随机过程的模拟与特征估计
系统辨识:随机过程的特征估计
实验3 随机过程的特征估计实验报告1、产生一组均值为1,方差为4 的正态分布的随机序列(1000 个样本),估计该序列的均值与方差。
解:MATLAB代码:R=NORMRND(1,2,1,1000) %产生均值为1方差为4的正态分布的1000个随机序列mean(R) %返回序列R的均值V AR(R) %返回序列R的方差figure(1);subplot(2,1,1)stem(R); %绘制离散R序列title('序列R')subplot(2,1,2)hist(R,15); %绘制R序列的分布title('序列R的分布')输出结果:均值:ans = 1.0911方差:ans =4.2540从输出结果中可以看到,输出的均值和方差接近所给值,R序列的分布图可接近正态分布。
2、按如下模型产生一组随机序列:x(n)=0.8x(n-1)+w(n)其中w(n)为均值为1,方差为4 的正态分布白噪声序列。
估计过程的自相关函数与功率谱。
解:MATLAB代码:Fs=1; %采样频率n=0:1/Fs:1000;%生成均值为1方差为4的正态分布白噪声序列w=randn(1,1000);w=w/std(w);w=w-mean(w);a=1; %均值为1b=4; %方差为4w=a+sqrt(b)*w;x=zeros(1,1000);x(1)=w(1);for n=2:1000x(n)=0.8*x(n-1)+w(n);endnfft=1000;cxn=xcorr(x,'unbiased'); %计算x(n)的自相关函数figure(1);subplot(3,1,1);plot(cxn); %绘制自相关函数图title('信号x的自相关函数')%自相关法功率谱估计CXk=fft(cxn,1000);Pxx=abs(CXk);index=0:round(nfft/2-1);k=index*Fs/nfft;plot_Pxx=10*log10(Pxx(index+1));subplot(3,1,2)plot(k,plot_Pxx);title('信号x的功率谱');%周期图法功率谱估计window=boxcar(length(x));%矩形窗[Pxx,f]=periodogram(x,window,nfft,Fs);%直接法Subplot(3,1,3)plot(f,10*log10(Pxx))title('周期图法得到的功率谱')3、设信号为x(n)=sin(2πf1n)+2cos(2πf2n)+w(n),n=1,2,....,N,其中f1=0.05,f2=0.12,w(n)为正态白噪声,试在N=356 和1024 点时,分别产生随机序列x(n)、画出x(n)的波形并估计x(n)的相关函数和功率谱。
《随机信号分析与处理》教学大纲
《随机信号分析与处理》教学⼤纲《随机信号分析与处理》教学⼤纲(执笔⼈:罗鹏飞教授学院:电⼦科学与⼯程学院)课程编号:070504209英⽂名称:Random Signal Analysis and Processing预修课程:概率论与数理统计、信号与系统、数字信号处理学时安排:60学时,其中讲授54学时,实践6学时学分:3⼀、课程概述(⼀)课程性质地位本课程是电⼦⼯程、通信⼯程专业的⼀门学科基础课程。
该课程系统地介绍随机信号的基本概念、随机信号的统计特性分析⽅法以及随机信号通过系统的分析⽅法;介绍信号检测、估计、滤波等信号处理理论的基本原理和信息提取⽅法。
其⽬的是使学⽣通过本课程的学习,掌握随机信号分析与处理的基本概念、基本原理和基本⽅法,培养学⽣运⽤随机信号分析与处理的理论解决⼯程实际问题的能⼒,提⾼综合素质,为后续课程的学习打下必要的理论基础。
本课程是电⼦信息技术核⼼理论基础。
电⼦信息系统中的关键技术是信息获取、信息传输、信息处理,这些技术的理论基础就是随机信号的分析、检测、估计、滤波等理论,这正是本课程的主要内容。
因此,本课程内容是电⼦信息类应⽤型⼈才知识结构中不可或缺的必备知识。
⼆、课程⽬标(⼀)知识与技能通过本课程的学习,掌握随机信号分析与处理基本概念和基本分析⽅法。
内容包括:1.理解和掌握随机过程基本概念和统计描述;2.掌握随机过程通过线性和⾮线性系统分析⽅法3.理解和掌握典型随机过程的特点及分析⽅法;4.掌握参数估计的概念、规则和性能分析⽅法;5.掌握信号检测的概念、规则和性能分析⽅法;6.掌握⾼斯⽩噪声中最佳检测器的结构和性能分析。
通过本课程的学习,要达到的能⼒⽬标是:1.具有正确地理解、阐述、解释⽣活中的随机现象的能⼒,即培养统计思维能⼒;2.运⽤概率、统计的数学⽅法和计算机⽅法分析和处理随机信号的能⼒;3.初步具备雷达、通信、导航等技术领域的信号处理系统的分析、设计、仿真的科学研究能⼒;4.培养⾃主学习能⼒;5.培养技术交流能⼒(包括论⽂写作和⼝头表达);6.培养协作学习的能⼒;(⼆)过程与⽅法依托“理论、实践、第⼆课堂”三个基本教学平台,通过课堂教学、概念测试、课堂研讨、案例研究、作业、实验、课程论⽂、⽹络教学等多种教学形式,采⽤研究型、案例式、互动研讨、基于团队学习、基于MATLAB的教学以及基于多媒体的教学等多种教学⽅法和⼿段,使学⽣加深对随机信号分析与处理的基本概念、基本原理以及应⽤的理解,并使学⽣通过⾃主学习、⼩组作业、案例研究、实验、课题论⽂等主动学习形式,培养⾃学能⼒和协同学习的能⼒,使学⽣不仅获得知识、综合素质得到提⾼。
Matlab中的随机过程建模技巧
