(全国通用)2014届高考数学总复习(考点引领+技巧点拨)坐标系与参数方程第1课时 坐 标 系
(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第2课时 函数的定义域和值域
第二章 函数与导数第2课时 函数的定义域和值域第三章 (对应学生用书(文)、(理)9~10页)1. (必修1P 27练习6改编)函数f(x)=x +1+12-x的定义域为________. 答案:{x|x≥-1且x≠2}2. (必修1P 27练习7改编)函数f(x)=(x -1)2-1,x ∈{-1,0,1,2,3}的值域是________.答案:{-1,0,3}解析:f(-1)=f(3)=3,f(0)=f(2)=0,f(1)=-1,则所求函数f(x)的值域为{-1,0,3}.3. (必修1P 31习题3改编)函数f(x)=2x5x +1的值域为____________.答案:⎩⎨⎧⎭⎬⎫y|y≠25解析:由题可得f(x)=2x 5x +1=25-25(5x +1).∵ 5x +1≠0,∴ f (x)≠25,∴ 值域为⎩⎨⎧⎭⎬⎫y|y≠25. 4. (原创)下列四组函数中的f(x)与g(x)表示同一函数的有________.(填序号) ① f(x)=x 0,g(x)=1x ;② f(x)=x x,g(x)=x ;③ f(x)=x 2,g(x)=(x)4;④ f(x)=|x|,g(x)=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x<0.答案:④解析:两个函数是否为同一函数,主要是考查函数三要素是否相同,而值域是由定义域和对应法则所唯一确定的,故只须判断定义域和对应法则是否相同,④符合.5. (必修1P 36习题13改编)已知函数f(x)=x 2-2x ,x ∈[a ,b]的值域为[-1,3],则b -a 的取值范围是________.答案:[2,4]解析:f(x)=x 2-2x =(x -1)2-1,因为x∈[a,b]的值域为[-1,3],所以当a =-1时,1≤b ≤3;当b =3时,-1≤a≤1,所以b -a∈[2,4].1. 函数的定义域(1) 函数的定义域是指使函数表达式有意义的输入值的集合. (2) 求定义域的步骤① 写出使函数式有意义的不等式(组). ② 解不等式组.③ 写出函数定义域(注意用区间或集合的形式写出). (3) 常见基本初等函数的定义域 ① 分式函数中分母不等于零.② 偶次根式函数、被开方式大于或等于0. ③ 一次函数、二次函数的定义域为R .④ y =a x,y =sinx ,y =cosx ,定义域均为R . ⑤ y =tanx 的定义域为{x|x≠k π+π2,k ∈Z }.⑥ 函数f(x)=x a的定义域为{x|x≠0}. 2. 函数的值域(1) 在函数y =f(x)中,与自变量x 的值对应的y 的值叫函数值,函数值的集合叫函数的值域.(2) 基本初等函数的值域① y =kx +b(k≠0)的值域是R .② y =ax 2+bx +c(a≠0)的值域:当a>0时,值域为[4ac -b24a,+∞);当a<0时,值域为⎝ ⎛⎥⎤-∞,4ac -b 24a . ③ y =kx(k≠0)的值域为{y|y≠0}.④ y =a x(a>0且a≠1)的值域是(0,+∞). ⑤ y =log a x(a>0且a≠1)的值域是R . ⑥ y =sinx ,y =cosx 的值域是[-1,1]. ⑦ y =tanx 的值域是R . 3. 最大(小)值一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x∈I,都有f(x)≤M(f(x)≥M);(2) 存在x 0∈I ,使得f(x 0)=M ,那么称M 是函数y =f(x)的最大(小)值. [备课札记]题型1 求函数的定义域例1 求下列函数的定义域: (1) y =12-|x|+lg(3x +1);(2) y =4-x2ln (x +1).解:(1)由⎩⎪⎨⎪⎧2-|x|≠0,3x +1>0 ⎩⎪⎨⎪⎧x≠-2且x≠2,x>-13,解得x>-13且x≠2,所求函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x>-13且x≠2. (2) 由⎩⎪⎨⎪⎧ln (x +1)≠0,4-x 2≥0 ⎩⎪⎨⎪⎧x>-1且x≠0,-2≤x≤2, 解得-1<x<0或0<x≤2,所求函数的定义域为(-1,0)∪(0,2]. 变式训练(1) 求函数y =(x +1)|x|-x的定义域;(2) 若函数y =f(x)的定义域是[0,2],求函数g(x)=f (2x )x -1的定义域.解:(1) 由⎩⎪⎨⎪⎧x +1≠0,|x|-x>0,得⎩⎪⎨⎪⎧x≠-1,x<0, 所以x<-1或-1<x<0,即定义域是(-∞,-1)∪(-1,0).(2) 由⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,得0≤x<1,即定义域是[0,1).题型2 求函数的值域例2 求下列函数的值域: (1) y =x -3x -2;(2) y =x 2-2x -3,x ∈(-1,4]; (3) y =2x -1x +1,x ∈[3,5];(4) y =x 2-4x +5x -1(x>1).解:(1) (换元法)设3x -2=t ,t ≥0,则y =13(t 2+2)-t =13⎝ ⎛⎭⎪⎫t -322-112,当t =32时,y 有最小值-112,故所求函数的值域为⎣⎢⎡⎭⎪⎫-112,+∞.(2) (配方法)配方,得y =(x -1)2-4,因为x∈(-1,4],结合图象知,所求函数的值域为[-4,5].(3) (解法1)由y =2x -1x +1=2-3x +1,结合图象知,函数在[3,5]上是增函数,所以y max=32,y min =54,故所求函数的值域是⎣⎢⎡⎦⎥⎤54,32.(解法2)由y =2x -1x +1,得x =1+y 2-y.因为x ∈[3,5],所以3≤1+y 2-y ≤5,解得54≤y ≤32,即所求函数的值域是⎣⎢⎡⎦⎥⎤54,32. (4) (基本不等式法)令t =x -1,则x =t +1(t>0),所以y =(t +1)2-4(t +1)+5t =t 2-2t +2t =t +2t -2(t>0).因为t +2t≥2t·2t=22,当且仅当t =2,即x =2+1时,等号成立, 故所求函数的值域为[22-2,+∞). 备选变式(教师专享) 求下列函数的值域: (1) f(x)=1-x +x +3;(2) g(x)=x 2-9x 2-7x +12;(3) y =log 3x +log x 3-1.解:(1) 由⎩⎪⎨⎪⎧1-x≥0,x +3≥0,解得-3≤x≤1.∴ f ()x =1-x +x +3的定义域是[]-3,1. ∵ y ≥0,∴ y 2=4+2()1-x ()x +3,即y 2=4+2-()x +12+4()-3≤x≤1.令t ()x =-()x +12+4()-3≤x≤1.∵ x ∈[]-3,1,由t ()-3=0,t ()-1=4,t ()1=0, ∴ 0≤t ≤4,从而y 2∈[]4,8,即y∈[]2,22,∴ 函数f ()x 的值域是[]2,22.(2) g ()x =x 2-9x 2-7x +12=()x +3()x -3()x -3()x -4=x +3x -4=1+7x -4()x≠3且x≠4. ∵ x ≠3且x≠4,∴ g ()x ≠1且g ()x ≠-6.∴ 函数g ()x 的值域是()-∞,-6∪()-6,1∪()1,+∞. (3) 函数的定义域为{x|x>0且x≠1}. 当x>1时,log 3x>0,y =log 3x +log x 3-1≥2log 3x ·log x 3-1=1;当0<x<1时,log 3x<0,y =log 3x +log x 3-1 =-[(-log 3x)+(-log x 3)]≤-2-1=-3. 所以函数的值域是(-∞,-3]∪[1,+∞). 题型3 函数值域和最值的应用例3 已知函数f(x)=x 2+4ax +2a +6. (1) 若f(x)的值域是[0,+∞),求a 的值;(2) 若函数f(x)≥0恒成立,求g(a)=2-a|a -1|的值域. 解:(1) ∵ f(x)的值域是[0,+∞), 即f min (x)=0,∴ 4(2a +6)-(4a )24=0,∴ a =-1或32.(2) 若函数f(x)≥0恒成立,则Δ=(4a)2-4(2a +6)≤0,即2a 2-a -3≤0, ∴ -1≤a≤32,∴ g(a)=2-a|a -1|=⎩⎪⎨⎪⎧a 2-a +2,-1≤a≤1,-a 2+a +2,1<a ≤32. 当-1≤a≤1,g(a)=a 2-a +2=⎝ ⎛⎭⎪⎫a -122+74,∴ g (a)∈⎣⎢⎡⎦⎥⎤74,4; 当1<a≤32,g(a)=-a 2+a +2=-⎝ ⎛⎭⎪⎫a -122+94,∴ g (a)∈⎣⎢⎡⎭⎪⎫54,2. ∴ 函数g(a)=2-a|a -1|的值域是⎣⎢⎡⎦⎥⎤54,4. 备选变式(教师专享)已知函数f(x)=1-2a x -a 2x(a>1). (1) 求函数f(x)的值域;(2) 若x∈[-2,1]时,函数f(x)的最小值是-7,求a 的值及函数f(x)的最大值.解:(1) 由题意,知f(x)=2-(1+a x )2,因为a x>0,所以f(x)<2-1=1,所以函数f(x)的值域为(-∞,1).(2) 因为a>1,所以当x∈[-2,1]时,a -2≤a x ≤a ,于是f min (x)=2-(a +1)2=-7,所以a =2,此时,函数f(x)的最大值为2-(2-2+1)2=716.1. (2013·大纲)已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为________.答案:⎝⎛⎭⎪⎫-1,-12 解析:由-1<2x +1<0,得-1<x<-12,所以函数f(2x +1)的定义域为⎝ ⎛⎭⎪⎫-1,-12.2. (2013·山东)函数f(x)=1-2x+1x +3的定义域为________.答案:(-3,0]解析:由题意,⎩⎪⎨⎪⎧1-2x≥0,x +3>0,所以-3<x≤0,即定义域为(-3,0].3. (2013·北京)函数f(x)=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x<1的值域为________.答案:(-∞,2)解析:当x≥1时,log 12x ≤log 121=0,即f(x)≤0;当x<1时,0<2x <21,即0<f(x)<2,所以函数f(x)的值域为(-∞,2).4. (2013·徐州三模)已知函数f(x)=⎩⎪⎨⎪⎧x +2,0≤x<1,2x +12,x ≥1,若a>b ≥0,且f(a)=f(b),则bf(a)的取值范围是________.答案:⎣⎢⎡⎭⎪⎫54,3解析:画出分段函数的图象,从图象可知,12≤b<1,1≤a<log 252,f(a)=f(b),得bf(a)=bf(b)=b(b +2)=(b +1)2-1在⎣⎢⎡⎭⎪⎫12,1上单调增,故bf(a)的取值范围是⎣⎢⎡⎭⎪⎫54,3.1. 设函数g(x)=x 2-2(x∈R ),f(x)=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f(x)的值域是________. 答案:⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞)解析:由题意f(x)=⎩⎪⎨⎪⎧x 2+x +2,x <g (x ),x 2-x -2,x ≥g (x )=⎩⎪⎨⎪⎧x 2+x +2,x ∈(-∞,-1)∪(2,+∞),x 2-x -2,x ≥g (x ),x ∈(-1,2),下面分段求值域,再取并集. 2. 已知二次函数f(x)=ax 2-x +c(x∈R )的值域为[0,+∞),则c +2a +a +2c 的最小值为________.答案:10解析:由二次函数的值域是[0,+∞),可知该二次函数的图象开口向上,且函数的最小值为0,因此有a >0,4ac -14a =0,从而c =14a >0.又c +2a +a +2c =⎝ ⎛⎭⎪⎫2a +8a +⎝ ⎛⎭⎪⎫14a 2+4a 2≥2×4+2=10,当且仅当⎩⎪⎨⎪⎧2a =8a ,14a 2=4a 2,即a =12时取等号,故所求的最小值为10.3. 已知函数f(x)=log 13(-|x|+3)的定义域是[a ,b](a 、b∈Z ),值域是[-1,0],则满足条件的整数对(a ,b)有________对.答案:5解析:由f(x)=log 13(-|x|+3)的值域是[-1,0],易知t(x)=|x|的值域是[0,2],∵ 定义域是[a ,b](a 、b∈Z ),∴ 符合条件的(a ,b)有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.4. 已知二次函数f(x)=ax 2+bx(a 、b 为常数,且a≠0)满足条件:f(x -1)=f(3-x),且方程f(x)=2x 有等根.(1) 求f(x)的解析式;(2) 是否存在实数m 、n(m <n),使f(x)定义域和值域分别为[m ,n]和[4m ,4n]?如果存在,求出m 、n 的值;如果不存在,说明理由.解:(1) f(x)=-x 2+2x.(2) 由f(x)=-x 2+2x =-(x -1)2+1,知f max (x)=1,∴ 4n ≤1,即n≤14<1.故f(x)在[m ,n]上为增函数,∴ ⎩⎪⎨⎪⎧f (m )=4m ,f (n )=4n ,解得⎩⎪⎨⎪⎧m =-1,n =0, ∴ 存在m =-1,n =0,满足条件.1. 函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础,因此,我们一定要树立函数定义域优先意识.2. 函数的值域常常化归为求函数的最值问题,要重视函数单调性在确定函数最值过程中的作用.3. 求函数值域的常用方法有:图象法、配方法、换元法、基本不等式法、单调性法、分离常数法、导数法等,理论上一切函数求值域或最值均可考虑“导数法”,但在具体的解题中要与初等方法密切配合.请使用课时训练(A)第2课时(见活页).[备课札记]。
高考数学总复习(考点引领+技巧点拨)坐标系与参数方程第2课时 不等式证明的基本方法(1)
《最高考系列高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-4 坐标系与参数方程第2课时不等式证明的基本方法考情分析考点新知证明不等式的基本方法.①了解证明不等式的基本方法:比较法,综合法,分析法,反证法,换元法,数学归纳法,放缩法.②能用比较法,综合法,分析法证明简单的不等式.1. 设a、b∈R+,试比较a+b2与a+b的大小.解:∵ (a+b)2-⎝⎛⎭⎪⎫a+b22=(a-b)22≥0,∴a+b≥a+b2.2. 若a、b、c∈R+,且a+b+c=1,求a+b+c的最大值.解:(1·a+1·b+1·c)2≤(12+12+12)(a+b+c)=3,即a+b+c的最大值为 3.3. 设a、b、m∈R+,且ba<b+ma+m,求证:a>b.证明:由ba<b+ma+m,得ba-b+ma+m=(b-a)ma(a+m)<0.因为a、b、m∈R+,所以b-a<0,即b <a.4. 若a、b∈R+,且a≠b,M=ab+ba,N=a+b,求M与N的大小关系.解:∵ a≠b,∴ab+b>2a,ba+a>2b,∴ab+b+ba+a>2b+2a,即ab+ba>b+a,即M>N.5. 用数学归纳法证明不等式1n+1+1n+2+…+1n+n>12(n>1,n∈N*)的过程中,用n=k +1时左边的代数式减去n=k时左边的代数式的结果是A,求代数式A.解:当n=k时,左边=1k+1+1k+2+…+1k+k,n=k+1时,左边=1k+2+1k+3+…+1(k+1)+(k+1),故左边增加的式子是12k+1+12k+2-1k+1,即A=1(2k+1)(2k+2).1. 不等式证明的常用方法(1) 比较法:比较法是证明不等式的一种最基本的方法,也是一种常用方法,基本不等式就是用比较法证得的.比较法有差值、比值两种形式,但比值法必须考虑正负.比较法证明不等式的步骤:作差(商)、变形、判断符号.其中的变形主要方法是分解因式、配方,判断过程必须详细叙述.(2) 综合法:综合法就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直到推出要证明的结论,即为“由因导果”,在使用综合法证明不等式时,常常用到基本不等式.(3) 分析法:分析法就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,直至推出显然成立的不等式,即为“执果索因”.2. 不等式证明的其他方法和技巧(1) 反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定结论是正确的证明方法.(2) 放缩法欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得A≥C1≥C2≥…≥C n ≥B,利用传递性达到证明的目的.(3) 数学归纳法[备课札记]题型1 用比较法证明不等式例1求证:a 2+b 2≥ab +a +b -1.证明:∵ (a 2+b 2)-(ab +a +b -1)=a 2+b 2-ab -a -b +1 =12(2a 2+2b 2-2ab -2a -2b +2) =12[(a 2-2ab +b 2)+(a 2-2a +1)+(b 2-2b +1)] =12[(a -b)2+(a -1)2+(b -1)2]≥0. ∴ a 2+b 2≥ab +a +b -1. 备选变式(教师专享)已知a>0,b>0,求证:a b +ba ≥a + b.证明:(证法1)∵ ⎝⎛⎭⎪⎫a b +b a -(a +b)=⎝ ⎛⎭⎪⎫a b -b +⎝ ⎛⎭⎪⎫b a -a =a -b b +b -aa=(a -b )(a -b )ab=(a +b )(a -b )2ab≥0,∴ 原不等式成立.(证法2)由于ab +b aa +b =a a +b b ab (a +b )=(a +b )(a -ab +b )ab (a +b )=a +bab-1≥2abab-1=1.又a>0,b>0,ab>0,∴ab +ba≥a + b. 题型2 用分析法、综合法证明不等式 例2 已知x 、y 、z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z.证明:(证法1:综合法)因为x 、y 、z 都是正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z .同理可得yzx +z xy ≥2x ,z xy +x yz ≥2y .将上述三个不等式两边分别相加,并除以2,得x yz +y zx +z xy ≥1x +1y +1z. (证法2:分析法)因为x 、y 、z 均为正数,要证x yz +y zx +z xy ≥1x +1y +1z .只要证x 2+y 2+z 2xyz≥yz +zx +xy xyz,只要证x 2+y 2+z 2≥yz +zx +xy ,只要证(x -y)2+(y -z)2+(z -x)2≥0,而(x -y)2+(y -z)2+(z -x)2≥0显然成立,所以原不等式成立.变式训练已知a>0,求证:a 2+1a 2-2≥a +1a-2.证明:要证a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2+2≥a+1a+2,只需证a 2+1a 2+4+4a 2+1a 2≥a 2+1a 2+2+22⎝ ⎛⎭⎪⎫a +1a +2,即证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a ,只需证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+1a 2+2, 即证a 2+1a 2≥2,此式显然成立.∴ 原不等式成立.题型3 均值不等式与柯西不等式的应用 例3 求证:a 2+b 2+c 23≥a +b +c3. 证明:∵ (12+12+12)(a 2+b 2+c 2)≥(a+b +c)2, ∴ a 2+b 2+c 23≥(a +b +c )29,即a 2+b 2+c 23≥a +b +c3. 变式训练若实数x 、y 、z 满足x +2y +3z =a(a 为常数),求x 2+y 2+z 2的最小值.解:∵ (12+22+32)(x 2+y 2+z 2)≥(x+2y +3z)2=a 2,即14(x 2+y 2+z 2)≥a 2, ∴ x 2+y 2+z 2≥a 214,即x 2+y 2+z 2的最小值为a 214.备选变式(教师专享)用数学归纳法证明:当n 是不小于5的自然数时,总有2n >n 2成立.证明:(1) 当n =5时,25>52,结论成立.(2) 假设当n =k(k∈N ,k ≥5)时,结论成立,即有2k >k 2,那么当n =k +1时,左边=2k +1=2·2k >2·k 2=(k +1)2+(k 2-2k -1)=(k +1)2+(k -1-2)(k -1+2)>(k +1)2=右边.∴ 也就是说,当n =k +1时,结论成立.∴ 由(1)、(2)可知,不等式 2n >n 2对n∈N ,n ≥5时恒成立.例4 求函数y =1-x +4+2x 的最大值.解:∵y 2=(1-x +2·2+x)2≤[12+(2)2](1-x +2+x)=3×3,∴ y ≤3,当且仅当11-x=22+x 时取“=”号,即当x =0时,y max =3. 备选变式(教师专享)(2011·湖南改编)设x 、y∈R ,求⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值.解:由柯西不等式,得⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2≥(1+2)2=9.∴ ⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值为9.1. (2013·陕西)已知a 、b 、m 、n 均为正数,且a +b =1,mn =2,求(am +bn)(bm +an)的最小值.解:利用柯西不等式求解,(am +bn)(an +bm)≥(am·an+bn·bm )2=mn·(a+b)2=2·1=2,且仅当am an =bnbmm =n 时取最小值2.2. (2013·湖北)设x 、y 、z∈R ,且满足x 2+y 2+z 2=1,x +2y +3z =14,求x +y +z 的值.