e+g=34,7+14+b+d=34,11+8+f+h=34,c+d+e+f=34,
【答案】24
【例 8】下图中有五个正方形和 个圆圈,将 填入圆圈中,使得每个正方形四角上圆圈中的数字之和都相等.那么这个和是多少?
【考点】封闭型数阵图 【难度】3星 【题型】填空
【解析】设每个正方形四角上圆圈中的数字之和为 ,则由 个正方形四角的数字之和,相当于将1~12相加,再将中间四个圆圈中的数加两遍,可得: ,解得 ,即这个和为26.具体填法如右上图。
【解析】因为每个角上的棋子分别被两条边共用,根据这一特点可以将边上的棋子减少,同时增加角上的棋子数。具体操作如图:
【答案】
【例 12】如果将右图分成四块,每块上的数的和都相等,那么每块的和是
【考点】复合型数阵图 【难度】4星 【题型】填空
【关键词】走美杯,3年级,初赛
【解析】根据题目给的数字计算所有的数字和为: ,分成四块的,每块的数字和为: ,,所以 , , , ,具体分法如上图。
18+2(D+E+F)=36,所以D+E+F=9
【答案】
【例 4】将 至 这六个数字填入图中的六个圆圈中(每个数字只能使用一次),使每条边上的数字和相等.那么,每条边上的数字和是.

小学奥数教师版-8-1 智巧趣题

小学奥数教师版-8-1 智巧趣题

智巧趣题教学目标1.挖掘孩子学习数学的兴趣.2.让孩子掌握各种趣题的不同思考方式.知识点拨知识点说明智巧趣题顾名思义,就是有趣的一类问题,但回答时要十分小心,稍有不慎,就可能落入“圈套”。

要想正确地解答这类题目,一是细心,善于观察,全面考虑各种情况;二是要充分运用生活中学到的知识;三是需要那么一点思考问题的灵气和非常规的思考方法。

本讲主要是通过数学趣题的研究学习引发学生学习奥数的兴趣,激发学生学习奥数的灵感,充分调动学生学习奥数的积极性。

智巧趣题主要依靠巧妙的构思而解决问题,其中包括火柴棍游戏、数的恰当排列、称量问题及直线或圆周形状的报数问题。

例题精讲青蛙跳、蜗牛爬【例1】青蛙沿着10米高的井往上跳,每次它向上跳半米,然后又落下去,问青蛙爬需要跳几次就能跳出井外?【考点】智巧趣题【难度】2星【题型】填空【解析】每次青蛙向上跳半米,然后又落下去,等于还在原地,所以永远也跳不出去.【答案】永远也跳不出去【巩固】一只树蛙爬树,每次往上爬5厘米,又往下滑2厘米,这只青蛙这样上下了5次,实际往上爬了多少厘米?【考点】智巧趣题【难度】2星【题型】填空【解析】分析:实际上青蛙每爬行一次只前进了5-2=3(厘米),5次共前进了3×5=15(厘米).【答案】15厘米【例2】一口井深10米,一只蜗牛从井底白天往上爬2米,晚上又往下滑1米,请问要多长时间,这只蜗牛能爬出这口井?【考点】智巧趣题【难度】2星【题型】填空【解析】“白天往上爬2米,晚上又往下滑1米”其实一天只往上爬1米,如果这样理解,说这只蜗牛爬出这口井需要10天就错了.因为最后一次爬出井外不会往下滑,所以蜗牛只要往上爬9米,晚上下滑1米,这时距离井口只有2米了,这样只要一个白天再往上爬2米就到井口了.所以只需要8天再加一个白天.【答案】8天再加一个白天【巩固】蜗牛沿着9米高的柱子往上爬,白天它向上爬5米,而晚上又下降4米,问蜗牛爬到柱顶需要几天几夜?【考点】智巧趣题【难度】2星【题型】填空【解析】一昼夜可以爬1米,爬了4昼夜后再经过一个白天即可爬到柱顶,因此需要5天4夜.【答案】5天4夜【巩固】蜗牛沿着10米高的柱子往上爬,白天它向上爬5米,而晚上又下降3米,问蜗牛爬到柱顶需要几天?【考点】智巧趣题【难度】2星【题型】填空【解析】一昼夜可以爬2米,爬了3昼夜后再经过一个白天即可爬到柱顶,因此需要4天3夜.【答案】4天3夜【巩固】有一道关于蜗牛爬墙的题:“日升六尺六,夜降三尺三,墙高一丈九,几日到顶端”。