Matlab中的随机过程建模技巧随机过程是描述随机现象随时间变化的数学模型。
它在工程、金融、生物医学等许多领域都有广泛的应用。
在Matlab中,我们可以利用其强大的数学工具箱来进行随机过程的建模和分析。
本文将介绍一些在Matlab中常用的随机过程建模技巧。
一、随机过程的基本概念在进行随机过程建模之前,我们先来回顾一下一些基本概念。
1. 马尔可夫性质马尔可夫性质是指一个随机过程在给定过去的条件下,未来与过去和未来的时间无关。
在Matlab中,可以使用markovchain对象来表示马尔可夫链,并利用其属性和方法进行分析。
2. 随机过程的平稳性如果一个随机过程的统计性质在时间平移的情况下不发生变化,那么该随机过程就是平稳的。
在Matlab中,可以使用stationary函数来判断一个随机过程是否是平稳的。
3. 随机过程的自相关函数与功率谱密度自相关函数描述了一个随机过程在不同时间点的取值之间的相关性。
功率谱密度则描述了一个随机过程在不同频率下的能量分布。
在Matlab中,可以使用xcorr 和pwelch函数分别计算随机过程的自相关函数和功率谱密度。
二、随机过程的模拟模拟随机过程是随机过程建模的重要步骤之一。
在Matlab中,可以使用rand、randn等函数生成服从特定分布的随机数序列,并利用for循环和if语句等控制结构模拟出具有特定统计性质的随机过程。
例如,我们可以使用randn函数生成服从正态分布的随机数序列,然后利用for 循环和格朗日方程生成具有平稳性的随机过程。
具体实现代码如下:```MatlabN = 1000; % 随机数序列长度X = zeros(1, N); % 存储随机过程的数组X(1) = randn; % 初始化随机过程的初始值for n = 2:NX(n) = 0.9*X(n-1) + sqrt(1 - 0.9^2)*randn;endplot(X);```通过运行上述代码,我们可以得到一个服从AR(1)过程的随机数序列,并通过绘图函数plot将其可视化。
随机信号分析实验报告(基于MATLAB语言)
随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。
2.实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。
即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。
定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。
北理工随机信号分析实验
实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。
2、实现随机序列的数字特征估计。
二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(mod ,110N ky y y n n -=N y x n n /=序列{}n x 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯; 3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列 函数:randn 用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。
几个典型随机过程的模拟及应用
Y
1. 随机面积的计算
○
X
某实际问题(譬如大楼的倒塌)可抽象为:试将一把 筷子先垂直放置于桌子上;放手后,筷子纷纷倒下, 求这些筷子倒下后所张成的面积的分布。 为解题的方便,先做如下几个假设: ①将筷子垂直放置于图中的格子点上。 ②所谓“随机倒下”是指筷子的底端不动,而顶端落下 后,筷子与X轴的夹角~U[0,2π]。 ③假设各筷子是相对独立地随机倒下,而这些筷子所张 成的面积是指包含这些筷子端点的最小凸多边形的面 积。
输入过程 顾客 序号 到达间 隔 E[10] 1 2 3 4 5 6 10 13 8 11 7 15 服务时 间 U[10, 15] 11 13 14 12 15 10
模拟过程的输出结果
到达时 刻服务时 间Fra bibliotek等待时 间
离开时 刻
10 23 31 42 49 64
11 13 14 12 15 10
0 0 5 8 13 13
2. 随机游动(一维)
一维随机游动 一质点从直线上的某一点出发,每次以概率 p 左移一 步,以概率 q = 1 - p 右移一步。直到碰到某边界点而 停止游动,这样的边界点称为吸收壁。 模拟方法如下:
-2
―1
0
1
2
3
2. 随机游动(Cont)
1.取[0,1]均匀分布上的随机数 ,若 <p,则取r1 =-1; 表示质心左移1步,否则r1 =1,表示质心右移1步; 2.依次取随机数 ,分别与p比较得到每次的随机 游动ri 3.令Sn ri , 则Sn 表示经n步后质心离开出发点的步数。
1. 随机面积的计算(Cont)
由 ~U[0,2 ],假定底端位置为(x1 , y1 ), 筷子长度为l , 则顶端在 1 x1 cos 随机倒下后的位置(u1 , v1 )满足 1 y1 sin 这样,除了原来的m个底端外,又产生了m个顶端,共 2m个点,坐标(si , ti ),1 i 2m. 问题变成:决定上面2m个点所张成的凸边形的面积即为所求。
实验一:随机过程的模拟与特征估计