解:由柯西不等式可知(x +2y +3z)2=14≤(x 2+y 2+z 2)·(12+22+32),因为x 2+y 2+z 2=1,所以当且仅当x 1=y 2=z 3时取等号.此时y =2x ,z =3x 代入x +2y +3z =14得x =1414,即y =21414,z =31414, 所以x +y +z =3147.3. (2013·江苏)已知a≥b>0,求证:2a 3-b 3≥2ab 2-a 2b.证明:∵ 2a 3-b 3-2ab 2+a 2b =(2a 3-2ab 2)+(a 2b -b 3)=2a(a 2-b 2)+b(a 2-b 2)=(a 2-b 2)(2a +b)=(a +b)(a -b)(2a +b), 又a≥b>0,∴ a +b>0,a -b≥0,2a +b≥0, ∴ (a +b)(a -b)(2a +b)≥0,∴ 2a 3-b 3-2ab 2+a 2b ≥0,∴ 2a 3-b 3≥2ab 2-a 2b.4. (2013·新课标Ⅱ)设a 、b 、c 均为正数,且a +b +c =1.证明: (1) ab +bc +ca≤13;(2) a 2b +b 2c +c2a≥1.证明:(1) 由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca.由题设得(a +b +c)2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca)≤1,即ab +bc +ca≤13.(2) 因为a 2b +b≥2a,b 2c +c≥2b,c2a +a≥2c,故a 2b +b 2c +c2a+(a +b +c)≥2(a+b +c),即a2 b+b2c+c2a≥a+b+c.所以a2b+b2c+c2a≥1.1. 已知正数a、b、c满足abc=1,求证:(a+2)(b+2)(c+2)≥27.证明:(a+2)(b+2)(c+2)=(a+1+1)(b+1+1)(c+1+1)≥3·3a·3·3b·3·3c=27·3abc=27(当且仅当a=b=c=1时等号成立).2. 已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].(1) 求m的值;(2) 若a,b,c∈R,且1a+12b+13c=m,求证:a+2b+3c≥9.解:(1) ∵ f(x+2)=m-|x|≥0,∴ |x|≤m,∴ m≥0,-m≤x≤m,∴ f(x+2)≥0的解集是[-1,1],故m=1.(2) 由(1)知1a+12b+13c=1,a、b、c∈R,由柯西不等式得a+2b+3c=(a+2b+3c)⎝⎛⎭⎪⎫1a+12b+13c≥(a·1a+2b·12b+3c·13c)2=9.3. 已知x,y,z∈R+,且x+y+z=1(1) 若2x2+3y2+6z2=1,求x,y,z的值.(2) 若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.解:(1) ∵ (2x2+3y2+6z2)(12+13+16)≥(x+y+z)2=1,当且仅当2x12=3y13=6z16时取“=”.∴ 2x=3y=6z,又∵ x+y+z=1,∴ x=12,y=13,z=16.(2) ∵ (2x2+3y2+tz2)⎝⎛⎭⎪⎫12+13+1t≥(x+y+z)2=1,∴ (2x2+3y2+tz2)min=156+1t.∵ 2x2+3y2+tz2≥1恒成立,∴156+1t≥1.∴ t≥6.4. (1) 求函数y=x-1+5-x的最大值;(2) 若函数y=a x+1+6-4x最大值为25,求正数a的值.解:(1) ∵ (x-1+5-x)2≤(1+1)(x-1+5-x)=8, ∴x-1+5-x≤2 2. 当且仅当1·x-1=1·5-x即x=3时,y max=2 2.(2) (a x+1+6-4x)2=⎝⎛⎭⎪⎫a x+1+232-x2≤(a2+4)(x+1+32-x)=52(a2+4),由已知52(a 2+4)=20得a =±2,又∵ a>0,∴ a =2.1. 算术—几何平均不等式若a 1,a 2,…,a n ∈R +,n>1且n∈N *,则a 1+a 2+…+a n n 叫做这n 个正数的算术平均数,na 1a 2…a n 叫做这n 个正数的几何平均数.基本不等式:a 1+a 2+…+a n n≥n a 1a 2…a n (n∈N *,a i ∈R +,1≤i ≤n).2. 绝对值三角形不等式若a 、b 是实数,则||a|-|b||≤|a±b|≤|a|+|b|. 推论1:|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |. 推论2:如果a 、b 、c 是实数,那么|a -c|≤|a-b|+|b -c|,当且仅当(a -b)(b -c)≥0时,等号成立.3. 柯西不等式若a 、b 、c 、d 为实数,则(a 2+b 2)(c 2+d 2)≥(ac+bd)2. 4. 三角不等式设x 1、y 1、x 2、y 2∈R ,则x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2.请使用课时训练(B )第2课时(见活页).[备课札记]。
(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第8课时 指数函数、对数
第二章 函数与导数第8课时 指数函数、对数函数及幂函数(2)第三章 (对应学生用书(文)、(理)22~23页)考情分析考点新知高考对指数函数的考查近三年有所升温,重点是指数函数的图象和性质,以及指数函数的实际应用问题,在复习时要特别重视对指数函数性质的理解与应用.① 了解指数函数模型的实际背景. ②理解指数函数的概念,并理解指数函数的单调性与函数图象通过的特殊点. ③知道指数函数是一类重要的函数模型.1. (必修1P 110复习9改编)函数y =a x -3+3恒过定点________. 答案:(3,4)解析:当x =3时,f(3)=a 3-3+3=4,∴ f(x)必过定点(3,4). 2. (必修1P 110复习3改编)函数y =8-16x的定义域是________.答案:⎝ ⎛⎦⎥⎤-∞,34 解析:由8-16x ≥0,所以24x ≤23,即4x≤3,定义域是⎝⎛⎦⎥⎤-∞,34.3. (必修1P 67练习3)函数f(x)=(a 2-1)x 是R 上的减函数,则a 的取值X 围是________________.答案:(-2,-1)∪(1,2)解析:由0<a 2-1<1,得1<a 2<2,所以1<|a|<2,即-2<a <-1或1<a < 2.4. (必修1P 71习题13改编)已知函数f(x)=a +14x +1是奇函数,则常数a =________.答案:-12解析:由f(-x)+f(x)=0,得a =-12.5. (原创)函数y =1+⎝ ⎛⎭⎪⎫45|x -1|的值域为__________.答案:(1,2]解析:设y′=⎝ ⎛⎭⎪⎫45u,u =|x -1|.由于u ≥0且y′=⎝ ⎛⎭⎪⎫45u是减函数,故0<⎝ ⎛⎭⎪⎫45|x -1|≤1,则1<y≤2.1. 指数函数定义一般地,函数y =a x(a>0,a ≠1)叫做指数函数,函数的定义域是R . 2. 指数函数的图象与性质a>10<a<1图象定义域 R 值域(0,+∞)性质(1) 过定点(0,1),即x =0时,y=1(1) 过定点(0,1),即x =0时,y =1(2) 当x >0时,f(x)>1;x <0时,0<f(x)<1(2) 当x >0时,0<f(x)<1;x <0时,f(x)>1 (3) 在(-∞,+∞)上是增函数(3) 在(-∞,+∞)上是减函数[备课札记]题型1 指数型函数的定义域、值域例1 已知x∈[-3,2],求f(x)=14x -12x +1的最小值与最大值.解:f(x)=14x -12x +1=4-x -2-x +1=2-2x -2-x+1=⎝ ⎛⎭⎪⎫2-x -122+34.∵ x ∈[-3,2], ∴14≤2-x ≤8.则当2-x =12,即x =1时,f(x)有最小值34;当2-x=8,即x =-3时,f(x)有最大值57.备选变式(教师专享)已知9x-10×3x+9≤0,求函数y =⎝ ⎛⎭⎪⎫14x -1-4⎝ ⎛⎭⎪⎫12x +2的最大值和最小值.解:由9x-10·3x+9≤0,得(3x-1)(3x-9)≤0,解得1≤3x≤9,∴ 0≤x ≤2.令(12)x =t ,则14≤t ≤1,y =4t 2-4t +2=4(t -12)2+1, 当t =12即x =1时,y min =1;当t =1即x =0时,y max =2.题型2 指数型函数的图象例2 已知函数f(x)=|2x -1-1|. (1) 作出函数y =f(x)的图象;(2) 若a<c ,且f(a)>f(c),求证:2a +2c<4.(1) 解:f(x)=⎩⎪⎨⎪⎧2x -1-1,x ≥1,1-2x -1,x<1,其图象如图所示.(2) 证明:由图知,f(x)在(-∞,1]上是减函数,在[1,+∞)上是增函数,故结合条件知必有a<1.若c≤1,则2a <2,2c ≤2,所以2a +2c<4;若c>1,则由f(a)>f(c),得1-2a -1>2c -1-1,即2c -1+2a -1<2,所以2a +2c<4.综上知,总有2a +2c<4. 备选变式(教师专享)画出函数y =||3x -1的图象,并利用图象回答:k 为何值时,方程||3x-1=k 无解?有一个解?有两个解?解:.由图知,当k<0时,方程无解;当k =0或k≥1时,方程有一个解;当0<k<1时,方程有两个解.题型3 指数函数的综合运用例3 已知函数f(x)=⎝⎛⎭⎪⎫1a x -1+12x 3(a>0且a≠1).(1) 求函数f(x)的定义域; (2) 讨论函数f(x)的奇偶性;(3) 求a 的取值X 围,使f(x)>0在定义域上恒成立.解:(1) 由于a x -1≠0,则a x≠1,所以x≠0, 所以函数f(x)的定义域为{x|x∈R ,且x≠0}. (2) 对于定义域内任意的x ,有f(-x)=(1a -x -1+12)(-x)3=-⎝ ⎛⎭⎪⎫a x1-a x +12x 3=-⎝ ⎛⎭⎪⎫-1-1a x -1+12x 3=⎝ ⎛⎭⎪⎫1a x -1+12x 3=f(x),所以f(x)是偶函数.(3) ① 当a>1时,对x>0,所以a x>1,即a x-1>0,所以1a x-1+12>0. 又x>0时,x 3>0,所以x 3⎝⎛⎭⎪⎫1a x -1+12>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x), 则当x<0时,-x>0,有f(-x)=f(x)>0成立. 综上可知,当a>1时,f(x)>0在定义域上恒成立. ②当0<a<1时,f(x)=(a x+1)x32(a x-1), 当x>0时,0<a x<1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意. 综上可知,所求a 的取值X 围是a>1. 变式训练设a >0,f(x)=3x a +a3x 是R 上的偶函数.(1) 求a 的值;(2) 判断并证明函数f(x)在[0,+∞)上的单调性; (3) 求函数的值域.解:(1) 因为f(x)为偶函数,故f(1)=f(-1), 于是3a +a 3=13a +3a ,即9+a 23a =9a 2+13a .因为a >0,故a =1.(2) 设x 2>x 1≥0,f(x 1)-f(x 2)=(3x 2-3x 1)(13x 2+x 1-1).因为3x为增函数,且x 2>x 1,故3x 2-3x 1>0.因为x 2>0,x 1≥0,故x 2+x 1>0,于是13x 2+x 1<1,即13x 2+x 1-1<0,所以f(x 1)-f(x 2)<0,所以f(x)在[0,+∞)上为增函数.(3) 因为函数为偶函数,且f(x)在[0,+∞)上为增函数,故f(0)=2为函数的最小值,于是函数的值域为[2,+∞).1. (2013·某某一检)函数y =a x-1a(a>0,a ≠1)的图象可能是________.(填序号)答案:④解析:当a>1时,y =a x-1a 为增函数,且在y 轴上的截距0<1-1a <1,故①②不正确;当0<a<1时,y =a x-1a 为减函数,且在y 轴上的截距1-1a<0,故④正确.2. (2013·某某二模)以下函数中满足f(x +1)>f(x)+1的是________.(填序号)① f(x)=lnx ;② f(x)=e x ;③ f(x)=e x -x ;④ f(x)=e x+x. 答案:④解析:若f(x)=e x +x ,则f(x +1)=e x +1+x +1=e ·e x +x +1>e x+x +1=f(x)+1.3. (2013·某某)设函数f(x)=e x +x -2,g(x)=lnx +x 2-3.若实数a 、b 满足f(a)=0,g(b)=0,则g(a)、f(b)、0三个数的大小关系为________.答案:g(a)<0<f(b)解析:易知f(x)是增函数,g(x)在(0,+∞)上也是增函数,由于f(a)=0,而f(0)=-1<0,f(1)=e -1>0,所以0<a<1;又g(1)=-2<0,g(2)=ln2+1>0,所以1<b<2,所以f(b)>0,g(a)<0,故g(a)<0<f(b).4. (2013·某某)设函数f(x)=a x +b x -c x,其中c>a>0,c>b>0.(1) 记集合M ={(a ,b ,c)|a 、b 、c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c )∈M 所对应的f(x)的零点的取值集合为________.(2) 若a 、b 、c 是△ABC 的三条边长,则下列结论正确的是________.(填序号) ①x ∈(-∞,1),f(x)>0;②x ∈R ,使a x 、b x 、c x不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则x ∈(1,2),使f(x)=0. 答案:(1) {x|0<x≤1} (2) ①②③解析:(1) 因为c>a>0,c>b>0,a =b 且a 、b 、c 不能构成一个三角形的三条边长,所以0<2a≤c,所以ca ≥2.令f(x)=0,得2a x=c x,即⎝ ⎛⎭⎪⎫c a x=2, 即x =log c a2,1x =log 2ca ≥1,所以0<x≤1.(2) 由a 、b 、c 是△ABC 的三条边长,知a +b>c , 因为c>a>0,c>b>0,所以0<a c <1,0<bc <1,当x∈(-∞,1)时,f(x)=a x +b x -c x =c x ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a c x +⎝ ⎛⎭⎪⎫b c x -1>c x ⎝ ⎛⎭⎪⎫ac +b c -1=c x ·a +b -c c >0,①正确;令a =2,b =3,c =4,则a 、b 、c 可以构成三角形,而a 2=4,b 2=9,c 2=16不能构成三角形,②正确;由c>a ,c>b ,且△ABC 为钝角三角形,则a 2+b 2-c 2<0.因为f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0,所以f(x)在(1,2)上存在零点,③正确.1. 已知函数f(x)=a -12x -1是定义在(-∞,-1]∪[1,+∞)上的奇函数,则f(x)的值域是________.答案:⎣⎢⎡⎭⎪⎫-32,-12∪⎝ ⎛⎦⎥⎤12,32解析:因为f(x)是奇函数,f(-1)+f(1)=0,解得a =-12,所以f(x)=-12-12x -1,易知f(x)在(-∞,-1]上为增函数,在[1,+∞)上也是增函数.当x∈[1,+∞)时,f(x)∈⎣⎢⎡⎭⎪⎫-32,-12.又f(x)是奇函数,所以f(x)的值域是⎣⎢⎡⎭⎪⎫-32,-12∪⎝ ⎛⎦⎥⎤12,32.2. 已知f(x)=(e x-1)2+(e -x-1)2,则f(x)的最小值为________. 答案:-2解析:将f(x)展开重新配方得f(x)=(e x +e -x )2-2(e x +e -x )-2,令t =e x +e -x,则g(t)=t 2-2t -2=(t -1)2-3,t ∈[2,+∞), 所以,最小值为-2.3. 设函数y =f(x)在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x)=⎩⎪⎨⎪⎧f (x ),f (x )≤K,K ,f (x )>K.取函数f(x)=2-|x|.当K =12时,函数f K (x)的单调递增区间为________.答案:(-∞,-1)解析:函数f(x)=2-|x|=⎝ ⎛⎭⎪⎫12|x|,作图易知f(x)≤K=12x ∈(-∞,-1]∪[1,+∞),故在(-∞,-1)上是单调递增的.4. 若函数f(x)=a x(a>1)的定义域和值域均为[m ,n],某某数a 的取值X 围.解:由题意,⎩⎪⎨⎪⎧a m=m ,a n =n ,即方程a x =x 有两个不同的解,设f(x)=a x -x ,f ′(x)=a xlna-1,令f′(x)=0,得x =log a 1lna=-log a lna ,分析得f(-log a lna)<0即可,∴ 1<a<e 1e.1. 指数函数是中学数学中基本初等函数之一,是高考必考内容.本部分知识在高考中主要考查指数函数的定义域、值域、图象以及主要性质(单调性).2. 将指数函数y =a x(a>0,a ≠1)的图象进行平移、翻折,可作出y -y 0=f(x -x 0),y =|f(x)|,y =f(|x|)等函数的图象,要善于灵活应用这类函数图象变换画图和解题.3. 对可转化为a 2x +b·a x +c =0或a 2x +b·a x+c≥0(≤0)形式的方程或不等式,常借助于换元法解决,但应注意换元后“新元”的X 围.请使用课时训练(A )第8课时(见活页).[备课札记]。
新课标高考《坐标系与参数方程》(选修4-4)含答案
第二讲 坐标系与参数方程(选修4-4)1.(2014·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.2.(2014·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.3.(2013·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).4.(2013·福建高考)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,并在两坐标系中取相同的长度单位.设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).2.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r ,则圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0. 几个特殊位置的圆的极坐标方程: (1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a,0),半径为a :ρ=2a cos θ;(3)当圆心位于M ⎝⎛⎭⎫a ,π2,半径为a :ρ=2a sin θ. 3.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=θ0和θ=π-θ0;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ;(3)直线过M ⎝⎛⎭⎫b ,π2且平行于极轴:ρsin θ=b . 4.几种常见曲线的参数方程 (1)圆以O ′(a ,b )为圆心,r 为半径的圆的参数方程是⎩⎨⎧x =a +r cos α,y =b +r sin α,其中α是参数.当圆心在(0,0)时,方程为⎩⎨⎧x =r cos α,y =r sin α,其中α是参数.(2)椭圆椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎨⎧x =a cos φ,y =b sin φ,其中φ是参数.椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是⎩⎨⎧x =b cos φ,y =a sin φ,其中φ是参数.(3)直线经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α,其中t 是参数.热点一极坐标方程及其应用[例1] (1)(2014·江西高考改编)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,求线段y =1-x (0≤x ≤1)的极坐标方程.(2)(2014·东北三校联考)已知点P (1+cos α,sin α),参数α∈[0,π],点Q 在曲线C :ρ=92sin ⎝⎛⎭⎫θ+π4上.①求点P 的轨迹方程和曲线C 的直角坐标方程; ②求点P 与点Q 之间距离的最小值.1.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22.(ρ≥0,0≤θ<2π) (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标.热点二 参数方程及其应用[例2] (2014·福建高考)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.2.倾斜角为α的直线l 过点P (8,2),直线l 和曲线C :⎩⎨⎧x =42cos θ,y =2sin θ(θ为参数)交于不同的两点M 1,M 2.(1)将曲线C 的参数方程化为普通方程,并写出直线l 的参数方程; (2)求|PM 1|·|PM 2|的取值范围.[例3] (2014·辽宁高考)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.3.极坐标系与直角坐标系xOy 取相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =t sin α(t 为参数).曲线C 的极坐标方程为ρsin 2 θ=8cos θ.