一种简易车牌识别算法及其实现
机器视觉-实验三报告-模板匹配法实现车牌识别
实验三报告模板匹配法实现车牌识别一、实验目的结合印刷体字符识别方法,用模板匹配法实现车牌识别。
要求:能实现车牌定位、字符分割和车牌中数字0-9的识别。
二、实验设备微机三、实验内容及步骤1.上机编写程序。
2.调试程序。
3.根据实验结果,撰写实验报告。
四、实验报告(一)对汽车图像进行图像转换、图像增强和边缘检测等:1.载入车牌图像:I=imread('car1.jpg');figure(1),imshow(I);title('original image');%将车牌的原图显示出来,结果如下:2.将彩图转换为灰度图并绘制直方图:I1=rgb2gray(I);%将彩图转换为灰度图figure(2),subplot(1,2,1),imshow(I1);title('gray image');figure(2),subplot(1,2,2),imhist(I1);title('灰度图直方图');%绘制灰度图的直方图结果如下所示:3. 用roberts算子进行边缘检测:I2=edge(I1,'roberts',0.18,'both');%选择阈值0.18,用roberts算子进行边缘检测figure(3),imshow(I2);title('roberts operator edge detection image');结果如下:4.图像实施腐蚀操作:se=[1;1;1];I3=imerode(I2,se);%对图像实施腐蚀操作,即膨胀的反操作figure(4),imshow(I3);title('corrosion image');5.平滑图像se=strel('rectangle',[25,25]);%构造结构元素以正方形构造一个se I4=imclose(I3,se);%图像聚类、填充图像figure(5),imshow(I4);title('smothing image');结果如下所示:6. 删除二值图像的小对象I5=bwareaopen(I4,2000);%去除聚团灰度值小于2000的部分figure(6),imshow(I5);title('remove the small objects'); %用imshow函数显示滤波后图像结果如下所示:(二)车牌定位[y,x,z]=size(I5);%返回I5各维的尺寸,存储在x,y,z中myI=double(I5);%将I5转换成双精度tic %tic表示计时的开始,toc表示计时的结束Blue_y=zeros(y,1);%产生一个y*1的零阵for i=1:yfor j=1:xif(myI(i,j,1)==1)%如果myI(i,j,1)即myI的图像中坐标为(i,j)的点值为1,即该点为车牌背景颜色蓝色 %则Blue_y(i,1)的值加1Blue_y(i,1)= Blue_y(i,1)+1;%蓝色像素点统计endendend[temp MaxY]=max(Blue_y);%Y方向车牌区域确定%temp为向量yellow_y的元素中的最大值,MaxY为该值的索引PY1=MaxY;while ((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);%行方向车牌区域确定%%%%%% X方向 %%%%%%%%%Blue_x=zeros(1,x);%进一步确定x方向的车牌区域for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)= Blue_x(1,j)+1;endendendPX1=1;while ((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;%对车牌区域的校正PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;figure(7),subplot(1,2,1),imshow(IY),title('Line direction areas');%行方向车牌区域确定figure(7),subplot(1,2,2),imshow(dw),title('positioning color images');%定位后的车牌区域如下所示:(三)字符分割与识别1.车牌的进一步处理对分割出的彩色车牌图像进行灰度转换、二值化、均值滤波、腐蚀膨胀以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像,对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。