实验一:随机过程的模拟与特征估计一、实验目的了解随机过程特征估计的基本概念和方法,学会运用MATLAB 软件产生各种随机过程,对随机过程的特征进行估计,并通过实验了解不同估计方法所估计出来的结果之间的差异。
二、实验原理(1)高斯白噪声的产生利用MATLAB 函数randn 产生(2)自相关函数的估计111()()ˆ()1ˆ()N m n x N m x n m n n x n m x n N R m R m x x N m --=--+=⎧+⎪⎪=⎨⎪=⎪-⎩∑∑对有偏估计对无偏估计MATLAB 自带的函数为xcorr(),阐述xcorr 的用法R=xcorr(x,y)或R=xcorr(x,y,’option ’) 用来求序列x(n)与y(n)的互相关函数R=xcorr(x)或R=xcorr(x,’option ’) 用来求序列x(n)的自相关函数 option 选项是: ‘biased ‘unbiased‘coeff ’ m=01‘none ’不作归一化处理(3)功率谱的估计利用周期图方法估计功率谱,21ˆ()()xG X N=ωω 提示:MATLAB 自带的函数为periodogram(),阐述periodogram()的用法; 阐述其它谱估计方法的用法。
[Pxx,w]=periodgram(x)Pxx 为对应频率w 的功率谱密度值。
[Pxx,w]=periodgram(x,window)window =boxcar(n)矩形窗(Rectangle Window )window=triang(n)三角窗(Triangular Window)window=hanning(n)汉宁窗(Hanning Window)window=hamming(n)海明窗(Hamming Window)window=blackman(n)布拉克曼窗(Blackman Window)window=kaiser(n,beta)恺撒窗(Kaiser Window)Window代表与x等长度的窗序列,对数据进行加窗。
几个典型随机过程的模拟及应用
2. 随机游动(Cont)
模拟方法: 产生随机数 ~ U [0,, 1] 若0 p1 , 左移一步; 若p1 p1 p2 , 右移一步; 若p1 p2 p1 p2 p3 , 上移一步; 若p1 p2 p3 p1 p2 p3 p4 1, 下移一步; 同样根据吸收壁位置,计算质点每次移动后的位置, 如果到达过吸收壁,则被吸收。
Y
P2 P1 P0
0
X
1. 随机面积的计算(Cont)
算法如下: 1.决定最左边的点P0; 2.求P 1,使得 P 0P 1与Y 轴的夹角最小; 3.求P2,使得 P 1P 2与 P 0P 1的夹角最小;求P 3 ,使得 P2 P3与P 1P 2的夹角最小; 直到Pk 与P0重合为止。在此过程中逐步求出P0 P 1P 2, P0 P2 P3 ...的面积,将其相加,即可得到这2m个点所 张成的凸边形的面积。 重复n次,可以得到这随机面积的统计规律。
几个典型随机过程的模拟及应用
Outline
1. 2. 3. 随机面积的计算 随机游动 单服务台排队服务系统
Y
1. 随机面积的计算
○
X
某实际问题(譬如大楼的倒塌)可抽象为:试将一把 筷子先垂直放置于桌子上;放手后,筷子纷纷倒下, 求这些筷子倒下后所张成的面积的分布。 为解题的方便,先做如下几个假设: ①将筷子垂直放置于图中的格子点上。 ②所谓“随机倒下”是指筷子的底端不动,而顶端落下 后,筷子与X轴的夹角~U[0,2π]。 ③假设各筷子是相对独立地随机倒下,而这些筷子所张 成的面积是指包含这些筷子端点的最小凸多边形的面 积。
即第1个顾客在开门后21分离开(即T=21分离开)。第2个 顾客是T=23分=(10+13)分到达的,由于第一个顾客已被 服务完毕离开了,因此也不必等待,D2 =0分,服务时间 S2 13分,所以第2个顾客于C2 (23 13 0) 36分离开。 第3个顾客到达时间是X 3 31分 ( 10 13 8)分,由于 T 31分的时候,第2个顾客正在接受服务,鼓第3个顾 客先要排队,等待时间D3 (36 31) 5分。第2位离开 后第3位接受服务,服务时间S3 14分,第3位离开时刻 C3 (31 14 5) 50分;第4位到达时刻X 4 42分 (10 13 8 11)分;其等待时间D4 (50 42) 8分, 服务时间为S4 12分,离开时刻C4 62分 (42 12 8)分,....,模拟实验的部分结果见下表:
2.2.12.2随机过程的数字特征
E ei(u1Xt1 un Xtn )
称为随机过程Xt , t T的有限维特征函数.
7
离散型随机过程
当时间参数集T取离散值n1, , nk , 时, 这种随机过程称为离散时间随机过程 . 此时,Xt是一串随机变量Xn1 , , Xnk , 所构成的序列,称为时间序列 .
方差函数
t T,随机过程 Xt , t T的一维分布函数
为 Ft x ,密度函数为 ft x ,则
2 Xt
Var X t
E X t
EX
t
2
2
x Xt dFt x
E Xt2 EXt 2 .
称为随机过程Xt , t T的方差函数.
3方差函数Fra bibliotek特殊地,
若E
当t1 t2 t,cX t1 , t2 2Xt .
5
自相关函数
t1 , t2 T,
RX t1, t2 E X X t1 t2
称为随机过程Xt , t T的自相关函数.
当t1 t2 t,RX t1 , t2 E X t 2 .
