数据分析期末试题与答案
电子商务数据分析期末试题(一)含答案
电子商务数据分析期末试题(一)含答案电子商务数据分析期末试题(一)含答案一、填空题 (共 10 题,每题 1 分。
)1.输入公式的方法与输入文字型数据类似,不同的是它必须以__________作为开头,然后才是公式的表达式。
2. Excel 中__________是计算和存储数据的文件,它由__________构成。
3 .在设置单元格区域时,两单元格之间用冒号(:)表示______________________________;单元格之间用单引号(’ )表示____________________。
4. ________________能直接反映消费者流量,帮助企业调整销售方向,影响企业的经济效益。
5.选择要输入身份证号码的单元格,在输入身份证号码的数字前先输入一______________________________,然后再输入身份证号码即可。
6. __________是指一定时期内,每一位消费者购买商品的平均金额,也就是平均交易金额。
7.生意参谋中的“__________”功能版块可以纵览店铺的各项交易数据,能够清楚显示店铺的运营情况和出现的问题。
8. __________是指消费者直接通过关键词搜索等途径进入店铺中的流量。
9. __________是百度指数的默认显示模块,可以反映搜索指数和咨询指数的趋势情况。
10. Excel 中的求和函数是__________。
二、单项选择题 (共 10 题,每题 1 分。
)1.()是转化漏斗模型的最后一个环节,它能够准确反映出店铺的整个成交转化情况。
A.有效入店率B.咨询转化率C.订单支付率D.成交转化率2.函数 AVERAGE(A1:B5)相当于()。
A.求(A1: B5) 区域的最小值B.求(A1: B5) 区域的平均值C.求(A1: B5) 区域的最大值D.求(A1: B5) 区域的总和3.工作表被保护后,该工作表中的单元格的内容、格式()。
数据分析期末试题及答案
数据分析期末试题及答案一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。
(25分)解:1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。
尝试多种模型后采用曲线估计,得出表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。
上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。
x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(33由图可知,他们之间呈正线性关系所以可以采用如下的线性回归方法分析。
2.线性回归先用强行进入的方式建立如下线性方程设Y=β0+β1*(Xi1)+β2*Xi2+β3*X+εi i=1.2 (24)3i其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差R值为0.952,大于0.8,表示两变量间有较强的线性关系。
且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。
建立总体性的假设检验提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零得如下方差分析表上表是方差分析SAS输出结果。
由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。
2021-2022学年北师大版八年级数学上册《第6章数据的分析》期末复习易错题型专题测试(附答案)
2021-2022学年北师大版八年级数学上册《第6章数据的分析》期末复习易错题型专题测试(附答案)一.选择题(共10小题,满分40分)1.某校四个绿化小组一天植树的棵数如下:9,9,m,7,已知这组数据的众数和平均数相等,那么这组数据的中位数是()A.8B.9C.10D.122.在一次体检中,甲、乙、丙、丁四位同学的平均体重为52.5kg,而甲、乙、丙三位同学的平均体重为52.3kg.下列说法正确的是()A.四位同学体重的中位数一定是其中一位同学的体重B.丁同学的体重一定高于其他三位同学的体重C.丁同学的体重为53.1kgD.四位同学体重的众数一定是52.5kg3.若一组数据x1+1,x2+1,x3+1…x n+1的平均数为18,方差为2,则数据x1+2,x2+2,x3+2……,x n+2的平均数和方差分别是()A.18,2B.19,3C.19,2D.20,44.x1,x2,...,x10的平均数为a,x11,x12,...,x50的平均数为b,则x1,x2, (x50)平均数为()A.a+b B.C.D.5.若一组数据a1,a2,……,a n的平均数为10,方差为4,那么数据2a1+3,2a2+3,…,2a n+3的平均数和方差分别是()A.13,4B.23,8C.23,16D.23,196.某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是()A.平均数B.中位数C.方差D.极差7.一家鞋店在一段时间内销售某种女鞋50双,各种尺码的销售量如表所示:尺码(厘米)2222.52323.52424.525销售量(双)12315731如果你是店长,为了增加销售量,你最关注哪个统计量()A.平均数B.众数C.中位数D.方差8.小明对居住在某小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图,这组数据的众数和中位数分别是()A.6,4B.6,6C.4,4D.4,69.某人上山的平均速度为3km/h,沿原路下山的平均速度为5km/h,上山用1h,则此人上下山的平均速度为()A.4km/h B.3.75km/h C.3.5km/h D.4.5km/h10.10个人围成一圈每人想一个自然数,并告诉在他两边的人,然后每人将他两边的人告诉他的数的平均数报出来,报的结果如图,则报13的人心想的数是()A.12B.14C.16D.18二.填空题(共9小题,满分36分)11.学校足球队5名队员的年龄分别是15,13,15,14,13,其方差为.12.已知一个样本0,﹣1,x,1,3它们的平均数是2,则这个样本的中位数是.13.有11个正整数,平均数是10,中位数是9,众数只有一个8,问最大的正整数最大为.14.某班学生在希望工程献爱心的捐献活动中,将省下的零用钱为贫困山区失学儿童捐款,有15位同学捐了20元,20位同学捐了10元,3位同学捐了8元,10位同学间了5元捐了,2位同学捐了3元,则该班学生共捐款元,平均捐款元,其中众数是元.15.一个样本为1、3、2、2、a,b,c.已知这个样本的众数为3,平均数为2,那么这个样本的方差为.16.已知数据x1,x2,x3,x4,x5的标准差为4,平均数为,则各数据与的差的平方和是.17.小明去商场买作业本,第一次买了4本不同类型的作业本,平均价格是0.85元,第二次买了6本,平均价格是0.95元,则他两次所买练习本的平均价格为.18.小明家去年的饮食、教育和其他支出分别为3600元,1200元,7200元,小亮家去年的饮食、教育和其他支出分别为3600元,1200元,7200元.小明家今年的这三项支出依次比去年增长了10%,20%,30%,小亮家今年的这三项支出依次比去年增长了20%,30%,10%.小明和小亮家今年的总支出比去年增长的百分数分别为和.19.已知数据x1,x2,x3,…,x n,的平均数是m,中位数是n,那么数据3x1+7,3x2+7,3x3+7,…,3x n+7的平均数等于,中位数是.三.解答题(共5小题,满分44分)20.为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩记录如表:射击次序(次)12345678910甲的成绩(环)8979867a108乙的成绩(环)679791087710(1)经计算甲和乙的平均成绩是8(环),请求出表中的a=;(2)甲成绩的中位数是环,乙成绩的众数是环;(3)若甲成绩的方差是1.2,请求出乙成绩的方差,判断甲、乙两人谁的成绩更为稳定?21.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m).绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图①中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定10人能进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.22.图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2.根据图中信息,解答下列问题:(1)将图2补充完整;(2)这8天的日最高气温的平均气温是℃;(3)计算这8天的日最高气温的方差.23.某市为了解学生数学学业水平,对八年级学生进行质量监测.甲、乙两个学校八年级各有300名学生参加了质量监测,分别从这两所学校个随机抽取了20名学生的本次测试成绩如下(满分100分)甲:75 86 74 81 76 75 70 95 70 79 81 74 70 80 86 69 83 75 86 75乙:73 93 88 81 40 72 81 94 83 77 83 80 70 81 73 78 82 80 70 81将收集的数据进行整理,制成如下条形统计图:注:60分以下为不及格,60~69分为及格,70~79分为良好,80分及以上为优秀.通过对两组数据的分析制成上面的统计表,请根据以上信息回答下列问题:(1)补全条形统计图,并估计本次监测乙校达到优秀的学生总共约有多少人?(2)求出统计表中的a,b的值;(3)请判断哪个学校的数学学业水平较好,说说你的理由.24.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表:平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.友情提示:一组数据的方差计算公式是S2=,其中为n个数据x1,x2,…,x n的平均数.参考答案一.选择题(共10小题,满分40分)1.解:∵众数为9,平均数等于众数,∴(9+9+m+7)=9,解得m=11,∴数据按从小到大排列为:7,9,9,11,∴这组数据的中位数=(9+9)÷2=9.故选:B.2.解:A、四位同学体重的中位数一定是其中两位同学的体重的平均数,本选项说法错误;B、丁同学的体重一定高于其他三位同学的体重的平均数,但不一定高于其他三位同学的体重,本选项说法错误;C、设丁同学的体重为xkg,由题意得,=52.5,解得,x=53.1,∴丁同学的体重为53.1kg,本选项说法正确;D、四位同学体重的众数不一定是52.5kg,本选项说法错误;故选:C.3.解:∵数据x1+1,x2+1,x3+1…x n+1的平均数为18,∴数据x1+2,x2+2,x3+2……,x n+2的平均数为18+1=19;∵数据x1+1,x2+1,x3+1…x n+1的方差是2,∴数据x1+2,x2+2,x3+2……,x n+2的方差是2;故选:C.4.