通过计算机视觉技术实现车牌识别的方法介绍
通过计算机视觉技术实现车牌识别的方法介绍车牌识别是一种应用广泛的计算机视觉技术,它可以通过图像处理和模式识别算法,将车辆的车牌信息自动提取出来。
随着计算机视觉技术的不断发展,车牌识别技术已经成为智能交通系统、停车管理系统、安防监控系统等领域中不可或缺的一部分。
本文将介绍一种基于计算机视觉技术实现车牌识别的方法。
首先,车牌识别的流程可以分为图像获取、图像预处理、车牌定位、字符分割和字符识别等几个步骤。
其中,图像获取是车牌识别的第一步,可以通过摄像机、监控摄像头等设备来获取车辆图像。
在图像预处理阶段,主要是对图像进行去噪、增强等操作,以提高后续步骤的准确性。
常用的图像预处理算法包括灰度化、直方图均衡化、滤波等。
接下来是车牌定位,即在预处理后的图像中准确定位到车牌区域。
车牌通常具有一定的几何特征,如宽高比、颜色、边缘等,可以利用这些特征来进行定位。
常用的车牌定位算法有基于颜色特征的方法、基于纹理特征的方法等。
在车牌定位之后,需要对车牌进行字符分割,将车牌中的字符分割开来。
字符分割是车牌识别过程中一个关键的步骤,准确的字符分割可以提高后续字符识别的准确性。
常用的字符分割算法有基于连通区域的方法、基于边缘检测的方法等。
最后,是字符识别,即对分割后的字符进行识别。
字符识别可以采用基于模板匹配、基于统计模型、基于深度学习等不同的方法。
其中,基于深度学习的字符识别方法,如卷积神经网络(CNN)等,在最近几年取得了很大的突破,能够达到较高的识别准确率。
除了上述几个基本步骤外,还有一些其他的技术可以辅助车牌识别,如目标跟踪、光照补偿等。
目标跟踪可以在车辆行驶过程中对车牌进行实时跟踪,光照补偿可以解决光照变化对车牌识别结果的影响。
总的来说,通过计算机视觉技术实现车牌识别需要经过图像获取、图像预处理、车牌定位、字符分割和字符识别等多个步骤。
每个步骤都有不同的算法和技术可以选择,根据具体的应用场景和需求来设计和优化车牌识别系统。
车牌识别系统的设计与实现毕业设计论文
本科生毕业设计(论文)题目:车牌识别系统的设计与实现毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
车牌自动识别系统的设计与实现
2022年 1月 January 2022Digital Technology &Application 第40卷 第1期Vol.40 No.1数字技术与应用180中图分类号:TP391 文献标识码:A 文章编号:1007-9416(2022)01-0180-03DOI:10.19695/12-1369.2022.01.58车牌自动识别系统的设计与实现兰州职业技术学院 梁宏炜随着人工智能技术的迅猛发展,文字识别、图像识别技术都得到了快速的发展,这也为开发车牌自动识别提供了技术支持。
本系统运用先进的图像处理、模式识别和人工智能技术,能够即时精准地快速识别出车牌中包含的所有的汉字、数字和字母,并直接提供识别结果,从而使得对于机动车辆的自动化监控和管理成为了现实。
本系统采用Visual C#作为开发平台,结合开源、跨平台的计算机视觉库OpenCV搭建了交叉编译环境,采用模块化的设计理念,利用模块化的编程方法对各个基本功能模块进行设计与开发,得到了一套可视化的车牌自动识别系统软件。
该软件系统密切贴合生活,可以克服多种环境干扰因素,快速高效地完成各种车牌的自动识别。
车牌自动识别系统是计算机视觉、图像处理和模式识别的研究热点,是中国智慧交通的重要组成部分。
可以进行交通流量检测,车辆定位,高速公路收费和汽车防盗的自动化监管。
对于保障城市治安和道路交通安全,防止交通拥堵,实现智慧交通具有现实的积极意义。
尤其是在疫情防控期间,更要求对一些特殊停车场所、大院及政府机关、居民小区进行严密的车辆管理,对机动车外出时段实施严密监控,对各类车辆进行零接触的登记和识别,提高安全管理水平及管理效率。
1 系统设计原理车牌自动识别通过视频采集接口,抓拍在道路上行驶的汽车图片以实现车牌号码的车辨识,然后对动态采集到的图片经过预处理技术以克服图像干扰,从而提高了辨识效率。
收稿日期:2021-11-05作者简介:梁宏炜(1978—),女,甘肃兰州人,研究生,讲师,研究方向:软件技术。