6
特征函数
t1 , , tn T,n 1
1 e 2t1 1 e 2 t2 t1 1 e 2t1 1 e 2 t2 t1
2
2
1 e 2 t2 t1
2
2
2
12
例子
P X X t1 t2 1
P Xt1 1, Xt2 1
0 t1 t2
Xt1 1, Xt2 1
P Xt1 1, Xt2 1 P Xt1 1, Xt2 1
X t
1, 若随机点在
1,
若随机点在
0, t 内发生偶数次
随机实验报告
随机信号实验报告课程:随机信号实验题目:随机过程的模拟与特征估计学院:四川大学电子信息学院学生名称:实验目的:1.学会利用MATLAB模拟产生各类随即序列。
2.熟悉和掌握随机信号数字特征估计的基本方法。
实验内容:1.模拟产生各种随即序列,并画出信号和波形。
(1)白噪声<高斯分布,正弦分布)。
(2)随相正弦波。
(3)白噪声中的多个正弦分布。
(4)二元随机信号。
(5)自然信号:语音,图形<选做)。
2.随机信号数字特征的估计(1)估计上诉随机信号的均值,方差,自相关函数,功率谱密度,概率密度。
(2)各估计量性能分析<选做)实验仪器:PC机一台MATLAB软件实验原理:随机变量常用到的数字特征是数字期望值、方差、自相关函数等。
相应地,随机过程常用到的数字特征是数字期望值、方差、相关函数等。
它们是由随机变量的数字特征推广而来,但是一般不再是确定的数值,而是确定的时间函数。
b5E2RGbCAP均值:mx(t>=E[X(t>]=;式中,p(x,t>是X<t)的一维概率密度。
mx(t>是随机过程X<t)的所有样本函数在时刻t的函数值的均值。
在matlab中用mea(>函数求均值。
p1EanqFDPw方差:<t)=D[X(t>]=E[];<t)是t 的确定函数,它描述了随机过程诸样本函数围绕数学期望mx(t>的分散程度。
若X<t)表示噪声电压,则方差<t)则表示瞬时交流功率的统计平均值。
在matlab中用var(>函数求均值。
DXDiTa9E3d自相关函数:Rx(t1,t2>=E[X(t1>X(t2>];自相关函数就是用来描述随机过程任意两个不同时刻状态之间相关性的重要数字特征。
在matlab中用xcorr<)来求自相关函数。
RTCrpUDGiT在matlab中可用函数rand、randn、normr、random即可生成满足各种需要的近似的独立随机序列。
非高斯随机过程模拟与预测的研究进展
基 金项 目: 国家 自然科 学基金项 目( 16 0 5 11 2 0 )
作者简介 : 锦华(9 1 , , , 士 , 李 18 ~)男 讲师 博 研究方 向为 随机 动力 学 、 随机场模拟 。
2
华 东 交 通 大 学 学 报
基于F T技术 , F 采用了参数较少的指数峰值模型模拟 了一维单变量非高斯风压时程 , 并用于大跨低矮屋盖 的风振分析 。但这类方法需要对峰值模型参数进行不 断优化。G r y和K re 提 出了新 的静态转换 ul e a m¨ e 法, 但该方法生成的单样本非高斯过程的偏度和峰度与指定的偏度和峰度并不是十分吻合 , 需要对多样本 的偏度 和峰度分别求均值才能较好地与 目标值吻合 。之后 , ul 和K r m 又基于谱相关 的模拟技术 G ry e ae ] e 进行了模拟 , 但该方法需要反复运算生成偏度和峰度与 目标偏度和峰度误差较小的样本 。在 国内 , 对平稳 高斯 、 非平稳高斯随机过程的模拟进行了大量的研究工作 , 而研究非高斯 随机过程模拟的文献非常有 限。 李锦华等 基于Jh s 变换系统进行了非高斯随机过程的模拟 。李璩和韩大建 ono n 。采用三次多项式表达 了非高斯 随机过程和潜在 的高斯随机过程之间的转换关系 , 进行 了非高斯风压 的模 拟。这些方法均属于
1 国内外研 究现状及发展动态分析
谈到随机过程的模拟 , 当今使用最广泛 的蒙特卡洛随机过程模拟技术n 能够模拟产生具有 目标特 , “ 征 的随机过程 , 包括一维或多维 、 单变量或多变量 、 平稳或非平稳 、 高斯或非高斯的随机过程。为了使相关 领域的研究能够更符合实 际情况 , 非高斯随机过程的数值模拟越来越受到关注 , 特别是非平稳非高斯随机 过程。 目 , 前 非高斯随机过程的数值模拟可以分为两类n : 1 , 第 类 根据指定的特征统计参数( 例如均值 、 方 差、 偏度与峰度) 目标功率谱密度( S ) 和 P D 函数模拟产生非高斯随机过程 ; 2 , 第 类 根据指定的边缘概率密
随机信号的特征及其估计资料
实信号 Rxy (m) Ryx (m)
5)相关卷积定理 实信号 Rx (m) x(m)* x(m)
Rxy (m) x(m)* y(m)
11/12/2020
21
6)相关定理
| X (e j ) |2 Rx (m)e jm m
互能量谱
Rx (m)
1
2
| X (e j ) |2 e jmd
FX (x1, x2,, xn;t1,t2,,tn) P{X (t1) x1, X (t2) x2,, X (tn) xn}
pX (x1, x2,
, xn;t1,t2,
,tn
)
n
FX
(x1, x2, , x1x2
xn ; t1 , t2 xn
,
, tn )
11/12/2020
3
3.随机过程的数字特征 设﹛X(t),t∈T﹜为实随机过程,其主要
2.4.2 随机信号的功率谱 平稳随机过程功率谱的性质
1 )不论x(n)是实序列还是复序列功率谱密度是 的实函数 2)功率谱密度为非负的,即 SX () 0
且为 的周期函数,周期为2π
3 对于实随机过程来说,功率谱密度是 的偶函数,
即 SX () SX ()
11/12/2020
26
2.5白噪声过程和谐波过程
Rx
(m)
R* x
(m)
2)m=0时, Rx (m) 取得最大值,即
Rx (0) Rx (m)
Rx (0) 为信号序列的能量,即 E Rx (0) | x(n) |2
n
11/12/2020
20
3)
Rx () 0
Rxy () 0