热点三 极坐标方程与参数方程的综合应用(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,与x 轴的交点为F ,求1|AF |+1|BF |的值.1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.第二部分题1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.答案解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ),由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0, 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0. 由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2.解:(1)由点A ⎝⎛⎭⎫2,π4在直线ρcos ⎝⎛⎭⎫θ-π4=a 上, 可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1,因为圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交.[师生共研] (1)因为x =ρcos θ,y =ρsin θ,且y =1-x ,所以ρsin θ=1-ρcos θ,所以ρ(sin θ+cos θ)=1,ρ=1sin θ+cos θ.又0≤x ≤1,所以0≤y ≤1,所以点(x ,y )都在第一象限及坐标轴的正半轴上,则0≤θ≤π2,即所求线段的极坐标方程为ρ=1sin θ+cos θ⎝⎛⎭⎫0≤θ≤π2. (2)①由⎩⎪⎨⎪⎧x =1+cos α,y =sin α,消去α,得点P 的轨迹方程为(x -1)2+y 2=1(y ≥0),又由ρ=92sin ⎝⎛⎭⎫θ+π4,得ρ=9sin θ+cos θ,所以ρsin θ+ρcos θ=9.所以曲线C 的直角坐标方程为x +y =9.②因为半圆(x -1)2+y 2=1(y ≥0)的圆心(1,0)到直线x +y =9的距离为42, 所以|PQ |min =42-1.解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,故圆O 的直角坐标方程为:x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为:x -y +1=0.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为⎝⎛⎭⎫1,π2,即为所求.热点二 参数方程及其应用[师生共研] (1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.解:(1)曲线C 的普通方程为x 232+y 24=1,直线l 的参数方程为⎩⎪⎨⎪⎧x =8+t cos α,y =2+t sin α(t 为参数).(2)将l 的参数方程代入曲线C 的方程得:(8+t cos α)2+8(2+t sin α)2=32,整理得(8sin 2α+cos 2α)t 2+(16cos α+32sin α)t +64=0,由Δ=(16cos α+32sin α)2-4×64(8sin 2α+cos 2α)>0,得cos α>sin α,故α∈⎣⎡⎭⎫0,π4, ∴|PM 1||PM 2|=|t 1t 2|=641+7sin 2 α∈⎝⎛⎦⎤1289,64.热点三 极坐标方程与参数方程的综合应用[师生共研] (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1, 即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.解:(1)由ρsin 2θ=8cos θ得ρ2sin 2θ=8ρcos θ,,∴曲线C 的直角坐标方程为y 2=8x . (2)易得直线l 与x 轴的交点为F (2,0),将直线l 的方程代入y 2=8x ,得(t sin α)2=8(2+t cos α),整理得t 2sin 2 α-8t cos α-16=0.由已知sin α≠0,Δ=(-8cos α)2-4×(-16)sin 2 α=64>0,∴t 1+t 2=8cos αsin 2α,t 1t 2=-16sin 2α<0,故1|AF |+1|BF |=⎪⎪⎪⎪1t 1-1t 2=⎪⎪⎪⎪t 1-t 2t 1t 2=(t 1+t 2)2-4t 1t 2|t 1t 2|=⎝⎛⎭⎫8cos αsin 2α2+64sin 2α16sin 2α=12.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.解:(1)C 1:(x +2)2+(y -1)2=1,C 2:x 216+y 29=1.曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6. (2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].第二部分题答案:1.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.3.解:(1)C 1:(x +2)2+(y -1)2=1,C 2:x 216+y 29=1.曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.4. 解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.5. 解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6. (2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.6.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].。
(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第六章 不 等 式第2课时 二元一次不等式(组)与简单
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第六章 不 等 式第2课时 二元一次不等式(组)与简单页)1. (必修5P 74练习题1改编)若点P(a ,3)在2x +y<3表示的区域内,则实数a 的取值范围是________.答案:a<0解析:点P(a ,3)在2x +y<3表示的区域内,则2a +3<3,解得a<0.2. (必修5P 77练习题2改编)不等式组⎩⎪⎨⎪⎧x -y +4≥0,x +y≥0,x ≤3所表示的平面区域的面积是________.答案:25解析:直线x -y +4=0与直线x +y =0的交点为A(-2,2),直线x -y +4=0与直线x =3的交点为B(3,7),直线x +y =0与直线x =3的交点为C(3,-3),则不等式组表示的平面区域是一个以点A(-2,2)、B(3,7)、C(3,-3)为顶点的三角形,所以其面积为S△ABC=12×5×10=25. 3. (必修5P 84习题4改编) 已知实数x 、y 满足⎩⎪⎨⎪⎧x +y≥2,x -y≤2,0≤y ≤3,则z =2x +y 的最小值是________.答案:1解析:如图所示作出可行域,可知当z =2x +y 过点A(-1,3)时z 最小,此时z =1.4. (必修5P 80练习题2改编)设变量x 、y 满足约束条件:⎩⎪⎨⎪⎧y≥x,x +2y≤2,x ≥-2,则z =x -3y 的最小值为________.答案:-8解析:画出可行域与目标函数线,如图可知,目标函数在点(-2,2)处取最小值-8.5. 若不等式组⎩⎪⎨⎪⎧x≥0,x +3y≥4,3x +y≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k =________.答案:73解析:不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A(1,1),B(0,4),所以AB 中点M ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73.1. 二元一次不等式(组)表示的平面区域(1) 二元一次不等式表示的平面区域一般地,直线y=kx+b把平面分成两个区域,y>kx+b表示直线y=kx+b上方的平面区域,y<kx+b表示直线y=kx+b下方的平面区域.(2) 选点法确定二元一次不等式表示的平面区域①任选一个不在直线上的点;②检验它的坐标是否满足所给的不等式;③若适合,则该点所在的一侧区域即为不等式所表示的平面区域,否则,直线的另一侧区域为不等式所表示的平面区域.(3) 二元一次不等式组表示的平面区域不等式组中各个不等式表示平面区域的公共区域.2. 线性规划中的基本概念[备课札记]题型1 二元一次不等式表示的平面区域例1 画出不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y≥0,x ≤3表示的平面区域.解:不等式x -y +5≥0表示直线x -y +5=0上及右下方的点的集合,x +y≥0表示直线x +y =0上及右上方的点的集合,x ≤3表示直线x =3上及左方的点的集合,所以不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y≥0,x ≤3表示的平面区域如下图所示.备选变式(教师专享)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y>0,x -y +4≥0,x ≤a (a 为常数),表示的平面区域的面积为9,那么实数a 的值为________.答案:1解析:不等式组⎩⎪⎨⎪⎧x +y>0,x -y +4≥0,x ≤a 表示的平面区域如图阴影部分.S =12|BC|×(a +2)=12(2a +4)×(a+2)=9. 又a>-2,∴ a =1.题型2 线性规划问题例2 设z =2x +y ,式中变量满足下列条件: ⎩⎪⎨⎪⎧x -4y≤-3,3x +5y≤25,x ≥1,求z 的最大值和最小值. 解:变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域.(如图)作一组与l 0:2x +y =0平行的直线l :2x +y =t.t ∈R 可知:当l 在l 0的右上方时,直线l 上的点(x ,y)满足2x +y >0,即t >0,而且直线l 往右平移时,t 随之增大,在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A(5,2)的直线l 2所对应的t 最大,以经过点B(1,1)的直线l 1所对应的t 最小.所以z max =2×5+2=12,z min =2×1+1=3.变式训练已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +6≥0,x +y≥0,x ≤3,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为__________.答案:[-1,1]解析:作出可行域如图中阴影部分所示,则z 在点A 处取得最大值,在点C 处取得最小值.又k BC =-1,k AB =1,∴ -1≤-a≤1,即-1≤a≤1.题型3 线性规划的实际应用例3 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1 kg 、B 原料2 kg ;生产乙产品1桶需耗A 原料2 kg ,B 原料1 kg.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12 kg.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?解:设公司每天生产甲种产品x 桶,乙种产品y 桶,公司共可获得利润为z 元/天,则由已知,得z =300x +400y ,且⎩⎪⎨⎪⎧x +2y≤12,2x +y≤12,x ≥0,y ≥0,画可行域如图所示,目标函数z =300x +400y 可变形为y =-34x +z 400,这是随z 变化的一簇平行直线,解方程组⎩⎪⎨⎪⎧2x +y =12,x +2y =12,∴ ⎩⎪⎨⎪⎧x =4,y =4,即A(4,4),∴ z max =1 200+1 600=2 800(元).故公司每天生产甲产品4桶、生产乙产品4桶时,可获得最大利润为2 800元. 备选变式(教师专享)某公司计划2013年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?解:设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元.由题意,得⎩⎪⎨⎪⎧x +y≤300,500x +200y≤90000,x ≥0,y ≥0.目标函数为z =3000x +2000y.二元一次不等式组等价于⎩⎪⎨⎪⎧x +y≤300,5x +2y≤900,x ≥0,y ≥0.作出二元一次不等式组所表示的平面区域,即可行域.作直线l :3000x +2000y =0,即3x +2y =0.联立⎩⎪⎨⎪⎧x +y =300,5x +2y =900,解得x =100,y =200.记点M 的坐标为(100,200).平移直线l ,易知,当直线l 过M 点时,目标函数取得最大值. ∴z max =3000x +2000y =700000(元). 答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.1. (2013·南通模拟)已知0<a <1,log a (2x -y +1)>log a (3y -x +2),且λ<x +y ,则λ的最大值为________.答案:-2解析:2x -y +1<3y -x +2,即⎩⎪⎨⎪⎧3x -4y -1<0,2x -y +1>0,作出可行域,则z =x +y 经过点(-1,-1)时最小,故x +y>-2,所以λ的最大值为-2.2. 若直线y =2x 上存在点(x ,y)满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________.答案:1解析:可行域如下:所以,若直线y =2x 上存在点(x ,y)满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则3-m≥2m,即m≤1.3. 设变量x 、y 满足⎩⎪⎨⎪⎧x -y≤10,0≤x +y≤20,0≤y ≤15,则2x +3y 的最大值是________.答案:55解析:由⎩⎪⎨⎪⎧x +y =20,y =15得A(5,15),且A 为最大解,∴ z max =2×5+3×15=55.4. 某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假. 答案:30亩、20亩解析:设黄瓜、韭菜的种植面积分别为x 、y ,则总利润z =(4×0.55-1.2)x +(6×0.3-0.9)y =x +0.9y ,此时x 、y 满足条件⎩⎪⎨⎪⎧x +y≤50,1.2x +0.9y≤54,x ≥0,y ≥0,画出可行域知,最优解为(30,20).5. 直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x≥0,y ≥0,x -y≥-2,4x +3y≤20表示的平面区域的公共点有________个.答案:1解析:画出不等式组⎩⎪⎨⎪⎧x≥0,y ≥0,x -y≥-2,4x +3y≤20表示的可行域,如图阴影部分所示(含边界).因为直线2x +y -10=0过点A(5,0),且其斜率为-2,小于直线4x +3y =20的斜率-43,故只有一个公共点(5,0).1. 设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0 表示的平面区域为D ,若指数函数y =a x的图象存在区域D 上的点,则a 的取值范围是________.答案:1<a≤3解析:先画出如图所示的可行域,当函数a x 的图象过点A(2,9)时,有a 2=9,∴a =3.又a >1,∴1<a≤3.2. 设z =2y -2x +4,其中x 、y 满足条件⎩⎪⎨⎪⎧0≤x≤1,0≤y ≤2,2y -x≥1,求z 的最大值和最小值.解:作出满足不等式组⎩⎪⎨⎪⎧0≤x≤1,0≤y ≤2,2y -x≥1的可行域,如图所示作直线l :2y -2x =t.当l 过点A(0,2)时,z max =2×2-2×0+4=8,当l 过点B(1,1)时,z min =2×1-2×1+4=4.3. 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y≤-33x +5y≤25x≥1,试求解下列问题.(1) z =x 2+y 2的最大值和最小值;(2) z =yx +2的最大值和最小值;(3) z =|3x +4y +3|的最大值和最小值.解:(1) z =x 2+y 2表示的几何意义是区域中的点(x ,y)到原点(0,0)的距离,则z max=5,z min =12.(2) z =y x +2表示区域中的点(x ,y)与点(-2,0)连线的斜率,则z max =1,z min =14.(3) z =|3x +4y +3|=5·|3x +4y +3|5,而|3x +4y +3|5表示区域中的点(x ,y)到直线3x +4y +3=0的距离,则z max =14,z min =5.4. 某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物、6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物、6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物、42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解: 设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z元,则依题意得z =2.5x +4y ,且x 、y 满足⎩⎪⎨⎪⎧x≥0,x ∈N ,y ≥0,y ∈N ,12x +8y≥64,6x +6y≥42,6x +10y≥54,即⎩⎪⎨⎪⎧x≥0,x ∈N ,y ≥0,y ∈N ,3x +2y≥16,x +y≥7,3x +5y≥27.作出线性约束条件所表示的可行域,如图中阴影部分的整数点.让目标函数表示的直线2.5x +4y =z 在可行域上平移,由此可知z =2.5x +4y 在B(4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.1. 确定不等式Ax +By +C>0(<0,≥0,≤0)表示直线Ax +By +C =0的哪一侧区域,常用两种方法:一是在直线的某一侧取一特殊点;二是将不等式化为y>kx +b(<,≥,≤).2. 在线性约束条件下,当b>0时,求目标函数z =ax +by +c 的最值的求解步骤① 作出可行域;② 作出直线l 0:ax +by =0;③ 平移直线l 0:ax +by =0,依可行域判断取得最值的最优解的点;④ 解相关方程组,求出最优解,从而得出目标函数的最值.3. 常见的非线性目标函数的几何意义:① x 2+y 2表示点(x ,y)与原点(0,0)的距离;② (x -a )2+(y -b )2表示点(x ,y)与点(a ,b)的距离; ③ yx 表示点(x ,y)与原点(0,0)连线的斜率值;④ y -b x -a表示点(x ,y)与点(a ,b)连线的斜率值. 请使用课时训练(B )第2课时(见活页).。
(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第六章 不 等 式第1课时 一元二次不等式及其解法