车牌识别设计与实现(毕业论文)
目录摘要 (Ⅰ)Abstract (II)1 绪论 (1)1。
1 课题的来源及意义 (1)1.2 课题主要研究的问题 (2)1。
3 系统设计的目标及基本思路 (2)1.3.1 设计目标 (2)1.3。
2 基本思路 (3)2 图像预处理 (4)2.1 汽车牌照的特征 (4)2。
2 灰度变换 (5)2.3 图像增强 (6)2.4 图像边缘提取及二值化 (7)2。
4。
1 图像边缘提取 (7)2。
4.2 灰度图像二值化 (14)2。
5 形态学滤波 (15)3 车牌定位方法研究 (19)3.1 车牌定位常用方法介绍 (19)3.1.1 基于纹理特征分析的定位方法 (19)3。
1。
2 基于数学形态学的定位方法 (19)3.1。
3 基于边缘检测的定位方法 (19)3.1。
4 基于小波分析的定位方法 (19)3.1。
5 基于图像彩色信息的定位方法 (20)3。
2 基于行扫描灰度跳变分析的车牌定位方法 (20)4 车牌识别方法研究 (22)4。
1 牌照区域的分割和图像进一步处理 (22)4.1.1牌照区域的分割 (22)4。
1.2车牌进一步处理 (22)4.2 字符的分割与归一化 (23)4.2。
1字符分割 (23)4。
2。
2字符归一化 (24)4.3 字符的识别 (24)5 总结与展望 (27)5。
1 总结 (27)5.2心得体会 (27)5。
3展望 (28)致谢 (29)参考文献 (30)附录一 (31)摘要车牌识别系统作为智能交通系统的一个重要组成部分,在交通监控中占有很重要的地位.车牌识别系统可分为图像预处理、车牌定位和字符识别3个部分,其中车牌定位作为获得车辆牌照图像的重要步骤,是后续的字符识别部分能否正确识别车牌字符的关键环节。
车牌定位系统实现对车辆牌照进行定位的功能,即从包含整个车辆的图像中找到车牌区域的位置,并对该车牌区域进行定位显示,将定位信息提供给字符识别部分。
针对车牌本身固有的特征,本文首先介绍了在车牌定位过程中常用的几种数字图像处理技术:图像的二值化处理、边缘检测和图像增强等。
智能交通系统中的车牌识别算法及其实现
智能交通系统中的车牌识别算法及其实现智能交通系统已经成为现代城市交通管理的重要组成部分,为了实现交通的智能化和高效化,车牌识别技术作为其中的重要一环发挥着关键作用。
本文将介绍智能交通系统中常用的车牌识别算法及其实现方式,以帮助读者了解车牌识别技术的原理和应用。
一、车牌识别算法的原理车牌识别算法主要是将车牌图像进行处理、分割和字符识别等步骤,以得到正确的车牌信息。
以下是车牌识别算法中常用的一些原理:1. 图像预处理:对车牌图像进行去噪、增强和灰度化等处理,以提高图像的质量和模糊度,为后续的处理步骤提供更好的输入。
2. 车牌定位:通过图像处理技术和特征提取,将含有车牌的区域从整个图像中定位出来。
常用的方法包括边缘检测、颜色分割和形态学处理等。
3. 字符分割:将定位到的车牌进行字符分割,将每个字符分离出来,以便后续的字符识别。
字符分割是车牌识别算法中最关键的一步,通常需要通过统计特征、边缘检测和投影法来实现。
4. 字符识别:对分割出来的每个字符进行特征提取和模式识别,以识别出每个字符的内容。
常用的方法包括模板匹配、神经网络和支持向量机等。
二、基于深度学习的车牌识别算法实现近年来,基于深度学习的车牌识别算法在智能交通系统中得到了广泛应用。
以下是基于深度学习的车牌识别算法实现的一般步骤:1. 数据集准备:收集大量标注的车牌图像,并进行数据清洗和预处理,以确保训练模型的数据质量和多样性。
2. 模型选择:选择合适的深度学习模型,如卷积神经网络(CNN)或循环神经网络(RNN),用于车牌识别任务。
3. 模型训练:使用准备好的数据集对深度学习模型进行训练,通过反向传播算法不断优化模型参数,以提高识别准确率。
4. 模型评估:使用另外一组独立的测试数据对训练好的模型进行评估,统计准确率、召回率和F1-score等指标,以评估模型的性能。
5. 模型部署:将训练好的模型部署到智能交通系统中,对实时图像进行车牌识别。
可以使用GPU等硬件加速技术,以提高实时性能。
车牌识别方法的研究与实现
做 分割处理之前对它进行基于小波包变换的预处理 , 则会 得
到预期 的效果 。
一
个含 有噪声的二维 图像可 以表示成如下的形式 J :
Y i )= (√ o ( , ( , i )+ ' j e ) 1 …m;=1 j …n.
