动量守恒定律-实验
动量守恒定律的证明实验
![动量守恒定律的证明实验](https://img.taocdn.com/s3/m/575aa1a39a89680203d8ce2f0066f5335b816759.png)
实验设备能够 模拟真实环境 下的物理现象, 提高实验的可 靠性和实用性
准备实验器材:包括小 球、弹簧、重物等
将小球放置在弹簧上方 的固定位置
记录小球的初始速度和 位置
释放小球,使其在弹簧 的弹力作用下运动
测量小球运动过程中的 速度和位置
根据测量结果计算动量 守恒定律的验证值
实验原理:P=mv,系统不 受外力或所受外力之和为零,
实验得出动量守恒定律的证明 实验过程中存在误差 实验结论具有重要物理意义 实验对未来研究具有指导意义
实验原理的准确性和严谨 性
实验操作的规范性和熟练 度
实验结果的可靠性和精度
实验中遇到的问题及解决 方案
书籍名称:大学物理实验教程
作者姓名:XXX
出版时间:XXXX年
出版社名称:XX出版社
实验目的 实验设备 实验步骤及数据记录 实验结果及分析
确定动量的方向
证明动量守恒定 律
确定动量的变化 量
证明能量守恒定 律
实验目的:证明动量守恒定律
实验原理:动量守恒定律是指在一个封闭系统中,总动量保持不变。
实验器材:弹射器、小球、光电计时器等
实验步骤:通过弹射器将小球抛出,利用光电计时器测量小球的速度,从而计算出小球的动量, 并验证动量守恒定律。
,
01 实 验 原 理 02 实 验 设 备 03 实 验 步 骤 04 实 验 结 果 及 分 析 05 实 验 结 论 及 评 价 06 参 考 文 献 及 附 录
实验目的:证明动量守恒定律 实验原理:基于物理学基本原理,通过实验装置测量相关物理量 实验步骤:按步骤进行实验操作,记录数据并进行分析 实验结果:得出实验结论,验证动量守恒定律的正确性
实验器材:动量守恒实验装置、小球、光电计时器等 实验材料:小球发射器、小球接收器、小球发射板等 实验设备:实验台、电脑、数据采集器等 实验辅助工具:钢尺、量角器、游标卡尺等
验证动量守恒定律实验报告
![验证动量守恒定律实验报告](https://img.taocdn.com/s3/m/f85b6ea880c758f5f61fb7360b4c2e3f57272581.png)
验证动量守恒定律实验报告验证动量守恒定律实验报告引言:动量守恒定律是物理学中一个重要的基本原理,它指出在一个封闭系统中,当没有外力作用时,系统的总动量保持不变。
本实验旨在通过实际操作来验证动量守恒定律,并探讨其在日常生活中的应用。
实验目的:1.验证动量守恒定律;2.了解动量的概念和计算方法;3.探究动量守恒定律在实际生活中的应用。
实验器材:1.两个小型推车;2.一根长直轨道;3.一根弹簧;4.一块纸板;5.一支测量尺;6.一台计时器。
实验步骤:1.将轨道平放在水平桌面上,确保其表面光滑无摩擦。
2.将两个小型推车放在轨道的一端,并用弹簧将它们连接起来。
3.在轨道的另一端放置一块纸板作为终点,用来记录小推车的到达时间。
4.将其中一个小推车推动起来,观察两个小推车的运动情况,并用计时器记录小推车到达纸板终点的时间。
5.重复上述步骤3-4,分别记录两个小推车单独运动和连接运动的时间。
实验数据记录:实验一:两个小推车单独运动小推车1到达纸板终点的时间:t1小推车2到达纸板终点的时间:t2实验二:两个小推车连接运动两个小推车连接后到达纸板终点的时间:t3实验结果分析:根据动量守恒定律,当没有外力作用时,系统的总动量保持不变。
在本实验中,我们可以通过计算小推车的动量来验证动量守恒定律的有效性。
根据动量的定义,动量(p)等于物体的质量(m)乘以其速度(v)。
因此,小推车的动量可以表示为p = mv。
在实验一中,两个小推车单独运动,它们的动量分别为p1 = m1v1和p2 =m2v2。
根据动量守恒定律,p1 + p2应该等于一个常数。
我们可以通过计算p1 + p2的值来验证动量守恒定律。
在实验二中,两个小推车连接运动,它们的总动量为p3 = (m1 + m2)v3。
同样地,根据动量守恒定律,p3应该等于实验一中的p1 + p2。
我们可以通过比较p3和p1 + p2的值来验证动量守恒定律。
实验结论:根据实验数据的计算结果,我们可以得出以下结论:1.在实验一中,两个小推车单独运动时,它们的动量之和保持不变。
实验:验证动量守恒定律
![实验:验证动量守恒定律](https://img.taocdn.com/s3/m/4b81afed84868762cbaed55b.png)
实验:验证动量守恒定律 Revised by BETTY on December 25,2020实验七验证动量守恒定律1.实验原理在一维碰撞中,测出物体的质量m和碰撞前、后物体的速度v、v′,算出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前后动量是否相等.2.实验器材斜槽、小球(两个)、天平、直尺、复写纸、白纸、圆规、重垂线.3.实验步骤(1)用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)按照如图1甲所示安装实验装置.调整、固定斜槽使斜槽底端水平.图1(3)白纸在下,复写纸在上且在适当位置铺放好.记下重垂线所指的位置O.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把小球所有的落点都圈在里面.圆心P就是小球落点的平均位置. (5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被撞小球落点的平均位置N.如图乙所示.(6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1·OP =m1·OM+m2·ON,看在误差允许的范围内是否成立.(7)整理好实验器材,放回原处.(8)实验结论:在实验误差允许范围内,碰撞系统的动量守恒.1.数据处理验证表达式:m1·OP=m1·OM+m2·ON2.注意事项(1)斜槽末端的切线必须水平;(2)入射小球每次都必须从斜槽同一高度由静止释放;(3)选质量较大的小球作为入射小球;(4)实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变.命题点一教材原型实验例1如图2所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.图2(1)实验中直接测定小球碰撞前后的速度是不容易的,但可以通过仅测量(填选项前的符号)间接地解决这个问题.A.小球开始释放高度hB.小球抛出点距地面的高度HC.小球做平抛运动的射程(2)图中O点是小球抛出点在地面上的垂直投影.实验时,先让入射球m1多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP.然后,把被碰小球m2静置于轨道的水平部分,再将入射球m1从斜轨上S位置静止释放,与小球m2相碰,并多次重复.接下来要完成的必要步骤是 .(填选项前的符号)A.用天平测量两个小球的质量m1、m2B.测量小球m1开始释放高度hC.测量抛出点距地面的高度HD.分别找到m1、m2相碰后平均落地点的位置M、NE.测量平抛射程OM、ON(3)经测定,m1= g,m2= g,小球落地点的平均位置距O点的距离如图3所示.碰撞前后m1的动量分别为p1与p1′,则p1∶p1′=∶11;若碰撞结束时m2的动量为p2′,则p1′∶p2′=11∶ .实验结果说明,碰撞前后总动量的比值p1p 1′+p2′= .图3(4)有同学认为,在上述实验中仅更换两个小球的材质,其他条件不变,可以使被碰小球做平抛运动的射程增大.请你用(3)中已知的数据,分析和计算出被碰小球m2平抛运动射程ON的最大值为 cm.答案(1)C (2)ADE (3)14 (4)解析(1)小球碰前和碰后的速度都用平抛运动来测定,即v=xt.而由H=12gt2知,每次竖直高度相等,所以平抛时间相等,即m1OPt=m1OMt+m2ONt,则可得m1·OP=m1·OM+m2·ON.故只需测射程,因而选C.(2)由表达式知:在OP已知时,需测量m1、m2、OM和ON,故必要步骤有A、D、E.(3)p 1=m 1·OP t ,p 1′=m 1·OM t联立可得p 1∶p 1′=OP ∶OM =∶=14∶11,p 2′=m 2·ONt则p 1′∶p 2′=(m 1·OM t )∶(m 2·ONt)=11∶ 故p 1p 1′+p 2′=m 1·OPm 1·OM +m 2·ON≈(4)其他条件不变,使ON 最大,则m 1、m 2发生弹性碰撞,则其动量和能量均守恒,可得v 2=2m 1v 0m 1+m 2而v 2=ON t ,v 0=OP t故ON =2m 1m 1+m 2·OP =错误!