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第六章 不 等 式第1课时 一元二次不等式及其解法1. (必修5P 69习题2(2)改编)不等式3x 2-x -4≤0的解集是__________. 答案:⎣⎢⎡⎦⎥⎤-1,43 解析:由3x 2-x -4≤0,得(3x -4)(x +1)≤0,解得-1≤x ≤43.2. (必修5P 71习题1(3)改编)不等式x 2+x -6≤0的解集为________. 答案:[-3,2]解析:由x 2+x -6≤0,得-3≤x ≤2.3. (必修5P 71习题7(4)改编)不等式1-2xx +1>0的解集是________.答案:⎝⎛⎭⎪⎫-1,12 解析:不等式1-2x x +1>0等价于(1-2x)(x +1)>0,也就是⎝ ⎛⎭⎪⎫x -12(x +1)<0,所以-1<x<12. 4. (必修5P 71习题5(2)改编)已知不等式x 2-2x +k 2-3>0对一切实数x 恒成立,则实数k 的取值范围是________.答案:k>2或k<-2解析:由Δ=4-4(k 2-3)<0,知k>2或k<-2.5. (必修5P 71习题6改编)不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎫-12,13,则a -b =________.答案:-10解析:由题意可知,-12和13是方程ax 2+bx +2=0的两个实根,则⎩⎪⎨⎪⎧-12+13=-b a ,⎝ ⎛⎭⎪⎫-12·13=2a, 解得⎩⎪⎨⎪⎧a =-12b =-2,所以a -b =-10.1. 一元二次不等式的解法在二次函数y =ax 2+bx +c(a≠0)中,令y =0,得到一元二次方程ax 2+bx +c =0(a≠0).若将等号“=”改为不等号“>”或“<”,便得到一元二次不等式ax 2+bx +c>0(或<0).因此,可以通过y =ax 2+bx +c(a≠0)图象与x 轴的交点求得一元二次不等式的解,具体如下表:2. 用一个流程图来描述一元二次不等式ax2+bx+c>0(a>0)的求解的算法过程:[备课札记]题型1 一元二次不等式的解法例1 已知a >0,解关于x 的不等式x 2-⎝ ⎛⎭⎪⎫a +1a x +1<0.解:原不等式可化为(x -a)⎝ ⎛⎭⎪⎫x -1a <0.由a -1a =(a +1)(a -1)a ,得①当0<a <1时,a <1a ,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a<x<1a ;②当a >1时,a >1a ,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x<a ;③当a =1时,a =1a ,(x -1)2<0的解集为 .变式训练已知关于x 的不等式:(a +1)x -3x -1<1.(1) 当a =1时,解该不等式; (2) 当a>0时,解该不等式.解:(1) 当a =1时,不等式化为2x -3x -1<1,化为x -2x -1<0,∴ 1<x<2,解集为{x|1<x<2}.(2) a>0时,由(a +1)x -3x -1 <1得ax -2x -1<0,(ax -2)(x -1)<0,方程(ax -2)(x -1)=0的两根x 1=2a ,x 2=1.①当2a=1即a =2时,解集为 ;②当2a >1即0<a<2时,解集为⎩⎨⎧⎭⎬⎫x|1<x<2a ;③当2a <1即a>2时,解集为⎩⎨⎧⎭⎬⎫x|2a <x<1. 题型2 由二次不等式的解求参数的值或范围例2 已知不等式(2+x)(3-x)≥0的解集为A ,函数f(x)=kx 2+4x +k +3(k<0)的定义域为B.(1) 求集合A ;(2) 若集合B 中仅有一个元素,试求实数k 的值; (3) 若B A ,试求实数k 的取值范围.解:(1) 由(2+x)(3-x)≥0,得(2+x)(x -3)≤0, 解得-2≤x≤3,故A =[-2,3].(2) 记g(x)=kx 2+4x +k +3,则g(x)≥0在R 上有且仅有一解,而k<0,所以Δ=0. 由k<0与16-4k(k +3)=0,解得k =-4.(3) 记g(x)=kx 2+4x +k +3,首先g(x)≥0在R 上有解,而k<0,所以Δ=16-4k(k +3)≥0, 解之得-4≤k<0.①设g(x)=0的两个根为x 1,x 2(x 1<x 2),则B =[x 1,x 2].由B A ,得⎩⎪⎨⎪⎧g (-2)≤0,g (3)≤0,-2<-2k <3,即⎩⎪⎨⎪⎧5k -5≤0,10k +15≤0,-2<-2k <3, ②由①与②,解得-4≤k≤-32.备选变式(教师专享)已知f(x)=-3x 2+a(6-a)x +b. (1) 解关于a 的不等式f(1)>0;(2) 当不等式f(x)>0的解集为(-1,3)时,求实数a 、b 的值.解:(1) f(1)= -3+a(6-a)+b = -a 2+6a +b -3,∵ f(1)>0,∴ a 2-6a +3-b<0. ∵Δ=24+4b ,当b≤-6时,Δ≤0,∴此时f(1)>0的解集为 ;当b>-6时,3-b +6<a<3+b +6.∴ f(1)>0的解集为{a|3-b -6<a<3+b +6. (2) ∵不等式-3x 2+a(6-a)x +b>0的解集为(-1,3), ∴f(x)>0与不等式(x +1)(x -3)<0同解.∵3x 2-a(6-a)x -b<0解集为(-1,3),∴⎩⎪⎨⎪⎧2=a (6-a )3,3=b 3, 解得⎩⎨⎧a =3±3,b =9.题型3 三个二次之间的关系例3 已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集是B ,不等式x 2+ax +b<0的解集是A∩B,那么a +b =________.答案:-3解析:由题意:A ={x|-1<x<3},B ={x|-3<x<2},A ∩B ={x|-1<x<2},由根与系数的关系可知:a =-1,b =-2,∴ a +b =-3.备选变式(教师专享)关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,则a 的最大值与最小值的和是________.答案:0解析:方程x 2-ax -20a 2=0的两根是x 1=-4a ,x 2=5a ,则由关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,得|x 1-x 2|=|9a|≤9,即-1≤a≤1,且a≠0,故填0.题型4 一元二次不等式的应用例4 要在墙上开一个上半部为半圆形、下部为矩形的窗户(如图所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?解: 设半圆直径为2R, 矩形的高为a , 则2a +2R +πR =L(定值),S =2Ra +12πR 2=-⎝ ⎛⎭⎪⎫12π+2R 2+LR ,当R =L π+4时S 最大,此时Ra=1, 即半圆直径与矩形的高的比为2∶1时,窗户能够透过最多的光线. 备选变式(教师专享)某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),总成本为G(x)(万元),其中固定成本为2万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本);销售收入R(x)(万元)满足:R(x)=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8,0≤x ≤5,10.2,x>5,假定该产品产销平衡,那么根据上述统计规律求下列问题.(1) 要使工厂有赢利,产量x 应控制在什么范围内? (2) 工厂生产多少台产品时,可使赢利最多?解:依题意,G(x)=x +2,设利润函数为f(x),则f(x)=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8,0≤x ≤5,8.2-x ,x>5.(1) 要使工厂有赢利,即解不等式f(x)>0,当0≤x≤5时,解不等式-0.4x 2+3.2x -2.8>0,即x 2-8x +7<0,得1<x<7, ∴1<x ≤5.当x>5时,解不等式8.2-x>0,得 x<8.2, ∴5<x<8.2.综上所述,要使工厂赢利,x 应满足1<x<8.2,即产品产量应控制在大于100台,小于820台的范围内.(2)0≤x≤5时,f(x)=-0.4(x -4)2+3.6, 故当x =4时,f(x)有最大值3.6; 而当x>5时,f(x)<8.2-5=3.2.所以,当工厂生产400台产品时,赢利最多.1. (2013·安徽)已知一元二次不等式f(x)<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<-1或x>12,则f(10x)>0的解集为______.答案:{x|x<-lg2}解析:由条件得-1<10x <12,即x<-lg2.2. (2013·四川)已知f(x)是定义域为R 的偶函数,当x≥0时,f(x)=x 2-4x ,那么不等式f(x +2)<5的解集是________.答案:(-7,3)解析:解f(x)=x 2-4x<5(x≥0),得0≤x<5.由f(x)是定义域为R 的偶函数得不等式f(x)<5的解集是(-5,5),所以不等式f(x +2)<5转化为-5<x +2<5,故所求的解集是(-7,3).3. (2013·重庆)关于x 的不等式x 2-2ax -8a 2<0(a>0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.答案:52解析:x 2-x 1=4a -(-2a)=6a =15.4. (2013·上海)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求1≤x≤10),每小时可获得利润是100(5x +1-3x)元.(1) 要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围; (2) 要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.解:(1) 根据题意,200⎝ ⎛⎭⎪⎫5x +1-3x ≥3 000 5x -14-3x ≥0.又1≤x≤10,可解得3≤x≤10.(2) 设利润为y 元,则y =900x ·100⎝ ⎛⎭⎪⎫5x +1-3x =9×104⎣⎢⎡⎦⎥⎤-3⎝ ⎛1x -162+6112,故x =6时,y max =457 500元.1. 解关于x 的不等式(1-ax)2<1.解:由(1-ax)2<1得a 2x 2-2ax +1<1,即ax(ax -2)<0. ① 当a =0时,不等式转化为0<0,故x 无解.② 当a<0时,不等式转化为x(ax -2)>0,即x ⎝ ⎛⎭⎪⎫x -2a <0.∵ 2a <0,∴ 不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2a <x<0. ③ 当a>0时,原不等式转化为x(ax -2)<0,又2a >0,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x<2a .综上所述,当a =0时,原不等式解集为 ;当a<0时,原不等式解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2a <x<0; 当a>0时,原不等式解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x<2a .2. 函数f(x)=x 2+ax +3.(1) 当x∈R 时,f (x)≥a 恒成立,求a 的取值范围;(2) 当x∈[-2,2]时,f (x)≥a 恒成立,求a 的取值范围.解:(1) ∵ x∈R ,f (x)≥a 恒成立,∴ x 2+ax +3-a≥0恒成立,则Δ=a 2-4(3-a)≤0,得-6≤a≤2.∴ 当x∈R 时,f (x)≥a 恒成立,则a 的取值范围为[-6,2]. (2) f(x)=⎝ ⎛⎭⎪⎫x +a 22+3-a 24. 讨论对称轴与[-2,2]的位置关系,得到a 的取值满足下列条件: ⎩⎪⎨⎪⎧-a 2≤-2,f (-2)≥a 或⎩⎪⎨⎪⎧-2<-a2<2,3-a 24≥a 或⎩⎪⎨⎪⎧-a 2≥2,f (2)≥a, 即⎩⎪⎨⎪⎧a≥4,7-2a≥a 或⎩⎪⎨⎪⎧-4<a <4,a 2+4a -12≤0或⎩⎪⎨⎪⎧a≤-4,7+2a≥a. 解得-7≤a≤2.∴ 当x∈[-2,2]时,f (x)≥a 恒成立,则a 的取值范围为[-7,2]. 3. 某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价,减少进货量的办法来增加利润,已知这种商品每件销售价提高1元,销售量就要减少10件,问该商场将销售价每件定为多少元时,才能使得每天所赚的利润最多?销售价每件定为多少元时,才能保证每天所赚的利润在300元以上?解:设每件提高x 元(0≤x≤10),即每件获利润(2+x)元,每天可销售(100-10x)件,设每天获得总利润为y 元,由题意有y =(2+x)(100-10x)=-10x 2+80x +200=-10(x -4)2+360.所以当x =4时,y max =360元,即当定价为每件14元时,每天所赚利润最多.要使每天利润在300元以上,则有-10x 2+80x +200>300,即x 2-8x +10<0,解得4-6<x <4+ 6.故每件定价在(14-6)元到(14+6)元之间时,能确保每天赚300元以上.4. 设关于x 的不等式mx 2-2x -m +1<0对于满足|m|≤2的一切m 都成立,则x 的取值范围是________.答案:7-12<x<3+12解析:以m 为主体变元构造函数f(m)=(x 2-1)m -(2x -1),问题转化为求x 的范围,使f(x)在[-2,2]上恒为负值.故有⎩⎪⎨⎪⎧f (-2)<0,f (2)<0,即⎩⎪⎨⎪⎧-2x 2-2x +3<0,2x 2-2x -1<0,解得7-12<x <3+12.1. 一元二次不等式ax 2+bx +c>0,ax 2+bx +c<0的解就是使二次函数y =ax 2+bx +c 的函数值大于0或小于0时x 的范围,应充分和二次函数图象结合去理解一元二次不等式的解集表.2. 解带参数的不等式(x -a)(x -b)>0,应讨论a 与b 的大小再确定不等式的解,解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程的根的情况),三写(写出不等式的解集)3. 应注意讨论ax2+bx+c>0的二次项系数a是否为0.4. 要注意体会数形结合与分类讨论的数学思想.分类讨论要做到“不重”、“不漏”、“最简”的三原则.请使用课时训练(A)第1课时(见活页).。
2014年高考数学二轮复习专题七第二讲坐标系与参数方程理
第二讲 坐标系与参数方程1.在极坐标系中,曲线ρ=4cos θ围成的图形面积______.2.(2013·高考安徽卷改编)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为________.3.在极坐标系中,已知两点A 、B 的极坐标分别为⎝⎛⎭⎪⎫3,π3、⎝ ⎛⎭⎪⎫4,π6,则△AOB (其中O 为极点)的面积为________.4.(2013·高考湖南卷)在平面直角坐标系xOy 中,若直线l 1:⎩⎪⎨⎪⎧x =2s +1y =s ,(s 为参数)和直线l 2:⎩⎪⎨⎪⎧x =aty =2t -1,(t 为参数)平行,则常数a 的值为________.5.(2013·高考江西卷)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.6.(2013·安徽省“江南十校”联考)在极坐标系中,直线ρcos θ-ρsin θ+1=0与圆ρ=2sin θ的位置关系是________.7.(2013·高考重庆卷)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3,(t 为参数)相交于A ,B 两点,则|AB |=________.8.(2013·高考湖北卷)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ,(φ为参数,a >b >0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin ⎝⎛⎭⎪⎫θ+π4=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为________.9.经过极点O (0,0),A (6,π2),B (62,9π4)三点的圆的极坐标方程为________________.10.若两条曲线的极坐标方程分别为ρ=1与ρ=2cos ⎝⎛⎭⎪⎫θ+π3,它们相交于A ,B 两点,则线段AB 的长为________.11.直线⎩⎪⎨⎪⎧x =1+45ty =-1-35t(t 为参数)被曲线ρ=2cos(θ-π4)所截的弦长为________.12.(2013·长春市调研测试改编)已知曲线C 的极坐标方程为ρ=4cos θ,以极点为原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为⎩⎪⎨⎪⎧x =5+32ty =12t (t 为参数).设曲线C 与直线l 相交于P 、Q 两点,以PQ 为一条边作曲线C 的内接矩形,则该矩形的面积为________.13.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程ρ=sin θ-cos θ,曲线C 2的参数方程⎩⎪⎨⎪⎧x =sin t -cos ty =sin t +cos t(t 为参数),若红蚂蚁和黑蚂蚁分别在曲线C 1和曲线C 2上爬行,则红蚂蚁和黑蚂蚁之间的最大距离(视蚂蚁为点)为________.14.已知曲线C 的参数方程是⎩⎨⎧x =a cos φy =3sin φ(φ为参数,a >0),直线l 的参数方程是⎩⎪⎨⎪⎧x =3+t y =-1-t (t 为参数),曲线C 与直线l 有一个公共点在x 轴上,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,若点A (ρ1,θ),B (ρ2,θ+2π3),C (ρ3,θ+4π3)在曲线C 上,求1|OA |2+1|OB |2+1|OC |2的值为________.答案:1.【解析】依题意得,曲线ρ=4cos θ的直角坐标方程是x 2+y 2=4x ,即(x -2)2+y 2=4,它表示的是以点(2,0)为圆心,2为半径的圆,因此其面积是π×22=4π.【答案】4π2.【解析】由ρ=2cos θ,得ρ2=2ρcos θ,化为直角坐标方程为x 2+y 2-2x =0,即(x -1)2+y 2=1,其垂直于极轴的两条切线方程为x =0和x =2,相应的极坐标方程为θ=π2(ρ∈R )和ρcos θ=2. 【答案】θ=π2(ρ∈R ),ρcos θ=23.【解析】结合图形(图略),△AOB 的面积 S =12OA ·OB ·sin ⎝ ⎛⎭⎪⎫π3-π6=3. 【答案】34.【解析】由⎩⎪⎨⎪⎧x =2s +1,y =s ,消去参数s ,得x =2y +1.由⎩⎪⎨⎪⎧x =at ,y =2t -1,消去参数t ,得2x =ay +a . ∵l 1∥l 2,∴2a =12,∴a =4.【答案】45.【解析】曲线C 的普通方程为y =x 2,把x =ρcos θ,y =ρsin θ代入得ρsin θ=ρ2cos 2θ,整理得ρcos 2θ=sin θ,故曲线C 的极坐标方程为ρcos 2θ=sin θ.【答案】ρcos 2θ=sin θ 6.【解析】直线ρcos θ-ρsin θ+1=0可化为x -y +1=0,圆ρ=2sin θ可化为x 2+y 2=2y ,即x 2+(y -1)2=1.圆心(0,1)到直线x -y +1=0的距离d =|0-1+1|2=0<1.故直线与圆相交.【答案】相交 7.【解析】由ρcos θ=4,知x =4.又⎩⎪⎨⎪⎧x =t 2,y =t 3,∴x 3=y 2(x ≥0).由⎩⎪⎨⎪⎧x =4,x 3=y 2,得⎩⎪⎨⎪⎧x =4,y =8,或⎩⎪⎨⎪⎧x =4,y =-8, ∴|AB |= (4-4)2+(8+8)2=16. 【答案】168.【解析】由已知可得椭圆标准方程为x 2a 2+y 2b2=1(a >b >0).由ρsin ⎝ ⎛⎭⎪⎫θ+π4=22m 可得ρsin θ+ρcos θ=m ,即直线的普通方程为x +y =m .又圆的普通方程为x 2+y 2=b 2,不妨设直线l 经过椭圆C 的右焦点(c ,0),则得c =m .又因为直线l 与圆O 相切,所以|m |2=b ,因此c =2b ,即c 2=2(a 2-c 2).整理,得c 2a 2=23,故椭圆C 的离心率为e =63. 【答案】639.【解析】将点的极坐标化为直角坐标,点O ,A ,B 的直角坐标分别为(0,0),(0,6),(6,6),故△OAB 是以OB 为斜边的等腰直角三角形,圆心为(3,3),半径为32,圆的直角坐标方程为(x -3)2+(y -3)2=18,即x 2+y 2-6x -6y =0,将x =ρcos θ,y =ρsin θ代入上述方程,得ρ2-6ρ(cos θ+sin θ)=0.即ρ=6 2 cos ⎝⎛⎭⎪⎫θ-π4. 【答案】ρ=6 2 cos ⎝ ⎛⎭⎪⎫θ-π4 10.【解析】由ρ=1得x 2+y 2=1,又∵ρ=2cos ⎝⎛⎭⎪⎫θ+π3=cos θ-3sin θ, ∴ρ2=ρcos θ-3ρsin θ,∴x 2+y 2-x +3y =0.由⎩⎨⎧x 2+y 2=1x 2+y 2-x +3y =0得A (1,0),B (-12,-32),∴AB = ⎝ ⎛⎭⎪⎫1+122+⎝ ⎛⎭⎪⎫0+322= 3. 【答案】 311.【解析】将方程⎩⎪⎨⎪⎧x =1+45t y =-1-35t ,ρ=2cos(θ+π4)分别化为普通方程:3x +4y +1=0,x 2+y 2-x +y =0,圆心C (12,-12),半径r =22圆心到直线的距离d =|3×12+4×(-12)+1|32+42=110, 弦长=2r 2-d 2=212-1100=75. 【答案】7512.【解析】由ρ=4cos θ,得ρ2=4ρcos θ,即曲线C 的直角坐标方程为x 2+y 2=4x ;由⎩⎪⎨⎪⎧x =5+32ty =12t (t 为参数),得y =13(x -5),即直线l 的普通方程为x -3y -5=0.由于C 为圆,且圆心坐标为(2,0),半径为2,则弦心距d =|2-3×0-5|1+3=32,弦长|PQ |=222-(32)2=7,因此以PQ 为边的圆C 的内接矩形面积S =2d ·|PQ |=37.【答案】3713.【解析】由题意可得曲线C 1的直角坐标方程为x 2+y 2+x -y =0,曲线C 2:⎩⎪⎨⎪⎧sin t =x +y2cos t =y -x2,即x 2+y 2=2.由于曲线C 1、曲线C 2均为圆,圆心分别为(-12,12)、(0,0),半径分别为22、2,则两圆的圆心距为(-12)2+(12)2=22=2-22,所以圆C 1:x 2+y 2+x -y =0与圆C 2:x 2+y 2=2内切. 所以红蚂蚁和黑蚂蚁之间的最大距离为圆C 2的直径2 2. 【答案】2 2 14.【解析】直线l 的普通方程为x +y =2,与x 轴的交点为(2,0).又曲线C 的普通方程为x 2a 2+y 23=1,所以a =2,故所求曲线C 的普通方程是x 24+y 23=1.因为点A (ρ1,θ),B (ρ2,θ+2π3),C (ρ3,θ+4π3)在曲线C 上,即点A (ρ1cos θ,ρ1sin θ),B (ρ2cos(θ+2π3),ρ2sin(θ+2π3)),C (ρ3cos(θ+4π3),ρ3sin(θ+4π3))在曲线C 上.故1|OA |2+1|OB |2+1|OC |2=1ρ21+1ρ22+1ρ23 =14[cos 2θ+cos 2(θ+2π3)+cos 2(θ+4π3)]+ 13[sin 2θ+sin 2(θ+2π3)+sin 2(θ+4π3)] =14[1+cos 2θ2+1+cos (2θ+4π3)2+1+cos (2θ+8π3)2]+ 13[1-cos 2θ2+1-cos (2θ+4π3)2+1-cos (2θ+8π3)2] =14×32+13×32=78.7【答案】8。
(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第3课时 函数的单调性
