白车身弯曲刚度分析规范(参考Word)
白车身结构弯曲静刚度有限元与试验分析
( 2 )
1 白车身弯 曲刚度理论模型
对 于 白车 身 , 为 了模 拟 轿 车 在行 驶 过 程 中 的
轿 车轴距 , mm;
真实加载变形状态 , 相关 的约束载荷施加在前后 悬 的安装孔 上。测试静刚度 时 , 必须保证约束装 置 的刚度不影 响白车身 自身 的刚度 ; 且 白车身受 载后 , 约束装置不能影响 白车身在空 间上 的 自由
现在 许 多现 有 的轿 车 白车身 试验 都 假定 车身
整体是一具有弯曲刚度 的简支梁 , 但是 由于在实
际受 载 中 白车 身在 空 间上 存 在 自由 的伸 缩 变形 ,
法: 1 ) 在座 椅 固定处 加 载荷 ; 2 ) 在左 右 车 门门槛 上
所 以采用图 1 所示 的约束方案 , 在梁上施加力 F 。 按照材料力学的公式计算 , 此时 白车的弯 曲 刚度用车身载荷 ( ,) 与最大弯曲挠度( ) 的比 值来求 , 即: 弯曲刚度 K b = F / t o 。 弯曲刚度计算公式如下 :
40 0 m mX 40 0 mm。
根据 空间 自由度计算 公式 进 行计算 , 可得 :
三
S = 6 n 一 ‘ ∑( i P . I ) 一 5 I + L s v
i =l
( 3 )
式 中: s为空 间机 构 的 自由度 , n为活 动构 件 的数 量, P 为分 别 对 应 各类 的运 动 副数 量 , 5 代 表 虚 约束 , S , . 代表 局部 自由度 的数 量 。 分 析 可得 : : 3 , P = 5 , P , =l 。此 外 支撑 和 支撑 绕 自己轴线 的转 动 为局 部 自由度 S , , = 2, 而
白车身扭转刚度分析及优化_翁洋-13
白车身扭转刚度分析及优化翁洋张伟(上海汽车集团股份有限公司技术中心,上海,200804)摘要:白车身结构是否具备合理的静态扭转和弯曲刚度对于提升整车的结构耐久和NVH性能是至关重要的。
不同的车型,刚度的目标值也不同。
车身结构的刚度值可以通过试验或者有限元分析得到,使用有限元方法来模拟白车身刚度试验,通过试验结果来验证有限元分析的正确性。
BIW Torsion Stiffness Analysis & OptimizationAbstract:Adequate static torsion stiffness of BIW is essential for better overall durability and NVH performance. Stiffness targets vary for different vehicles. The stiffness can be evaluated experimentally and analytically. The FE results can be used to correlate CAE to testing data.引言在小型乘用车设计开发中,对车身结构设计进行有限元分析计算是有效缩短产品开发周期、节约产品开发及实验费用、提高产品可靠性的重要技术手段。
因此车身的扭转和弯曲刚度作为衡量车身设计的一项重要条件,对其进行准确的分析计算成为设计开发中的一项不可缺少的重要内容。
为了和白车身刚度试验结果对比,分析中所需的零件需要和试验一致。
可以通过优化软件进行DOE分析,并根据分析结果调整对产品性能起主要作用的参数进行优化设计。
建立有限元模型本文所涉及的有限元模型采用Hypermesh进行前处理。
网格模型由Quard4、Tria3单元以及相应的焊接单元构成,并且单元质量符合指定的建模标准。
模型结构如图所示白车身结构网格模型边界条件后减震塔约束3个方向的自由度,前横梁中心约束5个方向的自由度。
白车身弯扭刚度测试技术与评价方法
20技18术年聚7焦月
技术看点
白车身弯扭刚度测试技术 与评价方法
李伟 端木琼 李占方 (中国汽车技术研究中心有限公司)
摘要:为了满足汽车的舒适性、安全性及操控性方面的要求,在车型开发前期需要评估汽车的弯扭刚度。不同试验条件下测 出的刚度值差异很大,为确保数据的统一性和精确性,提出一种测试技术,通过对比 ! 种试验方案,得到扭转方案 ! 改善了 试验过程中的侧向位移,更接近汽车的真实工况;在该方法的基础上,统计几十款 " 级车的弯扭刚度试验数据,总结出 " 级
之间的距离,间接计算出前后悬的相对扭转角,然后通
载荷
图 B 白车身扭转刚度加载示意图
过加载力矩和前后悬的相对扭转角计算出白车身扭转
前、后悬处扭转角的计算公式为:
- -
2第0178(期7)
技术聚焦
Feature
f=
!f+"f arctan( # )
f
(1)
$=
=f-
(3)
距离前轴为 - 的测点 % 向的误差补偿量(/mm)
为:
="r10/. -).