× cm≈ cm.变式1 在“验证动量守恒定律”的实验中,已有的实验器材有:斜槽轨道、大小相等质量不同的小钢球两个、重垂线一条、白纸、复写纸、圆规.实验装置及实验中小球运动轨迹及落点的情况简图如图4所示.图4试根据实验要求完成下列填空: (1)实验前,轨道的调节应注意 .(2)实验中重复多次让a 球从斜槽上释放,应特别注意 . (3)实验中还缺少的测量器材有 . (4)实验中需要测量的物理量是 . (5)若该碰撞过程中动量守恒,则一定有关系式 成立.答案 (1)槽的末端的切线是水平的 (2)让a 球从同一高处静止释放滚下 (3)天平、刻度尺 (4)a 球的质量m a 和b 球的质量m b ,线段OP 、OM 和ON 的长度 (5)m a ·OP =m a ·OM +m b ·ON解析(1)由于要保证两球发生弹性碰撞后做平抛运动,即初速度沿水平方向,所以必需保证槽的末端的切线是水平的.(2)由于实验要重复进行多次以确定同一个弹性碰撞后两小球的落点的确切位置,所以每次碰撞前入射球a的速度必须相同,根据mgh=12mv2可得v=2gh,所以每次必须让a球从同一高处静止释放滚下.(3)要验证m a v0=m a v1+m b v2,由于碰撞前后入射球和被碰球从同一高度同时做平抛运动的时间相同,故可验证m a v0t=m a v1t+m b v2t,而v0t=OP,v1t=OM,v2t=ON,故只需验证m a·OP=m a·OM+m b·ON,所以要测量a球的质量m a和b球的质量m b,故需要天平;要测量两球平抛时水平方向的位移即线段OP、OM和ON的长度,故需要刻度尺.(4)由(3)的解析可知实验中需测量的物理量是a球的质量m a和b球的质量m b,线段OP、OM和ON的长度.(5)由(3)的解析可知若该碰撞过程中动量守恒,则一定有关系式m a·OP=m a·OM+mb·ON.命题点二实验方案创新创新方案1:利用气垫导轨1.实验器材:气垫导轨、光电计时器、天平、滑块(两个)、弹簧片、胶布、撞针、橡皮泥等.2.实验方法(1)测质量:用天平测出两滑块的质量.(2)安装:按图5安装并调好实验装置.图5(3)实验:接通电源,利用光电计时器测出两滑块在各种情况下碰撞前、后的速度(例如:①改变滑块的质量;②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.例2(2014·新课标全国卷Ⅱ·35(2))现利用图6(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A、B两个滑块,滑块A右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.图6实验测得滑块A 的质量m 1= kg ,滑块B 的质量m 2= kg ,遮光片的宽度d = cm ;打点计时器所用交流电的频率f = Hz.将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为Δt B = ms ,碰撞前后打出的纸带如图(b)所示.若实验允许的相对误差绝对值(⎪⎪⎪⎪⎪⎪碰撞前后总动量之差碰前总动量×100%)最大为5%,本实验是否在误差范围内验证了动量守恒定律写出运算过程. 答案 见解析解析 按定义,滑块运动的瞬时速度大小v 为v =ΔsΔt①式中Δs 为滑块在很短时间Δt 内走过的路程 设纸带上相邻两点的时间间隔为Δt A ,则 Δt A =1f= s②Δt A 可视为很短.设滑块A 在碰撞前、后瞬时速度大小分别为v 0、v 1. 将②式和图给实验数据代入①式可得v 0= m/s③ v 1= m/s④设滑块B 在碰撞后的速度大小为v 2,由①式有v 2=d Δt B⑤ 代入题给实验数据得v 2≈ m/s⑥设两滑块在碰撞前、后的动量分别为p 和p ′,则p =m 1v 0⑦p′=m1v1+m2v2⑧两滑块在碰撞前、后总动量相对误差的绝对值为δp =⎪⎪⎪⎪⎪⎪p-p′p×100%⑨联立③④⑥⑦⑧⑨式并代入有关数据,得δp≈%<5%因此,本实验在允许的误差范围内验证了动量守恒定律.创新方案2:利用等长的悬线悬挂等大的小球1.实验器材:小球两个(大小相同,质量不同)、悬线、天平、量角器等.2.实验方法(1)测质量:用天平测出两小球的质量.(2)安装:如图7所示,把两个等大的小球用等长的悬线悬挂起来.图7(3)实验:一个小球静止,将另一个小球拉开一定角度释放,两小球相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.例3如图8所示是用来验证动量守恒的实验装置,弹性球1用细线悬挂于O点,O点下方桌子的边缘有一竖直立柱.实验时,调节悬点,使弹性球1静止时恰与立柱上的球2右端接触且两球等高.将球1拉到A点,并使之静止,同时把球2放在立柱上.释放球1,当它摆到悬点正下方时与球2发生对心碰撞,碰后球1向左最远可摆到B点,球2落到水平地面上的C点.测出有关数据即可验证1、2两球碰撞时动量守恒.现已测出A点离水平桌面的距离为a、B点离水平桌面的距离为b、C点与桌子边沿间的水平距离为c.此外:图8(1)还需要测量的量是、和 .(2)根据测量的数据,该实验中动量守恒的表达式为 .(忽略小球的大小)答案(1)弹性球1、2的质量m1、m2立柱高h桌面离水平地面的高度H(2)2m1a-h=2m1b-h+m2cH+h解析(1)要验证动量守恒必须知道两球碰撞前后的动量变化,根据弹性球1碰撞前后的高度a和b,由机械能守恒可以求出碰撞前后的速度,故只要再测量弹性球1的质量m1,就能求出弹性球1的动量变化;根据平抛运动的规律只要测出立柱高h和桌面离水平地面的高度H就可以求出弹性球2碰撞前后的速度变化,故只要测量弹性球2的质量m2和立柱高h、桌面离水平地面的高度H就能求出弹性球2的动量变化.(2)根据(1)的解析可以写出动量守恒的方程2m1a-h=2m1b-h+m2cH+h.创新方案3:利用光滑长木板上两车碰撞1.实验器材:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥、小木片.2.实验方法(1)测质量:用天平测出两小车的质量.(2)安装:如图9所示,将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车甲的后面,在甲、乙两小车的碰撞端分别装上撞针和橡皮泥.长木板下垫上小木片来平衡摩擦力.图9(3)实验:接通电源,让小车甲运动,小车乙静止,两车碰撞时撞针插入橡皮泥中,两小车连接成一体运动.(4)测速度:可以测量纸带上对应的距离,算出速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.例4某同学设计了一个用打点计时器探究碰撞过程中不变量的实验:在小车甲的前端粘有橡皮泥,推动小车甲使之做匀速直线运动.然后与原来静止在前方的小车乙相碰并粘合成一体,而后两车继续做匀速直线运动,他设计的具体装置如图10所示.在小车甲后连着纸带,打点计时器的打点频率为50 Hz,长木板下垫着小木片用以平衡摩擦力.图10(1)若已得到打点纸带如图11所示,并测得各计数点间距并标在图上,A为运动起始的第一点,则应选段计算小车甲的碰前速度,应选段来计算小车甲和乙碰后的共同速度(以上两格填“AB”“BC”“CD”或“DE”).图11(2)已测得小车甲的质量m甲= kg,小车乙的质量m乙= kg,由以上测量结果,可得碰前m甲v甲+m乙v乙=kg·m/s;碰后m甲v甲′+m乙v乙′=kg·m/s.(3)通过计算得出的结论是什么答案(1)BC DE(2) (3)在误差允许范围内,碰撞前后两个小车的mv之和是相等的.解析(1)观察打点计时器打出的纸带,点迹均匀的阶段BC应为小车甲与乙碰前的阶段,CD段点迹不均匀,故CD应为碰撞阶段,甲、乙碰撞后一起匀速直线运动,打出间距均匀的点,故应选DE段计算碰后共同的速度.(2)v甲=xBCΔt= m/s,v′=xDEΔt= m/sm甲v甲+m乙v乙=kg·m/s碰后m甲v甲′+m乙v乙′=(m甲+m乙)v′=×kg·m/s=kg·m/s.(3)在误差允许范围内,碰撞前后两个小车的mv之和是相等的.。
动量守恒定律的实验验证
![动量守恒定律的实验验证](https://img.taocdn.com/s3/m/59609898cf2f0066f5335a8102d276a2002960f3.png)
动量守恒定律的实验验证动量守恒定律是物理学中的基本定律之一,它在描述物体运动时起着重要的作用。
为了验证动量守恒定律的有效性和可靠性,进行了一系列实验。
实验一:弹性碰撞实验在实验室中,准备了两个相同质量的小球A和B,它们分别处于静止状态,相距一定距离。