第二章 函数与导数第3课时 函数的单调性第三章 (对应学生用书(文)、(理)11~12页)1. (必修1P 54测试4)已知函数y =f(x)的图象如图所示,那么该函数的单调减区间是________.答案:[-3,-1]和[1,2] 2. (必修1P 44习题2改编)下列函数中,在区间(0,2)上是单调增函数的是________.(填序号)① y =1-3x ;② y=-1x;③ y=x 2+1;④ y=|x +1|.答案:②③④3. (必修1P 44习题4改编)函数y =f(x)是定义在[-2,2]上的单调减函数,且f(a +1)<f(2a),则实数a 的取值范围是________.答案:[-1,1)解析:由条件⎩⎪⎨⎪⎧-2≤a+1≤2,-2≤2a≤2,a +1>2a ,解得-1≤a<1.4. (必修1P 44习题3改编)函数y =(x -3)|x|的单调递减区间是________.答案:⎣⎢⎡⎦⎥⎤0,32 解析:y =(x -3)|x|=⎩⎪⎨⎪⎧-x (x -3),x<0,x (x -3),x ≥0,画图可知单调递减区间是⎣⎢⎡⎦⎥⎤0,32.5. (必修1P 54测试6改编)已知函数f(x)=mx 2+x +m +2在(-∞,2)上是增函数,则实数m 的取值范围是________.答案:⎣⎢⎡⎦⎥⎤-14,0 解析:当m =0时,f(x)=x +2,符合;当m≠0时,必须⎩⎪⎨⎪⎧m<0,-12m ≥2,解得-14≤m<0.综上,实数m 的取值范围是-14≤m ≤0.1. 增函数和减函数一般地,设函数f(x)的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说函数f(x)在区间D 上是单调增函数.(如图(1)所示)如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说函数f(x)在区间D 上是单调减函数.(如图(2)所示)2. 单调性与单调区间如果一个函数在某个区间M 上是单调增函数或是单调减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间).3. 判断函数单调性的方法(1) 定义法:利用定义严格判断. (2) 利用函数的运算性质.如若f(x)、g(x)为增函数,则:① f(x)+g(x)为增函数;② 1f (x )为减函数(f(x)>0);③ f (x )为增函数(f(x)≥0);④ f(x)·g(x)为增函数(f(x)>0,g(x)>0);⑤ -f(x)为减函数.(3) 利用复合函数关系判断单调性 法则是“同增异减”,即两个简单函数的单调性相同,则这两个函数的复合函数为增函数,若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.(4) 图象法奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.[备课札记]题型1 函数单调性的判断例1 判断函数f(x)=e x+1e x 在区间(0,+∞)上的单调性.解:(解法1)设0<x 1<x 2,则 f(x 1)-f(x 2)=⎝⎛⎭⎪⎫ex 1+1ex 1-⎝ ⎛⎭⎪⎫ex 2+1ex 2 =()ex 1-ex 2+ex 2-ex 1ex 1·ex 2=()ex 1-ex 2⎝ ⎛⎭⎪⎫1-1ex 1+x 2 =()ex 1-x 2-1·ex 1+x 2-1ex 1.∵ 0<x 1<x 2,∴ x 1-x 2<0,x 1+x 2>0,∴ ex 1-x 2<1,ex 1+x 2>1,ex 1>0, ∴ f(x 1)<f(x 2).∴ f(x)在(0,+∞)上是增函数. (解法2)对f(x)=e x+1e x 求导,得f′(x)=e x-1e x =1e x (e 2x -1),当x >0时,e x>0,e 2x>1, ∴ f ′(x)>0,∴ f(x)在(0,+∞)上为增函数. 备选变式(教师专享)证明函数f(x)=x1+x 在区间[1,+∞)上是减函数.证明:设x 1、x 2∈[1,+∞),且x 1<x 2.f(x 1)-f(x 2)=x 11+x 21-x 21+x 22=x 1(1+x 22)-x 2(1+x 21)(1+x 21)(1+x 22)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). ∵ x 1、x 2∈[1,+∞),且x 1<x 2,∴ x 1-x 2<0,1-x 1x 2<0.又(1+x 21)(1+x 22)>0,∴ f(x 1)-f(x 2)>0,即f(x 1)>f(x 2). ∴ f(x)=x1+x 2在[1,+∞)上为减函数.题型2 已知函数的单调性求参数的值或范围 例2 已知函数f(x)=lg kx -1x -1(k∈R ,且k>0).(1) 求函数f(x)的定义域;(2) 若函数f(x)在[10,+∞)上单调递增,求k 的取值范围.解:(1) 由kx -1x -1>0,k>0,得x -1k x -1>0,当0<k<1时,得x<1或x>1k ;当k =1时,得x∈R且x ≠1;当k>1时,得x<1k或x>1.综上,当0<k<1时,函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<1或x>1k ;当k≥1时,函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<1k 或x>1.(2) 由函数f(x)在[10,+∞)上单调递增,知10k -110-1>0,∴ k>110.又f(x)=lg kx -1x -1=lg ⎝ ⎛⎭⎪⎫k +k -1x -1,由题意,对任意的x 1、x 2,当10≤x 1<x 2,有f(x 1)<f(x 2),即lg ⎝ ⎛⎭⎪⎫k +k -1x 1-1<lg ⎝ ⎛⎭⎪⎫k +k -1x 2-1, 得k -1x 1-1<k -1x 2-1 (k -1)(1x 1-1-1x 2-1)<0. ∵ x 1<x 2,∴ 1x 1-1>1x 2-1,∴ k -1<0,即k<1.综上可知,k 的取值范围是⎝ ⎛⎭⎪⎫110,1. 变式训练已知函数f(x)=2x -ax,x ∈(0,1].(1) 当a =-1时,求函数y =f(x)的值域;(2) 若函数y =f(x)在x∈(0,1]上是减函数,求实数a 的取值范围. 解:(1) 当a =-1时,f(x)=2x +1x ,因为0<x≤1,所以f(x)=2x +1x≥22x·1x =22,当且仅当x =22时,等号成立,所以函数y =f(x)的值域是[22,+∞).(2) (解法1)设0<x 1<x 2≤1,由f(x 1)-f(x 2)=⎝ ⎛⎭⎪⎫2x 1-a x 1-⎝ ⎛⎭⎪⎫2x 2-a x 2=2(x 1-x 2)+⎝ ⎛⎭⎪⎫a x 2-a x 1=(x 1-x 2)(2x 1x 2+a )x 1x 2,因为函数y =f(x)在x∈(0,1]上是减函数,所以f(x 1)-f(x 2)>0恒成立,所以2x 1x 2+a<0,即a<-2x 1x 2在x∈(0,1]上恒成立, 所以a≤-2,即实数a 的取值范围是(-∞,-2]. (解法2)由f(x)=2x -a x ,知f′(x)=2+ax 2,因为函数y =f(x)在x∈(0,1]上是减函数, 所以f ′(x)=2+ax 2≤0在x∈(0,1]上恒成立,即a≤-2x 2在x∈(0,1]上恒成立,所以a≤-2,即实数a 的取值范围是(-∞,-2].题型3 函数的单调性与最值例3 已知函数f(x)=x 2+2x +ax ,x ∈[1,+∞).(1) 当a =12时,求f(x)的最小值;(2) 若对任意x∈[1,+∞),f(x)>0恒成立,求实数a 的取值范围. 解:(1) 当a =12时,f(x)=x +12x +2.设x 1>x 2≥1,则f(x 1)-f(x 2)=(x 1-x 2)+⎝ ⎛⎭⎪⎫12x 1-12x 2=(x 1-x 2)·2x 1x 2-12x 1x 2.∵ x 1>x 2≥1, ∴ f(x 1)>f(x 2),∴ f(x)在[1,+∞)上为增函数. ∴ f (x)≥f(1)=72,即f(x)的最小值为72.(2) ∵ f(x)>0在x∈[1,+∞)上恒成立,即x 2+2x +a >0在[1,+∞)上恒成立,∴ a >[-(x 2+2x)]max .∵ t(x)=-(x 2+2x)在[1,+∞)上为减函数, ∴ t(x)max =t(1)=-3, ∴ a >-3. 备选变式(教师专享)已知a∈R 且a≠1,求函数f(x)=ax +1x +1在[1,4]上的最值.解:由f(x)=ax +1x +1=a +1-ax +1.若1-a>0,即a<1时,f(x)在[1,4]上为减函数, ∴ f max (x)=f(1)=a +12,f min (x)=f(4)=4a +15;若1-a<0,即a>1时,f(x)在[1,4]上为增函数, ∴ f max (x)=f(4)=4a +15,f min (x)=f(1)=a +12.1. (2013·南京期初)已知函数f(x)=⎩⎪⎨⎪⎧e x-2k ,x ≤0(1-k )x ,x>0是R 上的增函数,则实数k 的取值范围是________.答案:⎣⎢⎡⎭⎪⎫12,1 解析:由题意得⎩⎪⎨⎪⎧e 0-2k≤0,1-k>0,解得12≤k<1.2. 若函数f(x)=a x(a>0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g(x)=(1-4m)x 在[0,+∞)上是增函数,则a =________.答案:14解析:若a>1,有a 2=4,a -1=m ,所以a =2,m =12,此时g(x)=-x 是[0,+∞)上的减函数,不符合;当0<a<1,有a -1=4,a 2=m ,所以a =14,m =116,此时g(x)=3x 4,符合.3. (2013·安徽)“a≤0”是“函数f(x)=|(ax -1)x|在区间是(0,+∞)内单调递增”的________条件.答案:充要解析:① 当a =0时,f(x)=|x|在区间(0,+∞)内单调递增;② 当a<0时,结合函数f(x)=|ax 2-x|的图象知函数在(0,+∞)内单调递增;③当a>0时,结合函数f(x)=|ax 2-x|的图象知函数在(0,+∞)上先增后减再增,不符合.所以“a≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的充要条件.4. 已知函数f(x)是定义在正实数集上的单调函数,且满足对任意x >0,都有f(f(x)-lnx)=1+e ,则f(1)=________.答案:e解析:f(x)-lnx 必为常数函数,否则存在两个不同数,其对应值均为1+e ,与单调函数矛盾.所以可设f(x)-lnx =c ,则f(x)=lnx +c.将c 代入,得f(c)=1+e ,即lnc +c =1+e.∵ y =lnx +x 是单调增函数,当c =e 时,lnc +c =1+e 成立, ∴ f(x)=lnx +e.则f(1)=e.1. 给定函数:①y=x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数是____________.(填序号)答案:②③解析:①是幂函数,其在(0,+∞)上是增函数,不符合;②中的函数是由函数y =log 12x 向左平移1个单位而得到的,因为原函数在(0,+∞)上是减函数,故符合;③中的函数图象是由函数y =x -1的图象保留x 轴上方,下方图象翻折到x 轴上方而得到的,故由其图象可知正确;④中函数显然是增函数,故不符合.2. 设a>0且a≠1,则“函数f(x)=a x 在R 上是减函数 ”是“函数g(x)=(2-a)x 3在R 上是增函数”的__________条件.答案:充分不必要解析:函数f(x)=a x 在R 上是减函数等价于0<a<1,函数g(x)=(2-a)x 3在R 上是增函数等价于0<a<1或1<a<2,所以“函数f(x)=a x在R 上是减函数 ”,是“函数g(x)=(2-a)x 3在R 上是增函数”的充分不必要条件.3. 函数f(x)=⎩⎪⎨⎪⎧ax 2+1,x ≥0,(a 2-1)e ax,x <0在(-∞,+∞)上单调,则a 的取值范围是________.答案:(-∞,-2]∪(1,2]解析:若a>0,则f(x)=ax 2+1在[0,+∞)上单调增,∴ f(x)=(a 2-1)e ax在(-∞,0)上单调增,∴⎩⎪⎨⎪⎧a 2-1>0,a 2-1≤1,∴ 1<a ≤ 2.同理,当a<0时,可求得a≤-2,故a∈(-∞,-2]∪(1,2].4. 是否存在实数a ,使函数f(x)=log a (ax 2-x)在区间[2,4]上是增函数?如果存在,说明a 可取哪些值;如果不存在,请说明理由.解:显然a>0且a≠1.当a>1时,则t(x)=ax 2-x 的对称轴是x =12a ∈⎝ ⎛⎭⎪⎫0,12,只需t(2)=4a -2>0,即a>12,所以a >1均成立; 当0<a <1时,则t(x)=ax 2-x 的对称轴是x =12a ∈⎝ ⎛⎭⎪⎫12,+∞,需要⎩⎪⎨⎪⎧12a≥4,t (4)=16a -4>0无解. 所以,存在实数a >1,满足条件.1. 求函数的单调区间,首先应注意函数的定义域,函数的单调区间都是定义域的子集,常用方法有:定义法、图象法、导数法、复合函数法等.2. 函数单调性的应用 (1) 比较函数值的大小; (2) 解不等式;(3) 求函数的值域或最值等.注意利用定义都是充要性命题,即若函数f(x)在区间D 上递增(减)且f(x 1)<f(x 2) x 1<x 2(x 1>x 2)(x 1、x 2∈D).请使用课时训练(B )第3课时(见活页).[备课札记]。
(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第九章 平面解析几何第4课时 圆 的 方 程
第九章 平面解析几何第4课时 圆 的 方 程第十章 ⎝ ⎛⎭⎪⎫对应学生用书(文)119~121页 (理)124~126页1. 方程x 2+y 2-6x =0表示的圆的圆心坐标是________;半径是__________. 答案:(3,0) 3解析:(x -3)2+y 2=9,圆心坐标为(3,0),半径为3.2. 以两点A(-3,-1)和B(5,5)为直径端点的圆的方程是_________.答案:(x -1)2+(y -2)2=25解析:设P(x ,y)是所求圆上任意一点.∵ A、B 是直径的端点,∴ PA →²PB →=0.又PA →=(-3-x ,-1-y),PB →=(5-x ,5-y).由PA →²PB →=0 (-3-x)²(5-x)+(-1-y)(5-y)=0 x 2-2x +y 2-4y -20=0 (x -1)2+(y -2)2=25.3. (必修2P 111练习8改编)方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是________.答案:⎝⎛⎭⎪⎫-∞,14∪(1,+∞) 解析:由(4m)2+4-4³5m>0得m <14或m >1.4. (必修2P 102习题1(3)改编)圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为______________.答案:x 2+(y -2)2=1解析:设圆的方程为x 2+(y -b)2=1,此圆过点(1,2),所以12+(2-b)2=1,解得b=2.故所求圆的方程为x 2+(y -2)2=1.5. (必修2P 112习题8改编)点(1,1)在圆(x -a)2+(y +a)2=4内,则实数a 的取值范围是________.答案:(-1,1)解析:∵ 点(1,1)在圆的内部,∴ (1-a)2+(1+a)2<4,∴ -1<a <1.1. 圆的标准方程(1) 以(a ,b)为圆心,r (r>0)为半径的圆的标准方程为(x -a)2+(y -b)2=r 2.(2) 特殊的,x 2+y 2=r 2(r>0)的圆心为(0,0),半径为r . 2. 圆的一般方程方程x 2+y 2+Dx +Ey +F =0变形为⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4. (1) 当D 2+E 2-4F>0时,方程表示以⎝ ⎛⎭⎪⎫-D 2,-E 22(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝ ⎛⎭⎪⎫-D 2,-E 2;(3) 当D 2+E 2-4F <0时,该方程不表示任何图形. 3. 确定圆的方程的方法和步骤确定圆的方程的主要方法是待定系数法,大致步骤为: (1) 设所求圆的标准方程或圆的一般方程;(2) 根据条件列出关于a ,b ,r 的方程组或关于D ,E ,F 的方程组; (3) 求出a ,b ,r 或D ,E ,F 的值,从而确定圆的方程. 4. 点与圆的位置关系点M(x 0,y 0)与圆(x -a)2+(y -b)2=r 2的位置关系:(1) 若M(x 0,y 0)在圆外,则(x 0-a)2+(y 0-b)2>r 2.(2) 若M(x 0,y 0)在圆上,则(x 0-a)2+(y 0-b)2=r 2.(3) 若M(x 0,y 0)在圆内,则(x 0-a)2+(y 0-b)2<r 2.[备课札记]题型1 圆的方程例1 已知方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示一个圆. (1) 求实数m 的取值范围; (2) 求该圆半径r 的取值范围; (3) 求圆心的轨迹方程.解:(1) 方程表示圆的充要条件是D 2+E 2-4F>0,即有4(m +3)2+4(1-4m 2)2-4(16m 4+9)>0 -17<m<1.(2) 半径r =-7⎝ ⎛⎭⎪⎫m -372+167≤477 0<r ≤477. (3) 设圆心坐标为(x ,y),则⎩⎪⎨⎪⎧x =m +3,y =4m 2-1,消去m ,得y =4(x -3)2-1.由于-17<m<1, 所以207<x<4.故圆心的轨迹方程为y =4(x -3)2-1⎝ ⎛⎭⎪⎫207<x<4.变式训练已知t∈R ,圆C :x 2+y 2-2tx -2t 2y +4t -4=0.(1) 若圆C 的圆心在直线x -y +2=0上,求圆C 的方程;(2) 圆C 是否过定点?如果过定点,求出定点的坐标;如果不过定点,说明理由.解:(1) 配方得(x -t)2+(y -t 2)2=t 4+t 2-4t +4,其圆心C(t ,t 2).依题意t -t 2+2=0 t =-1或2.即x 2+y 2+2x -2y -8=0或x 2+y 2-4x -8y +4=0为所求方程.(2) 整理圆C 的方程为(x 2+y 2-4)+(-2x +4)t +(-2y)²t 2=0,令⎩⎪⎨⎪⎧x 2+y 2-4=0,-2x +4=0,-2y =0⎩⎪⎨⎪⎧x =2,y =0. 故圆C 过定点(2,0).题型2 求圆的方程 例2 求过两点A(1,4)、B(3,2)且圆心在直线y =0上的圆的标准方程,并判断点P(2,4)与圆的关系.解:(解法1)(待定系数法)设圆的标准方程为(x -a)2+(y -b)2=r 2. ∵ 圆心在y =0上,故b =0.∴ 圆的方程为(x -a)2+y 2=r 2. ∵ 该圆过A(1,4)、B(3,2)两点,∴ ⎩⎪⎨⎪⎧(1-a )2+16=r 2,(3-a )2+4=r 2,解之得a =-1,r 2=20. ∴ 所求圆的方程为(x +1)2+y 2=20.(解法2)(直接求出圆心坐标和半径)∵ 圆过A(1,4)、B(3,2)两点,∴ 圆心C 必在线段AB 的垂直平分线l 上.∵ k AB =4-21-3=-1,故l 的斜率为1,又AB 的中点为(2,3),故AB 的垂直平分线l 的方程为y -3=x -2即x -y +1=0.又知圆心在直线y =0上,故圆心坐标为C(-1,0).∴ 半径r =|AC|=(1+1)2+42=20.故所求圆的方程为(x +1)2+y2=20.又点P(2,4)到圆心C(-1,0)的距离为d =|PC|=(2+1)2+42=25>r.∴ 点P 在圆外.备选变式(教师专享)已知圆C 的圆心与点P(-2,1)关于直线y =x +1对称,直线3x +4y -11=0与圆C 相交于A 、B 两点,且||AB =6,求圆C 的方程.解:设圆C 的方程为(x -a)2+(y -b)2=r 2(r>0),则圆心C(a ,b),由题意得⎩⎪⎨⎪⎧b -1a +2=-1,b +12=a -22+1,解得⎩⎪⎨⎪⎧a =0,b =-1.故C(0,-1)到直线3x +4y -11=0的距离d =||-4-115=3.∵AB =6,∴r 2=d 2+⎝ ⎛⎭⎪⎫AB 22=18,∴圆C 的方程为x 2+(y +1)2=18.例3 在平面直角坐标系xOy 中,二次函数f(x)=x 2+2x +b(x∈R )与两坐标轴有三个交点.记过三个交点的圆为圆C.(1) 求实数b 的取值范围; (2) 求圆C 的方程;(3) 圆C 是否经过定点(与b 的取值无关)?证明你的结论.解:(1) 令x =0,得抛物线与y 轴的交点是(0,b),令f(x)=0,得x 2+2x +b =0,由题意b≠0且Δ>0,解得b<1且b≠0.(2) 设所求圆的一般方程为x 2+ y 2+Dx +Ey +F =0,令y =0,得x 2+Dx +F =0,这与x 2+2x +b =0是同一个方程,故D =2,F =b ,令x =0,得y 2+ Ey +b =0,此方程有一个根为b ,代入得E =-b -1,所以圆C 的方程为x 2+ y 2+2x -(b +1)y +b =0.(3) 圆C 必过定点(0,1),(-2,1).证明:将(0,1)代入圆C 的方程,得左边= 02+ 12+2³0-(b +1)³1+b =0,右边=0,所以圆C 必过定点(0,1);同理可证圆C 必过定点(-2,1).备选变式(教师专享)已知直线l 1、l 2分别与抛物线x 2=4y 相切于点A 、B ,且A 、B 两点的横坐标分别为a 、b(a 、b∈R ).(1) 求直线l 1、l 2的方程;(2) 若l 1、l 2与x 轴分别交于P 、Q ,且l 1、l 2交于点R ,经过P 、Q 、R 三点作圆C. ① 当a =4,b =-2时,求圆C 的方程;② 当a ,b 变化时,圆C 是否过定点?若是,求出所有定点坐标;若不是,请说明理由.解:(1) A ⎝ ⎛⎭⎪⎫a ,a 24,B ⎝ ⎛⎭⎪⎫b ,b 24,记f(x)=x 24,f ′(x)=x 2,则l 1的方程为y -a 24=a 2(x -a),即y =a 2x -a 24;同理得l 2的方程为y =b 2x -b24.(2) 由题意a≠b 且a 、b 不为零,联立方程组可求得P ⎝ ⎛⎭⎪⎫a 2,0,Q ⎝ ⎛⎭⎪⎫b 2,0,R ⎝ ⎛⎭⎪⎫a +b 2,ab .