4)互相关函数 Rxy (m)不是偶函数,即
3.随机过程的模拟与特征估计-随机信号分析实验报告
3.随机过程的模拟与特征估计-随机信号分析实验报告计算机与信息⼯程学院验证性实验报告⼀、实验⽬的1、了解随机过程特征估计的基本概念和⽅法2、学会运⽤MATLAB 软件产⽣各种随机过程3、学会对随机过程的特征进⾏估计4、通过实验了解不同估计⽅法所估计出来的结果之间的差异⼆、实验仪器或设备1、⼀台计算机2、MATLAB r2013a三、实验原理1、⾼斯⽩噪声的产⽣:利⽤MATLAB 函数randn 产⽣2、⾃相关函数的估计:MATLAB ⾃带的函数:xcorr||11?()()()||N m xn R m x n m x n N m --==+-∑ (3.1) 3、功率谱的估计:MATLAB ⾃带的函数为pyulear先估计⾃相关函数?()xR m ,再利⽤维纳-⾟钦定理,功率谱为⾃相关函数的傅⽴叶变换:1(1)()()N jm x x m N G R m e ωω+-=--=∑(3.2)4、均值的估计:MATLAB ⾃带的函数为mean111()N x n mx n N-==∑ (3.3)5、⽅差的估计:MATLAB ⾃带的函数为var12211??[()]N xxn x n mNσ-==-∑ (3.4)6、AR(1)模型的理论⾃相关函数和理论功率谱对于AR(1)模型()(1)()X n aX n W n =-+ (3.5)⾃相关函数22()1mX a R m aσ=-,0m ≥ (3.6)功率谱为22()(1)X j G aeωσω-=- (3.7)四、实验内容(1)按如下模型产⽣⼀组随机序列()(1)()x n ax n w n =-+,其中()w n 为均值为1,⽅差为4的正态分布⽩噪声序列。
1、产⽣并画出a=0.8和a=0.2的x(n)的波形;2、估计x(n)的均值和⽅差;3、估计x(n)的⾃相关函数。
(2)设有AR(1)模型,()0.8(1)()X n X n W n =--+,1、W(n)是零均值正态⽩噪声,⽅差为4。
窄带随机过程的模拟
实验报告实验题目:窄带随机过程的模拟一、实验目的了解随机过程特征估计的基本概念和方法,学会运用MATLAB软件产生各种随机过程,对随机过程的特征进行估计,并通过实验了解不同估计方法所估计出来的结果之间的差异。
二、实验原理(1)高斯白噪声的产生提示:利用MATLAB函数randn产生(2)自相关函数的估计111()()ˆ()1ˆ()N m n x N m x n m n n x n m x n N R m R m x x N m --=--+=⎧+⎪⎪=⎨⎪=⎪-⎩∑∑对有偏估计对无偏估计提示:MATLAB 自带的函数为xcorr(),阐述xcorr 的用法(3)功率谱的估计利用周期图方法估计功率谱,21ˆ()()xG X N=ωω 其它谱估计方法:…….提示:MATLAB 自带的函数为periodogram(),阐述periodogram()的用法;阐述其它谱估计方法的用法。
(4)均值的估计111ˆ()N x n mx n N -==∑ 提示:MATLAB 自带的函数为mean()(5)方差的估计12211ˆ[()]N xn x n x N -==-∑σ提示:MATLAB 自带的函数为var()(6) AR(1)模型的理论自相关函数和理论功率谱对于AR(1)模型()(1)()X n aX n W n =-+,自相关函数为2||2()1m X a R m a =-σ ,其功率谱为22()(1)X j G aeωσω-=-。
三、实验内容1. 相关高斯随机序列的产生按如下模型产生一组随机序列()(1)()x n ax n w n =-+,其中()w n 为均值为1,方差为4的正态分布白噪声序列。
(1)产生并画出a=0.8和a=0.2的x(n)的波形; (2)估计x(n)的均值和方差;(3)估计x(n)的自相关函数,并画出相关函数的图形。
2. 两个具有不同频率的正弦信号的识别设信号为12()sin(2)2cos(2)()x n f n f n w n ππ=++,1,2,,n N = ,其中()w n 为零均值正态白噪声,方差为2σ。
随机过程的模拟与特征估计
[Px,f]=pwelch(x,window,noverlap,Nfft,Fs, 'onesided'); % 估计功率 谱密度 f=[-fliplr(f') (f(2:end))']; [-Fs/2, Fs/2] Py=[-fliplr(Px') (Px(2:end))']; % 对称的功率谱 plot(f,10*log10(Py), 'b'); grid on; 估计出来的功率谱密度为: % 构造一个对称的频率,范围是
w(n)为均值为 0,方差为 4 的高斯白噪声序列。 (1)模拟产生 X(n)序列的 500 观测样本函数,绘出波形图。 (2)用观测点估计信号的均值和方差。 (3)估计该过程的自相关函数和功率谱密度,并画出图形。
【分析】给定 AR 过程,可以用递推公式得出最终的输出序列。 或者按照一个白噪声通过线性系统的方式得到, 这个系统的传递 函数为: ,
随机过程的模拟与特征估计
1.实验目的 (1)了解随机过程特征估计的基本概念和方法 (2)学会运用 Matlab 软件产生各种随机过程,对随机过程的特 征进行估计 (3)通过实验了解不同估计方法所估计出来的结果差异 2.实验原理 (1)高斯白噪声的产生: N=1000;x=randn(N,1) 高斯:概率分布 (2)均值估计: 1 = N
(3)估计该过程的自相关函数和功率谱密度,并画出图形。 %估计的自相关函数序列 Mlag=20; % 定义最大自相关长度
Rx=xcorr(x,Mlag,'coeff'); m=-Mlag:Mlag; stem(m,Rx,'r.'); grid on; 最终的值为
实际的功率谱密度可以用类似于上面的方法进行估计: 用以下语句实现: window=hamming(20); noverlap=10; Nfft=512; Fs=1000; % 采用 hanmming 窗,长度为 20 % 重叠的点数 % 做 FFT 的点数 % 采样频率,为 1000Hz