解:前10个数的和为10a,后40个数的和为40b,50个数的平均数为.故选:D.5.解:数据a1,a2,……,a n的平均数为10,那么数据2a1+3,2a2+3,…,2a n+3的平均数为2×10+3=23,数据a1,a2,……,a n,方差为4,那么数据2a1+3,2a2+3,…,2a n+3的方差为4×22=16,故选:C.6.解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最低成绩写得更低了,计算结果不受影响的是中位数,故选:B.7.解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:B.8.解:6小时出现了20次,出现的次数最多,则众数为6;因为共有50个人,按大小顺序排列在中间的两个人的锻炼时间都为6小时,则中位数为6.故选:B.9.解:根据题意得,路程s=上山的平均速度v1×上山时间t1=3km/h×1h=3km,∴下山时间t2===0.6h,∴平均速度v==3.75km/h,故选:B.10.解:设报13的人心想的数是x,报5的人心想的数是28﹣x,报7的人心想的数是x﹣16,报9的人心想的数是32﹣x,报11的人心想的数是x﹣12,所以有x﹣12+x=2×12,解得x=18.故选:D.二.填空题(共9小题,满分36分)11.解:5名队员的平均年龄为(15+13+15+14+13)=14,所以数据的方差为S2=[(15﹣14)2+(13﹣14)2+(15﹣14)2+(14﹣14)2+(13﹣14)2]=0.8.故答案为0.8.12.解:∵0,﹣1,x,1,3的平均数是2,∴x=7,把0,﹣1,7,1,3按大小顺序排列为﹣1,0,1,3,7,∴个样本的中位数是1,故答案为1.13.解:∵11个正整数,平均数是10,∴和为110,∵中位数是9,众数只有一个8,∴当11个正整数为1,1,8,8,8,9,9,10,10,11,35时,最大的正整数最大为35,故答案为:35.14.解:该班学生共15+20+3+10+2=50人,共捐款20×15+10×20+3×8+10×5+2×3=580元,平均捐款=11.6;10出现的次数最多,所以众数是10.故填580;11.6;10.15.解:因为众数为3,可设a=3,b=3,c未知平均数=(1+3+2+2+3+3+c)=2,解得c=0根据方差公式S2=[(1﹣2)2+(3﹣2)2+(2﹣2)2+(2﹣2)2+(3﹣2)2+(3﹣2)2+(0﹣2)2]=故填.16.解:由题意知,方差S2=[(x1﹣)2+(x2﹣)2+(x3﹣)2+(x4﹣)2+(x5﹣)2]=42=16∴(x1﹣)2+(x2﹣)2+(x3﹣)2+(x4﹣)2+(x5﹣)2=16×5=80.故填80.17.解:两次所买练习本的平均价格=(0.85×4+0.95×6)÷10=0.91元.故填0.91元.18.解:去年的支出总数=3600+1200+7200=12000元,小明家今年的增加的支出=3600×10%+1200×20%+7200×30%=2760元,∴小明家今年的总支出比去年增长的百分数=2760÷12000=23%.小亮家今年的增加的支出=3600×20%+1200×30%+7200×10%=1800元,∴小亮家今年的总支出比去年增长的百分数=1800÷12000=15%.故填23%,15%.19.解:已知数据x1,x2,x3,…,x n的平均数是m,中位数是n,即n为最中间的那个数,那么数据3x1+7,3x2+7,3x3+7,…,3x n+7的中位数为3n+7;其平均数为3[(x1+x2+x3,…+x n)]+7=3m+7.三.解答题(共5小题,满分44分)20.解:(1)∵甲的平均成绩是8(环),∴(8+9+7+9+8+6+7+a+10+8)=8,解得a=8,故答案为:8;(2)甲成绩排序后最中间的两个数据为8和8,∴甲成绩的中位数是(8+8)=8;乙成绩中出现次数最多的为7,故乙成绩的众数是7,故答案为:8,7;(3)乙成绩的方差为[(﹣1)2×4+12×2+22×2+(﹣2)2+02]=1.8,∵甲和乙的平均成绩是8(环),而甲成绩的方差小于乙成绩的方差,∴甲的成绩更为稳定.21.解:(1)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图,∵=1.61,∴这组数据的平均数是1.61.∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数为1.65,∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60,有∴这组数据的中位数为1.60,(Ⅲ)能.∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前10名;∵1.65m>1.60m,∴能进入复赛.22.解:(1)由题可得,3℃的有2天.如图所示:(2)平均气温为:(2×1+2×2+2×3+4)=2(℃);故答案为:2;(3)这8天的日最高气温的方差为:[(0﹣2)2+(3﹣2)2+(1﹣2)2+(3﹣2)2+(2﹣2)2+(1﹣2)2+(2﹣2)2+(4﹣2)2]=.23.解:(1)补全条形统计图:本次监测乙校达到优秀的学生总共约有300×=180(人);(2)乙班的中位数a=(80+81)=80.5;甲班的众数b为75;(3)两组数据的平均数相同,而两组数据良好以上的人数相同,但是乙组数据优秀的人数较多,故乙校的数学学业水平较好.(答案不唯一)24.解:(1)填表:初中平均数为:(75+80+85+85+100)=85(分),众数85(分);高中部中位数80(分).故答案为:85,85,80;(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)∵=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴<,因此,初中代表队选手成绩较为稳定.。
第六章数据分析期末复习专练答案解析
数据分析期末复习专练一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.为了考察库存2000只灯泡的使用寿命,从中任意抽取15只灯泡进行实验,在这个问题中.下列说法正确的是()A.总体是2000只灯泡B.样本是抽取的15只灯泡C.个体是每只灯泡的使用寿命D.个体是2000只灯泡的使用寿命2.某校举办了一次“交通安全知识”测试,王老师从全校学生的答卷中随机抽取了200名学生的答卷,并将测试成绩分为,,,四个等级,绘制出如图所示的条形统计图.若该校学生共有1000名,则估计该校成绩为的学生人数为()A.30B.75C.150D.2003.以下调查中,适宜全面调查的是()A.了解某班学生的身高情况B.了解某批灯管的使用寿命C.了解当代大学生的主要娱乐方式D.了解全国中学生的课外阅读情况4.某班统计了该班全体学生60秒内高抬腿的次数,绘制出频数分布表:次数60≤<8080≤<100100≤<120120≤<140140≤<160160≤<180180≤<200频数1241417134给出以下结论:①组数是6;②组距是20;③全班有55名学生;④高抬腿次数在120≤<180范围内的学生占全班学生的80%.其中正确结论的个数为()A.1B.2C.3D.45.将数据83,85,87,89,84,85,86,88,87,90分组,86.5∼88.5这组的频数是()A.1B.2C.3D.46.如图,一、二两组同学将本组最近5次数学平均成绩分别绘制成折线统计图.由统计图可知,成绩进步幅度大的组是()A.一组B.二组C.一组、二组进步幅度一样大D.无法判断7.某校开展了“爱阅读”活动,七(1)班统计了1~6月全班同学的课外阅读数量(单位:本),绘制了折线统计图(如图所示),则下列说法中正确的是()A.6月份阅读数量最大B.阅读数量超过40本的月份共有5个C.相邻的两个月中,1月到2月的阅读数量增长最快D.4月份阅读数量为38本8.下图所示的两个统计图中,女生人数多的学校是()A.甲校B.乙校C.甲、乙两校女生人数一样多D.无法确定9.下列四种统计图:条形图、扇形图、折线图、直方图,能够显示数据分布情况的是()A. B. C. D.10.下图是某种学生快餐的营养成分统计图,若脂肪有30 ,则蛋白质有()A.135 B.130 C.125 D.120 二、填空题:本题共9小题,每小题3分,共27分。
《电商数据分析》期末复习题
《电商数据分析》期末复习题您的姓名: [填空题] *_________________________________1、下列数据指标中不属于供应链指标的是()。
[单选题] *A、订单满足率B、商品访客数(正确答案)C、库存周转率D、平均配送成本2、下列不属于指数工具的是()。
[单选题] *A、百度指数B、百度统计(正确答案)C、搜狗指数D、360趋势3、以下第三方工具中可查看竞争对手店铺销售数据、引流途径、广告投放、活动推广等数据信息的是()。
[单选题] *A、店侦探(正确答案)B、京东商智C、火车采集器D、百度指数4、()是产品在平台交易热度的体现,是衡量店铺、产品受欢迎程度的一个重要指标,它越高该产品越受消费者欢迎。
[单选题] *A、产品交易指数(正确答案)B、产品搜索指数C、产品购买指数D、产品收藏指数5、下列采集行为属于违法行为的是()。
[单选题] *A、使用生意参谋工具导出自己店铺运营数据B、使用百度指数工具获取关键词搜索指数及用户画像数据C、通过技术手段进入竞争对手网站数据库获取网站流量及销售数据(正确答案)D、使用数据采集工具采集其他网站公开数据信息用于数据分析6、以下不属于客户行为数据的是()。
[单选题] *A、购买时间B、客户地域(正确答案)C、支付金额D、评价7、产品获客能力是对产品为店铺或平台获取新客户的能力的衡量,主要指标不包括()。
[单选题] *A、客户关注量B、收藏量C、重复购买率D、店铺销售额(正确答案)8、在Excel中COUNT函数的功能是()。
[单选题] *A、求和B、计数(正确答案)C、算平均值D、条件求和9、某网店是一家经营化妆品的网店,近期,该网店的客户总数为200人,其中30人重复购买,这30人中有18人重复购买1次(即:购买2次),有12人重复购买2次(即:购买3次),那么交易次数计算,近期该网店的复购率是()。
[单选题] *A、21%(正确答案)B、18%C、15%D、30%10、某企业店铺单日成交了4个客户的订单,订单金额分别是:4620元、5670元、3850元、6660元,其客单价为()。
《第20章数据的分析》期末复习综合提升训练2套(附答案)-人教版八年级数学下册