(6)
式中:0— ——前后悬之间的 , 向距离,mm;
-— ——测点距前轴的 , 向距离,mm;
"r1— ——后悬 % 向变形量的平均值,mm。
距离前轴为 - 的测点补偿后的变形量(11/mm)为:
!r+"r arctan( # )
r
(2)
式中:f,$—— —前、后悬处扭转角,();
பைடு நூலகம்
!f,"f— ——前悬左、右侧 % 向的变形量,mm;
!r,"r— — —后悬左、右侧 % 向的变形量,mm;
白车身弯曲刚度分析规范(参考Word)
1、范围本标准规定了乘用车弯曲刚度分析的要求;本标准适用于本公司乘用车白车身弯曲刚度分析。
2、输入条件2.1 BIW 几何模型数据要求如下:1)模型完整,数据无明显的穿透或干涉;2)各个零件的厚度齐全;3)几何焊点数据齐全;4)各个零件的明细表完整齐全。
2.2 BIW有限元模型1)各个零件网格模型完整,数据中无穿透;2)焊点数据齐全;3)各个零件厚度数据齐全;4)各个零件材料数据齐全。
3、输出物BIW刚度分析输出物为PDF文档格式的分析报告,正对不同车型统一命名为《XX车型BIW 刚度CAE分析报告》4、分析方法4.1 分析模型分析模型包括BIW有限元模型,钣金件均采用壳单元模拟,点焊采用CWELD单元模拟,线焊和螺栓连接采用RBE2模拟,减震胶采用SOLID模拟。
4.2分析模型建立建立有限元模型,应符合以下要求:1)BIW网格质量符合求解器要求;2)BIW材料须与明细表规定的明细表相对应;3)BIW的厚度须与明细表规定的厚度相对应;4)焊点几何坐标须与3D焊点坐标一致,焊点连接的层数须明确,点焊采用CWELD模拟,线焊和螺栓采用RBE2模拟,减震胶采用SOLID模拟。
4.3刚度分析1)定义刚度分析约束条件2)定义防毒分析求解工况3)定义刚度分析载荷条件4)求解器设置4.4分析工况约束条件:在前后悬架与车身连接处,约束XYZ移动自由度;载荷条件:在前排左右座椅质心处各施加1000N的吹响李,后排座椅质心处施加2000N的垂向力。
5分析数据处理5.1在车身纵梁下部和门槛梁下部分布了一系列考核点,通过考核点的X坐标值和Z向变形量绘制弯曲刚度曲线。
5.2绘制白车身弯曲刚度变形曲线5.3刚度计算刚度计算公式k=F/δ(F为加载力,δ为位移)。
5.4刚度云图6 BIW弯曲刚度分析评价标准1)弯曲变形曲线要求计算的弯曲变形曲线应连续变化,无突变。
2)各车型弯曲刚度要求按照车型级别分类,同时参靠标杆车。
包括:A级车弯曲刚度不小于10000N/mm;B、C级车弯曲刚度不小于14000 N/mm。
SAE-C2009C168白车身静刚度分析
1郾 25m, 所以 该 车 的 最 大 扭 转 载 荷 为 M = 0郾 5 伊 1025 伊 9郾 8 伊
1郾 565N·m = 7835N·m。
摇 摇 采取逐步加载的方式进行加载, 得到相应转矩下该车的
转角和扭转刚度见表 3。
表 3摇 各载荷工况下轴间扭转角和抗扭刚度
转矩 / N·m
转角 / ( 忆)
1562
SAE鄄C2009C168
2009 中国汽车工程学会年会论文集摇
白车身静刚度分析
张雷摇 陶其铭摇 丁锡幸
安徽江淮汽车股份有限公司技术中心
摇 摇 揖 摘要铱 摇 本文采用 UG 和 ANSYS 软件建立了某国产中高级轿车白车身有限元模型, 通过对其刚度的分析和对国内外同 级别的车型进行比较来判断该轿车的刚度情况。 针对分析结果和相关车型的比较后对该车刚度情况做了一定的分析, 通过相 关实验进行验证, 为后续相关的优化和改进提供了依据。 摇 摇 揖 关键词铱 摇 轿车摇 白车身摇 ANSYS摇 刚度分析
1564
SAE鄄C2009C168
2009 中国汽车工程学会年会论文集摇
源的限制, 单元的基本大小要有一定的限度。 本文将车身结 性, 而单元的质量是模型质量的有力保证。 本文网格划分采
构单元的基本尺寸定为 25mm, 对于比较平整的部位单元尺 取手动控制的划分方法, 即控制单元长度, 进行整体划分,
图 4摇 整车焊点情况
2郾 2摇 单元的选取及单元特性