随机过程模型及其应用
随机过程模型及其应用随机过程模型是指能够随机变化的量在时间或空间上的演变模型。
我们生活中的很多现象都可以用随机过程模型来刻画,比如天气的变化、股票的涨跌、交通流量的变化等等。
随机过程模型的研究,不仅能够让我们更好地理解这些现象,还可以对实际问题进行建模,从而为解决实际问题提供帮助。
常见的随机过程模型有马尔可夫过程、泊松过程、布朗运动等等。
下面我们来分别介绍一下这些模型及其应用。
一、马尔可夫过程马尔可夫过程是一种具有无后效性的随机过程,也就是说,未来的发展只会受到当前状态的影响,而不会受到过去的影响。
马尔可夫过程的状态空间可以是有限的,也可以是无限的。
如果状态空间是有限的,那么马尔可夫链就是一种特殊的马尔可夫过程。
马尔可夫过程可以用来刻画一些具有随机性的现象,比如排队系统、物理过程中的粒子运动等等。
在排队系统中,我们可以用马尔可夫过程来描述每个顾客到来和离开的时间分布,从而帮助我们分析系统的稳定性。
在物理过程中,我们可以用马尔可夫过程来模拟粒子的运动,从而更好地理解物理过程。
二、泊松过程泊松过程是一类具有独立增量和稳定增量的随机过程。
它的一个重要特点是其等间隔增量的分布是泊松分布,这意味着在一定时间内事件发生的次数服从泊松分布。
泊松过程可以用来刻画一些具有随机性的现象,比如电话交换机中电话呼叫的到达、高速公路中车辆的到达等等。
在电话交换机中,我们可以用泊松过程来描述每个时间段内电话的到达情况,从而评估交换机的工作能力。
在高速公路中,我们可以用泊松过程来模拟车辆的到达,从而更好地规划道路建设。
三、布朗运动布朗运动是一种具有无限可分布和无记忆性的连续时间随机过程。
它的增量服从正态分布,因此在小尺度上表现出随机性,但在大尺度上表现出稳定性。
布朗运动可以用来刻画一些具有随机性的物理过程,比如颗粒的布朗运动、金融市场中的股票价格变化等等。
在颗粒的布朗运动中,我们可以用布朗运动来模拟颗粒的运动轨迹,从而更好地理解颗粒的运动规律。
随机信号分析报告实验:随机过程的模拟与数字特征
实验二 随机过程的模拟与数字特征实验目的1. 学习利用MATLAB 模拟产生随机过程的方法。
2. 熟悉和掌握特征估计的基本方法及其MATLAB 实现。
实验原理1.正态分布白噪声序列的产生MATLAB 提供了许多产生各种分布白噪声序列的函数,其中产生正态分布白噪声序列的函数为randn 。
函数:randn用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。
如果要产生服从),(2σμN 分布的随机序列,则可以由标准正态随机序列产生。
如果)1,0(~N X ,则),(~σμσμN X +。
2.相关函数估计MATLAB 提供了函数xcorr 用于自相关函数的估计。
函数:xcorr用法:c = xcorr(x,y)c = xcorr(x)c = xcorr(x,y,'opition') c = xcorr(x,'opition')功能:xcorr(x,y)计算)(n X 与)(n Y 的互相关,xcorr(x)计算)(n X 的自相关。
option 选项可以设定为: 'biased' 有偏估计。
'unbiased' 无偏估计。
'coeff' m = 0时的相关函数值归一化为1。
'none' 不做归一化处理。
3.功率谱估计对于平稳随机序列)(n X ,如果它的相关函数满足∞<∑+∞-∞=m Xm R)( (2.1)那么它的功率谱定义为自相关函数)(m R X 的傅里叶变换:∑+∞-∞=-=m jm XX e m RS ωω)()( (2.2)功率谱表示随机信号频域的统计特性,有着重要的物理意义。
我们实际所能得到的随机信号的长度总是有限的,用有限长度的信号所得的功率谱只是真实功率谱的估计,称为谱估计或谱分析。
功率谱估计的方法有很多种,这里我们介绍基于傅里叶分析的两种通用谱估计方法。
实验2.1 随机过程的模拟与特征估计
实验2.1 随机过程的模拟与特征估计实验结果及分析:实验2.1 (1)估计x(n)=0.8*x(n-1)+1+4.*randn(N,1)随机序列的自相关函数和功率谱MATLAB仿真程序%估计x(n)=0.8*x(n-1)+1+4.*randn(N,1)随机序列的自相关函数和功率谱%x(n)=0.8*x(n-1)+1+4.*randn(N,1)随机序列的产生a=0.8;N=500;w=1+2.*randn(N,1);x(1)=w(1);for n=2:Nx(n)=a*x(n-1)+w(n);endsubplot(3,2,1);plot(x);title('随机序列x(n)=0.8*x(n-1)+1+4.*randn(N,1)');grid on%估计自相关函数R=xcorr(x,'coeff');subplot(3,2,2);axis([0 500 0 1]);plot(R);title('自相关函数');grid on%估计功率谱%周期图功率谱估计subplot(3,2,3);periodogram(x,[],512,1000);axis([0 500 -50 0]);title('周期图功率谱估计')%加汉宁窗window=hann(500);subplot(3,2,4);periodogram(x,window,512,1000); axis([0 500 -50 10]);title('汉宁周期功率谱估计')%相关函数法R=xcorr(x)/15000;Pw=fft(R);subplot(3,2,5);f=(0:length(Pw)-1)*1000/length(Pw); plot(f,10*log10(abs(Pw)));axis([0 500 -50 10]);title('BT功率谱估计')grid onsubplot(3,2,6);pwelch(x,128,64,[],1000); axis([0 