∴经过P 、Q 、R 三点的圆C 的方程为 x ⎝ ⎛⎭⎪⎫x -a +b 2+(y -1)(y -ab)=0, 当a =4,b =-2时,圆C 的方程为x 2+y 2-x +7y -8=0, 显然当a≠b 且a 、b 不为零时,圆C 过定点F(0,1). 题型3 圆与方程(轨迹)例4 如图,已知直角坐标平面上点Q(2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ|的比等于 2.求动点M 的轨迹方程,并说明它表示什么.解:设直线 MN 切圆于N ,则动点M 组成的集合是P ={M||MN|=2|MQ|}.因为圆的半径|ON|=1,所以|MN|2=|MO|2-1.设点M 的坐标为 (x ,y),则x 2+y 2-1=2(x -2)2+y 2,整理得(x -4)2+y 2=7. 它表示圆,该圆圆心的坐标为(4,0),半径为7. 备选变式(教师专享)如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN(M 、N 分别为切点),使得PM =2PN ,试建立适当的坐标系,并求动点P 的轨迹方程.解:以O 1O 2的中点O 为原点,O 1O 2所在的直线为x 轴,建立如图所示平面直角坐标系,则O 1(-2,0),O 2(2,0).由已知PM =2PN ,得PM 2=2PN 2.因为两圆的半径均为1,所以PO 21 -1 = 2(PO 22 -1).设P(x ,y),则(x +2)2+y 2-1=2[(x -2)2+y 2-1],即(x -6)2+y 2=33,所以所求轨迹方程为(x -6)2+y 2=33(或x 2+y 2-12x +3=0). 题型4 与圆有关的最值问题例5 P(x ,y)在圆C :(x -1)2+(y -1)2=1上移动,试求x 2+y 2的最小值.解:由C(1,1)得OC =2,则OP min =2-1,即(x 2+y 2)min =2-1.所以x 2+y 2的最小值为(2-1)2=3-2 2.变式训练已知实数x ,y 满足(x -2)2+(y +1)2=1,则2x -y 的最大值为________,最小值为________.答案:5+ 5 5- 5解析:令b =2x -y ,则b 为直线2x -y =b 在y 轴上的截距的相反数,当直线2x -y =b与圆相切时,b 取得最值.由|2³2+1-b|5=1.解得b =5±5,所以2x -y 的最大值为5+5,最小值为5- 5.1. 已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长之比为1∶2,则圆C 的方程为________.答案:x 2+⎝⎛⎭⎪⎫y±332=43解析:由题可知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,b),半径为r ,则rsin π3=1,rcos π3=|b|,解得r =23,|b|=33,即b =±33.故圆的方程为x 2+⎝⎛⎭⎪⎫y±332=43.2. 过点P(1,1)的直线,将圆形区域{(x ,y)|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为________.答案:x +y -2=0解析:当圆心与P 的连线和过点P 的直线垂直时,符合条件.圆心O 与P 点连线的斜率k =1,∴ 直线OP 垂直于x +y -2=0.3. 已知AC 、BD 为圆O :x 2+y 2=4的两条相互垂直的弦,垂足为M(1,2),则四边形ABCD 的面积的最大值为________.答案:5解析:设圆心O 到AC 、BD 的距离分别为d 1、d 2,垂足分别为E 、F ,则四边形OEMF 为矩形,则有d 21+d 22=3.由平面几何知识知|AC|=24-d 21,|BD|=24-d 22,∴ S 四边形ABCD =12|AC|²|BD|=24-d 21²4-d 22≤(4-d 21)+(4-d 22)=8-(d 21+d 22)=5,即四边形ABCD 面积的最大值为5.4. 若直线l :ax +by +4=0(a>0,b>0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为________.答案:1解析:圆C 的圆心坐标为(-4,-1),则有-4a -b +4=0,即4a +b =4.所以ab =14(4ab)≤14⎝ ⎛⎭⎪⎫4a +b 22=14³⎝ ⎛⎭⎪⎫422=1.当且仅当a =12,b =2取得等号.5. 如图,已知点A(-1,0)与点B(1,0),C 是圆x 2+y 2=1上的动点,连结BC 并延长至D ,使得CD =BC ,求AC 与OD 的交点P 的轨迹方程.解:设动点P(x ,y),由题意可知P 是△ABD 的重心.由A(-1,0),B(1,0),令动点C(x 0,y 0),则D(2x 0-1,2y 0),由重心坐标公式得⎩⎪⎨⎪⎧x =-1+1+2x 0-13,y =2y 03,则⎩⎪⎨⎪⎧x 0=3x +12,y 0=3y 2,y 0≠0,代入x 2+y 2=1,整理得⎝ ⎛⎭⎪⎫x +132+y 2=49(y≠0),故所求轨迹方程为⎝ ⎛⎭⎪⎫x +132+y 2=49(y≠0).6. 已知圆M 过两点A(1,-1),B(-1,1),且圆心M 在x +y -2=0上. (1) 求圆M 的方程;(2) 设P 是直线3x +4y +8=0上的动点,PA ′、PB′是圆M 的两条切线,A ′、B′为切点,求四边形PA′MB′面积的最小值.解:(1) 设圆M 的方程为(x -a)2+(y -b)2=r 2(r>0),根据题意得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2.故所求圆M 的方程为(x -1)2+(y -1)2=4.(2) 由题知,四边形PA′MB′的面积为S =S △PA ′M +S △PB ′M =12|A ′M||PA ′|+12|B ′M||PB ′|.又|A′M|=|B′M|=2,|PA ′|=|PB′|,所以S =2|PA ′|,而|PA′|=|PM|2-|A′M|2=|PM|2-4,即S =2|PM|2-4.因此要求S 的最小值,只需求|PM|的最小值即可,即在直线3x +4y +8=0上找一点P ,使得|PM|的值最小,所以|PM|min =|3³1+4³1+8|32+42=3,所以四边形PA′MB′面积的最小值为S =2|PM|2-4=232-4=2 5.1. 圆x 2+y 2-4x =0在点P(1,3)处的切线方程为________. 答案:x -3y +2=0解析:圆的方程为(x -2)2+y 2=4,圆心坐标为(2,0),半径为2,点P 在圆上,设切线方程为y -3=k(x -1),即kx -y -k +3=0,所以|2k -k +3|k 2+1=2,解得k =33. 所以切线方程为y -3=33(x -1),即x -3y +2=0. 2. 若方程ax 2+ay 2-4(a -1)x +4y =0表示圆,求实数a 的取值范围,并求出半径最小的圆的方程.解:∵方程ax 2+ay 2-4(a -1)x +4y =0表示圆,∴a ≠0.∴方程ax 2+ay 2-4(a -1)x +4y =0可以写成x 2+y 2-4(a -1)a x +4ay =0.∵D 2+E 2-4F =16(a 2-2a +2)a 2>0恒成立, ∴a ≠0时,方程ax 2+ay 2-4(a -1)x +4y =0表示圆. 设圆的半径为r ,则r 2=4(a 2-2a +2)a 2=2⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫1a -122+1, ∴当1a =12即,a =2时,圆的半径最小,半径最小的圆的方程为(x -1)2+(y +1)2=2.3. 如图,在平面斜坐标系xOy 中,∠xOy =60°,平面上任一点P 关于斜坐标系的斜坐标是这样定义的:若OP →=x e 1+y e 2(其中e 1、e 2分别为与x 轴、y 轴同方向的单位向量),则P 点斜坐标为(x ,y).(1) 若P 点斜坐标为(2,-2),求P 到O 的距离|PO|;(2) 求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 解:(1) ∵P 点斜坐标为(2,-2), ∴OP →=2e 1-2e 2. ∴|OP →|2=(2e 1-2e 2)2=8-8e 1²e 2=8-8³cos60°=4. ∴|OP →|=2,即|OP|=2.(2) 设圆上动点M 的斜坐标为(x ,y),则OM →=x e 1+y e 2.∴(x e 1+y e 2)2=1. ∴x 2+y 2+2xy e 1²e 2=1.∴x 2+y 2+xy =1.故所求方程为x 2+y 2+xy =1.4. 已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55,求该圆的方程.解:设圆P 的圆心为P(a ,b),半径为r ,则点P 到x 轴、y 轴的距离分别为|b|、|a|. 由题设知圆P 截x 轴所得劣弧所对圆心角为90°,知圆P 截x 轴所得的弦长为2r.故2|b|=2r ,得r 2=2b 2,又圆P 被y 轴所截得的弦长为2,由勾股定理得r 2=a 2+1,得2b 2-a 2=1.又因为P(a ,b)到直线x -2y =0的距离为55,得d =|a -2b|5=55,即有a -2b =±1,综上所述得⎩⎪⎨⎪⎧2b 2-a 2=1a -2b =1或⎩⎪⎨⎪⎧2b 2-a 2=1,a -2b =-1,解得⎩⎪⎨⎪⎧a =-1b =-1或⎩⎪⎨⎪⎧a =1,b =1.于是r 2=2b 2=2.所求圆的方程是(x +1)2+(y +1)2=2,或(x -1)2+(y -1)2=2.5. 已知圆C :x 2+y 2=9,点A(-5,0),直线l :x -2y =0. (1) 求与圆C 相切,且与直线l 垂直的直线方程;(2) 在直线OA 上(O 为坐标原点),存在定点B(不同于点A),满足:对于圆C 上任一点P ,都有PBPA为一常数,试求所有满足条件的点B 的坐标.解:(1) 设所求直线方程为y =-2x +b ,即2x +y -b =0,∵ 直线与圆相切,∴ |-b|22+12=3,得b =±35,∴ 所求直线方程为y =-2x±3 5. (2) (解法1)假设存在这样的点B(t ,0),当P 为圆C 与x 轴左交点(-3,0)时,PB PA =|t +3|2;当P 为圆C 与x 轴右交点(3,0)时,PB PA =|t -3|8,依题意,|t +3|2=|t -3|8,解得,t =-5(舍去),或t =-95.下面证明点B ⎝ ⎛⎭⎪⎫-95,0对于圆C 上任一点P ,都有PB PA 为一常数. 设P(x ,y),则y 2=9-x 2,∴ PB 2PA 2=⎝ ⎛⎭⎪⎫x +952+y 2(x +5)2+y 2=x 2+185x +8125+9-x 2x 2+10x +25+9-x 2= 1825(5x +17)2(5x +17)=925, 从而PB PA =35为常数.(解法2)假设存在这样的点B(t ,0),使得PB PA为常数λ,则PB 2=λ2PA 2,∴ (x -t)2+y 2=λ2[(x +5)2+y 2],将y 2=9-x 2代入得,x 2-2xt +t 2+9-x 2=λ2(x 2+10x +25+9-x 2),即2(5λ2+t)x +34λ2-t 2-9=0对x∈[-3,3]恒成立,∴ ⎩⎪⎨⎪⎧5λ2+t =0,34λ2-t 2-9=0,解得⎩⎪⎨⎪⎧λ=35,t =-95或⎩⎪⎨⎪⎧λ=1,t =-5(舍去), 所以存在点B ⎝ ⎛⎭⎪⎫-95,0对于圆C上任一点P ,都有PB PA 为常数35.1. 利用待定系数法求圆的方程,关键是建立关于a ,b ,r 或D ,E ,F 的方程组.2. 利用圆的几何性质求方程,可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.3. 解决与圆有关的最值问题的常用方法(1) 形如u =y -bx -a型的最值问题,可转化为定点(a ,b)与圆上的动点(x ,y)的斜率的最值问题;(2) 形如t=ax+by型的最值问题,可转化为动直线的截距的最值问题;(3) 形如(x-a)2+(y-b)2型的最值问题,可转化为动点到定点的距离的最值问题.请使用课时训练(A)第4课时(见活页).[备课札记]。
2014年高考数学一轮复习 热点难点精讲精析 选修系列(第1部分:坐标系与参数方程)
2014年高考一轮复习热点难点精讲精析: 选修系列(第1部分:坐标系与参数方程)一、坐标系(一)平面直角坐标系中的伸缩变换〖例〗在同一平面直角坐标系中,已知伸缩变换''3:.2x xy yϕ⎧=⎪⎨=⎪⎩ (1)求点1(,2)3A -经过ϕ变换所得的点A '的坐标; (2)点B 经过ϕ变换得到点1(3,)2B '=-,求点B 的坐标; (3)求直线:6l y x =经过ϕ变换后所得到直线的l '方程;(4)求双曲线22:164y C x -=经过ϕ变换后所得到曲线C '的焦点坐标。
思路解析:解答本题首先要根据平面直角坐标系中的伸缩变换公式的意义与作用,明确原来的点与变换后的点的坐标,利用方程的思想求解。
解答:331(1)(,),,(,)(,2),12321131,(2)1,(1,1).32x xx x A x y A x y y y y y x y A ϕ'=⎧'=⎧⎪'''-⎨⎨''==⎩⎪⎩'''=⨯==⨯-=-∴-设由伸缩变换:得到由于为于是为所求 13(2)(,),322111(,)(3)1,21,232(1,1).x x x x B x y y y y y B x y x y B ϕ⎧''==⎧⎪⎨⎨'=⎩⎪'=⎩'''=⨯-=-=⨯=∴-设由伸缩变换:得到,由于为(-3,),于是为所求22222222'1(3)(,),63212=6(),,.31(4)(,)1364241,-=1964916-=1916x x l P x y y x y y y x y x y x x x y P x y x y y x y x y x y C ⎧'=⎪''''=⎨⎪'=⎩''''⨯==⎧'=⎪''''-=⎨⎪'=⎩''''-=设直线上任意一点由上述可知,将代入得所以即为所求设曲线C 任意一点,由上述可知,将代入得化简得,即为曲线的方程,可见仍是双曲线,且焦点12(5,0),(5,0).-F F 为所求(二)极坐标与直角坐标的互化 〖例2〗在极坐标系中,如果5(2,),(2,)44A B ππ为等边三角形ABC 的两个顶点,求顶点C 的极坐标(0,02)ρθπ≥≤<。
(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第4课时 函数的奇偶性及
第二章函数与导数第4课时函数的奇偶性及周期性第三章(对应学生用书(文)、(理)13~14页)考点分析考点新知① 函数奇偶性的考查一直是近几年某某命题的热点,命题时主要是考查函数的概念、图象、性质等.②能综合运用函数的奇偶性、单调性及周期性分析和解决有关问题.①了解奇函数、偶函数的定义,并能运用奇偶性定义判断一些简单函数的奇偶性.②掌握奇函数与偶函数的图象对称关系,并能熟练地利用对称性解决函数的综合问题.③了解周期函数的意义,并能利用函数的周期性解决一些问题.1. (必修1P45习题8改编)函数f(x)=mx2+(2m-1)x+1是偶函数,则实数m=________.答案:12解析:由f(-x)=f(x),知m=12.2. (必修1P43练习5改编)函数f(x)=x3-x的图象关于________对称.答案:原点解析:由f(-x)=(-x)3-(-x)=-x3+x=-f(x),知f(x)是奇函数,则其图象关于原点对称.3. (原创)设函数f(x)是奇函数且周期为3,若f(1)=-1,则f(2 015)=________.答案:1解析:由条件,f(2 015)=f(671×3+2)=f(2)=f(-1)=-f(1)=1.4. (必修1P43练习4)对于定义在R上的函数f(x),给出下列说法:①若f(x)是偶函数,则f(-2)=f(2);②若f(-2)=f(2),则函数f(x)是偶函数;③若f(-2)≠f(2),则函数f(x)不是偶函数;④若f(-2)=f(2),则函数f(x)不是奇函数.其中,正确的说法是________.(填序号)答案:①③解析:根据偶函数的定义,①正确,而③与①互为逆否命题,故③也正确,若举例奇函数f(x)=⎩⎪⎨⎪⎧x-2,x>0,x+2,x<0,由于f(-2)=f(2),所以②④都错误.5. (必修1P54练习测试10)已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x3+x+1,则当x<0时,f(x)=________.答案:x3+x-1解析:若x<0,则-x>0,f(-x)=-x3-x+1,由于f(x)是奇函数,所以f(-x)=-f(x),所以f(x)=x 3+x -1.1. 奇函数、偶函数的概念 一般地,如果对于函数f(x)的定义域内任意一个x ,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x ,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.2. 判断函数的奇偶性判断函数的奇偶性,一般都按照定义严格进行,一般步骤是: (1) 考查定义域是否关于原点对称.(2) 根据定义域考查表达式f(-x)是否等于f(x)或-f(x). 若f(-x)=-f(x),则f(x)为奇函数. 若f(-x)=f(x),则f(x)为偶函数.若f(-x)=f(x)且f(-x)=-f(x),则f(x)既是奇函数又是偶函数.若存在x 使f(-x)≠-f(x)且f(-x)≠f(x),则f(x)既不是奇函数又不是偶函数,即非奇非偶函数.3. 函数的图象与性质奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. 4. 函数奇偶性和单调性的相关关系(1) 注意函数y =f(x)与y =kf(x)的单调性与k(k≠0)有关.(2) 注意函数y =f(x)与y =1f (x )的单调性之间的关系. (3) 奇函数在[a ,b]和[-b ,-a]上有相同的单调性. (4) 偶函数在[a ,b]和[-b ,-a]上有相反的单调性. 5. 函数的周期性设函数y =f(x),x ∈D ,如果存在非零常数T ,使得对任意x∈D,都有f(x +T)=f(x),则称函数f(x)为周期函数,T 为函数f(x)的一个周期.(D 为定义域)题型1 判断函数的奇偶性例1 判断下列函数的奇偶性: (1) f(x)=x 3-1x ;(2) f(x)=1-x2|x +2|-2;(3) f(x)=(x -1)1+x1-x; (4) f(x)=3-x 2+x 2-3.解:(1) 定义域是(-∞,0)∪(0,+∞),关于原点对称,由f(-x)=-f(x),所以f(x)是奇函数.(2) 去掉绝对值符号,根据定义判断.由⎩⎪⎨⎪⎧1-x 2≥0,|x +2|-2≠0,得⎩⎪⎨⎪⎧-1≤x≤1,x ≠0且x≠-4. 故f(x)的定义域为[-1,0)∪(0,1],关于原点对称,且有x +2>0. 从而有f(x)=1-x 2x +2-2=1-x 2x,这时有f(-x)=1-(-x )2-x =-1-x2x=-f(x),故f(x)为奇函数.(3) 因为f(x)定义域为[-1,1),所以f(x)既不是奇函数也不是偶函数.(4) 因为f(x)定义域为{-3,3},所以f(x)=0,则f(x)既是奇函数也是偶函数. 备选变式(教师专享) 判断下列函数的奇偶性:(1) f(x)=x 4+x ;(2) f(x)=⎩⎪⎨⎪⎧x 2+x (x<0),-x 2+x (x>0); (3) f(x)=lg(x +x 2+1).解:(1) 定义域为R ,f(-1)=0,f(1)=2,由于f(-1)≠f(1),f(-1)≠-f(1),所以f(x)既不是奇函数也不是偶函数;(2) 因为函数f(x)的定义域是(-∞,0)∪(0,+∞),并且当x <0时,-x >0,所以f(-x)=-(-x)2+(-x)=-(x 2+x)=-f(x)(x <0).当x >0时,-x <0,所以f(-x)=(-x)2+(-x)=-(-x 2+x)=-f(x)(x >0).故函数f(x)为奇函数.(3) 由x +x 2+1>0,得x∈R ,由f(-x)+f(x)=lg(-x +x 2+1)+lg(x +x 2+1)=lg1=0,所以f(-x)=-f(x),所以f(x)为奇函数.题型2 函数奇偶性的应用例2 (1) 设a∈R ,f(x)=a·2x+a -22x+1(x∈R ),试确定a 的值,使f(x)为奇函数; (2) 设函数f(x)是定义在(-1,1)上的偶函数,在(0,1)上是增函数,若f(a -2)-f(4-a 2)<0,某某数a 的取值X 围.解:(1) 要使f(x)为奇函数,∵ x ∈R ,∴需f(x)+f(-x)=0.∵ f(x)=a -22x +1,∴ f(-x)=a -22-x +1=a -2x +12x +1.由⎝ ⎛⎭⎪⎫a -22x +1+⎝ ⎛⎭⎪⎫a -2x +12x +1=0,得2a -2(2x+1)2x+1=0, ∴ a =1.(2) 由f(x)的定义域是()-1,1,知⎩⎪⎨⎪⎧-1<a -2<1,-1<4-a 2<1,解得3<a< 5.由f(a -2)-f(4-a 2)<0,得f(a -2)<f(4-a 2).因为函数f(x)是偶函数,所以f(|a -2|)<f(|4-a 2|).由于f(x)在(0,1)上是增函数,所以|a -2|<|4-a 2|,解得a<-3或a>-1且a≠2. 综上,实数a 的取值X 围是3<a<5且a≠2. 变式训练(1) 已知函数f(x)=⎩⎪⎨⎪⎧x 2+x ,x ≤0,ax 2+bx ,x>0是奇函数,求a +b 的值;(2) 已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]内递减,若f(1-m)+f(1-m 2)<0,某某数m 的取值X 围.解:(1) 当x>0时,-x<0,由题意得f(-x)=-f(x),所以x 2-x =-ax 2-bx. 从而a =-1,b =1,所以a +b =0. (2) 由f(x)的定义域是[-2,2],知⎩⎪⎨⎪⎧-2≤1-m≤2,-2≤1-m 2≤2,解得-1≤m≤ 3. 因为函数f(x)是奇函数,所以f(1-m)<-f(1-m 2),即f(1-m)<f(m 2-1). 