摇 摇 本文选用 ANSYS 提供的三维板单元 Shell63。 Shell63 既 具有弯曲能力又具有膜力, 可以承受平面内载荷和法向载 荷。 本单元每个节点具有 6 个自由度, 即: 沿节点坐标系 X、 Y、 Z 方向的平动和绕节点坐标系 X、 Y、 Z 轴的转动。 应力刚化和大变形能力已经考虑在其中。 在大变形分析( 有 限转动)中可以采用不变的切向刚度矩阵[3] 。 三维板壳单元 示意图如图 5 所示。
白车身灵敏度分析规范
1
1
DESVAR
1 gc10.75 0.6 0.9
$HMNAME DVPRELS 1
~gc1 1
DVPREL1 1
PSHELL
1
4
1
1.0
5. 选择 SOL200 求解器
关键字:SOL 200
6. 设置分析类型
变量的初始值、下限和上限
变量和板件属性关联
0.0
PDF created with pdfFactory Pro trial version
白车身灵敏度分析规范1of10pdfcreatedwithpdffactoryprotrialversion1标题摘要目录11标题标题部件子系统名上一级系统版本号白车身灵敏度分析规范白车身na目的相关的试验规范分析白车身性能对板件厚度的灵敏度na撰写人撰写日期黄石华2011032612摘要白车身灵敏度分析就是确定白车身特性响应对板件厚度变化的灵敏度白车身特性响应主要包括扭转模态频率和扭转刚度弯曲刚度工况下的关注点位移
白车身灵敏度分析规范
PDF created with pdfFactory Pro trial version
1 of 10
1 标题/摘要/目录
1.1 标题
标题
白车身灵敏度分析规范
目的
部件/子系统名 上一级系统
白车身
N/A
相关的试验规范
分析白车身性能对板件厚度的灵敏度
S
i r
=
0.01M 0
S
i m
P0
×
S
i p
× 100%
(1)
式中,
S
i r
为第
i
个部件的相对灵敏度;
M 0 为白车身初始状态总重量;
120_白车身扭转刚度分析
B1
1306.032
B2
900.872
D1
1319.127
D2
1347.472
1341.06 1304.43 1305.633 901.658 1320.17 1346.516
2.059 -2.044 -0.399 0.786 1.043 -0.956
变形率 (%)
0.154 -0.156 -0.031 0.087 0.079 -0.071
单元数(个) 749149
节点数(个) 三角形比例(%)
998923
1.2
质量(kg) 407.4
白车身扭转刚度分析:边界条件
123456 后减震器与车身连接处
3
前减震器与车身连接处两点中点
Mx= 2000N·m 在前螺旋弹簧与车身连接点施加力,形成绕X轴2000N·m的扭矩
白车身扭转刚度分析:扭转变形曲线
NASTRAN
参考标准: 标准
结论:
白车身扭转刚度满足目标值。 窗框、门框变形率满足目标值。
A1 前风窗框
A2
B1 左门框
B2
C1 后背门框
C2
各窗框、门框 变形率(%)
0.154 -0.156 -0.031 0.087 0.079 -0.071
目标值 <0.2%
白车身扭转刚度分析:模型信息
模型信息
测量点扭转角(°)
扭转变形曲线
0.25
0.2
0.15
0.1
0.05
0
0
300
600
900
1200
1500
1800
2100
2400
测量点X向坐标(mm)
白车身扭转刚度分析:门窗框变形表
0001-2019_驾驶室BIW弯曲刚度分析规范
目录1 前言 (1)2 范围 (1)3 规范引用文件 (1)4 术语和定义 (1)5 具体内容 (1)5.1有限元模型 (1)5.2边界条件 (2)5.3分析结果 (2)6 总结 (3)1 前言通过驾驶室BIW弯曲刚度分析,了解驾驶室的抗弯性能,为驾驶室设计优化提供参考依据。
2 范围本文规定了商用车驾驶室BIW弯曲刚度分析方法和评判标准。
本文适用于商用车的驾驶室BIW弯曲刚度分析。
3 规范引用文件《重庆坚峰汽车科技有限公司CAE建模规范》4 术语和定义5 具体内容5.1有限元模型根据提供的数据,建立有限元模型如图1所示:只包括白车身焊接本体,不包括玻璃、附件及内饰件等。
网格和连接要求参照《重庆坚峰汽车科技有限公司CAE建模规范》执行。
图1 驾驶室有限元分析BIW模型5.2边界条件约束:约束驾驶室悬置左前123,右前13,左后23,右后3自由度。
加载:在主驾驶座椅H点以及副驾驶座椅两个H点分别施加1000N垂向力(整车-Z向)。