500 -50 10]);title('韦尔奇功率谱估计'); grid on;实验2.1 (2)x=sin(2*pi*0.05*n)+2*cos(2*pi*0.12*n)+randn(N,1)随机序列的自相关函数和功率谱N=256时的结果:N=1024时的结果:MATLAB仿真程序N=256:%估计x=sin(2*pi*0.05*n)+2*cos(2*pi*0.12*n)+randn(N,1)随机序列的自相关函数和功率谱%x=sin(2*pi*0.05*n)+2*cos(2*pi*0.12*n)+randn(N,1)随机序列的产生N=256; %N=256或1024w=randn(N,1);for n=1:Nx(n)=sin(2*pi*0.05*n)+2*cos(2*pi*0.12*n)+w (n);endsubplot(3,2,1);plot(x);axis([0 260 -8 8]);title('随机序列x(N)=sin(2*pi*0.05*n)+2*cos(2*pi*0.12*n)+r andn(N,1)/N=256');grid on%估计自相关函数R=xcorr(x,'coeff');subplot(3,2,2);plot(R);axis([0 500 -1 1]);title('自相关函数/N=256');grid on%估计功率谱%周期图功率谱估计subplot(3,2,3);periodogram(x,[],512,1000); axis([0 500 -50 0]);title('周期图功率谱估计/N=256')%加汉宁窗window=hann(256);subplot(3,2,4);periodogram(x,window,256,1000); axis([0 500 -50 10]);title('汉宁周期功率谱估计')%相关函数法R=xcorr(x)/15000;Pw=fft(R);subplot(3,2,5);f=(0:length(Pw)-1)*1000/length(Pw); plot(f,10*log10(abs(Pw)));axis([0 500 -50 10]);title('BT功率谱估计/N=256')grid onsubplot(3,2,6);pwelch(x,128,64,[],1000);axis([0 500 -50 10]);title('韦尔奇功率谱估计/N=256'); grid on;N=1024:%估计x=sin(2*pi*0.05*n)+2*cos(2*pi*0.12*n)+randn(N,1)随机序列的自相关函数和功率谱%x=sin(2*pi*0.05*n)+2*cos(2*pi*0.12*n)+randn(N,1)随机序列的产生N=1024; %N=256或1024w=randn(N,1);for n=1:Nx(n)=sin(2*pi*0.05*n)+2*cos(2*pi*0.12*n)+w (n);endsubplot(3,2,1);plot(x);axis([0 1030 -8 8]);title('随机序列x(N)=sin(2*pi*0.05*n)+2*cos(2*pi*0.12*n)+r andn(N,1)/N=1024');grid on%估计自相关函数R=xcorr(x,'coeff');subplot(3,2,2);plot(R);axis([0 2000 -1 1]);title('自相关函数/N=1024');grid on%估计功率谱%周期图功率谱估计subplot(3,2,3); periodogram(x,[],1024,1000);axis([0 500 -50 0]);title('周期图功率谱估计/N=1024')%加汉宁窗window=hann(1024);subplot(3,2,4);periodogram(x,window,1024,1000); axis([0 500 -50 10]);title('汉宁周期功率谱估计')%相关函数法R=xcorr(x)/15000;Pw=fft(R);subplot(3,2,5);f=(0:length(Pw)-1)*1000/length(Pw); plot(f,10*log10(abs(Pw)));axis([0 500 -50 10]);title('BT功率谱估计/N=1024')grid onsubplot(3,2,6);pwelch(x,128,64,[],1000);axis([0 500 -50 10]);title('韦尔奇功率谱估计/N=1024'); grid on;。
随机过程 通俗易懂
随机过程通俗易懂随机过程,作为概率论和数理统计中的重要概念,是描述随机现象演化规律的数学模型。
它在实际生活中有着广泛的应用,比如天气预报、股市走势等等。
今天,我们就来通俗易懂地解释什么是随机过程,以及它的一些基本特征。
随机过程可以简单地理解为一种随机现象随时间的演化规律。
我们可以将其比喻成一个不断变化的系统,其中的状态在不同的时间点上呈现出不同的特征。
这些特征可以是数值、状态或事件等。
随机过程通常用X(t)来表示,其中的t表示时间。
我们可以把X(t)理解为在时间t上的随机变量,它的取值可以是任意的。
通过观察X(t)在不同时间点上的取值,我们可以揭示出这个随机过程的一些规律和特征。
随机过程有一个重要的特性就是它的状态是随机的。
也就是说,在同一个时间点上,随机过程的状态是不确定的,只有在我们观察到具体的取值之后,才能得到确定的结果。
这种不确定性是随机过程的核心特征之一。
随机过程还具有一种平稳性的特征。
所谓平稳性,是指随机过程在不同时间段上的统计特性是相同的。
换句话说,无论我们选择在哪个时间段上观察随机过程,它的统计规律都是一样的。
这种平稳性使得我们可以通过对随机过程的观察和分析,推断出它在未来的演化趋势。
随机过程的另一个重要特征是马尔可夫性。
所谓马尔可夫性,是指随机过程的未来状态只与当前状态有关,与过去的状态无关。