(word完整版)1-3-1定义新运算.题库教师版

(word完整版)1-3-1定义新运算.题库教师版

定义新运算教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。

【考点】定义新运算之直接运算【难度】2星【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。

由A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7)=(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。

小学奥数教师版-5-1-2-2 乘除法数字谜(一)

小学奥数教师版-5-1-2-2 乘除法数字谜(一)



【考点】乘法数字谜 【难度】3 星 【题型】填空
【关键词】迎春杯,中年级,复试,第 8 题
【解析】这是一道数字谜问题.考察同学们的推理能力.首先列成竖式:
cba abc
a cbba
从 cba a ,及乘积为 acbba 看, c 1,所以 cba c 1ba 1 1ba . 1b a
⑴ 数字谜中的文字,字母或其它符号,只取 0 ~ 9 中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件; ⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.
例题精讲
模块一、乘法数字谜
【例 1】 下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?
知识点拨
1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式. 2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的
性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断. 3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意:
【例 10】如图,请在右图每个方框中填入一个数字,使乘法竖式成立。
×
2
0
0
7
【考点】乘法数字谜 【难度】3 星 【题型】填空 【关键词】走美杯,初赛,六年级,第 7 题
154
× 522 3 08
308 7 70
【解析】 8 0 3 8 8
【答案】
5-1-2-2.乘除法数字谜(一).题库
教师版
page 4 of 12
学而思杯
学而思杯
【考点】乘法数字谜 【难度】3 星 【题型】填空 【解析】首先从式子中可以看出“思” 0 ,另外第三个部分积的首位只能为 9,所以“学”只能为 3.由于 3 个

小学奥数系列8-2-1抽屉原理(三)及参考答案

小学奥数系列8-2-1抽屉原理(三)及参考答案

小学奥数系列8-2-1抽屉原理(三)一、1. 从1到20这20个数中,任取11个不同的数,必有两个数其中一个是另一个数的倍数.2. 从1,3,5,7,…,97,99中最多可以选出多少个数,使得选出的数中,每一个数都不是另一个数的倍数?3. 从整数1、2、3、…、199、200中任选101个数,求证在选出的这些自然数中至少有两个数,其中的一个是另一个的倍数.4. 从1,2,3,……49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?5. 从1,2,3,…,99,100这100个数中任意选出51个数.证明:(1)在这51个数中,一定有两个数互质;(2)在这51个数中,一定有两个数的差等于50;(3)在这51个数中,一定存在9个数,它们的最大公约数大于1.6. 有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子?7. 要把61个乒乓球分装在若干个乒乓球盒中,每个盒子最多可以装5个乒乓球,问:至少有多少个盒子中的乒乓球数目相同?8. 将400本书随意分给若干同学,但是每个人不许超过11本,问:至少有多少个同学分到的书的本数相同?9. 有苹果和桔子若干个,任意分成堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?10. 在长度是厘米的线段上任意取个点,是否至少有两个点,它们之间的距离不大于厘米?11. 在米长的直尺上任意点五个点,请你说明这五个点中至少有两个点的距离不大于厘米.12. 试说明在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米.13. 在米长的水泥阳台上放盆花,随便怎样摆放,至少有几盆花之间的距离不超过米.14. 在米长的水泥阳台上放盆花,随便怎样摆放,请你说明至少有两盆花它们之间的距离小于米.15. 在边长为3的正三角形内,任意放入10个点,求证:必有两个点的距离不大于1.16. 边长为1的等边三角形内有5个点,那么这5个点中一定有距离小于0.5的两点.17. 在边长为的正方形内任意放入九个点,求证:存在三个点,以这三个点为顶点的三角形的面积不超过。

西藏林芝地区小学数学小学奥数系列8-3-1逻辑推理(三)

西藏林芝地区小学数学小学奥数系列8-3-1逻辑推理(三)

西藏林芝地区小学数学小学奥数系列8-3-1逻辑推理(三)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共33题;共117分)1. (5分)在9×9棋盘的每格中都有一只甲虫,根据信号它们同时沿着对角线各自爬到与原来所在格恰有一个公共顶点的邻格中,这样某些格中有若干只甲虫,而另一些格则空着.问空格数最少是多少?2. (5分)先填一填,再说说我的新发现.观察表,我发现了:________3. (5分)甲说:“乙和丙都说谎。