由奇函数f(x)在区间[-2,0]内递减, 所以在[-2,2]上是递减函数,所以1-m>m 2-1,解得-2<m<1.综上,实数m 的取值X 围是-1≤m<1. 题型3 函数奇偶性与周期性的综合应用 例3 设f(x)是定义在R 上的奇函数,且对任意实数x ,恒有f(x +2)=-f(x),当x∈[0,2]时,f(x)=2x -x 2.(1) 求证:f(x)是周期函数;(2) 当x∈[2,4]时,求f(x)的解析式;(3) 计算f(0)+f(1)+f(2)+…+f(2 014)的值. (1) 证明:因为f(x +2)=-f(x), 所以f(x +4)=-f(x +2)=f(x), 所以f(x)是周期为4的周期函数. (2) 解:因为x∈[2,4],所以-x∈[-4,-2],4-x∈[0,2],所以f(4-x)=2(4-x)-(4-x)2=-x 2+6x -8.又f(4-x)=f(-x)=-f(x),所以-f(x)=-x 2+6x -8,即f(x)=x 2-6x +8,x ∈[2,4].(3) 解:因为f(0)=0,f(1)=1,f(2)=0,f(3)=-1, 又f(x)是周期为4的周期函数,所以f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=0, 所以f(0)+f(1)+f(2)+…+f(2 014)=f(0)+f(1)+f(2)=1. 备选变式(教师专享)已知定义在R 上的函数f(x)对任意实数x 、y 恒有f(x)+f(y)=f(x +y),且当x >0时,f(x)<0,又f(1)=-23.(1) 求证:f(x)为奇函数;(2) 求证:f(x)在R 上是减函数;(3) 求f(x)在[-3,6]上的最大值与最小值.(1) 证明:令x =y =0,可得f(0)+f(0)=f(0+0),从而f(0)=0.令y =-x ,可得f(x)+f(-x)=f(x -x)=0,即f(-x)=-f(x),故f(x)为奇函数.(2) 证明:设x 1、x 2∈R ,且x 1>x 2,则x 1-x 2>0,于是f(x 1-x 2)<0.从而f(x 1)-f(x 2)=f[(x 1- x 2)+x 2]- f(x 2) = f (x 1- x 2) +f(x 2)- f(x 2)= f (x 1- x 2)<0.所以f(x)为减函数.(3) 解:由(2)知,所求函数的最大值为f(-3),最小值为f(6).f(-3)=-f(3)=-[f(2)+f(1)]=-2f(1)-f(1)=-3f(1)=2,f(6)=-f(-6)=-[f(-3)+f(-3)]=-4.于是f(x)在[-3,6]上的最大值为2,最小值为-4.1. (2013·某某期初)已知f(x)是定义在R 上的奇函数,且f(x +4)=f(x).当x∈(0,2)时,f(x)=-x +4,则f(7)=________.答案:-3解析:f(7)=f(3+4)=f(3)=f(3-4)=f(-1)=-f(1)=-3.2. (2013·某某)已知f(x)是定义在R 上的奇函数.当x>0时,f(x)=x 2-4x ,则不等式f(x)>x 的解集用区间表示为________.答案:(-5,0)∪(5,+∞)解析:作出f(x)=x 2-4x(x>0)的图象,如图所示.由于f(x)是定义在R 上的奇函数,利用奇函数图象关于原点对称,作出x<0的图象.不等式f(x)>x 表示函数y =f(x)的图象在y =x 的上方,观察图象易得,原不等式的解集为(-5,0)∪(5,+∞).3. (2013·某某)已知函数f(x)是定义在R 上的偶函数,且在区间[0,+∞)内单调递增.若实数a 满足f(log 2a)+f(log 12a )≤2f(1),则a 的取值X 围是________.答案:⎣⎢⎡⎦⎥⎤12,2 解析:因为f(log 12a)=f(-log 2a)=f(log 2a),所以原不等式可化为f(log 2a )≤f(1).又f(x)在区间[0,+∞)上单调递增, 所以|log 2a|≤1,解得12≤a ≤2.4. (2013·某某二模)设函数y =f(x)满足对任意的x∈R ,f(x)≥0且f 2(x +1)+f 2(x)=9.已知当x∈[0,1)时,有f(x)=2-|4x -2|,则f ⎝⎛⎭⎪⎫2 0136=________.答案: 5解析:由题知f ⎝ ⎛⎭⎪⎫12=2,因为f(x)≥0且f 2(x +1)+f 2(x)=9,故f ⎝ ⎛⎭⎪⎫32=5,f ⎝ ⎛⎭⎪⎫52=2,f ⎝ ⎛⎭⎪⎫72=5,如此循环得f ⎝ ⎛⎭⎪⎫6712=f ⎝ ⎛⎭⎪⎫4×168-12=5,即f ⎝ ⎛⎭⎪⎫2 0136= 5.1. 定义在R 上的函数f(x)满足f(x)=⎩⎪⎨⎪⎧log 2(1-x ),x ≤0,f (x -1)-f (x -2),x>0,则f(2 014)=________.答案:1解析:由已知得f(-1)=log 22=1,f(0)=0,f(1)=f(0)-f(-1)=-1,f(2)=f(1)-f(0)=-1,f(3)=f(2)-f(1)=-1-(-1)=0,f(4)=f(3)-f(2)=0-(-1)=1,f(5)=f(4)-f(3)=1,f(6)=f(5)-f(4)=0,所以函数f(x)的值以6为周期重复性出现,所以f(2 014)=f(4)=1.2. 已知f(x)是R 上最小正周期为2的周期函数,且当0≤x <2时,f(x)=x 3-x ,则函数y =f(x)的图象在区间[0,6]上与x 轴的交点个数为________.答案:7解析:由条件,当0≤x<2时,f(x)=x(x +1)(x -1),即当0≤x <2时,f(x)=0有两个根0,1,又由周期性,当2≤x<4时,f(x)=0有两个根2,3,当4≤x<6时,f(x)=0有两个根4,5,而6也是f(x)=0的根,故y =f(x)的图象在区间[0,6]上与x 轴的交点个数为7.3. 设函数f(x)是定义在R 上的奇函数,且当x≥0时,f(x)=x 2,若对任意的x∈[t ,t +2],不等式f(x +t)≥2f(x)恒成立,则实数t 的取值X 围是________.答案:[2,+∞)解析:∵ 当x≥0时,f(x)=x 2且f(x)是定义在R 上的奇函数,又f(x +t)≥2f(x)=f(2x),易知f(x)在R 上是增函数,∴ x +t≥2x ,∴ t ≥(2-1)x.∵ x ∈[t ,t +2],∴ t ≥(2-1)(t +2),∴ t ≥ 2.4. 已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若x∈⎣⎢⎡⎦⎥⎤12,1时,不等式f(1+xlog 2a )≤f(x-2)恒成立,某某数a 的取值X 围.解:∵ f(x)是偶函数,当x∈⎣⎢⎡⎦⎥⎤12,1时,不等式f(1+xlog 2a )≤f(x-2)等价于f(|1+xlog 2a|)≤f(2-x).又f(x)在[0,+∞)上是增函数,∴ |1+xlog 2a|≤2-x ,∴ x -2≤1+xlog 2a ≤2-x ,∴ 1-3x ≤log 2a ≤1x-1,上述不等式在x∈⎣⎢⎡⎦⎥⎤12,1上恒成立,∴⎝ ⎛⎭⎪⎫1-3x max ≤log 2a ≤⎝ ⎛⎭⎪⎫1x -1min, ∴-2≤log 2a ≤0,解得14≤a ≤1.1. 函数奇偶性的判断,本质是判断f(x)与f(-x)是否具有等量关系,前提是定义域关于原点对称,运算中,也可以转化为判断奇偶性的等价关系式(f(x)+f(-x)=0或f(x)-f(-x)=0)是否成立.2. 若f(x)是偶函数,则f(-x)=f(x)=f(|x|).3. 奇偶函数的不等式求解时,要注意到:奇函数在对称的区间上有相同的单调性,偶函数在对称的区间上有相反的单调性.请使用课时训练(A)第4课时(见活页).[备课札记]。
【金版教程】2014届高考数学总复习 第1讲 坐标系与参数方程课件 理 新人教A版选修4-4
得圆C1与C2交点的直角坐标分
别为(1, 3),(1,- 3).
故圆C1与C2的公共弦的参数方程为xy==1t,, - 3≤t≤ 3.
(或参数方程写成xy= =1y,, - 3≤y≤ 3)
解法二:将x=1代入
x=ρcosθ, y=ρsinθ,
得ρcosθ=1,从而ρ=
[解] 在ρsin(θ-π3)=- 23中,令θ=0,得ρ=1. 所以圆C的圆心坐标为(1,0).
因为圆C经过点P( 2,4π),
所以圆C的半径PC=
22+12-2×1×
π 2cos4
=1,于
是圆C过极点,所以圆C的极坐标方程为ρ=2cosθ.
奇思妙想:本例条件不变,试求θ=
π 3
与圆C相交所截得的
经典演练提能
1. 点P的直角坐标为(1,- 3),则点P的极坐标为( )
A. (2,π3)
B. (2,43π)
C. (2,-π3)
D. (2,-43π)
答案:C
2. [2012·江西高考]曲线C的直角坐标方程为x2+y2-2x= 0,以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线 C的极坐标方程为________.
(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写
出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐 标表示);
(2)求圆C1与C2的公共弦的参数方程.
[审题视点] (1)将直角坐标方程化为极坐标方程,再求交 点;(2)将极坐标系下的交点坐标化为直角坐标系下的交点坐 标,再写出公共弦的参数方程;或者先定义x=1,再写出公共 弦的参数方程.
1 cosθ.
于是圆C1与C2的公共弦的参数方程为
x=1, y=tanθ,
(全国通用)2014届高考数学总复习(考点引领+技巧点拨)坐标系与参数方程第2课时 参 数 方 程
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-4 坐标系与参数方程第2课时 参 数 方 程1. (选修44P 56习题第2题改编)若直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t (t 为参数),求直线的斜率.解:k =y -2x -1=-3t 2t =-32.∴ 直线的斜率为-32.2. (选修44P 56习题第2题改编)将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程. 解:转化为普通方程:y =x -2,x ∈[2,3],y ∈[0,1].3. 求直线⎩⎪⎨⎪⎧x =3+at ,y =-1+4t (t 为参数)过的定点.解:y +1x -3=4a ,-(y +1)a +4x -12=0对于任何a 都成立,则x =3,且y =-1.∴ 定点为(3,-1).4. 已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =4t 2,y =t (t 为参数),若点P(m ,2)在曲线C 上,求m 的值.解:点P(m ,2)在曲线C 上,则⎩⎪⎨⎪⎧m =4t22=t ,所以m =16.5. (选修44P 57习题第6题改编)已知直线l 1:⎩⎪⎨⎪⎧x =1+3t ,y =2-4t (t 为参数)与直线l 2:2x -4y =5相交于点B ,又点A(1,2),求|AB|.解:将⎩⎪⎨⎪⎧x =1+3t ,y =2-4t 代入2x -4y =5得t =12,则B ⎝ ⎛⎭⎪⎫52,0,而A(1,2),得|AB|=52.1. 参数方程是用第三个变量(即参数)分别表示曲线上任一点M 的坐标x 、y 的另一种曲线方程的形式,它体现了x 、y 的一种间接关系.2. 参数方程是根据其固有的意义(物理、几何)得到的,要注意参数的取值范围.3. 一些常见曲线的参数方程(1) 过点P 0(x 0,y 0),且倾斜角是α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+lcos α,y =y 0+lsin α(l 为参数).l 是有向线段P 0P 的数量.(2) 圆方程(x -a)2+(y -b)2=r 2的参数方程是⎩⎪⎨⎪⎧x =a +rcos θ,y =b +rsin θ(θ为参数).(3) 椭圆方程x 2a 2+y2b 2=1(a>b>0)的参数方程是⎩⎪⎨⎪⎧x =acos θ,y =bsin θ(θ为参数).(4) 双曲线方程x 2a 2-y2b 2=1(a>0,b>0)的参数方程是⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数).(5) 抛物线方程y 2=2px(p>0)的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数).4. 在参数方程与普通方程的互化中注意变量的取值范围.[备课札记]题型1 参数方程与普通方程的互化例1 将参数方程⎩⎪⎨⎪⎧x =2⎝ ⎛⎭⎪⎫t +1t ,y =4⎝ ⎛⎭⎪⎫t -1t (t 为参数)化为普通方程.解:(解法1)因为⎝ ⎛⎭⎪⎫t +1t 2-⎝ ⎛⎭⎪⎫t -1t 2=4,所以⎝ ⎛⎭⎪⎫x 22-⎝ ⎛⎭⎪⎫y 42=4.化简得普通方程为x 216-y 264=1.(解法2)因为⎩⎪⎨⎪⎧x =2⎝ ⎛⎭⎪⎫t +1t ,y =4⎝ ⎛⎭⎪⎫t -1t ,所以t =2x +y 8,1t =2x -y 8,相乘得(2x +y )(2x -y )64=1.化简得普通方程为x 216-y264=1.备选变式(教师专享)将参数方程⎩⎪⎨⎪⎧y =cos2θ,x =sin θ 化为普通方程,并说明它表示的图形.解:由⎩⎪⎨⎪⎧y =cos2θ,x =sin θ,可得⎩⎪⎨⎪⎧y +12=cos 2θ,x 2=sin 2θ,即y +12+x 2=1,化简得y =1-2x 2.又-1≤x2=sin 2θ≤1,则-1≤x≤1,则普通方程为y =1-2x 2,在[]-1,1时此函数图象为抛物线的一部分.题型2 求参数方程例2 已知直线l 经过点P(1,1),倾斜角α=π6.(1) 写出直线l 的参数方程;(2) 设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 解:(1) 直线的参数方程为⎩⎪⎨⎪⎧x =1+tcos π6,y =1+tsin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =1+12t (t 为参数). (2) 把直线⎩⎪⎨⎪⎧x =1+32t ,y =1+12t代入x 2+y 2=4,得⎝⎛⎭⎪⎫1+32t 2+⎝ ⎛⎭⎪⎫1+12t 2=4,t 2+(3+1)t -2=0,t 1t 2=-2,则点P 到A 、B 两点的距离之积为2.变式训练 过点P ⎝⎛⎭⎪⎫102,0作倾斜角为α的直线与曲线x 2+2y 2=1交于点M 、N ,求|PM|·|PN|的最小值及相应的α的值.解:设直线为⎩⎪⎨⎪⎧x =102+tcos α,y =tsin α(t 为参数),代入曲线并整理得(1+sin 2α)t 2+(10cos α)t +32=0,则|PM|·|PN|=|t 1t 2|=321+sin 2α. 所以当sin 2α=1时,|PM|·|PN|的最小值为34,此时α=π2.题型3 参数方程的应用例3 已知点P(x ,y)是圆x 2+y 2=2y 上的动点. (1) 求2x +y 的取值范围;(2) 若x +y +a≥0恒成立,求实数a 的取值范围.解:(1) 设圆的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ,2x +y =2cos θ+sin θ+1=5sin(θ+φ)+1,∴ -5+1≤2x+y≤5+1.(2) x +y +a =cos θ+sin θ+1+a≥0,∴ a ≥-(cos θ+sin θ)-1=-2sin ⎝⎛⎭⎪⎫θ+π4-1, ∴ a ≥2-1.备选变式(教师专享)在椭圆x 216+y212=1上找一点,使这一点到直线x -2y -12=0的距离最小.解:设椭圆的参数方程为⎩⎨⎧x =4cos θy =23sin θ,d=|4cos θ-43sin θ-12|5=455||cos θ-3sin θ-3=455⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫θ+π3-3,当cos ⎝⎛⎭⎪⎫θ+π3=1时,d min =455,此时所求点为(2,-3).1. 在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θ,y =5sin θ⎝ ⎛⎭⎪⎫θ为参数,0≤θ≤π2和⎩⎪⎨⎪⎧x =1-22t ,y =-22t(t 为参数),求曲线C 1和C 2的交点坐标. 解:曲线C 1的方程为x 2+y 2=5(0≤x≤5),曲线C 2的方程为y =x -1,由⎩⎪⎨⎪⎧x 2+y 2=5,y =x -1 x =2或x =-1(舍去),则曲线C 1和C 2的交点坐标为(2,1). 2. (2013·湖南)在平面直角坐标系xOy 中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值. 解:直线的普通方程为y =x -a.椭圆的标准方程为x 29+y24=1,右顶点为(3,0),所以点(3,0)在直线y =x -a 上,代入解得a =3.3. (2013·重庆)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A 、B 两点,求|AB|.解:极坐标方程为ρcos θ=4的直线的普通方程为x =4.曲线的参数方程化为普通方程为y 2=x 3,当x =4时,解得y =±8,即A(4,8),B(4,-8), 所以|AB|=8-(-8)=16.4. (2013·江苏)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标.解:∵ 直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t ,∴ 消去参数t 后得直线的普通方程为2x -y -2=0,①同理得曲线C 的普通方程为y 2=2x ,②①②联立方程组解得它们公共点的坐标为(2,2),⎝ ⎛⎭⎪⎫12,-1.1. 在极坐标系中,圆C 的方程为ρ=22sin ⎝⎛⎭⎪⎫θ+π4,以极点为坐标原点、极轴为x 轴正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =1+2t (t 为参数),判断直线l 和圆C 的位置关系.解:ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4,即ρ=2(sin θ+cos θ),两边同乘以ρ得ρ2=2(ρsinθ+ρcos θ),得圆C 的直角坐标方程为(x -1)2+(y -1)2=2.消去参数t ,得直线l 的直角坐标方程为y =2x +1.圆心C 到直线l 的距离d =|2-1+1|22+12=255.因为d =255<2,所以直线l 和圆C 相交.2. 已知极坐标方程为ρcos θ+ρsin θ-1=0的直线与x 轴的交点为P ,与椭圆⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)交于点A 、B ,求PA ·PB 的值. 解:直线过点P(1,0),参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =22t (t 为参数).代入椭圆方程x 24+y 2=1,整理得52t 2+2t -3=0,则PA·PB=|t 1t 2|=65.3. 已知曲线C 的极坐标方程为ρ=6sin θ,以极点为原点、极轴为x 轴非负半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =12t ,y =32t +1(t 为参数),求直线l 被曲线C 截得的线段的长度.解:将曲线C 的极坐标方程化为直角坐标方程x 2+y 2-6y =0,即x 2+(y -3)2=9,它表示以(0,3)为圆心、以3为半径的圆,直线l 的普通方程为y =3x +1,圆C 的圆心到直线l 的距离d =1,故直线l 被曲线C 截得的线段长度为232-12=4 2.4. 已知直线C 1:⎩⎪⎨⎪⎧x =1+tcos α,y =tsin α(t 为参数),C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1) 当α=π3时,求C 1与C 2的交点坐标;(2) 过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.解: (1) 当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1.联立方程组⎩⎨⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点为(1,0),⎝ ⎛⎭⎪⎫12,-32.(2) C 1的普通方程为xsin α-ycos α-sin α=0.A 点坐标为(sin 2α,-cos αsin α),故当α变化时,P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =12sin 2α,y =-12sin αcos α(α为参数).P 点轨迹的普通方程为⎝ ⎛⎭⎪⎫x -142+y 2=116.故P 点轨迹是圆心为⎝ ⎛⎭⎪⎫14,0,半径为14的圆.直线的参数方程:经过点M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎪⎫α≠π2的直线l 的普通方程是y -y 0=tan α(x -x 0),而过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+tcos α,y =y 0+tsin α(t为参数).特别说明:直线参数方程中参数的几何意义:过定点M 0(x 0,y 0),倾斜角为α的直线l的参数方程为⎩⎪⎨⎪⎧x =x 0+tcos α,y =y 0+tsin α(t 为参数),其中t 表示直线l 上以定点M 0为起点,任一点M(x ,y)为终点的有向线段M 0M →的数量,当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0.我们也可以把参数t 理解为以M 0为原点,直线l 向上的方向为正方向的数轴上的点M 的坐标,其单位长度与原直角坐标系中的单位长度相同.