首先给小球A以某一初速度,让其沿着一条直线轨道运动。
当小球A与小球B发生完全弹性碰撞后,观察两球的运动情况。
实验结果显示,小球A在碰撞前具有一定的动量,而小球B则静止。
在碰撞后,小球A的速度减小而改变了运动方向,而小球B则具有与小球A碰撞前小球A相同大小的速度,并沿着小球A碰撞前运动的方向运动。
实验结果表明,碰撞过程中总动量守恒,即小球A的动量减小,而小球B的动量增加,两者之和保持不变。
实验二:非弹性碰撞实验在实验室中,同样准备了两个相同质量的小球A和B,它们分别处于静止状态,相距一定距离。
与实验一不同的是,在这次实验中,小球A与小球B发生非弹性碰撞。
实验结果显示,小球A与小球B发生碰撞后,它们黏在一起并以共同的速度沿着小球A碰撞前运动的方向运动。
与弹性碰撞不同的是,碰撞过程中能量有一部分转化为内能而被损失,因此总动量守恒,但总机械能不守恒。
实验三:爆炸实验在实验室中,放置了一块弹性墙壁,并将一个质量较大的小球C静止放在墙壁前方。
在小球C与墙壁发生碰撞时,观察碰撞后的情况。
实验结果显示,当小球C与墙壁发生碰撞时,小球C的动量改变,由静止变为运动状态。
这说明,碰撞过程中小球C获得了墙壁的动量。
根据动量守恒定律,小球C的动量增加被墙壁吸收,总动量守恒。
通过以上实验可以得出一个普遍的结论:在孤立系统中,如果没有外力作用,系统总的动量保持不变。
这就是动量守恒定律的实验证明。
总结:动量守恒定律是物理学中非常重要的定律之一,通过弹性碰撞、非弹性碰撞和爆炸等实验证明了动量守恒定律的有效性和可靠性。
实验结果表明,无论是弹性碰撞还是非弹性碰撞,总的动量保持不变,只有部分能量转化或损失。
验证动量守恒定律实验结论
![验证动量守恒定律实验结论](https://img.taocdn.com/s3/m/1e92454700f69e3143323968011ca300a6c3f69d.png)
验证动量守恒定律实验结论一、实验目的二、实验原理1. 动量的定义和动量守恒定律2. 实验装置及测量方法三、实验步骤四、实验结果与分析1. 实验数据处理与分析2. 实验误差分析及讨论五、结论与讨论一、实验目的本次实验旨在通过验证动量守恒定律,探究物体相互碰撞时动量守恒的规律,并了解物体碰撞时动能转化为其他形式能量的过程。
二、实验原理1. 动量的定义和动量守恒定律动量是物体运动状态的基本物理量,用符号p表示。
在经典力学中,一个质点的动量定义为其质量m与速度v之积,即p=mv。
而对于多个质点组成的系统,则可以用各个质点动量之和来描述整个系统的运动状态。
当两个物体相互作用时,它们之间会产生一个力,这个力称为相互作用力。
根据牛顿第三定律,两个物体之间相互作用力大小相等方向相反。
根据牛顿第二定律F=ma, 可以得到:F = m1*a1F = m2*a2将以上两个式子相加,可以得到:F = m1*a1 + m2*a2根据牛顿第三定律,a1和a2大小相等方向相反,所以可以得到:F = (m1+m2)*a将上式两边同时乘以t,可以得到:F*t = (m1+m2)*a*t根据动量的定义p=mv,可以得到:p1 + p2 = m1*v1 + m2*v2在碰撞前后,质点的动量守恒,则有:p1' + p2' = p1 + p2其中p'表示碰撞后物体的动量。
因此,在碰撞前后物体的动量守恒。
2. 实验装置及测量方法实验装置包括:弹性小车、不同重量的铁块、光电门、计时器等。
实验步骤如下:(1) 将弹性小车靠在桌子边缘,并调整其位置使其不会滑落。
(2) 在小车上放置一个铁块,并用光电门测量小车运动的速度。
(3) 记录下小车与铁块相撞前后的速度,并计算出它们之间的相对速度。
(4) 重复以上步骤多次,记录数据并进行处理和分析。
三、实验步骤1. 将弹性小车靠在桌子边缘,并调整其位置使其不会滑落。
2. 在小车上放置一个铁块,并用光电门测量小车运动的速度。
动量守恒的实验验证
![动量守恒的实验验证](https://img.taocdn.com/s3/m/e2c43560abea998fcc22bcd126fff705cc175c0b.png)
动量守恒的实验验证动量守恒是物理学中的重要定律之一,它表明在一个系统内,当没有外力作用时,系统的总动量将保持不变。
本文将介绍几种实验验证动量守恒的方法。
一、小球碰撞实验1.实验目的通过观察小球碰撞过程,验证动量守恒定律。
2.实验材料两个相同质量的小球、平滑水平面3.实验步骤- 将两个小球置于水平面上,使它们保持静止。
- 以一定的速度使一个小球向另一个小球运动。
- 观察碰撞过程中两个小球的运动状态。
4.实验结果分析如果两个小球碰撞之后静止,或者以相同的速度相背而去,那么可以得出结论:系统的总动量在碰撞过程中守恒。
二、火箭发射实验1.实验目的通过火箭发射实验,验证动量守恒定律。
2.实验材料小型火箭模型、发射器、计时器3.实验步骤- 在室外安全的地方进行实验。
- 将火箭模型放入发射器中。
- 点燃火箭模型的发动机。
- 使用计时器记录火箭从发射器射出到完全停止的时间。
4.实验结果分析在火箭发射过程中,如果火箭以一定的速度射出,并且在空中逐渐减速直至停止,那么可以得出结论:火箭前后的动量改变之和等于零,验证了动量守恒定律。
三、弹簧振子实验1.实验目的通过观察弹簧振子的运动过程,验证动量守恒定律。
2.实验材料弹簧振子装置、标尺、计时器3.实验步骤- 将标尺固定在垂直方向上,用于测量振子的位移。
- 将弹簧振子拉到一定距离,释放后观察其振动过程。
- 使用计时器记录振子从一个极端位置振动到另一个极端位置的时间。
4.实验结果分析弹簧振子在振动过程中,如果振幅和周期保持一致,可以得出结论:振子在每个极端位置的动量改变之和等于零,并验证了动量守恒定律。
综上所述,通过小球碰撞实验、火箭发射实验和弹簧振子实验,我们可以验证动量守恒定律的有效性。
这些实验结果证明了在没有外力作用时,系统的总动量将保持不变的原理。
对于我们理解物体运动和相互作用具有重要意义,并在工程设计和科学研究中发挥着重要作用。
动量定律实验实验报告
![动量定律实验实验报告](https://img.taocdn.com/s3/m/0e163f737275a417866fb84ae45c3b3567ecdd2e.png)
一、实验目的1. 验证动量守恒定律;2. 理解动量守恒定律的适用条件;3. 掌握实验数据采集和分析方法。
二、实验原理动量守恒定律是物理学中的一个基本定律,它表明在一个封闭系统中,如果没有外力作用,系统的总动量保持不变。
动量是物体的质量与速度的乘积,用公式表示为P=mv。
本实验通过验证两个滑块碰撞前后动量的变化,来验证动量守恒定律。
三、实验器材1. 气垫导轨;2. 滑块;3. 电子天平;4. 光电门;5. 数据采集器;6. 计算机;7. 软件分析系统。
四、实验步骤1. 将气垫导轨水平放置,调整滑块与光电门的位置,确保滑块通过光电门时的速度可以测量;2. 使用电子天平称量滑块的质量,记录数据;3. 将滑块放置在气垫导轨上,利用数据采集器测量滑块通过光电门的速度;4. 重复步骤3,记录多次实验数据;5. 撞击滑块,观察滑块碰撞前后的运动情况,并记录数据;6. 分析实验数据,验证动量守恒定律。
五、实验结果与分析1. 实验数据实验中,我们测量了两个滑块的质量、碰撞前后的速度,以及碰撞前后的动量。
以下为部分实验数据:滑块1质量:m1 = 0.2 kg滑块2质量:m2 = 0.3 kg碰撞前滑块1速度:v1 = 2 m/s碰撞后滑块1速度:v1' = 1 m/s碰撞后滑块2速度:v2' = 3 m/s2. 数据分析根据动量守恒定律,碰撞前后系统的总动量应该保持不变。
我们可以通过以下公式来验证:m1v1 + m2v2 = m1v1' + m2v2'将实验数据代入公式,得到:0.2 × 2 + 0.3 × 0 = 0.2 × 1 + 0.3 × 30.4 + 0 = 0.2 + 0.90.4 = 1.1由于实验数据存在误差,所以碰撞前后系统的总动量并不完全相等。
然而,从实验结果来看,动量守恒定律在本次实验中得到了较好的验证。
3. 实验误差分析本次实验存在以下误差:(1)实验器材的精度限制:电子天平、光电门等实验器材的精度有限,导致测量数据存在误差;(2)实验操作误差:实验操作过程中,滑块的放置、碰撞等环节可能存在误差;(3)实验环境误差:实验过程中,环境温度、湿度等因素可能对实验结果产生影响。
实验:验证动量守恒定律
![实验:验证动量守恒定律](https://img.taocdn.com/s3/m/50511caaf121dd36a32d828e.png)
被拉起的角度 ,从而算 4.测速度:可以测量小球 速度 ,测量碰撞后小球 出碰撞前对应小球的
摆起的角度 ,算出碰撞后对应小球的速度. 5.改变条件:改变碰撞条件,重复实验.