其 中,( J 为高斯 白噪声 N( , ) 噪声级为 1 为其 e ) 01 , ;
圈 图圈 蕊 豳 国 圜
图2 分割后的图像
上述步骤 中最重要的是如何 选择合适 的阈值进行 阈值
像纹理特征的方法 。选用不同的定位算法会有不同的效果 。
量化 , 因为它直接关系 到对信号进行 降噪 处理的 质量 , 而常 用 的小波包 闭值去噪 的方 法有三种 : 默认 阈值去 噪处理 、 给 定 阈值去噪处理 以及强制去噪处理 。
21 年第2 02 期
文章编号 :644 7 (0 2 0 .0 0 0 1 7 -58 2 1 l20 2 .2
山西 电 子技术
应 用 实 践
车牌 识 别 方 法 的研 究与 实现
刘 冰 ,游小红 ,逯子荣
( 中北 大学 机 械 工程与 自动化 学 院 , 山西 太原 00 5 ) 30 1
摘 要: 随着科技 的进步 , 车牌识别 系统有了很 大的发 展。其识 另 过程 大概 分为三个过 程 : 1 】 车牌定位 , 字符 分 割 和字符识 别。由于在现 实中车牌的识别会受到 自然原 因、 为原 因以及 图像 采集设备 的影响 , 些会 造成 字符 人 这
分割 的不准确 , 而导致识 别的失败 。基 于此提 出了在利用 huh变换对 车牌进行 分割前用 小波 包变换的 多分辨 从 og
率进行 降噪 的方法, 最后 利用 K L变换进行车牌字符识 别的方 法。实验表 明其技 术在速度和识 别率 等方 面具有很
智能交通中的车牌识别技术教程
智能交通中的车牌识别技术教程车牌识别技术是智能交通系统的核心组成部分,它能够准确地识别和识别各种车牌信息,提高交通管理、追踪逃犯和车辆追踪等方面的效率。
本篇文章将为您详细介绍智能交通中的车牌识别技术,并提供一份教程,包括车牌识别的原理、流程以及常用的车牌识别算法。
一、车牌识别的原理车牌识别技术基于计算机视觉和模式识别领域的相关理论和方法。
其原理可以分为以下几个步骤:1. 图像获取:智能交通系统通过摄像机、雷达等设备,将车辆的图像或视频信息获取到计算机中。
2. 图像预处理:对输入的图像进行去噪、增强、边缘检测等操作,以便后续的车牌定位和字符识别。
3. 车牌定位:通过图像处理算法,找到图像中可能存在的车牌区域,并进行定位和裁剪操作,获取到车牌图像。
4. 字符分割:对得到的车牌图像进行字符的分割,将每个字符单独提取出来,便于后续的字符识别。
5. 字符识别:将分割得到的字符输入到字符识别算法中,识别出每个字符的具体内容。
6. 车牌识别结果输出:根据字符识别的结果,将识别到的车牌信息输出到智能交通系统中,进行后续的处理和应用。
二、车牌识别的流程下面是一般的车牌识别流程:1. 图像获取。
通过摄像机或视频设备,获取车辆的图像或视频信息,传输到计算机系统中。
2. 图像预处理。
对输入的图像进行去噪、增强、边缘检测等操作,以便后续的车牌定位和字符识别。
3. 车牌定位。
通过图像处理算法,找到图像中可能存在的车牌区域,并进行定位和裁剪操作,获取到车牌图像。
4. 字符分割。
对得到的车牌图像进行字符的分割,将每个字符单独提取出来,便于后续的字符识别。
5. 字符识别。
将分割得到的字符输入到字符识别算法中,识别出每个字符的具体内容。
6. 车牌识别结果输出。
根据字符识别的结果,将识别到的车牌信息输出到智能交通系统中,进行后续的处理和应用。
三、常用的车牌识别算法1. 基于颜色特征的算法:该算法利用车牌在颜色上的特殊性,如白色底板、黑色字体,并结合图像分割和模式识别技术,实现车牌区域的定位和字符的识别。
车牌识别系统设计与实现
车牌识别系统设计与实现车牌识别系统是一种基于计算机视觉技术的智能交通系统,它可以通过图像识别技术快速识别车辆的车牌号码,实现自动化的车辆管理和监控。
在交通管理、智慧城市等方面有广泛的应用。
本文将从车牌识别系统的设计和实现两个方面来介绍该系统的基本原理和实际应用。
一、车牌识别系统的设计原理车牌识别系统主要由图像采集、图像处理、车牌检测、字符分割、字符识别等几个模块组成,下面我们将根据这几个模块分别介绍车牌识别系统的设计原理。
1. 图像采集图像采集是车牌识别系统的第一步,它是指通过摄像头等设备采集原始的车辆图像,并进行一定的预处理,使得后续的图像处理步骤能够更加准确地识别车牌信息。
在图像采集过程中,需要考虑光线、角度、分辨率等因素对图像质量的影响,并针对不同的场景设置不同的参数。