测量点:底面纵梁左右Z向最大位移mm。
弯曲刚度分析的边界条件和载荷如图2.1和2.2所示:图2.1 约束图2.2 加载5.3分析结果1)测量点位置如图3所示:图3 车架弯曲刚度分析测量点左纵梁最大Z向位移为d zl,右纵梁最大Z向位移为d zr。
平均值d zmax=(d zl+d zr)/2,弯曲刚度k=F/d zmax。
2)位移云图如图4所示:图4 白车身弯曲刚度左右纵梁Z向位移云图3)BIW纵梁弯曲刚度Z向位移曲线如图5所示:图5白车身纵梁弯曲刚度Z向位移曲线6 总结1)白车身BIW弯曲刚度>标杆车BIW弯曲刚度;2)白车身BIW纵梁位移曲线连续且无突变。
实验 白车身弯扭刚度测试
实验 汽车车身静态弯曲扭转刚度测试
导出实验报告
汽车车身结构与设计
实验 汽车车身静态弯曲扭转刚度测试
保存
汽车车身结构与设计
汽车车身结构与设计
实验 汽车车身静态弯曲扭转刚度测试
选择弯曲刚度/扭转刚度
汽车车身结构与设计
实验 汽车车身静态弯曲扭转刚度测试
进入系统,点击左上方的型号管理,进入子模块,见下图。
汽车车身结试
添加型号
汽车车身结构与设计
实验 汽车车身静态弯曲扭转刚度测试
根据实际参数填写
实验 汽车车身静态弯曲扭转刚度测试
实验 汽车白车身静态弯曲、扭转刚度测试
• 实验目的及要求
1. 被测试车身部件按照使用过程中的约束条件和载荷条件进行模拟工况试 验,在试验条件下进行弯曲刚度测试。 2.测定承载式车身在静载荷作用下的弯曲变形状态,从而计算并评价车身 结构的刚度是否合适。 3.通过试验测得各位移传感器变化量。 4.分析车身承受静态弯曲载荷时的结构变形。
汽车车身结构与设计
系统工作原理示意图
实验 汽车车身静态弯曲扭转刚度测试
弯曲刚度测试
汽车车身结构与设计
扭转刚度测试
实验 汽车车身静态弯曲扭转刚度测试
• 实验步骤:
1. 固定加载梁并使其水平。 2. 布置传感器,根据软件要求测得数值,输入软件。 3. 实验准备
a.选择弯曲刚度(左)。 b.选择型号。 c.预加载(点击预加载按钮)。 注:预加载是为了消除机械间隙,消除实验误差。 4. 开始实验 点击开始按钮即可。 6. 导出实验报告 a. 点击报告按钮,进出下图界面。
•实验设备
汽车白车身刚度检测台,工控机,附带工具(线性位移传感器、力传感器、 数据采集系统),白车身。
白车身刚度简介
强度是抵抗塑性变形的能力,刚度是表示材料发生弹性变形的难易程度不同类型的刚度其表达式也是不同的,如截面刚度是指截面抵抗变形的能力,表达式为材料弹性模量或剪切模量和相应的截面惯性矩或截面面积的乘积。
其中截面拉伸(压缩)刚度的表达式为材料弹性模量和截面面积的乘积;截面弯曲刚度为材料弹性模量和截面惯性矩的乘积等等。
构件刚度是指构件抵抗变形的能力,其表达式为施加于构件上的作用所引起的内力与其相应的构件变形的比值。
其中构件抗弯刚度其表达式为施加在受弯构件上的弯矩与其引起变形的曲率变化量的比值;构件抗剪刚度为施加在受剪构件上的剪力与其引起变形的正交夹角变化量的比值。
而结构侧移刚度则指结构抵抗侧向变形的能力,为施加于结构上的水平力与其引起的水平位移的比值等等。
当然,也可以将材料的弹性模量或变形模量理解为材料的刚度。
在白车身刚度建模对标分析中的应用1 引言现代轿车车身大多数采用全承载式结构,承载式车身几乎承载了轿车使用过程中的所有载荷,主要包括扭转、弯曲等载荷,在这些载荷的作用下,轿车车身的刚度特性则尤显重要。
车身刚度不合理,将直接影响轿车的可靠性、安全性、NVH 性能等关键性指标,白车身的弯曲刚度和扭转刚度分析是整车开发设计过程中必不可少的环节。
本文通过和试验方案对比,提出了用于刚度分析的有限元模型前处理方法,通过将计算结果和试验结果对比,证明了前处理方法的合理性。
2 白车身结构刚度分析的前处理2.1 白车身结构的有限元建模根据企业内部标准,首先利用HyperMesh对白车身各部件进行网格划分,得到白车身的有限元模型,如图1所示。
该模型主要由四节点和三节点的壳单元构成,焊点采用ACM方式,部分结构涂胶采用胶粘单元模拟。
该模型共有438145个节点,432051个单元。
图1 白车身结构有限元模型2.2 边界条件与载荷的处理在白车身扭转刚度试验中,后轴固定夹具通过球铰作用于后减震塔上。