人教版八年级数学下册《第20章数据的分析》期末复习综合提升训练1(附答案)1.女子排球队6名场上队员的身高(单位:cm)是:170,174,178,180,180,184.现用身高178cm的队员替换场上身高174cm的队员,与换人前相比,场上队员的身高()A.平均数变大,中位数不变B.平均数变大,中位数变大C.平均数变小,中位数不变D.平均数变小,中位数变大2.甲、乙、丙、丁四人各进行10次射击测试,它们的平均成绩相同,方差分别是S甲2=1,S乙2=1.1,S丙2=0.6,S丁2=0.9,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁3.已知两组数据:x1、x2、x3、x4、x5和x1+2、x2+2、x3+2、x4+2、x5+2,下列有关这两组数据的说法中,正确的是()A.平均数相等B.中位数相等C.众数相等D.方差相等4.在一次体育测试中,小明记录了本班10名同学一分钟跳绳的成绩,如表:成绩150160170180190人数23221对于这10名学生的跳绳成绩,下列说法错误的是()A.众数是160B.中位数是165C.平均数是167D.方差是104.55.李明参加某单位招聘测试,他的笔试、面试、技能操作得分分别为86分、80分、90分,若依次按照2:3:5的比例确定成绩,则李明的成绩是()A.256分B.86分C.86.2分D.88分6.学校举行演讲比赛,共有13名同学进入决赛,比赛将评出金奖1名,银奖2名,铜奖3名,某选手知道自己的分数后,要判断自己能否获奖,他应当关注有关成绩的()A.平均数B.中位数C.众数D.方差7.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是()A.平均数B.中位数C.方差D.众数8.为筹备班级联欢会,班长对全班同学爱吃哪几种水果做了民意调查,然后决定买什么水果,最值得关注的应该是统计调查数据的()A.中位数B.平均数C.众数D.方差9.若x1,x2,x3,x4的平均数为4,x5,x6,x7,…,x10的平均数为6,则x1,x2,…,x10的平均数为()A.5B.4.8C.5.2D.810.数据201,202,198,199,200的方差与极差分别是()A.1,4B.2,2C.2,4D.4,211.在防治新型冠状病毒知识问答中10名参赛选手得分情况如表:人数1342分数80859095那么这10名选手所得分数的中位数.12.某班40位同学参加“慈善一日捐”活动,具体捐款情况如下表:捐款/元51015202530人数4510786则捐款的平均数为元.13.小芳同学10周的综合素质评价成绩统计如下:成绩(分)94959798100周数12241这10周的综合素质评价成绩的中位数、众数和方差分别为:、、.14.样本数据1,5,n,6,8的众数是1,则这组数的中位数是.15.某地教育局拟招聘一批数学教师,现有一名应聘者笔试成绩88分、面试成绩90分,综合成绩按照笔试占40%、面试占60%进行计算,该应聘者的综合成绩为分.16.一组数1、2、3、4、5的方差是S12与另一组数3、4、5、6、7的方差S22的大小比较S12S22(填写:大于、等于、小于).17.若5个正数a1,a2,a3,a4,a5的平均数是a,则a1,a2,0,a3,a4,a5的平均数是.18.若一组数据x1,x2,…,x n的方差为9,则数据2x1+3,2x2+3,…,2x n+3的方差为.19.小明用s2=[(x1﹣6)2+(x2﹣6)2+…+(x10﹣6)2]计算一组数据的方差,那么x1+x2+x3+…+x10=.20.若一组数据3,4,5,x的极差是5,则x=.21.某校为了解学生对防疫知识的掌握情况,进行了一次“防疫知识测试”,随机抽取了部分学生的成绩,整理并绘制出如下不完整的统计表和统计图,请根据图表所提供的信息,解答下列问题:组别分数/分频数A80≤x<85aB85≤x<908C90≤x<9516D95≤x<100b (1)本次调查一共随机抽取了名学生的成绩,表格中的a=,b=;(2)本次调查中,学生成绩的中位数落在组内(填字母);(3)该校共有3000名学生,估计成绩达到90分以上(含90分)的学生人数约有多少人?22.2020年是全面建设小康社会实现之年,是脱贫攻坚战收关之年.某县政府派出调查小组对农村地区经济情况进行摸底,以便出台更精准的扶贫政策.调查小组开展了一次调查研究,请将下面的过程补全.[收集数据]调查小组计划选取A、B两村各20户上一年度家庭收入作为样本,下面的取样方法中,合理的是______(填字母);A.随机抽取A、B两村各20户上一年度家庭收入组成样本B.抽取A、B两村各20户上一年度家庭收入较好的组成样本C.抽取A、B两村各20户上一年度家庭收入较差的组成样本[整理数据]抽样方法确定后,调查小组获得的数据(单位:万元)如下:A村:1.8,1.5,2.2,2.4,2.4,2.2,2.6,2.0,1.8,2.1,1.6,2.0,2.4,2.4,2.1,3.0,3.2,2.8,2.7,2.8B村:1.6,1.7,2.2,2.2,2.1,2.2,2.2,3.0,2.8,2.2,1.5,1.8,2.0,2.2,2.6,2.8,3.1,3.0,2.8,2.0[描述数据]按如下分段整理,描述这两组样本数据:1.5≤x<22≤x<2.5 2.5≤x<33≤x<3.5上一年度家庭收入(单位:万元)A村4a4bB村4943 [分析数据]两组样本数据的平均数、中位数、众数如下表所示:平均数中位数众数A村 2.3c 2.4B村 2.3 2.2 2.2 [得出结论]请根据以上数据,回答下列问题:(1)在[收集数据]阶段,取样方法合理的是(填字母);(2)填空:a=,b=,c=;(3)若A村有300户人家,请估计A村上一年度家庭收入不少于2.5万元的户数;(4)结合这两组样本数据的平均数、中位数和众数,你认为A村和B村中哪个经济比较好?请至少从两个方面说明理由.23.某集团旗下有两家酒店A,B,2020年下半年的月营业额统计如下:[信息一]A,B两家酒店2020年下半年月营业额(单位:百万元)统计图如下[信息二]A,B两家酒店2020年下半年月营业额的相关数据统计如下:酒店平均数中位数众数方差A 2.5 2.2 2.20.73B 2.3 1.9△0.59(1)已知A酒店2020年11月份月营业额为3百万元,求A酒店2020年下半年的营业总额;(2)求B酒店2020年8月份的月营业额,并补全[信息二]中缺失数据;(3)结合数据分析,2020年下半年A,B两家酒店哪家经营状况较好,请说明理由.24.小明本学期的数学成绩如表所示:测验类别平时成绩1平时成绩2平时成绩3平时成绩4平时平均数期中考试期末考试成绩108103101108a110114(1)六次测试成绩的中位数和众数分别是什么?(2)请计算出小明该学期的平时成绩平均分a的值;(3)如果学期的数学总评成绩是根据一定的权重计算所得,其中平时成绩a所占权重为20%,已知小明该学期的总评成绩为111分,请计算出期中考试和期末考试各自所占权重.25.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加比赛.两校派出选手的比赛成绩如图所示.根据以上信息.整理分析数据:平均数/分中位数/分众数/分A校858585B校85a b(1)a=;b=;(2)填空:(填“A校”或“B校”)①从两校比赛成绩的平均数和中位数的角度来比较,成绩较好的是;②从两校比赛成绩的平均数和众数的角度来比较,成绩较好的是;③从两校比赛成绩的方差的角度来比较,代表队选手成绩的方差较大.参考答案1.解:用身高为178cm的队员替换场上身高为174cm的队员,使总身高增加,进而平均数身高变大,但换人后,从小到大排列的顺序不变,因此中位数不变,故选:A.2.解:∵S甲2=1,S乙2=1.1,S丙2=0.6,S丁2=0.9,∴S丙2<S丁2<S甲2<S乙2,∴射击成绩最稳定的是丙,故选:C.3.解:因为新数据是在原数据的基础上每个加2,∴这两组数据的波动幅度不变,故选:D.4.解:A.这组数据中160出现3次,次数最多,所以这组数据的众数为160,此选项正确,不符合题意;B.这组数据的中位数为=165,此选项正确,不符合题意;C.这组数据的平均数为×(2×150+3×160+2×170+2×180+190)=167,此选项正确,不符合题意;D.这组数据的方差为×[2×(150﹣167)2+3×(160﹣167)2+2×(170﹣167)2+2×(180﹣167)2+(190﹣167)2]=161,此选项错误,符合题意;故选:D.5.解:=86.2(分),即李明的成绩是86.2分.故选:C.6.解:∵进入决赛的13名学生所得分数互不相同,共有1+2+3=6个奖项,∴这13名学生所得分数的中位数即是获奖的学生中的最低分,∴某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,如果这名学生的分数大于或等于中位数,则他能获奖,如果这名学生的分数小于中位数,则他不能获奖.故选:B.7.解:原数据的3,5,5,7的平均数为=5,中位数为5,众数为5,方差为×[(3﹣5)2+(5﹣5)2×2+(7﹣5)2]=2;新数据3,5,5,5,7的平均数为=5,中位数为5,众数为5,方差为×[(3﹣5)2+(5﹣5)2×3+(7﹣5)2]=1.6;所以添加一个数据5,方差发生变化,故选:C.8.解:由于众数是数据中出现次数最多的数,故班长最值得关注的应该是统计调查数据的众数.故选:C.9.解:由题意可得,x1,x2,…,x10的平均数为:===5.2,故选:C.10.解:极差为202﹣198=4,∵平均数为=200,∴方差为×[(201﹣200)2+(202﹣200)2+(198﹣200)2+(199﹣200)2+(200﹣200)2]=2,故选:C.11.解:将这10名参赛选手的得分从小到大排列处在中间位置的两个数都是90分,因此中位数是90分,故答案为:90.12.解:捐款的平均数为×(5×4+10×5+15×10+20×7+25×8+30×6)=18.5(元),13.解:这组数据中98出现次数最多,有4次,所以这组数据的众数为98分,由于一共有10个数据,其中位数是第5、6个数据的平均数,所以中位数为=97.5(分),∵这组数据的平均数为=97(分),方差为×[(94﹣97)2+2×(95﹣97)2+2×(97﹣97)2+4×(98﹣97)2+(100﹣97)2]=3,故答案为:97.5分、98分、3.14.解:∵数据1,5,n,6,8的众数是1,∴n=1,则这组数据为1、1、5、6、8,∴这组数据的中位数为5,故答案为:5.15.解:该应聘者的综合成绩为88×40%+90×60%=89.2(分),故答案为:89.2.16.解:由题意知,第2组数据是在第1组数据的基础上每个数据都加上2的,∴第2组数据的波动性与第1组数据的波动性相同,即S12=S22,故答案为:等于.17.解:∵正数a1,a2,a3,a4,a5的平均数是a,∴a1+a2+a3+a4+a5=5a,∴(a1+a2+0+a3+a4+a5)=a;故答案为:a.18.解:设一组数据x1,x2…x n的方差S2=9,则另一组数据2x1+3,2x2+3…2x n+3的S′2=22S2=36,故答案为:36.19.解:由s2=[(x1﹣6)2+(x2﹣6)2+…+(x10﹣6)2]知这10个数据的平均数为6,所以x1+x2+x3+…+x10=6×10=60,20.解:①x是最小的数时,5﹣x=5,解得x=0,②x是最大的数时,x﹣3=5,解得x=8,所以,x的值为0或8.故答案为:0或8.21.