”乙说:“甲和丙都说谎。

”丙说:“甲和乙都说谎。

”根据三人所说,你判断一下,下面的结论哪一个正确:(1)三人都说谎;(2)三人都不说谎;(3)三人中只有一人说谎;(4)三人中只有一人不说谎。

4. (5分)在8×8的国际象棋盘上最多能够放置多少枚棋子,使得棋盘上每行、每列及每条斜线上都有偶数枚棋子?5. (5分)老师在3个小箱中各放一个彩色球,让小明、小强、小亮、小佳四人猜一下各个箱子中放了什么颜色的球.小明说:“ 号箱中放的是黄色的,号箱中放的是黑色的,号箱中放的是红色的.”小亮说:“ 号箱中放的是橙色的,号箱中放的是黑色的,号箱中放的是绿色的.”小强说:“ 号箱中放的是紫色的,号箱中放的是黄色的,号箱中放的是蓝色的.”小佳说:“ 号箱中放的是橙色的,号箱中放的是绿色的,号箱中放的是紫色的.”老师说:“你们中有一个人恰好猜对了两个,其余的三人都只猜对一个.”那么号箱子中放的是________色的球.6. (5分)想一想,小动物们怎样才能过河?只有下面两艘船,5只小动物要同时过河,该怎样乘船?7. (1分) (2019二下·中期末) 3个小朋友,分别出生在北京、苏州和沈阳。

根据他们说的话我判断出:明明出生在________,文文出生在________,丽丽出生在________。

河南省郑州市数学小学奥数系列8-3-1逻辑推理(三)

河南省郑州市数学小学奥数系列8-3-1逻辑推理(三)

河南省郑州市数学小学奥数系列8-3-1逻辑推理(三)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共33题;共117分)1. (5分)有一个骗子和一个老实人,骗子永远讲假话,老实人永远讲真话,你能提出一个尽量简单的问题,使两个人的回答相同吗?这个问题可以是2. (5分)甲、乙、丙三人分别是二年级一班、二班、三班的学生,在学校运动会上,他们分别获得了跳高、百米赛跑和铅球冠军。

已知:二班的是百米冠军;一班的不是铅球冠军;甲不是百米冠军;乙既不是二班的也不是跳高冠军。

他们三人分别是哪个班的?获得了哪项冠军?3. (5分)想一想,小动物们怎样才能过河?只有下面两艘船,5只小动物要同时过河,该怎样乘船?4. (5分)怎样使用最简单的方法使X+I=IX等式成立?5. (5分)(2020·抚州) 有60枚围棋子平均分成20堆,其中全是黑子与全是白子的堆数相同,只有1枚黑子的有6堆,至少有2枚白子的有11堆,那么共有多少枚黑子?6. (5分)一瓶油,连瓶带油重5千克,吃了一半油,连瓶带油还有3千克,瓶里还有多少油?瓶有多重?7. (1分)三个小朋友踢毽子,分别踢了30下、45下、26下。

小平踢了________下,小雪踢了________下,小力踢了________下。

8. (1分) (2019三下·南山期末) A、B、C三个小朋友测体重,C比A重,最重的不是C的,最重的是________,最轻的是________。

9. (5分) 5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?10. (1分)三个小朋友赛跑.文文说:“我不是最慢的.”平平说:“我既不是最快的,也不是最慢的.”婷婷说:“我不是最快的.”第一名是________ ,第二名是________ ,第三名是________ .11. (1分)动物村开运动会,在1000米跑比赛中,小马比小鹿跑得慢,小马不如小兔跑得快,小鹿比小兔跑得快.小朋友,请你当裁判,金牌应该发给________?12. (1分)比较下面三个容器的容量,你发现了什么?现有A、B、C三只茶杯。

小学奥数:平均数问题.专项练习及答案解析

小学奥数:平均数问题.专项练习及答案解析

均匀数问题教课目的掌握较复杂的求均匀数应用题的构造特色及解答方法。

培育学生察看、剖析和逻辑推理能力。

知识精讲知识点说明:均匀数问题:均匀数:总数目÷总份数=均匀数(这个能够和行程问题里面的均匀速度要划分并联系)例题精讲模块一,简单的均匀数问题【例1】用4个相同的杯子装水,水面高度分别是4厘米,5厘米,7厘米,8厘米,这4个杯子水面均匀高度是多少厘米?【考点】均匀数问题【难度】1星【分析】求4个杯子水面的均匀高度,就相当于把个杯子里,看每个杯子里水面的高度.即为:【题型】解答4个杯子里的水合在一同,再均匀倒入(4 5 7 8)4 6(厘米).4【答案】6【稳固】小叶子这学期前5次作业的得分分别是95,87,92,100,96.求小叶子这作业的均匀成绩?【考点】均匀数问题【难度】1星【题型】解答【分析】因为此题的“均匀成绩=总成绩÷次数”所以先求总成绩,再求均匀成绩.即:5次(9587 92 10096)5470 594(分).【答案】94【稳固】中关村三小有15名同学参加跳绳比赛,他们每分钟跳绳的个数分别为93、94、85、92、86、88、94、91、88、89、92、86、93、90、89,求每一个人均匀每分钟跳绳多少个?【考点】均匀数问题【难度】1星【题型】解答【分析】从他们每人跳绳的个数能够看出,每人跳绳的个数很靠近,所以能够选择此中一个数90做为基准数,再找出每个加数与这个基准数的差.大于基准数的差作为加数,如93=90+3,3作为加数;小于基准数的差作为减数,如87=90-3,3作为减数把这些差累计起来,用和数的项数乘以基准数,加上累计差,再除以和数的个数就.6-1-11.均匀数问题.题库教师版page1of12能够算出结果。