前轴扭转夹具通过球铰作用于前减震塔处,此处球铰的作用是为了保证载荷作用在垂直方向上,在试验过程中,该机构在y方向会产生微小的位移。
白车身弯扭刚度作业指导书
白车身弯曲刚度分析作业指导书1使用范围本指导书适用于白车身弯曲刚度有限元分析。
2前后处理软件UG、PROE、HYPERMESH、PATRAN等。
3输入要求车身部提供:相关零件的UG数模总成及零部件编号、及详细明细表,包含详细焊点信息,材料基本参数(弹性模量、密度、泊松比),厚度属性。
CAE分院根据根据标准施加载荷及约束情况。
4输出要求根据刚度分析所要求的各项参数,给出结构变形云图和白车身弯曲刚度值。
5前处理过程及步骤:5.1网格划分5.1.1将每个分总成所包括的iges文件导入Hypermesh中(操作过程中应注意随时保存,以免因软件意外跳出导致数据丢失,Hypermesh文件的后缀为hm),参照样车的实际结构进行必要的几何处理,而后使用2D\automesh命令划分网格(注意设置单元尺寸,单元尺寸初步定在15~40mm,划分时可根据具体情况进行调整,Elem type选择mixed)。
5.1.2 2D/automesh/ cleanup和Geom/geom cleanup,去掉不必要fix point和多余的面边界线(如果因为某个fix point位置不佳而产生较小尺寸的单元,即对该fix point进行调整);图1 2D/automesh/ cleanup菜单图2 Geom/geom cleanup菜单5.1.3对于倒角,半径小于10mm时可删去(使用Geom/defeature命令), 对于孔,半径小于10mm时可删去,半径大于10mm时应保证孔边沿上至少有4个节点 (使用Geom/defeature命令);图3 Geom/defeature菜单5.1.4对于对称件(在UG软件中去掉了一半),网格划分完后可用tools\reflect命令生成完整的网格模型(注意:需将对称节点equivalence,使用tools\edges命令)。
图4 tools\reflect菜单图5 tools\edges菜单5.2网格质量检查与排序网格划分完后需对网格质量进行检查(使用tools\check elems 命令),检查参数见表1。
白车身弯曲刚度分析报告
编号:QQ-PD-PK-066白车身弯曲刚度分析报告项目名称:QQ458321486编制:日期:校对:日期:审核:日期:批准:日期:XX汽车有限公司2013年03月目录1分析目的 (1)2使用软件说明 (1)3有限元模型建立 (1)4白车身弯曲刚度分析边界条件 (1)5分析结果 (3)6结论 (10)1分析目的车身是轿车的关键总成,除了保证外形美观以外,汽车设计工程师们更注重车身结构的设计。
车身应有足够的刚度,刚度不足,会导致车身局部区域出现大的变形,从而影响了车的正常使用。
低的刚度必然伴随有低的固有频率,易发生结构共振和声响。
本报告以QQ白车身为分析对象,利用有限元法,对其进行了弯曲刚度分析。
2使用软件说明本次分析采用Hypermesh作前处理,Altair optistruct求解。
HyperMesh是世界领先的、功能强大的CAE应用软件包,也是一个创新、开放的企业级CAE平台,它集成了设计与分析所需的各种工具,具有无与伦比的性能以及高度的开放性、灵活性和友好的用户界面,与多种CAD和CAE软件有良好的接口并具有高效的网格划分功能;Altair Optistruct是一个综和隐式和显示求解器于一体的大规模有限元计算软件,几乎所有的线性和非线性问题都可以通过其进行求解。
Altair Optistruct最强大的功能是其友好的CAO接口,通过Altair Optistruct可以进行任何形状、尺寸、拓扑结构的优化,采用固定的内存分配技术,具有很高的计算精度和效率。
3有限元模型建立根据设计部门提供的白车身的工艺数模建立QQ的计算模型,对模型进行了有限元离散处理:白车身所有零部件都采用板壳单元进行离散,并尽量采用四边形板壳单元模拟,少量三角形单元以满足高质量网格的过渡需要;粘胶用实体单元模拟,焊点采用CWELD 和RBE2单元模拟。
其中四边形单元469700个,三角形单元15543个,三角形单元比例3.4%。
白车身弯曲刚度分析