解:(1)8÷20%=40(人),b=40×35%=14(人),a=40﹣14﹣8﹣16=2(人),故答案为:40,2,14;(2)将这40名学生的成绩从小到大排列处在中间位置的两个数都在C组,故答案为:C;(3)1000×=750(人),答:该校共有3000名学生中成绩达到90分以上(含90分)的有750人.22.解:(1)根据样本的广泛性和代表性可知,取样方法中,合理的是:A.随机抽取A、B两村各20户上一年度家庭收入组成样本,故选:A;(2)由统计频数的方法可得,a=10,b=2,A村家庭收入出现次数最多的是2.4万元,因此众数是2.4万元,即c=2.4,故答案为:10,2,2.4;(3)300×=90(户),答:A村有300户人家中一年度家庭收入不少于2.5万元的大约有90户;(4)A村的比较好,理由为:由于A村、B村的平均数相同,而A村的中位数、众数都比B村的高,所以A村的紧急情况比较好.23.解:(1)2.5×6=15(百万元),答:A酒店2020年下半年的营业总额为15百万元;(2)B酒店下半年的总营业额为2.3×6=13.8(百万元),因此B酒店8月份的营业额为13.8﹣1.5﹣1.7﹣2.3﹣1.7﹣3.6=3(百万元),补全条形统计图如图所示:(3)A酒店的经营状况较好,理由:A酒店经营营业额的平均数、中位数、众数均比B 酒店的高.24.解:(1)六次数据依次为:101、103、108、108、110、114,则中位数为:108,众数为:108;(2)a==105;(3)设期中考试所占权重是x,期末考试所占权重是y,由题意得,解得:.答:期中考试所占权重是30%,期末考试所占权重是50%.25.解:(1)将B校5名选手的成绩重新排列为:70、75、80、100、100,所以其中位数a=80、众数b=100,故答案为:80、100;(2)①从两校比赛成绩的平均数和中位数的角度来比较,成绩较好的是A校;②从两校比赛成绩的平均数和众数的角度来比较,成绩较好的是B校;③=×[(75﹣85)2+(80﹣85)2+2×(85﹣85)2+(100﹣85)2]=70,=×[(70﹣85)2+(75﹣85)2+(80﹣85)2+2×(100﹣85)2]=160,∴从两校比赛成绩的方差的角度来比较,B校代表队选手成绩的方差较大.故答案为:A校、B校、B校.人教版八年级数学下册《第20章数据的分析》期末复习综合提升训练2(附答案)1.已知一组数据1,0,3,﹣1,x,2,3的平均数是1,则这组数据的中位数是()A.﹣1B.1C.3D.﹣1或者3 2.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如右表:根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()册数/册12345人数/人25742A.3,3B.3,7C.2,7D.7,33.某家书店对上季度该店中国古代四大名著的销售量统计如表:书名《西游记》《水浒传》《三国演义》《红楼梦》销售量/本180********依据统计数据,为了更好地满足读者需求,该书店决定本季度购进中国古代四大名著时多购进一些《西游记》,你认为最影响该书店决策的统计量是()A.平均数B.众数C.中位数D.方差4.参加第六届京津冀羽毛球冠军挑战赛的一个代表队的年龄分别是49,20,20,25,31,40,46,20,44,25,这组数据的平均数,众数,中位数分别是()A.33,21,27B.32,20,28C.33,49,27D.32,21,22 5.测试五位学生的“1000米”跑成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将跑的最快一名学生成绩写得更快了,则计算结果不受影响的是()A.总成绩B.方差C.中位数D.平均数6.某校七年级学生的平均年龄为13岁,年龄的方差为3,若学生人数没有变动,则两年后的同一批学生,对其年龄的说法正确的是()A.平均年龄为13岁,方差改变B.平均年龄为15岁,方差不变C.平均年龄为15岁,方差改变D.平均年龄为13岁,方差不变7.已知样本数据2,3,5,3,7,下列说法不正确的是()A.平均数是4B.众数是3C.中位数是5D.方差是3.28.在样本方差的计算式s2=[(x1﹣10)2+(x2﹣10)2+…+(x5﹣10)2]中,数字5和10分别表示样本的()A.容量,方差B.平均数,众数C.标准差,平均数D.容量,平均数9.已知一组数据a1,a2,a3,a4,a5的方差是S1,另一组数据a1﹣6,a2﹣6,a3﹣6,a4﹣6,a5﹣6的方差是S2,则S1与S2的大小关系是S1S2(填写“>”“<”或“=”).10.已知a,b,c,d的平均数是3,则2a﹣1,2b﹣1,2c﹣1,2d﹣1的平均数是.11.已知一组数据x1,x2,x3的平均数是15,方差是2,那么另一组数据2x1﹣4,2x2﹣4,2x3﹣4的平均数是.12.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示:则在这四个选手中,成绩最稳定的是.选手甲乙丙丁方差0.560.600.500.4513.一组数据1,1,x,2,4,5的平均数是3,则这组数据的中位数是.14.一组数据4,7,x,6,9众数是9,则这5个数据的平均数为.15.小明在跳绳考核中,前4次跳绳成绩(次数/分钟)记录为:180,178,180,177,若要使5次跳绳成绩的平均数与众数相同,则小明第5次跳绳成绩是.16.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是.17.某班40位同学参加“慈善一日捐”活动,具体捐款情况如下表:捐款/元51015202530人数4510786则捐款的平均数为元.18.小芳同学10周的综合素质评价成绩统计如下:成绩(分)94959798100周数12241这10周的综合素质评价成绩的中位数、众数和方差分别为:、、.19.一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则x﹣y=.20.如果一组数据5、8、a、7、4的平均数是a,那么这组数据的方差为.21.某快餐店某天销售3种盒饭的有关数据如图所示,则3种盒饭的价格平均数是元.22.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为,.23.某地农业科技部门积极助力家乡农产品的改良与推广,为了解甲、乙两种新品橙子的质量,进行了抽样调查在相同条件下,随机抽取了甲、乙各25份样品,对大小甜度等各方面进行了综合测评,并对数据进行收集、整理、描述和分析,下面给出了部分信息.a.测评分数(百分制)如下:甲:77,79,80,80,85,86,86,87,88,89,89,90,91,91,91,91,91,92,93,95,95,96,97,98,98乙:69,79,79,79,86,87,87,89,89,90,90,90,90,90,91,92,92,92,94,95,96,96,97,98,98b.按如下分组整理、描述这两组样本数据:60≤x<7070≤x<8080≤x<9090≤x≤100甲02914乙13516 c.甲、乙两种橙子测评分数的平均数、众数、中位数如下表所示:品种平均数众数中位数甲89.4m91乙89.490n 根据以上信息,回答下列问题(1)写出表中m,n的值(2)记甲种橙子测评分数的方差为s12,乙种橙子测评分数的方差为s22,则s12,s22的大小关系为;(3)根据抽样调查情况,可以推断种橙子的质量较好,理由为.(至少从两个不同的角度说明推断的合理性)24.张老师对李华和刘强两位同学从数学运算、逻辑推理、直观想象和数据分析四个方面考核他们的数学素养,单项检测成绩(百分制)列表如下:姓名数学运算逻辑推理直观想象数据分析李华86858085刘强74878784(1)分别对两个人的检测成绩进行数据计算,补全下表:姓名平均分中位数众数方差李华848585刘强838722.8(2)你认为李华和刘强谁的数学素养更好?结合数据,从两个角度进行分析.(3)若将数学运算、逻辑推理、直观想象、数据分析四个检测成绩分别按权重30%,40%,20%,10%的比例计算最终考核得分,请分别计算李华和刘强的最终得分.25.杭州市建兰中学开展防疫知识线上竞赛活动,九年级(1)、(2)班各选出5名选手参加竞赛,两个班选出的5名选手的竞赛成绩(满分为100分)如图所示.(1)求九(1)班的众数和九(2)班的中位数;(2)计算两个班竞赛成绩的方差,并说明哪个班的成绩较为整齐.26.某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数中位数众数甲10乙107(1)填空:根据表Ⅰ的数据补全表Ⅱ;(2)老师计算了乙品牌冰箱销量的方差:S乙2=[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=(台2).请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?27.甲、乙两班各选派10名学生参加“文明城市创建”知识问答.各参赛选手的成绩如下:甲班:93,98,89,93,95,96,93,96,98,99;乙班:93,95,88,100,92,93,100,98,98,93;通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差甲班999595.5a b乙班10095c9313.8(1)填空:a=,b=,c=;(2)根据上述数据,你认为哪个班的成绩好一些?请简要说明理由.28.九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表Ⅰ)所示:小华708090807090801006080小红908010060908090606090现根据上表数据进行统计得到下表(表Ⅱ):姓名平均成绩中位数众数小华80小红8090(1)填空:根据表Ⅰ的数据完成表Ⅱ中所缺的数据;(2)老师计算了小红的方差[4×(90﹣80)2+3×(60﹣80)2+(100﹣80)2]=200,请你计算小华的方差并说明哪名学生的成绩较为稳定.参考答案1.解:∵一组数据1,0,3,﹣1,x,2,3的平均数是1,∴[1+0+3+(﹣1)+x+2+3]÷7=1,解得x=﹣1,∴这组数据按照从小到大排列是:﹣1,﹣1,0,1,2,3,3,∴这组数据的中位数是1,故选:B.2.解:因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=3,由表格知数据3出现了7次,次数最多,所以众数为3.故选:A.3.解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:B.4.解:这组数据的平均数是:(49+20+20+25+31+40+46+20+44+25)÷10=32(岁),这组数据出现最多的数是20,所以这组数据的众数是20岁;把这些数按从小到大的顺序排列为:20,20,20,25,25,31,40,44,46,49,则这组数据的中位数是:(25+31)÷2=28(岁).故选:B.5.解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数.故选:C.6.