换句话说,在给定当前状态的情况下,过去的状态对预测未来状态没有任何帮助。
这种特性使得我们可以简化对随机过程的建模和预测,提高计算效率。
除了上述特征之外,随机过程还可以分为离散时间和连续时间两种。
离散时间随机过程是指在离散的时间点上观察随机过程的变化,比如抛硬币的结果。
而连续时间随机过程则是指在连续的时间段上观察随机过程的变化,比如股市的涨跌。
总结起来,随机过程是描述随机现象演化规律的数学模型,它具有状态的随机性、平稳性和马尔可夫性等特征。
通过对随机过程的观察和分析,我们可以揭示出随机现象背后的规律和趋势。
随机过程模拟
例4.市场服务 超市有两个出口的收款台, 两项服务:收款、装袋。 两名职工在出口处工作。 有两种安排方案: 开一个出口,一人收款、一人装袋; 开两个出口,每个人既收款又装袋。 问商店经理应选择哪一种收款台的服务方案
目标:选择什么方案? 依据是什么? 主体:顾客和商家 顾客的满意度——排队时间尽可能的短, 服务时间短。 商家希望付出的人力少,得到更好的顾 客满意度。 排队问题——有随机因素参加——随机模 拟
将第i位顾客到达作为第i件事发生; t(i+1)- t(i)= t1(i) (随机变量) 平衡关系: 当 t(i+1)T(i) 时, T(i+1)=t(i+1)+t2(i+1);
否则, T(i+1)=T(i)+t2(i+1)
模拟20位顾客到收款台前的排队情况。
注:
1.练习写随机过程仿真伪代码。 2.多次模拟,得统计意义上的平均等待时间等。
否则, 他要排队等待前两位中还逗留在 收款台的那位顾客离去 或在两位前的某位因收款拖延较长时间 的顾客离去, 记他跟随的那位顾客的离去时间为k,即
k=max(min(T(i),T(i-1)),max(T(1:i-2))),
则 T(i+1)=k+t2(i+1), 顾客等待的总时间增加 k-t(i+1)。
两个款台: 由于一位服务员既要收款又要装袋,所以设一个收 款台的服务时间服从正态分布 N(2,2/3)。 平衡关系: 当 t(i+1)max(T(i),T(i-1)),即前两位顾客都已 离开收款台, 或t(i+1)>max(min(T(i),T(i-1)),max(T(1:i-2))) 即前两位顾客中至少有一位已经离开,两位之前的 顾客都已离开时, 第i+1位顾客到达收款处时至少有一个收款台是空闲 着, 所以他马上接受服务 T(i+1)=t(i+1)+t2(i+1),没 有增加顾客等待的总时间;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机过程的模拟与特征估计
一、实验目的
了解随机过程特征估计的基本概念和方法,学会运用MATLAB 软件产生各种随机过程,对随机过程的特征进行估计,并通过实验了解不同估计方法所估计出来的结果之间的差异。
二、实验原理
(1)高斯白噪声的产生
提示:利用MA TLAB 函数randn 产生
(2)自相关函数的估计
||10
1ˆ()()()||N m x n R m x n m x n N m --==+-∑ 提示:MA TLAB 自带的函数为xcorr
(3)功率谱的估计
先估计自相关函数ˆ()x
R m ,再利用维纳-辛钦定理,功率谱为自相关函数的傅立叶变换:1(1)()()N jm x x m N G R m e ωω+-=--=
∑
提示:MA TLAB 自带的函数为pyulear
(4)均值的估计
11
1ˆ()N x n m x n N -==∑ 提示:MA TLAB 自带的函数为mean
(5)方差的估计
12211ˆˆ[()]N x
x n x n m N σ-==-∑ 提示:MA TLAB 自带的函数为var
(6) AR(1)模型的理论自相关函数和理论功率谱
对于AR(1)模型()(1)()X n aX n W n =-+ 自相关函数22()1m
X a R m a σ=-,0m ≥
功率谱为2
2()(1)X j G ae ωσω-=-
(7) ARMA(N,N)模型的理论自相关函数和理论功率谱
对于ARMA(N,N)模型12()(1)(2)()()N X n a X n a X n a X n N W n =-+-++-+ 功率谱为2211()N j k k k X N
j k k
k b e G a e
ωωωσ-=-==∑∑ 三、实验内容(带*为选作)
1. 相关高斯随机序列的产生
按如下模型产生一组随机序列()(1)()x n ax n w n =-+,其中()w n 为均值为1,方差为4的正态分布白噪声序列。
(1)产生并画出a=0.8和a=0.2的x(n)的波形;
(2)估计x(n)的均值和方差;
(3)估计x(n)的自相关函数。
源代码:
a=0.8;
sigma=2;
N=500;
u=1+4*randn(N,1);
x(1)=sigma*u(1)/sqrt(1-a^2);
for i=2:N
x(i)=a*x(i-1)+sigma*u(i);
end
subplot 221
plot(x);title('0.8')
Rx=xcorr(x,'coeff');
subplot 222
plot(Rx);title('0.8自相关函数')
junzhix=mean(x);
fangchax=var(x);
b=0.2;
y(1)=sigma*u(1)/sqrt(1-b^2);
for j=2:N
y(j)=b*y(j-1)+sigma*u(j); end
subplot 223
plot(y);title('0.2')
Ry=xcorr(y,'coeff');
subplot 224
plot(Ry);title('0.2自相关函数') junzhiy=mean(y); fangchay=var(y);
2. 两个具有不同频率的正弦信号的识别 设信号为12()sin(2)2cos(2)()x n f n f n w n ππ=++,1,2,,n N = ,其中()w n 为正态白噪声,方差为2σ。