白车身弯曲刚度分析规范前言本标准是为指导白车身的弯曲刚度分析而建立的,目的是通过其规范白车身弯曲刚度分析流程,并提高分析的一致性。
本规范是在过往分析应用的基础上总结形成。
本标准在内容和格式的编排上,符合产品开发体系版式标准的要求。
白车身弯曲刚度分析规范1 范围本标准规定了白车身加载边界条件和、结果的处理和评价方法。
本标准适用于乘用车、部分商用车白车身弯曲分析。
本标准不适用于重型卡车、皮卡类车型。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
无3 术语和定义3.1.本规范中的BIW是指焊接车身的本体部分,不包含通过螺栓装配在车身本体上的部分(车门、发动机罩、行李箱盖以及需要螺栓连接的翼子板、仪表板支持横梁以及焊接在车身上的固定铰链),如图1所示。
图1 BIW示意图3.2.BIP带前挡风玻璃的白车身(在白车身弯曲刚度分析中需要考虑前挡风框变形率时使用不带玻璃的白车身模型,其余窗框变形率使用带玻璃的白车身模型)。
4 白车身弯曲刚度分析4.1加载如图2所示,找出纵梁上位于前后约束在X向的中点位置,用rbe2抓取此位置对应地板上面100*100mm的区域,左右分别加载-Z 向1000N 。
图2 白车身弯曲刚度分析边界示意4.2 约束如图2所示,采用对称约束方式,左后悬反冲块123,约束右后悬反冲块13,左前悬反冲块23,右前悬反冲块3,其中反冲块区域应变rbe2抓取100*100mm 范围内的节点。
4.3 结果后处理4.3.1 刚度值由载荷作用线作一竖直方向的平面与左、右中纵梁底面相交,其与左、右中纵梁底面中线的交点为测量点,测量左侧交点沿Z 向的位移量ΔZ1 和右侧交点沿Z 向的位移量ΔZ2,计算出平均值Δ和刚度值K ,记录于表1 所示的表格中。
乘用车白车身接头静刚度分析规范
Q/JLY J711 -2008乘用车白车身接头静刚度CAE分析规范编制: ______________校对: _______________审核: _______________审定: _______________标准化: _____________批准: _______________浙江吉利汽车研究院有限公司二OO八年九月为了给新车型开发提供设计依据,指导新车设计,评估新车结构性能,结合本企业实际情况,制定本规范。
本规范由浙江吉利汽车研究院有限公司提出。
本规范由浙江吉利汽车研究院有限公司综合技术部负责起草。
本规范主要起草人:袁连太。
本规范于2008年10月15 EI发布并实施。
1范围本规范规泄了乘用车白车身接头静刚度CAE分析的软硬件设施、输入条件、输岀物、分析方法、分析数据处理及分析报告。
本标准适用于乘用车白车身接头静刚度CAE分析。
2软硬件设施乘用车白车身接头静刚度CAE分析,主要包括以下设施:a)软件设施:主要用于求解的软件,采用MSC/NASTRAN:b)硬件设施:高性能计算机。
3输入条件3. 1白车身有限元模型乘用车白车身接头静刚度分析的输入条件主要指白车身有限元模型,一个完整的白车身有限元模型其中含内容如下:a)白车身各个零件的网格数据;b)白车身焊点数据;c)各个零件的材料数据:d)各个零件的厚度数据。
4输岀物乘用车白车身接头静刚度分析的输出物为PDF文档格式的分析报告,针对不同的车型统一命名为《车型白车身接头静刚度分析报告》(“车型”用具体车型代号替代如:车型为GC-1,则分析报告命名为《GC-1 白车身接头静刚度分析报告》),报告内容按7规左的内容编制。
5分析方法5. 1分析模型乘用车白车身接头静刚度分析的有限元模型,一般是从白车身有限元模型中抽取下来的接头模型,主要包括A柱与顶盖连接点、B柱与顶盖连接点、B柱与门槛连接点、C柱与顶盖连接点,这些接头模型用于接头参数化和引导设计。
乘用车白车身刚度分析规范
7.1分析模型
分析模型包括白车身的有限元模型(不含四门两盖,不带前、后挡风玻璃),车身钣金件均采用壳单元模拟,焊点的连接采用CWELD模拟。
7.2分析模型建立
建立有限元模型,应符合下列要求:
a)白车身各个零件的网格质量应符合求解器的要求;
b)白车身同一总成的零件,须放在同一个“Assembly”里;
5输入条件
5.1白车身有限元模型
刚度分析的输入条件主要指白车身的有限元模型,一个完整的白车身有限元模型中含内容如下:
a)白车身各个零件的网格数据;