解:两年后的同一批学生的年龄均增加2岁,其年龄的波动幅度不变,所以平均年龄为15岁,方差不变,故选:B.7.解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S2=[(2﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(7﹣4)2]=3.2.故选:C.8.解:在方差的计算公式中,n代表容量,代表平均数.故选:D.9.解:根据题意知,数据a1﹣6,a2﹣6,a3﹣6,a4﹣6,a5﹣6是将数据a1,a2,a3,a4,a5分别减去6所得,所以两组数据的波动幅度相同,∴S1=S2,故答案为:=.10.解:∵a,b,c,d的平均数是3,∴a+b+c+d=12,∴[(2a﹣1)+(2b﹣1)+(2c﹣1)+(2d﹣1)]÷4=(2a﹣1+2b﹣1+2c﹣1+2d﹣1)÷4=[2(a+b+c+d)﹣4]×=﹣1=﹣1=6﹣1=5,故答案为:5.11.解:∵数据x1,x2,x3的平均数是15,∴数据2x1﹣4,2x2﹣4,2x3﹣4的平均数是2×15﹣4=26;故答案为:26.12.解:∵0.60>0.56>0.50>0.45,∴丁的方差最小,∴成绩最稳定的是丁,故答案为:丁.13.解:∵数据1,1,x,2,4,5的平均数是3,∴=3,解得x=5,所以这组数据为1,1,2,4,5,5,则这组数据的中位数为=3,故答案为:3.14.解:∵数据4,7,x,6,9众数是9,∴x=9,∴这组数据的平均数是(4+7+9+6+9)÷5=7;故答案为:7.15.解:设小明第5次跳绳成绩是x次数/分钟,根据题意得,(180+178+180+177+x)=180,解得,x=185.故答案为:185.16.解:平均数=,方差==2.5,故答案为:2.517.解:捐款的平均数为×(5×4+10×5+15×10+20×7+25×8+30×6)=18.5(元),故答案为:18.5.18.解:这组数据中98出现次数最多,有4次,所以这组数据的众数为98分,由于一共有10个数据,其中位数是第5、6个数据的平均数,所以中位数为=97.5(分),∵这组数据的平均数为=97(分),方差为×[(94﹣97)2+2×(95﹣97)2+2×(97﹣97)2+4×(98﹣97)2+(100﹣97)2]=3,故答案为:97.5分、98分、3.19.解:∵一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,∴(2+5+x+y+2x+11)=(x+y)=7,解得y=9,x=5,∴x﹣y=5﹣9=﹣4,故答案为﹣4.20.解:根据题意知=a,解得a=6,所以这组数据为5、8、6、7、4,则这组数据的方差为×[(5﹣6)2+(8﹣6)2+(6﹣6)2+(7﹣6)2+(4﹣6)2]=2,故答案为:2.21.解:3种盒饭的价格平均数是6×25%+8×15%+10×60%=8.7(元),故答案为:8.7.22.解:∵共有22个数据,其中位数是第11、12个数据的平均数,而第11、12个数据分别为8环、8环,∴射中环数的中位数为=8(环),∵这组数据中8环次数最多,∴众数为8环,故答案为:8环,8环.23.解:(1)甲品种橙子测评成绩出现次数最多的是91分,所以众数是91,即m=91,将乙品种橙子的测评成绩从小到大排列处在中间位置的一个数是90,因此中位数是90,即n=90,答:m=91,n=90;(2)由甲、乙两种橙子的测评成绩的大小波动情况,直观可得s12<s22,故答案为:<;(3)甲品种较好,理由为:甲品种橙子的中位数、众数均比乙品种的高.故答案为:甲,甲品种橙子的中位数、众数均比乙品种的高.24.解:(1)李华成绩的方差为×[(86﹣84)2+2×(85﹣84)2+(80﹣84)2]=5.5,刘强成绩的中位数为=85.5,补全表格如下:姓名平均分中位数众数方差李华848585 5.5刘强8385.58722.8故答案为:5.5、85.5;(2)李华的数学素养更好,从平均数看,李华的平均分高于刘强,所以李华的平均成绩更好;从方差看,李华的方差小于刘强,所以李华的成绩更加稳定(答案不唯一,合理均可);(3)李华的最终成绩为86×30%+85×40%+80×20%+85×10%=84.3(分),刘强的最终成绩为74×30%+87×40%+87×20%+84×10%=82.8(分).25.解:(1)由图知,九(1)班成绩为80、80、80、90、100,九(2)班成绩为70、80、85、95、100,所以九(1)班成绩的众数为80分,九(2)班成绩的中位数为85分;(2)九(1)班成绩的平均数为=86(分),九(2)班成绩的平均数为=86(分),∴九(1)班成绩的方差为×[3×(80﹣86)2+(90﹣86)2+(100﹣86)2]=64,九(2)班成绩的方差为×[(70﹣86)2+(80﹣86)2+(85﹣86)2+(95﹣86)2+(100﹣86)2]=114,∴九(1)班成绩较为整齐.26.解:(1)甲品牌销售数量从小到大排列为:9、9、10、10、10、12,所以甲品牌销售数量的平均数为=10(台),众数为10台,乙品牌销售数量从小到大排列为7、7、10、11、12、13,所以乙品牌销售数量的中位数为=10.5(台),补全表格如下:平均数中位数众数甲101010乙1010.57故答案为:10、10、10.5;(2)建议商家可多采购甲品牌冰箱,∵甲品牌冰箱销量的方差=×[(9﹣10)2×2+(10﹣10)2×3+(12﹣10)2]=1,S乙2=,∴<S乙2,∴甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱.27.解:(1)甲班成绩出现次数最多的是93,所以甲班成绩的众数a=93,方差b=×[(89﹣95)2+3×(93﹣95)2+(95﹣95)2+2×(96﹣95)2+2×(98﹣95)2+(99﹣95)2]=8.4,乙班成绩重新排列为:88,92,93,93,93,95,98,98,100,100;所以乙班成绩的中位数c==94,故答案为:93、8.4、94;(2)∵甲班的方差是8.4,乙班的方差是12,甲的方差小于乙的方差,∵甲班代表队成绩稳定;∵甲班的中位数是95,乙班的中位数是94,∴甲班的高分人数多于乙班的平均数,∴综上甲班代表队成绩好.28.解:(1)小华的平均成绩为=80,众数为80,小红的成绩重新排列为60、60、60、80、80、90、90、90、90、100,所以小红成绩的中位数为=85,补全表格如下:姓名平均成绩中位数众数小华808080小红808590(2)小华的方差为×[(60﹣80)2+2×(70﹣80)2+4×(80﹣80)2+2×(90﹣80)2+(100﹣80)2]=120,∵120<200,∴小华成绩稳定。
Excel商务数据分析与应用-期末试卷(含答案)
10._________用高亮颜色展示用户的访问偏好,对用户的体验数据进行可视化展示。
二、单项选择题 (共10题,每题1
1.下列不属于流量数据的是()。
A.人均费用
B.浏览量
C.访客数
D.在线时长
2.下列恒道
D.谷歌分析
3.下列属于数据收集内部渠道的是()。
①客户调查②专家与客户访谈③专业调研机构④内部数据库
A.①、②、④
B.①、③、④
C.①、②、③
D.全部
4.下列不属于数据分析工具的是()
A.SPSS
B.R
C.PowerPoint
5.绩效考核一般以()为单位。
A.天
B.周
C.月
D.年
6.一般情况下可以将用户的维度归纳为四类,下列属于用户维度的有()。
A.爱好
B.屏幕大小
C.广告来源
D.用户活跃度
7.线下供货商主要有()。
A.商品批发市场
B.实体店
C.生产厂家
D.商家网站
8.下列属于前端行为数据的有()。
A.访问量
B.浏览量
C.站内搜索
C.跳失率
D.转化率
9.下列不属于营运指标的是()。
A.成交指标
B.订单指标
C.会员指标
D.采购指标
10.在用户分群的基础上,一般抽取()个用户来进行细查即可覆盖分群用户大部分的行为规律。
A.1~2
B.2~3
C.3~5
D.5~10
三、多项选择题 (共10题,每题2
1.下列属于后端商业数据的是()。
python数据分析期末考试题及答案
python数据分析期末考试题及答案一、单项选择题(每题2分,共20分)1. 在Python中,用于数据科学计算的库是:A. NumPyB. MatplotlibC. PandasD. SciPy答案:A2. 下列哪个函数用于计算数组的均值?A. mean()B. median()C. sum()D. count()答案:A3. Pandas中,哪个函数用于读取CSV文件?A. read_csv()B. read_excel()C. read_sql()D. read_html()答案:A4. 在Pandas中,DataFrame的列可以被重新命名,使用的方法是什么?A. rename()B. rename_axis()C. set_axis()D. set_index()答案:A5. 如果要将一个Pandas DataFrame的列转换为行,应该使用哪个方法?A. transpose()B. pivot()C. melt()D. reshape()答案:A二、多项选择题(每题3分,共15分)1. 下列哪些函数可以用来创建NumPy数组?A. array()B. zeros()C. ones()D. linspace()答案:ABCD2. Pandas中,哪些方法可以用来删除DataFrame中的行?A. drop()B. remove()C. delete()D. pop()答案:AD3. 在Python数据分析中,哪些库常用于数据可视化?A. MatplotlibB. SeabornC. PlotlyD. Bokeh答案:ABCD三、简答题(每题5分,共30分)1. 请解释Python中列表推导式的作用。
答案:列表推导式是一种简洁的构建列表的方法,它允许开发者通过一个表达式来创建列表,这个表达式可以包含条件语句和循环语句。
2. 描述Pandas中DataFrame和Series的主要区别。
答案:DataFrame是一个二维标签化数据结构,可以看作是由多个Series组成的,每个Series可以看作是DataFrame的一列。
数据分析与可视化技术期末考试试卷及答案
数据分析与可视化技术期末考试试卷及答案一、单项选择题(以下各题只有一项为正确答案,每小题2分,共40分)(1)使用python3命令在当前路径创建虚环境“prjVenv”,正确的命令是()。
A.python3 prjVenvB.python3 -m theVenvC.python3 -m venvprjVenvD.python3 -m venv@prjVenv(2)以下哪一项不是现代主流的云服务计算模型。
()A.基础设施即服务(IaaS,Infrastructure as a Service)B. 硬件即服务(HaaS,Hardware as a Service)C.平台即服务(PaaS,Platform as a Service)D.软件即服务(SaaS,Software as a Service)(3)运行如下flask代码后,使用浏览器访问“localhost:5000/index”页面输出结果是()。