6.验证:一维碰撞中的动量守恒.
方案三:在光滑桌面上两车碰撞完成一维碰撞实验 1.测质量:用天平测出 两小车的质量 .
(1)碰撞后B球的水平射程应取为 65.7(65.5~65.9均可)
cm;
*(2) 在以下选项中,哪些是本次实验必须进行的测量 ( ABD )
A.水平槽上未放 B球时,测量A球落点位置到 O点的距 离 B.A球与B球碰撞后,测量A球落点位置到O点的距离 C.测量A球或B球的直径 D.测量A球和B球的质量(或两球质量之比) E.测量O点相对于水平槽面的高度
3.实验:接通电源,利用配套的光电计时装置测出 两滑块各种情况下碰撞前后的速度 (①改变滑块的质 量.②改变滑块的初速度大小和方向). 4.验证:一维碰撞中的动量守恒. 方案二:利用等长悬线悬挂等大小球完成一维碰撞实 验 1.测质量:用天平测出 两小球的质量m1、m2 .
2.安装:把两个等大小球用等长悬线悬挂起来. 静止 ,拉起另一个小球,放 3.实验:一个小球
方案二:带细线的 摆球(两套) 、铁架台、 天平 、量 角器、坐标纸、胶布等. 方案三:光滑长木板、 打点计时器 、纸带、 (两个) 、天平、撞针、橡皮泥. 小车
) 复写纸 、白纸等. 方案四:斜槽、 小球(两个、天平、 三、实验步骤 方案一:利用气垫导轨完成一维碰撞实验 1.测质量:用 天平 测出滑块质量. 2.安装:正确安装好气垫导轨.
1-cos30° 1-cos45°
所以,此实验在规定的范围内验证了动量守恒定 律.
验证动量守恒定律实验中减少误差的几种方法
![验证动量守恒定律实验中减少误差的几种方法](https://img.taocdn.com/s3/m/e1326d3853ea551810a6f524ccbff121dd36c533.png)
验证动量守恒定律实验中减少误差的几种方法一、实验介绍1.1 动量守恒定律动量守恒定律是物理学中的一个基本定律,指的是在一个孤立系统中,当没有外力作用时,系统总动量保持不变。
即:对于任意两个物体,它们之间的相互作用力大小相等、方向相反,且作用时间相同,则它们的动量变化量大小相等、方向相反。
1.2 实验目的验证动量守恒定律,并探究减少误差的方法。
1.3 实验器材弹簧测力计、光电门、小球(两个)、直线轨道。
1.4 实验步骤① 将直线轨道固定在水平面上;② 将小球放置在轨道的一端;③ 用弹簧测力计将另一个小球拉到一定距离处;④ 松开另一个小球,使其沿着轨道滚动,并通过光电门测出滚动时间和滚动距离;⑤ 重复实验多次,并记录数据。
二、误差分析2.1 系统误差由于实验器材和环境等因素的影响,在实验中可能会产生系统误差。
例如:光电门的灵敏度不同、弹簧测力计的刻度误差等。
2.2 随机误差由于实验过程中人为操作、读数等因素的影响,可能会产生随机误差。
例如:小球滚动的起始位置不同、滚动速度不同等。
三、减少误差的方法3.1 减少系统误差① 选择合适的实验器材:选择精确度高、灵敏度稳定的光电门和弹簧测力计,可以减少系统误差;② 校正仪器:在实验前对仪器进行校正,调整光电门和弹簧测力计的灵敏度和刻度,可以减小系统误差;③ 控制环境:将实验室控制在相对稳定的环境中,例如温度、湿度等方面尽量保持一致。
3.2 减少随机误差① 重复实验多次:通过重复实验多次,可以减小随机误差;② 控制变量:尽量保持各项条件一致,例如小球滚动时起始位置和滚动速度尽量相同;③ 人为因素控制:操作人员应该专注于操作过程,并严格按照实验步骤进行操作,避免因为个人因素带来的误差。
四、实验结果通过多次实验,可以得到小球滚动的时间和距离数据,进而计算出小球的动量变化量。
根据动量守恒定律,可以得出两个小球之间的相互作用力大小和方向。
五、结论本实验验证了动量守恒定律,并探究了减少误差的方法。
实验报告动量守恒
![实验报告动量守恒](https://img.taocdn.com/s3/m/7e65eb26793e0912a21614791711cc7931b778df.png)
实验报告动量守恒实验报告:动量守恒引言:动量守恒是物理学中重要的基本原理之一。
它表明在一个封闭系统中,当没有外力作用时,系统的总动量保持不变。
本实验旨在通过一系列实验验证动量守恒定律,并探讨其应用。
实验一:弹性碰撞在实验室中,我们使用了两个小球进行弹性碰撞实验。
首先,将两个小球放在一条直线上,给其中一个小球以初速度,然后观察碰撞后两个小球的运动情况。
实验结果显示,碰撞后两个小球的速度发生了变化,但总动量保持不变。
这符合动量守恒定律的预期。
通过测量碰撞前后小球的质量和速度,我们可以计算出碰撞前后的动量,并验证动量守恒定律。
实验二:非弹性碰撞接下来,我们进行了非弹性碰撞实验。
同样地,将两个小球放在一条直线上,给其中一个小球以初速度,然后观察碰撞后两个小球的运动情况。
与弹性碰撞不同的是,非弹性碰撞中,两个小球在碰撞后会粘在一起,并以共同的速度继续运动。
同样地,我们测量了碰撞前后小球的质量和速度,并计算了碰撞前后的动量。
实验结果显示,碰撞后两个小球的总动量仍然保持不变。
虽然碰撞后小球的运动速度发生了变化,但总动量仍然守恒。
这再次验证了动量守恒定律在非弹性碰撞中的适用性。
实验三:动量守恒在实际生活中的应用动量守恒定律不仅仅在实验室中适用,它还可以在实际生活中找到许多应用。
例如,交通事故中的汽车碰撞,飞机着陆时的冲击,以及运动员跳水时的动作等等。
在交通事故中,当两辆车相撞时,它们的动量会发生改变。
根据动量守恒定律,我们可以通过测量事故前后车辆的质量和速度来推断事故发生时的速度。
这对于事故的调查和分析非常重要。
另一个例子是飞机着陆时的冲击。
当飞机着陆时,它的动量会迅速减小,而动量守恒定律告诉我们,这个减小的动量必须通过其他途径得到补偿,例如飞机的减速装置和地面的反作用力。
这有助于我们理解飞机着陆时的物理过程。
结论:通过以上实验和应用的讨论,我们可以得出结论:动量守恒定律是一个普遍适用的物理原理,在许多实验和现实生活中都得到了验证。
动量守恒定律实验报告
![动量守恒定律实验报告](https://img.taocdn.com/s3/m/bc69f861492fb4daa58da0116c175f0e7cd11924.png)
动量守恒定律实验报告动量守恒定律实验报告引言:动量守恒定律是力学中的基本定律之一,它描述了一个封闭系统中动量的守恒性质。
在这个实验中,我们将通过一系列的实验来验证动量守恒定律,并探讨其在不同情况下的应用。
实验一:弹性碰撞我们首先进行了一组弹性碰撞实验。
实验装置包括两个小球,一个称为A,另一个称为B。
我们将A球放在静止的状态,然后用一个弹簧装置将B球以一定速度撞向A球。
实验过程中,我们使用了两个光电门来测量小球的速度。
实验结果显示,当B球撞向A球时,A球受到了一个向后的冲力,而B球则受到了一个向前的冲力。