b)白车身焊点数据;
c)各个零件的材料数据;
d)各个零件的厚度数据。
5.2 白车身3D几何模型
乘用车白车身刚度CAE分析的白车身3D几何模型,数据要求如下:
a)白车身各个零件的厚度或厚度线;
b)白车身几何焊点数据;
c)3D CAD数据中无明显的穿透或干涉;
d)白车身各个零件的明细表;
e)座椅R点坐标。
6输出物
乘用车的刚度分析的输出物为PDF文档格式的分析报告,针对不同的车型统一命名为《车型刚度分析报告》(“车型”用具体车型代号替代如:车型为GC-1,则分析报告命名为《GC-1刚度分析报告》),报告内容的按9规定的内容编制。
后处理时间包括刚度曲线的绘制,刚度值的计算,分析报告的编写等,一般需要1个工作日/1人。
4.4总时间计算
完成一个白车身的刚度CAE分析需要的时间如下:
a)无白车身有限元模型,完成白车身刚度CAE分析,需要28~33工作日/11人;
b)存在完整正确的白车身模型,完成白车身刚度CAE分析,需要2~3工作日/1人。
7.3刚度分析
刚度分析,包括以下内容:
白车身质量块安装点动刚度分析与优
图9暋优化前后副车架前支架安装点Z 方向IPI曲线 图10暋优化前后发动机安装点Z 方向IPI曲线 图11暋优化前后变速器安装点Z 方向IPI曲线
图 8暋 厚 度 尺 寸 作 为 尺 寸 优 化 变 量 的 9 组 板 件
表 1暋 尺 寸 优 化 和 圆 整 结 果
mm
优化变量 前铰链立柱内板
上边梁内板 后窗台板
收 稿 日 期 :2009—06—12 基金项 目:国家自然科学基金资助项目(50705067);上海市数 字 化 汽 车 车 身 工 程 重 点 实 验 室 开 放 基 金 资 助 项 目 (2008005)
度与材料特性之 间 的 关 系,拓 扑 优 化 后 得 到 单 元 密度值,且优化后的结构比较清晰 。 [5飊6]
笔者 运 用 Hypermesh 软 件 中 的 OptiStruct 模块,建立了 某 A 级 车 白 车 身 的 有 限 元 模 型,对 白车身与副车架的 两 个 连 接 点 (副 车 架 前 支 架 安 装点和副车架后支 架 安 装 点)以 及 白 车 身 与 动 力 总 成 连 接 点 (发 动 机 安 装 点 和 变 速 器 安 装 点 )分 别 进行 了 源 点 加 速 度 响 应 (inputpointinertance, IPI)分 析 。
图 5暋 发 动 机 安 装 点 IPI曲 线
图 2暋 质 量 块 安 装 点 位 置
白车身分析 模 型 无 约 束,为 自 由 状 态。 将 每 个分析点的每 个 方 向 (X、Y、Z)的 激 励 载 荷 定 义 为一个载荷工况(载荷为1N 的集 中 力,频 率 范 围 为关注的中低频 率 范 围),同 时,将 激 励 点 定 义 为 响 应 点 ,且 响 应 自 由 度 与 激 励 自 由 度 相 同 ,得 到 相 应的 加 速 度 响 应,并 且 通 过 数 据 处 理 得 到IPI曲 线 ,如 图 3~ 图 7 所 示 。
××车型白车身刚度CAE分析报告模板
图3 考核点分布图
4.2绘制白车身弯曲刚度变形曲线(见下图):
3 /3
图4 白车身弯曲刚度曲线
4.3刚度计算公式K=F/δ(F为加载力,δ为位移) 4.4刚度云图
图5 白车身弯曲刚度云图
5、分析结论—分析结果是否满足设计要求 XX车型白车身弯曲刚度是否满足目标要求。
6、优化方向—如分析结果不满足设计要求,对优化方案提供方向性建议
项目名称
××
数据版本
M0/2012.02.25
分析内容
××车型白车身刚度CAE分析报告模板
1、分析目的 对× × 车型白车身弯曲刚度进行校核。 2、使用软件 ① 前处理:HyperMesh v10.0 ② 求解器 NASTRAN2010 ③ 后处理:Hypermesh 10.0
1/3
文件编号
项目 -CAE-NVH-
审核
校对
制作
朱志峰 年-月-日
3.3工况说明—
2 /3
约束条件:在前、后悬架与车身连接处,约束X、Y、Z移动自由度;(见图2) 加载条件:在前排左右座椅质心处各施加1000N的垂向力,后排座椅质心处施加 2000N的垂向力
4、计算结果
图2 白车身弯曲刚度加载工况