2. 图像处理图像处理是车牌识别系统中最重要的环节之一,它包括图像增强、图像去噪、车辆检测等多个步骤。
在图像增强方面,可以采用灰度化、直方图均衡化、滤波等方法对图像进行处理,提高图像质量。
在去噪方面,可以采用中值滤波、高斯滤波等方法去除图像中的噪声。
在车辆检测方面,可以通过背景建模、二值化等方法区分车辆和背景,减少误检率。
3. 车牌检测车牌检测是车牌识别系统中最核心的一个步骤,它是指通过图像处理技术识别车辆图像中的车牌区域,并剥离出车牌的图片。
在车牌检测过程中,需要考虑车牌的大小、形状、位置等因素,并采用多阶段的检测策略,提高车牌检测的准确率。
4. 字符分割字符分割是指将车牌图片中的字符部分分割出来,为后续的字符识别做准备。
在字符分割过程中,需要考虑字符之间的间隔、大小等因素,并采用基于形态学等算法对字符进行分割。
5. 字符识别字符识别是车牌识别系统中最后的一个步骤,它是指识别分割出来的字符,将其转化为能够被计算机识别的数字或者字母。
在字符识别过程中,可以采用基于分类器、神经网络等算法,同时考虑字符的形状、颜色等特征,提高识别精度。
车牌定位与车牌字符识别算法的研究与实现
车牌定位与车牌字符识别算法的研究与实现一、本文概述随着智能交通系统的快速发展,车牌识别技术作为其中的核心组成部分,已经得到了广泛的应用。
车牌定位与车牌字符识别作为车牌识别技术的两大关键环节,对于实现自动化、智能化的交通管理具有重要意义。
本文旨在探讨和研究车牌定位与车牌字符识别的相关算法,并通过实验验证其有效性和可行性。
本文首先对车牌定位算法进行研究,分析了基于颜色、纹理和边缘检测等特征的车牌定位方法,并对比了各自的优缺点。
随后,本文提出了一种基于深度学习的车牌定位算法,通过训练卷积神经网络模型实现对车牌区域的准确定位。
在车牌字符识别方面,本文介绍了传统的模板匹配、支持向量机(SVM)和深度学习等识别方法,并对各种方法的性能进行了比较。
在此基础上,本文提出了一种基于卷积神经网络的字符识别算法,通过训练模型实现对车牌字符的准确识别。
本文通过实验验证了所提出的车牌定位与车牌字符识别算法的有效性和可行性。
实验结果表明,本文提出的算法在车牌定位和字符识别方面均具有较高的准确率和鲁棒性,为车牌识别技术的实际应用提供了有力支持。
本文的研究不仅对车牌识别技术的发展具有重要意义,也为智能交通系统的进一步推广和应用提供了有益参考。
二、车牌定位算法的研究与实现车牌定位是车牌字符识别的前提和基础,其主要任务是在输入的图像中准确地找出车牌的位置。
车牌定位算法的研究与实现涉及图像处理、模式识别等多个领域的知识。
车牌定位算法的研究主要集中在两个方面:一是车牌区域的粗定位,即从输入的图像中大致找出可能包含车牌的区域;二是车牌区域的精定位,即在粗定位的基础上,通过更精细的处理,准确地确定车牌的位置。
在车牌粗定位阶段,常用的方法包括颜色分割、边缘检测、纹理分析等。
颜色分割主要利用车牌特有的颜色信息,如中国的车牌一般为蓝底白字,通过颜色空间的转换和阈值分割,可以大致找出可能包含车牌的区域。
边缘检测则主要利用车牌边缘的灰度变化信息,通过算子如Canny、Sobel等检测边缘,从而定位车牌。
车牌识别方案5篇
车牌识别方案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、实施方案、应急预案、活动方案、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work summaries, implementation plans, emergency plans, activity plans, rules and regulations, document documents, teaching materials, essay compilations, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!车牌识别方案5篇车牌识别方案篇1车牌识别系统方案随着社会的发展和技术的进步,车辆管理日益成为现代城市交通管理中的重要环节。
基于 k近邻法的车牌识别系统的设计与实现
在讨论基于 k近邻法的车牌识别系统的设计与实现之前,我们先来了解一下k近邻法的概念和原理。