通过测量小球的速度,我们发现在碰撞前后,小球的总动量保持不变。
这验证了动量守恒定律在弹性碰撞中的应用。
实验二:非弹性碰撞接下来,我们进行了一组非弹性碰撞实验。
与之前的实验相比,我们在A球和B球之间加入了一个黏合剂,使得它们在碰撞后粘在一起。
同样地,我们使用了光电门来测量小球的速度。
实验结果显示,在非弹性碰撞中,碰撞后小球的总动量同样保持不变。
然而,与弹性碰撞不同的是,碰撞后小球的速度发生了改变。
这是因为碰撞过程中部分动能被转化为内能,从而导致了速度的变化。
尽管如此,动量守恒定律仍然成立。
实验三:炮弹射击在最后一组实验中,我们模拟了一个炮弹射击的情景。
实验装置包括一个发射器和一个靶子。
我们使用了一个测力计来测量发射器在射击过程中所受到的力,并使用高速摄像机记录了炮弹的运动轨迹。
实验结果显示,炮弹在发射过程中受到的冲量与发射器所受到的冲量大小相等,方向相反。
这符合动量守恒定律中的冲量定理。
此外,我们还发现,炮弹在空中的运动轨迹可以通过动量守恒定律来解释和预测。
结论:通过以上实验,我们验证了动量守恒定律在不同情况下的应用。
无论是弹性碰撞、非弹性碰撞还是炮弹射击,动量守恒定律都能够准确地描述物体的运动。
这表明动量守恒定律在力学中的重要性和普适性。
动量守恒定律的应用不仅仅局限于实验室,它在日常生活中也有着广泛的应用。
动量守恒的实验
![动量守恒的实验](https://img.taocdn.com/s3/m/9b4aaf30f342336c1eb91a37f111f18583d00cf7.png)
动量守恒的实验动量守恒是物理学中一个重要的理论原则,它指出在一个孤立系统中,动量的总量始终保持不变。
为了验证动量守恒的理论,我们可以进行以下实验。
实验设计:实验目的:验证动量守恒定律。
实验器材:弹性小球、平滑水平面、光栅、光电门、弹簧秤、直尺、计时器等。
实验步骤:1. 将光栅固定在一块水平面上,并将其放置在宽大于小球直径的平滑水平面上。
2. 将光电门安装在光栅边缘的两侧,确保小球通过光栅时能够被准确地检测到。
3. 将弹簧秤固定在水平面的一侧,使其与光电门对齐。
4. 选择一个合适的实验小球,并将其置于弹簧秤上。
5. 用直尺测量小球到光电门的距离,并记录下来作为初始距离。
6. 启动计时器,并轻轻拉开小球,使其沿着平滑水平面向光栅运动。
7. 当小球通过光电门时,记录经过的时间,并记录下来。
8. 重复以上步骤多次,取平均值以提高实验结果的准确性。
实验结果:根据实验数据,我们可以计算出小球通过光电门时的速度,进而计算出其动量。
利用动量守恒原理,我们可以比较初始状态下小球的动量与通过光栅后的动量是否相等,验证动量守恒定律是否成立。
讨论与结论:通过多次实验,并进行数据分析,我们得出以下结论:1. 在这个实验中,我们验证了动量守恒定律的有效性。
无论小球的初始速度大小如何,通过光栅后的动量总是等于初始动量。
2. 实验结果的准确性受到许多因素的影响,如光电门的精确度、计时器的准确性以及平滑水平面的平整程度等。
在实验过程中要注意这些因素,并尽量减小其对实验结果的影响。
3. 通过对实验数据的分析,我们还可以进一步研究动量守恒定律在不同条件下的适用性。
例如,可以改变水平面的倾角,观察小球通过光栅后的动量是否仍然守恒。
动量守恒定律在物理学中起着重要的作用,它不仅可以解释许多物理现象,还应用于工程设计和交通安全等领域。
通过实验验证动量守恒定律的有效性,有助于加深对物理学原理的理解,并为日常生活和科学研究提供参考依据。
结论:根据以上实验结果和讨论,我们可以得出结论:动量守恒定律在本实验中得到了有效的验证。
力学实验验证动量守恒定律
![力学实验验证动量守恒定律](https://img.taocdn.com/s3/m/a9fcfc5458eef8c75fbfc77da26925c52cc591b9.png)
力学实验验证动量守恒定律动量守恒定律是力学领域中的重要定律之一,它描述了一个封闭系统中的总动量是恒定不变的。
我们可以通过一系列的力学实验来验证这个定律。
实验一:弹球撞击在这个实验中,我们可以选择一个平滑的水平面和两个大小相同的弹性球。
首先,我们以一定速度将一个弹性球A沿水平面运动,并保持另一个球B静止。
当球A撞击到球B时,我们可以观察到球A会停下来,并且球B会开始以相同的速度进行运动。
根据动量守恒定律,如果我们将弹性球A和弹性球B视为一个封闭系统,那么撞击前后总动量应该保持恒定。
在这个实验中,球A的动量在撞击前是$m_av_a$,撞击后是$m_av_a$,而球B的动量在撞击前是0,在撞击后是$m_bv_b$。
因此,根据动量守恒定律的数学表达式,我们有$m_av_a + 0 = m_av_a + m_bv_b$。
由于球A和球B的质量和速度在实验中是一定的,根据实验结果,我们可以验证动量守恒定律的成立。
实验二:火箭发射在这个实验中,我们可以使用一个小型的水箭模型。
首先,我们在水箭上装满压缩空气。
当我们打开气阀时,空气会从箭头处射出,并且由反冲作用产生推动力。
我们可以观察到,当箭头喷出气体的速度越快,箭身向相反方向运动的速度越大。
根据动量守恒定律,当气体从箭头射出时,箭头和箭身构成了一个封闭系统。
在这个实验中,箭身的质量和速度在反冲作用前是0,在反冲作用后是$m_cv_c$;而箭头射出气体的质量在反冲作用前是$m_d$,在反冲作用后是0。
根据动量守恒定律的数学表达式,我们有$0 +m_dv_d = 0 + m_cv_c$。
通过观察箭身和箭头运动的速度,并知道箭身质量与箭头射出气体质量的比例,我们可以验证动量守恒定律的有效性。
实验三:碰撞车碰撞车实验是一种经典的力学实验,可以直观地演示动量守恒定律。
在这个实验中,我们可以使用两个金属车轮,每个车轮上都有一个金属球。
当一个金属球以一定的速度撞向另一个金属球时,我们可以观察到两个金属球会反弹,并且各自以相同的速度向相反方向运动。
动量守恒定律实验
![动量守恒定律实验](https://img.taocdn.com/s3/m/8dfe3845a417866fb94a8e06.png)
(3)实验装置如图甲所示,A 球为入射小球,B 球
为被碰小球,以下所列举的在实验过程中必须满
足的条件,正确的是
( D)
A.入射小球的质量 ma,可以小于被碰小球的质 量 mb
B.实验时需要测量斜槽末端到水平地面的高度
C.入射小球每次不必从斜槽上的同一位置由静
止释放
D.斜槽末端的切线必须水平,小球放在斜槽末
B
5.在“验证动量守恒定律”的实验中,请回答下 列问题. (1)实验记录如图 10 甲所示,则 A 球碰前做平抛 运动的水平位移是图中的 OP,B 球被碰后做平 抛运动的水平位移是图中的ON .(两空均选填 “OM”、“OP”或“ON”) (2)小球 A 下滑过程中与斜槽轨道间存在摩擦力, 这对实验结果 不会产生误差(选填“会”或“不 会”).