4.1分析数据处理 在车身纵梁下部和门槛梁下部分布了一系列考核点,通过考核点的X坐标值和ቤተ መጻሕፍቲ ባይዱ向变形 量绘制弯曲刚度曲线(见下图)。
所属部门
CAE部
3、模型及边界条件
图1:白车身有限元模型
3.1模型说明—白车身NVH焊接模型
3.2 车身材料说明
部件
钣金件 减震胶
材料
steel glue
弹性模量 泊松比 密度
210000 10
CAE白车身扭转刚度分析报告
3.1、 模型说明(带玻璃)
单元类型 焊点类型 螺栓连接 单元个数 节点个数 CAE模型质量 CAD模型时间
SHELL
HEX+RBE3
RBE2
373578
386173
227Kg
2012-10-30
实施日
定制
更 改1 改2
改 改3 改4 改5
2012. 11 .30
秘密级别 绝密
秘密
5.3、扭转刚度位移曲线
扭转刚度值取点分布示意图
页
4/6
Angle(rad)
0.3 0.2 0.2 0.1 0.1 0.0 -0.1 0 -0.1 -0.2 -0.2 -0.3
车身底部扭转变形曲线
500
1000
1500
2000
2500
3000
左侧门槛
右侧门槛
X-Position(mm)
5.4、扭转刚度窗框变形量
文件编号 CAE-F128-NVH-301-01
页
5/6
B1 A1
A2
B2
G1
G2
G3
G4
扭转刚度窗框变形量(mm)
TORSION 前挡风窗 后围玻璃 侧前门(左侧) 侧前门(右侧) 侧后门(左侧) 侧后门(右侧)
序号
G1 G2 G3 G4 A1 A2 A1' A2' B1 B2 B1' B2'
原始尺寸
页
3/6
5.2、扭转刚度值
白车身扭转刚度值
GJ=T/φ=5948Nm/deg T=600Nm φ=0.10087deg
GJ=F*Tr*L/θ=1.04114MNm2/rad F=300N Tr=2000mm L=3054mm θ=0.00176rad
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、范围
本标准规定了乘用车弯曲刚度分析的要求;
本标准适用于本公司乘用车白车身弯曲刚度分析。
2、输入条件
2.1 BIW 几何模型
数据要求如下:
1)模型完整,数据无明显的穿透或干涉;
2)各个零件的厚度齐全;
3)几何焊点数据齐全;
4)各个零件的明细表完整齐全。
2.2 BIW有限元模型
1)各个零件网格模型完整,数据中无穿透;
2)焊点数据齐全;
3)各个零件厚度数据齐全;
4)各个零件材料数据齐全。
3、输出物
BIW刚度分析输出物为PDF文档格式的分析报告,正对不同车型统一命名为《XX车型BIW 刚度CAE分析报告》
4、分析方法
4.1 分析模型
分析模型包括BIW有限元模型,钣金件均采用壳单元模拟,点焊采用CWELD单元模拟,线焊和螺栓连接采用RBE2模拟,减震胶采用SOLID模拟。
4.2分析模型建立
建立有限元模型,应符合以下要求:
1)BIW网格质量符合求解器要求;
2)BIW材料须与明细表规定的明细表相对应;
3)BIW的厚度须与明细表规定的厚度相对应;
4)焊点几何坐标须与3D焊点坐标一致,焊点连接的层数须明确,点焊采用CWELD模拟,线焊和螺栓采用RBE2模拟,减震胶采用SOLID模拟。
4.3刚度分析
1)定义刚度分析约束条件
2)定义防毒分析求解工况
3)定义刚度分析载荷条件
4)求解器设置
4.4分析工况
约束条件:在前后悬架与车身连接处,约束XYZ移动自由度;
载荷条件:在前排左右座椅质心处各施加1000N的吹响李,后排座椅质心处施加2000N的垂向力。
5分析数据处理
5.1在车身纵梁下部和门槛梁下部分布了一系列考核点,通过考核点的X坐标值和Z向变形量绘制弯曲刚度曲线。
5.2绘制白车身弯曲刚度变形曲线
5.3刚度计算
刚度计算公式k=F/δ(F为加载力,δ为位移)。
5.4刚度云图
6 BIW弯曲刚度分析评价标准
1)弯曲变形曲线要求
计算的弯曲变形曲线应连续变化,无突变。
2)各车型弯曲刚度要求
按照车型级别分类,同时参靠标杆车。
包括:A级车弯曲刚度不小于10000N/mm;B、C级车弯曲刚度不小于14000 N/mm。
3)各门框及窗框对角线变形要求
各门框及窗框对角线变形量以参考车型为准。
(注:文件素材和资料部分来自网络,供参考。
请预览后才下载,期待你的好评与关注。
)。