①跳绳总个数。

93+94+85+92+86+88+94+91+88+89+92+86+93+90+89=90×15+(3+4+2+4+1+2+3)-(5+4+2+2+1+4+1)=1350+19-19=1350(个)②每人均匀每分钟跳多少个?1350÷15=90(个)【答案】90【例2】如图5是小华五次数学测试成绩的统计图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8-3逻辑推理
教学目标
1.掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析、数论分析法等
2.培养学生的逻辑推理能力,掌握解不同题型的突破口
3.能够利用所学的数论等知识解复杂的逻辑推理题
知识点拨
逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。

对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。

本讲我们主要从各个角度总结逻辑推理的解题方法。

一列表推理法
逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.
二、假设推理
用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.
解题突破口:找题目所给的矛盾点进行假设
三、体育比赛中的数学
对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。

有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。

四、计算中的逻辑推理
能够利用数论等知识通过计算解决逻辑推理题.
模块一、列表推理法
【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二
人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?
【解析】 因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由
第二盘看出,小红不是马辉的妹妹.将这些关系画在左下表中,由左下表可得右下表.
刘刚与小红、马辉与小英、李强与小丽分别是兄妹.
【巩固】 王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动
员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?
【解析】 为了能清楚地找到所给条件之间的关系,我们不妨运用列表法,列出下表,在表中“√”表示是,
“×”表示不是,在任意一行或一列中,如果一格是“√”,可推出其它两格是“×”
李强
马辉刘刚小丽
小红
小英
×

×
××××
√√例题精讲
由⑴⑶可知张贝、李丽都不是跳伞运动员,可填出第一行,即王文是跳伞运动员;由⑶可知,李丽也不是田径运动员,可填出第三列,即李丽是游泳运动员,则张贝是田径运动员.
【巩固】李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门.现知道:
⑴顾锋最年轻;
⑵⑵李波喜欢与体育老师、数学老师交谈;
⑶⑶体育老师和图画老师都比政治老师年龄大;
⑷⑷顾锋、音乐老师、语文老师经常一起去游泳;
⑸刘英与语文老师是邻居.问:各人分别教哪两门课程?
【解析】李波教语文、图画,顾锋教数学、政治,刘英教音乐、体育.由⑴⑶⑷推知顾锋教数学和政治;
由⑵推知刘英教体育;由⑶⑸推知李波教图画、语文.
【巩固】王平、宋丹、韩涛三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴韩涛比大队长的成绩好.⑵王平和中队长的成绩不相同.⑶
中队长比宋丹的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?
【解析】根据条件⑵和⑶,王平和中队长的成绩不相同,中队长比宋丹的成绩差.,可以断定,王平不是中队长,宋丹也不是中队长,只有韩涛当中队长了.
王平和宋丹两人谁是大队长呢?由⑴和⑶,韩涛比大队长的成绩好,中队长比宋丹的成绩差,可以推断出按成绩高低排列的话,宋丹的成绩比中队长(韩涛)的成绩好,韩涛的成绩比大队长的成绩好.这样,宋丹、韩涛就都不是大队长,那么,大队长肯定是王平.
【例 2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不
是农民.问:这三人各住哪里?各是什么职业?
【解析】这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表.
我们先将题目条件中所给出的关系用下面的表来表示,由条件⑴得到表1,由条件⑵、⑶得到表2,由条件⑷得到表3.
因为各表中,每行每列只能有一个“√”,所以表2可填全为表5.
由表5知农民在北京工作,又知席辉不是农民,所以席辉不在北京工作,可以将表1可填全完为表4由表4和表5知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住在北京,是农民.
方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人,所以席辉不是工人,又不是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明在上海工作,是工人。

李刚在北京,是农民。

【巩固】甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已。

相关文档
最新文档