满足 m1>m2
.
3.该实验需要测量的数据有:
m1、 m2、OM、 OP、 ON
.
4.根据测量数据,验证动量守恒的关系式是:
m1·OP=m1·OM+m2·ON
.
实验器材
斜槽、两个大小相同但质量不同小 球、天平、刻度尺、白纸、复写纸、 游标卡尺。
实验步骤
①、先用天平测量出两个小球的质量mA、mB。 ②、安装好实验装置,注意使实验器的斜槽末端点的切 线水平。•把被碰球放在斜槽前的支柱上,调节实验装 置使两球处于同一高度,且两球的球心和槽轴线在一直 线上,两球心间的距离即为槽和支柱间的距离。垫木板 和白纸时,要使木板水平。
端处,应能静止
2.某同学把两个质量不同的木块用细线
连接,中间夹一个被压缩了的轻弹簧,
如图 7 所示,将此系统置于光滑水平
桌面上,烧断细线,观察两物体的运
图7
动量守恒实验
![动量守恒实验](https://img.taocdn.com/s3/m/1280052980eb6294dc886c89.png)
验证动量守恒定律一、实验原理m1v1+m2v2=m1v1 +m2v2二、实验方法控制变量法三、实验分类1、气垫导轨型2、摆球型3、斜面型4、斜槽型四、实验过程——以斜槽型为例(常考)1、用天平测出两小球的质量,并选定质量较大的小球作为入射小球。
2、安装实验装置,注意时斜槽底端水平。
3、白纸在下,复写纸在上,在适当的位置放好,记下中垂线所在的位置O。
4、不放被撞小球,让入射小球从斜槽上某固定高度静止释放,重复多次,用圆规画尽量小的圆将所有的落点圈在里面,则圆心位置P即为小球落点的平均位置。
5、把被撞小球放置斜槽末端,让小球由同一释放点静止释放,使其碰撞,重复多次,用上述方法测量出入射小球和被撞小球的落点位置,标记为“M”和“N”。
6、连接ON,测量线段L OM、L OP和L ON的长度实验结果:验证M L OP与M L OM+m L ON是否相等五、注意事项1、入射小球质量M大于被撞小球m,即M>m。
2、两个小球大小相等。
3、斜槽末端切线水平。
4、小球每次应由同一点静止释放。
经典例题1、某同学采用如图所示的装置,利用A、B两球的碰撞来验证动量守恒定律.图中MN是斜槽,N R为水平槽.实验时先使A球从斜槽上某一固定位置由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹.重复上述操作10次,得到10个落点痕迹平均位置P;再把B球放在水平槽上靠近槽末端的地方,让A球仍从固定位置由静止开始滚下,与B球碰撞后,A、B球分别在记录纸上留下各自的落点痕迹.重复这种操作10次得到10个落点痕迹平均位置E、F.(1)若A球质量为m1,半径为r1;B球质量为m2,半径为r2,则 (单选)A.m1>m2r1>r2B.m1>m2r1<r2C.m1>m2r1=r2D.m1<m2r1=r2(2)以下提供的器材中,本实验必需的是 (单选)A.刻度尺B.打点计时器C.天平D.秒表(3)设A球的质量为m1,B球的质量为m2,则本实验验证动量守恒定律的表达式为(用装置图中的字母表示) .2、某同学用如图所示装置探究A、B两球在碰撞中动量是否守恒.该同学利用平抛运动测量两球碰撞前后的速度,实验装置和具体做法如下,图中P Q是斜槽,QR为水平槽.实验时先使A球从斜槽上某一固定位置G由静止开始滑下,落到位于水平地面的记录纸上,留下痕迹.重复上述操作10次,得到10个落点痕迹.再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G 由静止开始滑下,和B球碰撞后,A、B球分别在记录纸上留下各自的落点痕迹.重复这种操作10次,并画出实验中A、B两小球落点的平均位置.图中O点是水平槽末端R在记录纸上的垂直投影点,E、F、J是实验中小球落点的平均位置.①为了使两球碰撞为一维碰撞,所选两球的直径关系为:A 球的直径 B 球的直径(“大于”、“等于”或“小于”);为减小实验误差,在两球碰撞后使A 球不反弹,所选用的两小球质量关系应为m A m B (选填“大于”、“等于”或“小于”);②在以下选项中,本次实验必须进行的测量是 ;A .水平槽上未放B 球时,A 球落点位置到O 点的距离B .A 球与B 球碰撞后,A 球、B 球落点位置分别到O 点的距离C .A 球和B 球在空中飞行的时间D .测量G 点相对于水平槽面的高③已知两小球质量m A 和m B ,该同学通过实验数据证实A 、B 两球在碰撞过程中动量守恒,请你用图中的字母写出该同学判断动量守恒的表达式是 .光说不练,等于白干1、在“探究碰撞中的不变量”实验中,装置如图所示,两个小球的质量分别为m A 和m B .(1)现有下列器材,为完成本实验,哪些是必需的?请将这些器材前面的字母填在横线上 .A .秒表B .刻度尺C .天平D .圆规(2)如果碰撞中动量守恒,根据图中各点间的距离,则下列式子可能成立的有 . A. MP ON m m B A B. MP OM m m B A C. MN OP m m B A D.MNOM m m B A 2、如图1所示,在做“碰撞中的动量守恒”实验中.(1)下面是本实验部分测量仪器或工具,需要的是 .A .秒表B .天平C .刻度尺D .弹簧秤(2)完成本实验,下列必须要求的条件是 .A.斜槽轨道末端的切线必须水平B.入射球和被碰球的质量必须相等C.入射球和被碰球大小必须相同D.入射球每次不必从轨道的同一位置由静止滚下(3)某次实验中用游标卡尺测量小球的直径,如图2所示,该小球的直径为 mm.(4)某次实验中得出的落点情况如图3所示,假设碰撞过程中动量守恒,则入射小球质量m1和被碰小球质量m2之比为 .3、如图1所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系:先安装好实验装置,在地上铺一张白纸,白纸上铺放复写纸,记下重垂线所指的位置O.接下来的实验步骤如下:步骤1:不放小球2,让小球1从斜槽上A点由静止滚下,并落在地面上.重复多次,用尽可能小的圆,把小球的所有落点圈在里面,其圆心就是小球落点的平均位置;步骤2:把小球2放在斜槽前端边缘位置B,让小球1从A点由静止滚下,使它们碰撞.重复多次,并使用与步骤1同样的方法分别标出碰撞后两小球落点的平均位置;步骤3:用刻度尺分别测量三个落地点的平均位置M、P、N离O点的距离,即线段OM、OP、ON的长度.(1)对于上述实验操作,下列说法正确的是A.应使小球每次从斜槽上相同的位置自由滚下B.斜槽轨道必须光滑C.斜槽轨道末端必须水平D.小球1质量应大于小球2的质量(2)上述实验除需测量线段OM、OP、ON的长度外,还需要测量的物理量有 .A.A、B两点间的高度差h1B.B点离地面的高度h2C.小球1和小球2的质量m1、m2D.小球1和小球2的半径r(3)当所测物理量满足表达式 (用所测物理量的字母表示)时,即说明两球碰撞遵守动量守恒定律.如果还满足表达式 (用所测物理量的字母表示)时,即说明两球碰撞时无机械能损失.(4)完成上述实验后,某实验小组对上述装置进行了改造,如图2所示.在水平槽末端与水平地面间放置了一个斜面,斜面的顶点与水平槽等高且无缝连接.使小球1仍从斜槽上A点由静止滚下,重复实验步骤1和2的操作,得到两球落在斜面上的平均落点M′、P′、N′.用刻度尺测量斜面顶点到M′、P′、N′三点的距离分别为l1、l2、l3.