请使用课时训练(B )第2课时(见活页).选修4-5 不等式选讲第1课时 绝对值不等式(对应学生用书(理)198~199页)1. 解不等式:|x +1|>3.解:由|x +1|>3得x +1<-3或x +1>3,解得x <-4或x >2.所以解集为(-∞,-4)∪(2,+∞).2. 解不等式:3≤|5-2x|<9.解:⎩⎪⎨⎪⎧|2x -5|<9|2x -5|≥3Þ ⎩⎪⎨⎪⎧-9<2x -5<92x -5≥3或2x -5≤-3Þ⎩⎪⎨⎪⎧-2<x<7,x ≥4或x≤1,得解集为(-2,1]∪[4,7).3. 已知|x -a|<b(a 、b∈R )的解集为{x|2<x<4}, 求a -b 的值.解:由|x -a|<b ,得a -b<x<a +b.又|x -a|<b(a 、b∈R )的解集为{x|2<x<4},所以a -b =2.4. 解不等式:|2x -1|-|x -2|<0. 解:原不等式等价于不等式组①⎩⎪⎨⎪⎧x≥2,2x -1-(x -2)<0,无解;②⎩⎪⎨⎪⎧12<x <2,2x -1+(x -2)<0,解得12<x<1;③⎩⎪⎨⎪⎧x≤12,-(2x -1)+(x -2)<0,解得-1<x≤12.综上得-1<x <1,所以原不等式的解集为{x|-1<x <1}. 5. 求函数y =|x -4|+|x -6|的最小值.解:y =|x -4|+|x -6|≥|x-4+6-x|=2.所以函数的最小值为2.1. 不等式的基本性质①a>b Û b<a ;②a>b,b>c Þa>c ; ③a>b Þa +c>b +c ;④a>b ,c>0Þac>bc ;a>b ,c<0Þac<bc ;⑤a>b>0Þa n >b n(n∈N ,且n>1); ⑥a>b>0Þna>nb (n∈N ,且n>1).2. 含有绝对值的不等式的解法①|f(x)|>a(a>0) Û f(x)>a 或f(x)<-a ; ②|f(x)|<a(a>0) Û-a<f(x)<a. 3. 含有绝对值的不等式的性质①|a|+|b|≥|a+b|;②|a|-|b|≤|a+b|; ③|a|-|b|≤|a±b|≤|a|+|b|. [备课札记]题型1 含绝对值不等式的解法例1 解不等式:|x +3|-|2x -1|<x2+1.解: ① 当x<-3时,原不等式化为-(x +3)-(1-2x)<x2+1,解得x<10,∴ x<-3.② 当-3≤x<12时,原不等式化为(x +3)-(1-2x)<x 2+1,解得x<-25,∴ -3≤x<-25.③ 当x≥12时,原不等式化为(x +3)-(2x -1)<x2+1,解得x>2,∴ x>2.综上可知,原不等式的解集为{x|x<-25或x>2}.备选变式(教师专享)(2011·南京一模)解不等式|2x -4|<4-|x|.解:原不等式等价于①⎩⎪⎨⎪⎧x<0,4-2x<4+x或②⎩⎪⎨⎪⎧0≤x≤2,4-2x<4-x 或③⎩⎪⎨⎪⎧x>2,2x -4<4-x , 不等式组①无解.由②0<x≤2,③2<x<83,得不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x<83.题型2 含绝对值不等式性质的运用例2 已知函数f(x)=|x -1|+|x -2|. 若不等式|a +b|+|a -b|≥|a|f(x)(a≠0,a 、b∈R )恒成立,求实数x 的取值范围.解:由题知,|x -1|+|x -2|≤|a -b|+|a +b||a|恒成立,故|x -1|+|x -2|不大于|a -b|+|a +b||a|的最小值.∵ |a +b|+|a -b|≥|a +b +a -b|=2|a|,当且仅当(a +b)·(a-b)≥0时取等号, ∴ |a -b|+|a +b||a|的最小值等于2.∴ x 的范围即为不等式|x -1|+|x -2|≤2的解,解不等式得12≤x ≤52.变式训练已知函数f(x)=|x -a|.(1) 若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a 的值; (2) 在(1)的条件下,若f(x)+f(x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.解:(1) 由f(x)≤3得|x -a|≤3,解得a -3≤x ≤a +3.又已知不等式f(x)≤3的解集为{x|-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2. (2) 当a =2时,f(x)=|x -2|,设g(x)=f(x)+f(x +5),于是g(x)=|x -2|+|x +3|≥|(2-x)+(x +3)|=5,当且仅当(2-x)(x +3)≥0即当-3≤x ≤2时等号成立.所以实数m 的取值范围是{m|m≤5}.题型3 含绝对值不等式综合运用例3 设函数f(x)=|x -a|+3x ,其中a >0.(1) 当a =1时,求不等式f(x)≥3x+2的解集;(2) 若不等式f(x)≤0的解集为{x|x≤-1},求a 的值.解:(1) 当a =1时,f (x)≥3x +2可化为|x -1|≥2.由此可得x≥3或x≤-1,故不等式f(x)≥3x +2的解集为{x|x≥3或x≤-1}.(2) 由f(x)≤0得|x -a|+3x≤0,此不等式化为不等式组⎩⎪⎨⎪⎧x≥a,x -a +3x≤0或⎩⎪⎨⎪⎧x≤a a -x +3x≤0,即⎩⎪⎨⎪⎧x≥a,x ≤a 4或⎩⎪⎨⎪⎧x≤a,x ≤-a 2. 因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x|x≤-a 2. 由题设可得-a 2=-1,故a =2. 变式训练已知关于x 的不等式|ax -1|+|ax -a|≥2(a>0).(1) 当a =1时,求此不等式的解集;(2) 若此不等式的解集为R ,求实数a 的取值范围.解:(1) 当a =1时,不等式为|x -1|≥1,∴ x ≥2或x≤0,∴ 不等式解集为{x|x≤0或x≥2}.(2) 不等式的解集为R ,即|ax -1|+|ax -a|≥2(a>0)恒成立.∵ |ax -1|+|ax -a|=a ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪x -1a +|x -1|≥a ⎪⎪⎪⎪⎪⎪1-1a , ∴ a ⎪⎪⎪⎪⎪⎪1-1a =|a -1|≥2.∵ a>0,∴ a≥3, ∴ 实数a 的取值范围为[3,+∞).1. (2013·重庆)若关于实数x 的不等式|x -5|+|x +3|<a 无解,求实数a 的取值范围. 解:因为不等式|x -5|+|x +3|的最小值为8,所以要使不等式|x -5|+|x +3|<a 无解,则a≤8,即实数a 的取值范围是(-∞,8].2. (2013·江西)在实数范围内,求不等式||x -2|-1|≤1的解集.解:由||x -2|-1|≤1得-1≤|x -2|-1≤1,即0≤|x-2|≤2,即-2≤x-2≤2,解得0≤x≤4,所以原不等式的解集为[0,4].3. 已知实数x 、y 满足:|x +y|<13,|2x -y|<16.求证:|y|<518. 证明:∵ 3|y|=|3y|=|2(x +y)-(2x -y)|≤2|x +y|+|2x -y|,由题设|x +y|<13,|2x -y|<16, ∴ 3|y|<23+16=56.∴ |y|<518. 4. (2013·福建理)设不等式|x -2|<a(a∈N *)的解集为A ,且32∈A ,12A. (1) 求a 的值;(2) 求函数f(x)=|x +a|+|x -2|的最小值.解:(1) 因为32∈A ,且12 A ,所以⎪⎪⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪⎪⎪12-2≥a , 解得12<a ≤32.因为a∈N *,所以a =1. (2) 因为|x +1|+|x -2|≥|(x+1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x≤2时取等号,所以f(x)的最小值为3.1. 解不等式:|x -1|>2x. 解:当x<0时,原不等式成立;当x≥1时,原不等式等价于x(x -1)>2,解得x>2或x<-1,所以x>2;当0<x<1时,原不等式等价于x(1-x)>2,这个不等式无解.综上,原不等式的解集是{x|x<0或x>2}.2. 若不等式|3x -b|<4的解集中整数有且只有1,2,3,求实数b 的取值范围.解:由|3x -b|<4,得-4<3x -b <4,即b -43<x <b +43. 因为解集中整数有且只有1,2,3,所以⎩⎪⎨⎪⎧0≤b -43<1,3<b +43≤4,解得⎩⎪⎨⎪⎧4≤b<7,5<b≤8,所以5<b <7. 3. 已知函数f(x)=|x +a|+|x -2|.(1) 当a =-3时,求不等式f(x)≥3的解集;(2) 若f(x)≤|x-4|的解集包含[1,2],求a 的取值范围.解:(1) 当a =-3时,f (x)≥3 |x -3|+|x -2|≥3 ⎩⎪⎨⎪⎧x≤23-x +2-x≥3或 ⎩⎪⎨⎪⎧2<x<33-x +x -2≥3或 ⎩⎪⎨⎪⎧x≥3x -3+x -2≥3 x ≤1或x≥4. (2) 原命题 f (x)≤|x-4|在[1,2]上恒成立 |x +a|+2-x≤4-x 在[1,2]上恒成立 -2-x≤a≤2-x 在[1,2]上恒成立 -3≤a≤0.4. 已知f(x)=|ax +1|(a∈R ),不等式f(x)≤3的解集为{x|-2≤x≤1}.(1) 求a 的值,(2) 若⎪⎪⎪⎪⎪⎪f (x )-2f ⎝ ⎛⎭⎪⎫x 2≤k 恒成立,求k 的取值范围. 解:(1) 由|ax +1|≤3得-4≤ax≤2,又f(x)≤3的解集为{x|-2≤x≤1},所以,当a≤0时,不合题意当a>0时,-4a ≤x ≤2a,得a =2. (2) 记h(x)=f(x)-2f ⎝ ⎛⎭⎪⎫x 2, 则h(x)=⎩⎪⎨⎪⎧1,x ≤-1-4x -3,-1<x<-12-1,x ≥-12, 所以|h(x)|≤1,因此k≥1.1. |ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式的解法(1) |ax +b|≤c -c≤ax+b≤c;(2) |ax +b|≥c ax +b≥c 或ax +b≤-c.2. |x -a|+|x -b|≥c(c>0)和|x -a|+|x -b|≤c(c>0)型不等式的解法 方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.请使用课时训练(A )第1课时(见活页).[备课札记]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-4 坐标系与参数方程第1课时 坐 标 系1. (选修44P 17习题第7题改编)已知点M 的直角坐标是(-1,3),求点M 的极坐标.解:⎝ ⎛⎭⎪⎫2,2k π+2π3(k∈Z )都是极坐标. 2. (选修44P 32习题第4题改编)求直线xcos α+ysin α=0的极坐标方程. 解:ρcos θcos α+ρsin θsin α=0,cos(θ-α)=0,取θ-α=π2.3. (选修44P 32习题第5题改编)化极坐标方程ρ2cos θ-ρ=0为直角坐标方程. 解:ρ(ρcos θ-1)=0,ρ=x 2+y 2=0,或ρcos θ=x =1.∴ 直角坐标系方程为x 2+y 2=0或x =1.4. 求极坐标方程ρcos θ=2sin2θ表示的曲线.解:ρcos θ=4sin θcos θ,cos θ=0,或ρ=4sin θ,即ρ2=4ρsin θ,则θ=k π+π2,或x 2+y 2=4y.∴ 表示的曲线为一条直线和一个圆.5. (选修44P 33习题第14题改编)求极坐标方程分别为ρ=cos θ与ρ=sin θ的两个圆的圆心距.解:圆心分别为⎝ ⎛⎭⎪⎫12,0和⎝ ⎛⎭⎪⎫0,12,故圆心距为22.1. 极坐标系是由距离(极径)与方向(极角)确定点的位置的一种方法,由于终边相同的角有无数个且极径可以为负数,故在极坐标系下,有序实数对(ρ,θ)与点不一一对应.这点应与直角坐标系区别开来.2. 在极坐标系中,同一个点M 的坐标形式不尽相同,M(ρ,θ)可表示为(ρ,θ+2n π)(n∈Z ).3. 极坐标系中,极径ρ可以为负数,故M(ρ,θ)可表示为(-ρ,θ+(2n +1)π)(n∈Z ).4. 特别地,若ρ=0,则极角θ可为任意角.5. 建立曲线的极坐标方程,其基本思路与在直角坐标系中大致相同,即设曲线上任一点M(ρ,θ),建立等式,化简即得.6. 常用曲线的极坐标方程(1) 经过点A(a ,0)与极轴垂直的直线的极坐标方程为ρcos θ=a. (2) 经过点A(0,a)与极轴平行的直线的极坐标方程为ρsin θ=a. (3) 圆心在A(a ,0),且过极点的圆的极坐标方程为ρ=2acos θ.7. 以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位.平面内任一点P 的直角坐标(x ,y)与极坐标(ρ,θ)可以互换,公式是⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ 和⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x . [备课札记]题型1 求极坐标方程例1 如图,AB 是半径为1的圆的一条直径,C 是此圆上任意一点,作射线AC ,在AC 上存在点P ,使得AP²AC=1,以A 为极点,射线AB 为极轴建立极坐标系.(1) 求以AB 为直径的圆的极坐标方程; (2) 求动点P 的轨迹的极坐标方程; (3) 求点P 的轨迹在圆内部分的长度.解:(1) 易得圆的极坐标方程为ρ=2cos θ.(2) 设C(ρ0,θ),P(ρ,θ),则ρ0=2cos θ,ρ0ρ=1.∴ 动点P 的轨迹的极坐标方程为ρcos θ=12.(3) 所求长度为 3. 备选变式(教师专享)求以点A(2,0)为圆心,且过点B ⎝ ⎛⎭⎪⎫23,π6的圆的极坐标方程. 解:由已知圆的半径为 AB =22+(2 3)2-2³2³2 3cos π6=2.又圆的圆心坐标为A(2,0),所以圆过极点, 所以圆的极坐标方程是ρ=4cos θ.题型2 极坐标方程与直角坐标方程的互化例2 在极坐标系中,设圆ρ=3上的点到直线ρ(cos θ+3sin θ)=2的距离为d.求d 的最大值.解:将极坐标方程ρ=3化为普通方程,得圆:x 2+y 2=9.极坐标方程ρ(cos θ+3sin θ)=2化为普通方程,得直线:x +3y =2.在x 2+y 2=9上任取一点A(3cos α,3sin α). 则点A 到直线的距离为d =|3cos α+33sin α-2|2=|6sin (α+30°)-2|2,∴ 所求d 的最大值为4. 变式训练在极坐标系中,圆C 的方程为ρ=2 2sin ⎝ ⎛⎭⎪⎫θ+π4,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的方程为y =2x +1,判断直线l 和圆C 的位置关系.解:ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4即ρ=2(sin θ+cos θ),两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ),得圆C 的直角坐标方程为(x -1)2+(y -1)2=2,圆心C 到直线l 的距离d =|2-1+1|22+12=255<2,所以直线l 和圆C 相交. 题型3 极坐标的应用例3 若两条曲线的极坐标方程分别为ρ=1与ρ=2cos ⎝ ⎛⎭⎪⎫θ+π3,它们相交于A 、B两点,求线段AB 的长.解:(解法1)联立方程⎩⎪⎨⎪⎧ρ=1,ρ=2cos ⎝ ⎛⎭⎪⎫θ+π3,得交点坐标为A(1,0),B ⎝ ⎛⎭⎪⎫1,-2π3(注意坐标形式不唯一).在△OAB 中,根据余弦定理,得AB 2=1+1-2³1³1³cos 2π3=3,所以AB = 3.(解法2)由ρ=1,得x 2+y 2=1.∵ ρ=2cos ⎝ ⎛⎭⎪⎫θ+π3=cos θ-3sin θ,∴ ρ2=ρcos θ-3²ρsin θ,∴ x 2+y 2-x +3y =0.由⎩⎨⎧x 2+y 2=1,x 2+y 2-x +3y =0,得A(1,0)、B ⎝ ⎛⎭⎪⎫-12,-32,∴AB =⎝ ⎛⎭⎪⎫1+122+⎝ ⎛⎭⎪⎫0+322= 3. 备选变式(教师专享)在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a(a>0) 的一个交点在极轴上,求a 的值.解:曲线C 1的直角坐标方程是2x +y =1,曲线C 2的普通方程是直角坐标方程x 2+y 2=a 2,因为曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a(a>0)的一个交点在极轴上,所以C 1与x 轴交点横坐标与a 值相等,由y =0,x =22,知a =22.1. (2013²安徽)在极坐标系中,求圆ρ=2cos θ的垂直于极轴的两条切线方程. 解:在极坐标系中,圆心坐标ρ=1,θ=0,半径r =1,所以左切线方程为θ=π2,右切线满足cos θ=2ρ,即ρcos θ=2.2. (2013²天津)已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,求|CP|. 解:由ρ=4cos θ得ρ2=4ρcos θ,即x 2+y 2=4x ,所以(x -2)2+y 2=4,圆心C(2,0).点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,即ρ=4,θ=π3,所以x =ρcos θ=4cos π3=2,y =ρsinθ=4sin π3=23,即P(2,23),所以|CP|=2 3.3. (2013²上海)在极坐标系中,求曲线ρ=cos θ+1与ρcos θ=1的公共点到极点的距离.解:联立方程组得ρ(ρ-1)=1 ρ=1±52.又ρ≥0,故所求为1+52.4. 在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:∵ 圆C 的圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点, ∴ 在ρsin ⎝⎛⎭⎪⎫θ-π3=-32中令θ=0,得ρ=1.∴ 圆C 的圆心坐标为(1,0). ∵ 圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4, ∴ 圆C 的半径为PC =(2)2+12-2³1³2cos π4=1.∴ 圆C 经过极点.∴ 圆C 的极坐标方程为ρ=2cos θ.1. (2013²北京)在极坐标系中,求点⎝⎛⎭⎪⎫2,π6到直线ρsin θ=2的距离.解:在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6化为直角坐标为(3,1),直线ρsin θ=2化为直角坐标方程为y =2.(3,1)到y =2的距离1,即为点⎝⎛⎭⎪⎫2,π6到直线ρsin θ=2的距离1.2. (2013²福建)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线上.(1) 求a 的值及直线的直角坐标方程;(2) 圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos αy =sin α,(α为参数),试判断直线与圆的位置关系.解:(1) 由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝ ⎛⎭⎪⎫θ-π4=a 上,可得a = 2. 所以直线的方程可化为ρcos θ+ρsin θ=2,从而直线的直角坐标方程为x +y -2=0.(2) 由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆心为(1,0),半径r =1, 因为圆心到直线的距离d =22<1,所以直线与圆相交. 3. 在极坐标系中,已知曲线C 1:ρ=12sin θ,曲线C 2:ρ=12cos ⎝ ⎛⎭⎪⎫θ-π6. (1) 求曲线C 1和C 2的直角坐标方程;(2) 若P 、Q 分别是曲线C 1和C 2上的动点,求PQ 的最大值.解:(1) 因为ρ=12sin θ,所以ρ2=12ρsin θ,所以x 2+y 2-12y =0,即曲线C 1的直角坐标方程为x 2+(y -6)2=36.又ρ=12cos ⎝⎛⎭⎪⎫θ-π6,所以ρ2=12ρ⎝ ⎛⎭⎪⎫cos θcos π6+sin θsin π6,所以x 2+y 2-63x -6y =0,即曲线C 2的直角坐标方程为(x -33)2+(y -3)2=36.(2) PQ max =6+6+(33)2+32=18.4. 圆O 1和圆O 2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ.(1) 把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2) 求经过圆O 1、圆O 2交点的直线的直角坐标方程.解:以极点为原点、极轴为x 轴正半轴建立平面直角坐标系,两坐标系中取相同的长度单位.(1) x =ρcos θ,y =ρsin θ,由ρ=4cos θ得ρ2=4ρcos θ,所以x 2+y 2=4x.即圆O 1的直角坐标方程为x 2+y 2-4x =0,同理圆O 2的直角坐标方程为x 2+y 2+4y =0.(2) 由⎩⎪⎨⎪⎧x 2+y 2-4x =0,x 2+y 2+4y =0,解得⎩⎪⎨⎪⎧x 1=0,y 1=0,⎩⎪⎨⎪⎧x 2=2,y 2=-2,即圆O 1、圆O 2交于点(0,0)和(2,-2),故过交点的直线的直角坐标方程为y =-x.由于平面上点的极坐标的表示形式不唯一,即(ρ,θ),(ρ,2π+θ),(-ρ,π+θ),(-ρ,-π+θ),都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程ρ=θ,点M ⎝ ⎛⎭⎪⎫π4,π4可以表示为⎝ ⎛⎭⎪⎫π4,π4+2π或⎝ ⎛⎭⎪⎫π4,π4-2π或⎝ ⎛⎭⎪⎫-π4,5π4等多种形式,其中,只有⎝ ⎛⎭⎪⎫π4,π4的极坐标满足方程ρ=θ.请使用课时训练(A )第1课时(见活页).[备课札记]。