from flask import Flaskapp = Flask(__name__)@app.route('/index')def index():return 'Hello World!'A.app.routeC.Hello World!D.'Hello World!'(4)需要在代码中引入pyecharts包的options成员,应该使用()命令实现。
A.import pyecharts and optionsB.frompyechartsimport optionsC.import pyecharts’ optionsD.import options from pyecharts(5)开发人员可以远程访问运行在aws平台linux2虚机上的jupyter-notebook服务。
访问jupyter-notebook服务默认的网络端口是()。
python数据分析期末考试题及答案
python数据分析期末考试题及答案一、选择题(每题2分,共10分)1. 在Python中,用于数据分析最常用的库是哪一个?A. NumPyB. MatplotlibC. PandasD. TensorFlow答案:C2. DataFrame对象是Pandas库中的哪种数据结构?A. 数组B. 字典C. 列表D. 表格答案:D3. 下列哪个函数可以用来计算DataFrame中数值列的平均值?A. sum()B. mean()C. max()D. median()答案:B4. 如何将字符串类型的日期转换为Python的datetime对象?A. strptime()B. strftime()C. datetime()D. parse()答案:A5. 在Pandas中,如何对DataFrame进行分组操作?A. group()B. groupby()C. aggregate()D. combine()答案:B二、填空题(每题3分,共15分)1. 使用Pandas进行数据分析时,____函数可以用来读取CSV文件。
答案:read_csv2. 如果要将DataFrame的列名重命名为新的名称,可以使用____方法。
答案:rename3. 在Pandas中,____函数可以用于计算两个日期之间的时间差。
答案:pd.to_timedelta4. 当需要对DataFrame的列进行排序时,可以使用____方法。
答案:sort_values5. 为了在Pandas中筛选出满足特定条件的行,可以使用____方法。
答案:query三、简答题(每题10分,共20分)1. 描述如何使用Pandas库对DataFrame进行数据清洗,包括处理缺失值和异常值。
答案:在Pandas中,可以使用dropna()方法删除含有缺失值的行或列,使用fillna()方法填充缺失值。
对于异常值,可以使用describe()方法查看数据的统计摘要,然后根据业务逻辑和统计分析确定异常值,并使用loc或mask等方法进行替换或删除。
《 数据分析 》课程期末考试试题A卷
命题方式:单独命题佛山科学技术学院2008—2009学年第一学期《数据分析》课程期末考试试题A卷专业、班级:姓名:学号:共3 页第 2 页共 3 页第3 页一(1)SAS界面包括输出框,日志框,编辑器(2)在非数值变量后面家上”$”符号.(3) 自由格式输入数据应加上”@@”标记.(4) 三均值的计算公式^M=1/4Q1+1/2M+1/4Q3二程序:data t1;input x@@;cards;100.00 107.57 112.42 96.21 121.58 107.21 117.16 116.19 101.37 109.78 112.83 104.37 105.40 109.50 111.60 112.10 113.50 112.40 proc univariate plot normal;run;proc capability graphics normal;histogram x/normal;qqplot x/normal(….);run;(1)由上图可知道均值:109.510556 方差:40.5703938变异系数:5.81632451 峰度:0.05978054偏度:-0.3324812(2)中位数:上四分位数:下四分位数:四分位极差:(3)做出直方图、QQ图、茎叶图、箱线图直方图:QQ图茎叶图:箱线图:(4)进行正态性W 检验(取05.0=α).由上图可以知道Wo=0.978265,P=0.9304>05.0=α; 故不能拒绝原假设Ho,所以是高度显著的。
三data t2; input x1-x4; cards ;16.7 26.7 6.4 35.0 18.2 28.0 3.2 29.7 16.7 26.7 2.1 34.9 18.1 26.7 4.3 31.5 16.7 26.0 3.0 32.7 18.1 30.2 7.0 34.9 20.2 30.5 4.8 34.4 20.2 29.5 5.5 36.2 21.5 31.5 5.8 36.5 18.8 30.6 5.4 35.4 21.6 27.8 5.4 34.1 21.3 29.5 5.8 35.8proc corr cov pearson ; run ;(1)计算协方差矩阵,Pearson 相关矩阵; 协方差矩阵:Pearson 相关矩阵:(2)分析各指标间的相关性(取10.0=α)由Pearson 相关矩阵的上三角矩阵看出r13,r14都大于10.0=α 故这些向量的相关性不是很强。
数据分析期末考试试卷(附带答案)
数据分析期末考试试卷(附带答案)请注意以下说明:- 本试卷共分为两部分:选择题和解答题。
- 所有答案均应在答题纸上写出,并标明题号。
- 每道选择题只有一个正确答案,请选出最恰当的答案。
- 解答题应尽量简洁明了,如有计算过程,请写清楚。
- 考试时间为120分钟,试卷满分为100分。
- 祝你好运!选择题1. 数据分析的目的是:A. 收集数据B. 组织数据C. 提取信息D. 分享结果2. 下面哪个不是数据分析常用的可视化工具:A. 折线图B. 饼图C. 柱状图D. 线性回归模型3. 数据清洗是指:A. 删除不需要的数据B. 处理数据中的缺失值和异常值C. 将数据转换为可视化形式D. 对数据进行统计分析4. 数据挖掘是从大量的数据中发现:A. 数据的类型B. 数据的来源C. 数据的模式和关联性D. 数据的质量5. 在回归分析中,用于预测的变量称为:A. 因变量B. 自变量C. 联合变量D. 相关变量解答题1. 简述数据分析的步骤。
2. 举例说明数据清洗的过程。
3. 什么是数据可视化?简要介绍一种常用的数据可视化工具。
4. 解释线性回归模型的概念和作用。
5. 什么是关联分析?举例说明如何进行关联分析。
答案选择题:1. C2. D3. B4. C5. B解答题:1. 数据分析的步骤包括:收集数据、清洗数据、探索数据、分析数据、可视化数据和得出结论。
2. 数据清洗的过程可以举例为以下步骤:- 删除含有缺失值的观测数据- 填充缺失值- 删除异常值- 校验数据是否符合预设规则3. 数据可视化是通过图表、图形等方式将数据转化为可视形式以便更好地理解和分析数据的过程。
一种常用的数据可视化工具是柱状图,它可以直观地展示不同类别或变量之间的比较情况。
4. 线性回归模型是一种用于建立因变量与一个或多个自变量之间关系的统计模型。
它的作用是通过对自变量与因变量的关系进行建模和分析,来预测因变量的数值。
5. 关联分析是对数据集中项之间的关联性进行探索和分析的过程。
《数据分析与SPSS软件应用》期末试卷及答案2套
《数据分析与SPSS软件应用》试卷A一、填空题(每空2分,共20分)1. 统计分析所使用的数据按照其测量精度,可以分为四种类型,分别是定性数据、定序数据、和。
2. SPSS中可以进行变量转换的命令有。
3. 多选项二分法是将设置为一个SPSS变量,而多选项分类法是将设置为SPSS变量。
4. 进行两独立样本群均值比较前,首先要验证的是。
5. 协方差分析中,对协变量的要求是数值型,多个协变量间互相独立和。
6. 多配对样本的柯克兰Q检验适用的数据类型为。
7. 衡量定距变量间的线性关系常用相关系数。
8.常用来刻画回归直线对数据拟合程度的检验统计量指标为。
二、选择题(每小题2分,共20分)1. 在SPSS中,以下哪种不属于SPSS的基本运行方式?()A 完全窗口菜单方式B 批处理命令方式C 程序运行方式D 混合运行方式2. 设置变量属性时,不属于SPSS提供的变量类型的是()A 数值型B 科学计数型C 分数型D 字符型3. 数据的描述统计分析结果显示偏度值为-1.3,则下列对数据分布状态说法正确的是()A 左偏B 正偏C 与正态分布一致D 可能存在极大值4. 若原假设与备择假设为:H0:μ1=μ2 H1:μ1≤μ2,则:()A 应使用右侧单尾检验B 应使用左侧单尾检验C 应使用双尾检验D 无法检验5. 下列哪个不是单因素方差分析的基本假定?()A 各总体的均值相等B 各总体相互独立C 样本来自于正态总体D 各总体的方差相等6. 两个配对样本的Wilcoxon符号秩检验所对应的参数检验方法是?()A 两个独立总体均值差的检验B 两个配对总体均值差的检验C 一个总体均值的检验D 单因素方差分析7. 皮尔逊简单相关系数为1,说明()A 两变量之间不存在线性相关关系B 两变量之间是负相关关系C 两变量之间存在完全的线性相关关系D 两变量之间具有高度相关性8.下列说法正确的是()A回归分析是以变量之间存在函数关系为前提的B回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法C 回归分析中自变量个数只能为一个D 回归分析是反应确定性问题的统计分析方法9.以下关于聚类分析的叙述中错误的是()A 聚类分析的目的在于将事物按其特性分成几个聚类,使同一类内的事物具有高度相似性B 不同聚类的事物则具有高度的异质性C 对于衡量相似性,只能使用距离的工具D 建立聚类的方法,有层次聚类法和快速聚类法10. 关于因子分析,错误的说法是()A 适用于多变量、大样本B 原变量间不必要存在高度的相关性C定类和定序变量不适合做因子分析D 因子得分可以作为新变量存储在数据表格中三、判断题(每小题2分,共20分)1. SPSS中可将”.”用于变量命名,且”.”可以位于变量名末尾。
《数据分析》期末复习题
《数据分析》期末复习题1. 在电子商务领域,商务数据可以分为两大类:_______和_____。
[填空题] *空1答案:前端行为数据空2答案:后端商业数据2. 场景营销是基于___、_____、_____等三大场景之一的一种新营销理念。
[填空题] *空1答案:输入场景空2答案:搜索场景空3答案:浏览场景3. 电商的基础数据主要有_____、____、会员数据、___和_____。
[填空题] *空1答案:营销数据空2答案:流量数据空3答案:交易及服务数据空4答案:行业数据4. 一般平台商都不支持____个月以上的交易数据下载。
[填空题] *_________________________________(答案:3)5. ____是电商运营的核心指标。
[填空题] *_________________________________(答案:转化率)6. 通常我们提到的转化率是____。