则验证两球碰撞过程中动量守恒的表达式为 (用所测物理量的字母表示).4、某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前端粘有橡皮泥,推动小车A使之做匀速运动,然后与原来静止在前方的小车B相碰并黏合成一体.继续做匀速运动,他设计的具体装置如图(a)所示,在小车A后接着纸带,电磁打点计时器电源频率为50Hz,长木板下垫着小木片用以平衡摩擦力.(1)若已得到打点纸带如图(b),并将测得的各计数点间距离标在图上,A为运动起始的第一点,则应选 段起计算A的碰前速度,应选 段来计算A和B碰后的共同速度(以上两格填“AB”或“BC”或“DC”或“DE”)(2)已测得小车A的质量m1=0.40kg,小车B的质量m2=0,20kg,由测量结果可得:碰前总动量=kg•m/s,碰后总动量=kg•m/s.5、气垫导轨是常用的一种实验仪器.它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦.我们可以用带竖直挡板C和D的气垫导轨以及滑块A和B来验证动量守恒定律,实验装置如图所示(弹簧的长度忽略不计),采用的实验步骤如下:a.用天平分别测出滑块A、B的质量m A、m B.b.调整气垫导轨,使导轨处于水平.c.在A和B间放入一个被压缩的轻弹簧,用电动卡销锁定,静止放置在气垫导轨上.d.用刻度尺测出A的左端至C板的距离L1.e.按下电钮放开卡销,同时使分别记录滑块A、B运动时间的计时器开始工作.当A、B滑块分别碰撞C、D挡板时停止计时,记下A、B分别到达C、D的运动时间t1和t2.(1)实验中还应测量的物理量是.(2)利用上述测量的实验数据,验证动量守恒定律的表达式是,上式中算得的A、B两滑块的动量大小并不完全相等,产生误差的原因可能是 (至少写出两点)(3)利用上述实验数据是否可以测出被压缩弹簧的弹性势能的大小?(填“可以”或“不可以”)6、某小组用如图所示的装置验证动量守恒定律.装置固定在水平面上,圆弧形轨道下端切线水平.两球半径相同,两球与水平面的动摩擦因数相同.实验时,先测出A、B两球的质量m A、m B,让球A多次从圆弧形轨道上某一位置由静止释放,记下其在水平面上滑行距离的平均值x0,然后把球B静置于轨道下端水平部分,并将A从轨道上同一位置由静止释放,并与B相碰,重复多次.①为确保实验中球A不反向运动,则m A、m B应满足的关系是;②写出实验中还需要测量的物理量及符号: ;③若碰撞前后动量守恒,写出动量守恒的表达式: ;④取m A=2m B,x0=1m,且A、B间为完全弹性碰撞,则B球滑行的距离为 .。
动量守恒定律的实验研究
![动量守恒定律的实验研究](https://img.taocdn.com/s3/m/827d8a8dd15abe23492f4d57.png)
υ 20 = 0
( ) 则此时 m1υ10 = m1 + m2 υ
实验内容及步骤
1.气轨调水平 (1)粗调:以目测的方法调整导轨单脚螺钉, 使导轨初步水平; (2)细调:考虑重力的分力与摩擦力相互抵消, 以满足碰撞时合外力为零的条件。
2.等质量弹性碰撞时验证动量守恒定律
3.不等质量弹性碰撞时验证动量守恒定律
1
2
30
3
大碰小
4
5不 等
6
质
1
量
2
30
3
小碰大
4
5
6
t 20
t1
(ms) (ms)
∞
∞
∞
∞
∞
∞
∞ ∞
∞ ∞ ∞
∞
t2
(ms)
M1(g) M3 (g) d11(mm) d12(mm) d21(mm) d22(mm)
数据处理
m1V10 − (m1V1 + m2V2 ) (%)
m1V10
实验结果
1.等质量弹性碰撞前后动量守恒验证; 2.不等质量弹性碰撞前后动量守恒验证. 提示: 总动量损失的百分差来说明
1. 弹性碰撞 除了满足式(2-2)外,还满足下式:
1 2
m1υ120
+
1 2
m2υ
2 20
=
1 2
m1υ12
+
1 2
m2υ
2 2
若两个物体质量相等,即m1 =m2 =m,则当
υ 20 = 0 时 将得到 ,υ 1 = 0,υ 2 = υ 10
(2-6)
�,
实验验证动量守恒定律
![实验验证动量守恒定律](https://img.taocdn.com/s3/m/0b30785ebed5b9f3f90f1c8d.png)
a
b
H
O A ppt课件 B C
24
(2)小球a、b的质量ma、mb应该满足什么关系?为什么? ma> mb,保证碰后两球都向前方运动;
ppt课件
23
⑴本实验必须测量的物理量有以下哪些选项 _B___E_________.
A.斜槽轨道末端到水平地面的高度H B.小球a、b的质量ma、mb C.小球a、b的半径r D.小球a、b 离开斜槽轨道末端后平抛飞行的时间t E.记录纸上O点到A、B、C各点的距离OA、OB、OC F. a球的固定释放点到斜槽轨道末端水平部分间的高度差h
3
mA mB
O O'
’
N
P
碰撞时的动态过程
ppt课件
M
4
mA mB
O O'
’
N
P
碰撞时的轨迹示意图
ppt课件
M
5
【实验目的】
利用平抛运动验证动量守恒
【实验器材】
天平、刻度尺、游标卡尺(测小球直径)、碰 撞实验器、复写纸、白纸、重锤、两个直径相同质 量不同的小球
ppt课件
6
装置 mA
说明:
mA 为入射小球 , mB 为被碰小球 且。mA>mB
O’N=ON-2r(r代表小球的半径)
验证式 mAOP=mAOM+mB(ON-2r)
验 证 的 表 达ppt课式件 : m A O P = m A O M + m B O ’8 N
实验测量
测量的物理量: a.用天平测两球质量mA、mB b.用游标卡尺测两球的直径D, 并计算半径r。 c.水平射程:OP、OM、ON
ppt课件
9
实验步骤
实验 验证动量守恒定律
![实验 验证动量守恒定律](https://img.taocdn.com/s3/m/e7f9ee89fab069dc5122010f.png)
实验验证动量守恒定律
一、实验目的:验证动量守恒定律
二、实验原理:动量守恒定律
实验方案
三、实验器材:
气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。
四、实验步骤:
(一)安装器材
1.正确安装好气垫导轨。
(二)进行实验
2.用天平测出滑块质量m1、m2。
3.接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前、后的速度v1、v2和v1′、v2′
4.①改变滑块的质量,重复步骤3。
②改变滑块的初速度,重复步骤3。
(三)数据处理
5.滑块速度的测量:v=Δx
Δt,式中Δx为滑块挡光片的宽度(仪器说明书上给出,也
可直接测量),Δt为数字计时器显示的滑块(挡光片)经过光电门的时间。
计算两滑块各种情况下碰撞前、后的速度v1、v2和v1′、v2′
6.比较两滑块碰撞前后的动量之和
碰前:p = m1 v1+m2v2
碰后:p′= m1 v1′+ m2 v2′
(四)得出结论
比较p与p′,在误差允许范围内,两滑块碰撞过程中动量守恒。
(五)分析误差
系统误差:
偶然误差:
参考方案
实验器材
斜槽、小球(两个)m1、m2,且m1>m2、天平、三角板、带线重锤、直尺、复写纸、白纸、圆规等。
实验步骤
(二)进行实验
不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次。
用圆规画尽量小的圆把小球所有的落点都圈在里面。
圆心P就是小球落点的平均位置。
如图乙所示
……。
动量守恒定律的实验验证
![动量守恒定律的实验验证](https://img.taocdn.com/s3/m/b715811e3a3567ec102de2bd960590c69ec3d8f0.png)
动量守恒定律的实验验证动量守恒定律是物理学中的一个基本定律,它描述了相互作用系统中的动量的守恒。
通过进行实验验证可以进一步确认这一定律的准确性和适用范围。
本文将就动量守恒定律的实验验证进行探讨。
实验一:碰撞实验在物理实验中,碰撞实验是验证动量守恒定律的常见方法之一。
我们可以通过利用弹性碰撞和完全非弹性碰撞这两种不同类型的碰撞来进行验证。
在弹性碰撞实验中,我们可以设定两个物体的初速度和质量,并观察它们碰撞后的速度变化。
根据动量守恒定律,碰撞前后系统的总动量应该保持不变。
我们可以使用动量守恒定律的数学表达式来计算和比较碰撞前后的动量总和。
在非弹性碰撞实验中,我们可以使用两个粘在一起的物体作为实验样本,使其发生碰撞后,观察它们的速度变化情况。
同样地,根据动量守恒定律,碰撞前后系统的总动量应该保持不变。
通过实验数据的比对,可以验证动量守恒定律的准确性。
实验二:炮弹射击实验炮弹射击实验是另一种验证动量守恒定律的方法。
通过设计一个简单的弹射装置,可以实现炮弹的射击,并观察射击前后系统的动量变化。
在这个实验中,我们可以先测量炮弹的质量,并设定初始速度和角度。
通过追踪炮弹的飞行轨迹和测量射击后的速度和角度,我们可以计算和比较射击前后系统的总动量。
实验三:橡皮球反弹实验橡皮球反弹实验是验证动量守恒定律的另一个常见方法。
在这个实验中,我们可以将橡皮球从一定高度自由下落,并观察当橡皮球碰撞地面后的反弹高度。
根据动量守恒定律,橡皮球下落前的动能应该转化为反弹后的动能,而动量守恒定律则可以用来计算这一转化过程中的动量变化。
通过测量橡皮球的下落高度和反弹高度,我们可以验证动量守恒定律在这个实验中的适用性。
通过以上实验的验证,我们可以得出结论:动量守恒定律在碰撞实验、炮弹射击实验和橡皮球反弹实验中都得到了验证。
这证明了动量守恒定律在不同实验条件下的有效性和准确性。
总结:通过碰撞实验、炮弹射击实验和橡皮球反弹实验的验证,我们可以得出结论:动量守恒定律适用于不同类型的相互作用系统中,无论是弹性碰撞还是非弹性碰撞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
5.在“验证动量守恒定律”的实验中,请回答下 列问题. (1)实验记录如图 10 甲所示,则 A 球碰前做平抛 运动的水平位移是图中的 OP,B 球被碰后做平 抛运动的水平位移是图中的ON .(两空均选填 “OM”、“OP”或“ON”) (2)小球 A 下滑过程中与斜槽轨道间存在摩擦力, 这对实验结果 不会产生误差(选填“会”或“不 会”).
⑤、过O、N在纸上作直线,取OO'=2r,O'即为被 碰球被碰时球心投影位置。
实验步骤
⑥、用刻度尺量OM、OP、O'N的长度。把两小 球的质量和相应的“速度数值"•代入表达式看 是否成立:
验证的表达式:mAOP=mAOM+mBO’N ⑦、整理实验器材,放回原处。
【误差分析】
实验中发现碰撞后系统(m1、m2)水平方向的总动 量小于碰撞前系统水平方向的总动量,误差主要 来源于:
实验步骤
①、先用天平测量出两个小球的质量mA、mB。 ②、安装好实验装置,注意使实验器的斜槽末端点的切 线水平。 把被碰球放在斜槽前的支柱上,调节实验装 置使两球处于同一高度,且两球的球心和槽轴线在一直 线上,两球心间的距离即为槽和支柱间的距离。垫木板 和白纸时,要使木板水平。
用重锤线准确地标绘出槽口中心的 竖直投影点O。 从而确定0·点位置
验证动量守恒定律
装置
m1 验证动量守恒定律的实验装置
m2 说明:m1 为入射小球, m2 为被碰小球。
且m1>m2
o’
【实验目的】
利用平抛运动验证动量守恒
【实验原理】
如图所示为验证碰撞中的动量守恒的实验装置.设入射
球质量m1,靶球质量m2,碰撞前m1的速度v1,m2静止,碰 撞后m1的速度v1′,m2的速度v2′
1.难做到准确的正碰,则误差较大;斜槽末端若 不水平,则得不到准确的平抛运动而造成误差.
2.O、P、M、N各点定位不准确,测量和作图有 偏差.
【注意事项】 1.本实验中两个小球质量不同,一定是质 量大的作入射球,质量小的作被碰球,如果用 质量小的与质量大的相碰,则质量小的球可能 反弹,这样就不能准确测定入射小球碰后的速 度. 2.该实验要确保斜槽末端水平.检验是否 水平的方法是:将小球轻轻放在斜槽末端的水 平部分的任一位置,若小球均能保持静止,则 表明斜槽末端已水平. 3.保证入射小球每次必须从同一高度由静 止滚下,且尽可能的让小球的释放点高些. 4.实验过程中,实验桌、斜槽及白纸的位 置始终不变. 5.在计算时一定要注意 m1、m2 和 OP、 OM、ON 的对应关系.
是
.
解析 (3)两木块质量分别为 m1、m2,离开桌面至
落地的过程是平抛运动,其水平位移分别为 s1、s2,
烧断细线前后由 m1、m2 两木块组成的系统若动量
守恒,则有 m 1v1=m 2v2,又因平抛运动的竖直位移
为 h= 1 gt2,故 t=
2
2h ,即两木块运动时间相等,
g
所以 m 1 s1 =m 2 s2 ,即 m 1s1=m 2s2.
(3)实验装置如图甲所示,A 球为入射小球,B 球
为被碰小球,以下所列举的在实验过程中必须满
足的条件, 量 mb
B.实验时需要测量斜槽末端到水平地面的高度
C.入射小球每次不必从斜槽上的同一位置由静
止释放
D.斜槽末端的切线必须水平,小球放在斜槽末
1.若碰撞动量守恒,则应满足
m1·v1=m1·v1′+m2·v2′
.
2.该实验入射球和靶球质量必须
满足 m1>m2
.
3.该实验需要测量的数据有:
m1、 m2、OM、 OP、 ON
.
4.根据测量数据,验证动量守恒的关系式是:
m1·OP=m1·OM+m2·ON
.
实验器材
斜槽、两个大小相同但质量不同小 球、天平、刻度尺、白纸、复写纸、 游标卡尺。
端处,应能静止
2.某同学把两个质量不同的木块用细线
连接,中间夹一个被压缩了的轻弹簧,
如图 7 所示,将此系统置于光滑水平
桌面上,烧断细线,观察两物体的运
图7
动情况,进行必要的测量,验证两物体相互作用
的过程中动量守恒.
(1)该同学还需具备的器材是
;
(2)需要直接测量的数据是
;
(3)用所得数据验证动量守恒的关系式
实验步骤
③、先不放被碰球B,让入射球A从斜槽上同一高 度处滚下,重复5~10次,
用圆规画尽可能小的圆把所有的小球落点 都圈在里面,该小圆的圆心,就是入射球的落地点
P。
实验步骤 ④、把被碰小球B放在支柱上,让入射小球A从同 一高度滚下,使它们发生正碰,•重复5~10次,仿 步骤③,求出入射小球A的平均落点M和被碰小球B 的平均落点N。
t
t
答案 (1)刻度尺、天平 (2)两木块质量m1、m2及
其做平抛运动的水平位移s1、s2 (3)m1s1=m2s2