[填空题] *_________________________________(答案:成交转化率)7. ____是指为了达到某个目标进行多个方案并行测试,每个方案仅有一个变量不同,最后以某种规则选择最优的方案。
[填空题] *_________________________________(答案:A/B测试)8. ____用高亮颜色展示用户的访问偏好,对用户的体验数据进行可视化展示。
[填空题] *_________________________________(答案:热图|热力图)9. 下列不属于流量数据的是()。
[单选题] *A.人均费用(正确答案)B.浏览量C.访客数D.在线时长10. 下列属于第三方数据网站的是()。
[单选题] *A.百度统计B.数据魔方C.量子恒道(正确答案)D.谷歌分析11. 下列属于数据收集内部渠道的是()。
①客户调查②专家与客户访谈③专业调研机构④内部数据库 [单选题] *A.①、②、④(正确答案)B.①、③、④C.①、②、③D.全部12. 下列不属于数据分析工具的是() [单选题] *A.SPSSB.RC.PowerPoint(正确答案)D.Python13. ()是电商运营中采购与销售的中转站。
商务数据分析学习通课后章节答案期末考试题库2023年
商务数据分析学习通课后章节答案期末考试题库2023年1.请选出属性数据。
参考答案:性别###你在什么时候第一次阅读该杂志,高中、大学、职业早期、职业中期、职业晚期,还是退休?###下次购车准备购买哪种车型,比如轿车、跑车、SUV、小型货车等?2.以下预测方法中,属于回归预测分析的是参考答案:一元线性回归分析###二元非线性回归分析3.单因素方差分析目的是检验参考答案:多个总体均数是否相同4.SPSS是社会科学用统计软件包,它特别适用于参考答案:心理学###人口学5.大学生的就业率就是指标参考答案:对6.B=4.55相应的P-value依次为0.11和0.0018,那么结论是参考答案:A的作用不显著,B的作用显著7.下列哪些属于调查方法的选择参考答案:直接观察法报告法###自填法###采访法8.在相关分析中,得到相关系数为0.83,不可能的解释是参考答案:X与Y有函数关系9.在主成分分析中,选定r个主成分的依据是:前r个主成分的累计贡献率参考答案:大于或等于80%10.SPSS软件具有()统计功能参考答案:描述性统计和卡方检验###均值比较###相关分析###回归分析11.假设检验的目的是推断两个或多个总体(参数)差别大小参考答案:错12.在多元线性回归中t检验和F检验是等价的参考答案:错13.在一元线性回归模型中,e表示参考答案:误差即实际值和估计值之间的差额14.下列关于方差分析的陈述中正确的是参考答案:方差分析得到的F值越小,越没有理由怀疑H15.Excel的数据类型包括参考答案:以上全部16.最小二乘法估计使数据点到回归直线的垂直距离平方和达到最小参考答案:对17.单项式分组是每一个组只有一个数据参考答案:对18.一元线性回归方程中的两个待定系数β1与β2的估计值,一般要用最小二乘法作出估计参考答案:对19.统计分析方法包含在SPSS主菜单的( )的下拉菜单中参考答案:Analyze20.SPSS支持()数据类型参考答案:DBF###Excel###*.spo21.相关系数r的数值参考答案:可为正值###可为负值###可等于-1###可等于122.下列关于回归模型的说法中,正确的有参考答案:一元线性回归模型是用于分析一个自变量X与一个因变量Y之间线性关系的数学方程###判定系数R2表明指标变量之间的依存程度,R2越大,表明依存度越大###在一元线性回归分析中,b的t检验和模型整体的F检验二者取其一即可###在多元回归分析中,b的t检验和模型整体的F检验是不等价的23.相关系数是反映变量之间相关关系及关系密切程度的统计分析指标,包括参考答案:简单相关系数###偏相关系数###复相关系数24.关于区间估计原理正确的是参考答案:在其他条件相同的情况下,置信概率越大置信区间也越大###根据正态分布的性质随机变量落在平均数两侧1个标准差范围内的概率为68.3%###当置信概率为95%时,意味着估计的可靠性为95%25.在一元线性回归的预测程序中,紧接在“计算回归参数”之后的步骤是参考答案:回归检验26.环境噪声现状测量时,获得噪声源数据的途径包括参考答案:类比测量法###引用已有的数据27.区间估计是利用样本统计量和抽样分布估计总体参数的可能区间的一种方法参考答案:对28.常见的定量分析法有参考答案:因子分析法###聚类分析法###决策树法29.假设检验的通常步骤中不包含参考答案:对总体参数范围做出猜测30.检验一元线性回归方程中回归系数的显著性,只能采用F检验参考答案:错31.在因子分析中,可以进行因子旋转的原因是参考答案:可以知道每个因子的具体意义32.为了能使SPSS软件统计处理研究数据,我们首先要做的工作就是把数据录入到SPSS能够识读的数据文件是( )文件参考答案:SPSS的数据33.下列选项中,属于系统软件的是参考答案:DBMS34.抽取样本单位的常用方法有只有抽签法和计算机取数法参考答案:错35.在单因素方差分析中,误差平方和大,处理均方一定小参考答案:错36.适当采用专业术语的问卷是调查问卷的备查项目参考答案:错37.一元线性回归分析中,回归系数的t检验和回归方程的F检验所得结论是一致的参考答案:对38.定义变量不是输入数据的前提参考答案:错39.变量类型分为哪几种参考答案:字符型###日期型###数值型40.只表示各种数量的多少的统计图是参考答案:条形统计图41.简单相关分析的前提条件:两个随机变量;散点图呈线性关系;服从双变量正态分布参考答案:对42.统计数据按照时间状况可分为参考答案:截面数据###时序数据43.下列哪项不属于回归方程的显著性检验参考答案:u检验44.简单随机样本是指样本的选取满足代表性和独立性参考答案:对45.若两个变量存在负线性相关关系,则建立的一元线性回归方程的判定系数R2的取值范围是参考答案:[0,1]46.统计数据的类型按计量层次可分为参考答案:名义数据###顺序数据###刻度数据47.偏态量和峰态量是用以描述数据分布特征的统计量参考答案:对48.一元线性回归方程y=a+bx中,b表示参考答案:自变量x每增加一个单位,因变量y平均增加或减少的数量49.欲比较三种疗法的效果,可采用参考答案:多个构成比比较的X50.企业产值与生产费用的关系可用一元线性回归来描述参考答案:对51.应用于光伏电站发电功率预测的统计方法可包括参考答案:多元线性回归模型###自适应回归模型###人工神经网络模型###支持向量机模型52.在直线回归分析中,两个变量是对等的,不需要区分因变量和自变量参考答案:错53.对于三种常用的统计图:扇形统计图、折线统计图、条形统计图,下列说法正确的是参考答案:折线统计图能清楚地表示出每个项目的具体数目54.分类统计、相关分析和风险分析是参考答案:双变量分析55.对于超过调查规定时间收回的问卷、不属于调查范围的人员填写的问卷、前后答案没有变化的问卷等问题较多的资料应予以作废参考答案:对56.对两变量X和Y同时进行简单相关分析和简单回归分析,其结果一定是参考答案:r>0,b>057.某学校生物兴趣小组开展了“调查人群中的遗传病”的实践活动。
电子商务数据分析 期末试题(一)含答案
电子商务数据分析期末试题(一)含答案1.数据分析是数据分析报告写作的前提和基础。
2.订单满足率的计算公式为(单位时间内已完成订单数量/单位时间内已经接收的订单总数量)*100%。
3.点击率的计算公式为点击量/展现量×100%。
4.图表在数据分析报告中的目的是通过直观的表现形式,更有利于人们对数据的洞察。
5.数据分析报告常见的标题不包括排比型标题。
6.根据统计数据,11月份该女装网店的复购率为0.2.7.下单转化率是指确认订单客户数/该商品的总访问数×100%。
8.产品交易指数是产品在平台交易热度的体现,是衡量店铺、产品受欢迎程度的一个重要指标,它越高该产品越受消费者欢迎。
9.删除明显有问题的段落。
17.关于数据清洗,正确的说法是去重、补漏、纠错。
18.函数COUNTIF(range,criteria)的功能是计算某个区域中满足给定条件的单元格个数。
19.漏斗图分析数据分析方法适合分析业务周期长、流程规范且环节多的指标,比如网站转化率、销售转化率等。
20.这组价格中的众数和中位数分别是70、70元。
21.EXCEL描述统计结果中不包括加权算术平均数指标。
22.线性趋势线适用于增长或降低的速度比较平稳、关系稳定的数据集合。
23.2020年的预测销售量为57万件。
24.不考虑数据和时间之间的关系不属于时间序列预测法基本特点。
A、可以发现潜在的商机和市场需求B、可以优化产品和服务的设计和推广C、可以提高客户满意度和忠诚度D、可以帮助企业降低风险和避免经营错误25.在用来衡量离散程度的指标中,正确的说法是方差是标准差的平方。
26.图表的数据墨水比并不需要严格的搭配比例,只是一个观念,要求我们尽可能将墨水用在数据元素上,而不是非数据元素上。
因此选项C是错误的。
27.对于某销售水果的网店计划对其店中5个品种的橙子从甜度、个头、色泽、气味这4个维度进行综合分析,选用雷达图较为合适。
28.在电商企业日常运营报表中,无需体现行业发展数据。
新媒体数据分析考试试卷答案
《新媒体数据分析》期末考试试卷答案注意事项:1.本试卷为闭卷考试。
2.应根据授课内容展开描述,有独到见解可加分。
3.请在两小时时间以内完成。
一、单选题(每小题2分,共20分)1.(B)是指将重复、多余的数据筛选清除,将缺失的数据补充完整,将错误的数据纠正或者删除,最后整理成为可以进一步加工、使用的数据。
A.交叉分析法B.数据清洗C.用户分群D.漏斗分析法2.( D)是指用户对内容的点赞、留言等互动的情况,是衡量用户黏性的重要数据。
A.新增用户数据B.活跃用户数据C. 留存用户数据 D. 用户互动数据3.( B)指的是用户在一次登录、退出行为之间,用于阅读内容的时间总和,它是评估内容质量的一个数据指标。
A. 内容分享率B. 在线时长C. 完成阅读率D.内容分享人数4.(A )是指公众号运营人员设置好一定关键词规则后,用户在公众号消息页面发送该关键词,公众号会自动回复设置好的内容,回复内容的形式包括图文消息、纯文字、图片等。
A.消息关键词B.消息分析C.跳转链接D.收取消息5.在(C )模块,可以看到近 7 天、近 30 天、近 90 天或者近一年任意时段的粉丝增长情况。
A.取关粉丝B.活跃粉丝C.粉丝趋势分析D.今日可投粉丝6.(D)是反映文章是否能吸引用户读完的指标。
A.平均阅读量B.平均阅读进度C.收藏量D.读完量7.(A)是公众号用户在各地区的分布情况,可以具体到某个省内某个地级市的用户占比A. 地域归属数据B.实时竞价C.软广D.关键词标签技术8.(A)模块统计的是账号发布的头条文章的情况,包括文章发布数、文章阅读数和文章转评赞数。
A. 文章B.视频C.博文D.粉丝变化9.“文章内容被推荐到用户信息流的次数”指的是( C )A.读完量B.平均阅读速度C.推荐量D.收藏量10. “所有读者中,文章阅读进度不足 20%的读者占比”指的是单篇图文数据中的哪个指标?( A )A.跳出率B.用户黏性C.转化率D.以上都是二、多选题(每小题3分,共30分)1.在微博“数据概览”处可以看到昨日关键指标,包括(ABCDEFGH )A净增粉丝数、B阅读数、C转评赞数、D发博数、E文章发布数、F文章阅读数、G视频发布数、 H视频播放量,2.用户分享的动力来源分别是( BC )A.公众号消息阅读次数B.对内容质量的认可C.用户能表达自己的观点D.分享次数3.公众号图文阅读量的来源主要有两大渠道(C )和(D)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据分析期末试题及答案一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。
(25分)解:1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。
尝试多种模型后采用曲线估计,得出表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。
上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。
x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(33由图可知,他们之间呈正线性关系所以可以采用如下的线性回归方法分析。
2.线性回归先用强行进入的方式建立如下线性方程设Y=β0+β1*(Xi1)+β2*Xi2+β3*X+εi i=1.2 (24)3i其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差R值为0.952,大于0.8,表示两变量间有较强的线性关系。
且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。
建立总体性的假设检验提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零得如下方差分析表上表是方差分析SAS输出结果。
由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。
做独立性的假设检验得出参数估计表2=β3=0: H1:β1、β2、β3不全为零由表知,β1=33.014,β1=0.072,β2=0.169,β3=0.178,以β1=0.072为例,表示当成人识字率(x2),一岁儿童疫苗接种率(x3)不变时,,人均GDP(x1)每增加一个单位,平均寿命(y)就增加0.072个单位。
基于以上结果得出年平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有显著性的线性关系有回归方程Y=33.014+0.072*X1+ 0.169*X2+ 0.178*X3β1、β2、β3对应得p值分别为0.000,0.000,0.002,对应的概率p值都小于0.05,表示它们的单独性的假设检验没通过,即该模型是最优的,所以不用采用逐步回归的方式分析。
对原始数据进行残差分析未标准化的残差RES_1-7.53964-3.57019-3.42221-2.89835-2.30455-2.17263-2.05862-1.37142-1.17048-.43890-.17260-.03190.946551.428961.612521.615902.101393.018563.025713.498084.607375.29645以X1为横轴,RES_1为纵轴画出如下散点图由上图可以看出,该残差图中各点分布近似长条矩形,所以模型拟合较好,即该线性回归模型比较合理。
同理可以得出RES_1与X2、X3的散点图,由上图可以看出,该残差图中各点分布近似长条矩形,所以模型拟合较好,即该线性回归模型比较合理。
由上图可以看出,该残差图中各点分布近似长条矩形,所以模型拟合较好,即该线性回归模型比较合理。
误差项的正态性检验数据(RES_1)标准化残差ZRES_1由图可以看出,散点图近似的在一条直线附近,则可以认为数据来自正太分布总体二、诊断发现运营不良的金融企业是审计核查的一项重要功能,审计核查的分类失败会导致灾难性的后果。
下表列出了66家公司的部分运营财务比率,其中33家在2年后破产Y=0,另外33家在同期保持偿付能力(Y=1)。
请用变量X1(未分配利润/总资产),X2(税前利润/总资产)和X3(销售额/总资产)拟合一个Logistic 回归模型,并根据模型给出实际意义的分析,数据见财务比率.sav(25分)。
解:整体性的假设检验 提出假设性检验H0:回归系数i β=0(i=1,2,3),H1:不都为0 建立logistic 模型:)}0{1}0{ln(=-=Y p Y p =3213210X X X ββββ+++上表显示了logistic 分析的初始阶段方程中只有常数项时的错判矩阵,其中33家在2年后破产(y=0),但模型均预测为错误,正确率为0%,另外33家在同期保持偿付能力(Y=1),正确率为100%,所以模型总的预测正确率为50%。
由上表得知,如果变量X1(未分配利润/总资产),X2(税前利润/总资产)进入方程,概率p 值都为0.000,小于显著性水平0.05,本应该是拒绝原假设,X1,X2是可以进入方程的。
而X3(销售额/总资产)进入方程,概率p 值为0.094,大于显著性水平0.05,本应该是接受原假设,X3(销售额/总资产)是不能进入方程的,但这里的解释变量的筛选策略为enter,是强行进入方程的。
用强行全部进入-2倍的对数似然函数值越小表示模型的拟合优度越高,这里的值是5.791,比较小,表示模型的拟合优度还可以,而且Nagelkerke R 方为0.969,与0相比还是比较大的,所以拟合度比较高上表显示了logistic分析的初始阶段方程中只有常数项时的错判矩阵,其中33家在2年后破产(y=0),但模型预测出了32家,正确率为97%,另外33家在同期保持偿付能力(Y=1),模型预测出了32家,正确率为97%,所以模型总的预测正确率为97%,较之前的有很大的提高。
上表给出了方程中变量的系数。
由表得出160.5,180.0,336.0,334.10,3210===-=ββββ以为例,表示控制变量X2(税前利润/总资产)和X3(销售额/总资产)不变,X1(未分配利润/总资产)每增加一个单位,)}0{1}0{ln(=-=Y p Y p 增加0.336分单位模型方程:)}0{1}0{ln(=-=Y p Y p = 4.160X3X2180.00.336X1-10.334-++Logistic 回归方程: P{Y=0}=)4.160X3X2180.00.336X1--10.334ex p(1)4.160X3X2180.00.336X1--10.334ex p(+++++由表得知,X1到X3对应的概率p 值都大于0.05,接受原假设,表示X1到X3对Y 都没有显著性影响。
所以用下述方法改进。
用向前步进(wald )-2倍的对数似然函数值越小表示模型的拟合优度越高,这里的值是9.472,比之前的5.791要大,表示拟合优度降低,表示用向前的方法并没有比进入的方法好而且从上表知道总的预测百分比为97%,没有变化,所以这一步较之前的强行进入的方法没什么优化,也就是没什么必要用向前的方法做。
所以有最优的一个Logistic 回归模型为 模型方程:)}0{1}0{ln(=-=Y p Y p = 4.160X3X2180.00.336X1-10.334-++Logistic 回归方程:P{Y=0}=)4.160X3X2180.00.336X1--10.334ex p(1)4.160X3X2180.00.336X1--10.334ex p(+++++三、为了研究几个省市的科技创新力问题,现在取了2005年8个省得15个科技指标数据,试用因子分析方法来分析一个省得科技创新能力主要受到哪些潜在因素的影响。
数据见8个省市的科技指标数据.sav ,其中各个指标的解释如下:(25分)X1:每百万人科技活动人员数(人/万人)X2: 从事科技活动人员中科学技术、工程师所占比重(%) X3 :R&D 人员占科技哦哦的呢人员的比重(%) X4:大专以上学历人口数占总人口数的比例(%) X5 :地方财政科技拨款占地方财政支出的比重(%) X6:R&D 经费占GDP 比重(%)X7:R&D 经费中挤出研究所占比例(%) X8:人均GDP(元/人)X9:高科技产品出口额占商品出口额的比重(%) X10: 规模以上产业增加值中高技术产业份额(%)X11 :万名科技人员被国际三大检索工具收录的论文数(篇/百万人) X12 :每百万人口发明专利的授权量(件/百万人)X13:发明专利申请授权量占专利申请授权量的比重(%) X14 :万人技术市场成交合同金额(万元/万人) X15 :财政性教育经费支出占GDP 比重(%) 解:所占的比例相差很大,取值围差异大,所以不大适合做协方差的矩阵分析。
所以应该采用相关矩阵的方法分析如下:上表是15个变量间的相关系数矩阵,可以看出相关系数都比较高,比如X1(每百万人科技活动人员数(人/万人))和X2(从事科技活动人员中科学技术、工程师所占比重(%))的相关系数0.859,接近1,呈较强的的线性相关性,所以能够从中提取公因子,适合做因子分析由表可知,前两个因子的特征根值很高,累积方差贡献率为分别为85.608(>=80%即可),对解释原有变量的贡献很大,第3个以后的因子特征根值都很小,对解释原有变量的贡献很校,可以忽略,因此提取第一和第二个因子比较合适,基本能表达所有信息。
有特征值1λ=11.136 2λ=1.706上表是因子载荷矩阵A以X1,X5,X10为例,有因子分析模型1X =0.9731F -0.1582F +1ε;5X =0.4821F +0.4972F +2ε; 10X =0.6111F +0.6372F +3ε;因为5X ,和10X ,变量在1F ,2F 上都有较大的相差不大的载荷,几乎都受它们的共同影响,因子间的差异性没有表示出来,不方便进行因子命名,所以要进行正交旋转(拉大因子间的差异性)对A 做方差最大的正交旋转,得到正交旋转矩阵]926.0379.0379.0926.0[-=Γ上表为旋转后的因子载荷矩阵 以X1,X5,X10为例,有因子分析模型1X =0.9601F -0.2232F +1ε;5X =0.2581F +0.6422F +2ε; 10X =0.3251F +0.8212F +3ε;在第一公因子1F 对应的列中,正载荷主要是X1,X2,X3,X4,X6,X7,X11,X12,X13,X14,X15,其载荷分别是0.960……,所以1F 可视为高科技因子;在第二公共因子2F 对应的列中,正载荷主要是,X5,X10其载荷是0.642,0.821,所以2F 可视为非该科技因子; 有公共因子1F ,2F 的得分矩阵如下: F1的得分: -0.90012 -0.79770 -0.47026 -0.45750 -0.00373 0.12888 0.25514 2.24528得分越高表示科技越高 F2的得分 -1.31413 -1.28805 -0.53602 -0.02641 0.33279 0.39734 1.00045 1.43403得分越低表示分高科技成分越高四、省某白酒厂开发了一种新的白酒,想在本省上市,考虑到公司的现状:生产能力小,营销实力不强,在全省围没有系统的营销网络。