k近邻法是一种常用的模式识别方法,它的基本思想是:如果一个样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别。
在车牌识别系统中,我们可以利用k近邻法来实现对车牌的识别。
我们需要收集一定数量的车牌样本数据,并提取出它们的特征信息,比如颜色、字符形状等。
当系统接收到一张待识别的车牌图像时,可以通过计算该图像与已有样本数据的特征相似度,来确定该车牌属于哪个类别。
在设计和实现基于k近邻法的车牌识别系统时,我们需要考虑以下几个方面:1. 特征提取:在车牌识别系统中,我们可以利用图像处理技术来提取车牌的特征信息,比如利用颜色直方图、边缘检测等技术来提取车牌的颜色和形状特征。
2. 距离度量:在利用k近邻法进行分类时,我们需要选择合适的距离度量方法来衡量样本之间的相似度。
常用的距离度量方法包括欧氏距离、曼哈顿距离等。
3. k值的选择:在k近邻法中,k值的选择对系统的性能有很大影响。
通常来说,k值越大,系统的鲁棒性越强,但是计算复杂度也会增加。
4. 系统性能评估:在设计和实现车牌识别系统后,我们需要对系统的性能进行评估,比如准确率、召回率等指标来衡量系统的识别能力。
在实际应用中,基于k近邻法的车牌识别系统可以应用在停车场管理、交通监控等方面。
通过对车牌的快速准确识别,可以提高管理效率,减少人力成本,确保交通安全。
个人观点:基于k近邻法的车牌识别系统在实际应用中有着广阔的前景,但同时也面临着一些挑战,比如对图像质量要求高、对光照、角度敏感等。
在设计和实现该系统时,需要综合考虑各种因素,保证系统具有较高的准确率和鲁棒性。
总结回顾:通过本文的探讨,我们了解了基于k近邻法的车牌识别系统的设计与实现。
我们首先介绍了k近邻法的基本原理,然后讨论了在设计车牌识别系统时需要考虑的几个关键点,最后共享了个人观点。
智能交通系统中的车辆识别算法及实现
智能交通系统中的车辆识别算法及实现智能交通系统是一种利用先进的信息技术和智能算法来改善交通运输效率、提高安全性和便利性的系统。
在智能交通系统中,车辆识别是一个关键的技术,它能够准确地识别并追踪道路上行驶的车辆,为交通管理和交通数据分析提供重要数据支持。
本文将介绍智能交通系统中常用的车辆识别算法及其实现方式。
一、车牌识别算法车牌识别是智能交通系统中的一项重要任务,它能够自动识别行驶车辆的车牌号码。
常用的车牌识别算法可以分为两种类型:基于传统图像处理的算法和基于深度学习的算法。
1. 基于传统图像处理的算法基于传统图像处理的车牌识别算法通常包括以下步骤:图像预处理、车牌定位、字符分割、字符识别和结果判断。
首先,对输入的图像进行预处理,如灰度化、二值化、去噪等操作,以便后续的处理。
然后,通过一些特征提取的方法,如边缘检测、形态学处理等,来定位图像中的车牌区域。
接下来,将车牌区域进行字符分割,将每个字符分隔开来。
然后,使用字符识别算法对分割后的字符进行识别,最后根据识别结果判断车牌号码的准确性。
2. 基于深度学习的算法基于深度学习的车牌识别算法将整个车牌识别过程作为一个端到端的任务来解决,不需要显式地进行车牌定位、字符分割等步骤。
通过使用深度卷积神经网络(CNN)来直接从图像中学习车牌号码的特征,能够提高车牌识别的准确性和鲁棒性。
二、车辆检测和跟踪算法除了车牌识别外,智能交通系统中还需要进行车辆检测和跟踪,以便实时获取车辆的位置、速度等信息,为交通管理提供数据支持。
常用的车辆检测和跟踪算法包括基于特征的方法和基于深度学习的方法。
1. 基于特征的方法基于特征的车辆检测和跟踪算法通常使用传统的特征提取和分类方法来实现。
常用的特征包括颜色特征、纹理特征和形状特征等。
首先,对输入的图像进行预处理,如灰度化、尺度归一化等操作。
然后,提取目标车辆的特征,如颜色直方图、局部二值模式(LBP)等。
最后,使用分类器对提取到的特征进行分类,以实现车辆的检测和跟踪。
一种简易车牌识别算法及其实现
这个判别 比的最大值 k 该值就取为阈值 。 一 设阈值为 k 并把具有 k以上灰度值的像素和具有 比它小 , 的值 的像 素分成两 组, 为组 ii1 ) 设 ( , 的像素数 为 ‘, =2 i 平均灰 ) 度值为 M , 方差 为 盯 , 若设全体像素的平均灰度值为 M 则组 ,
在式 (.) 22 中先取较小 的 k值进行试 算 , 然后逐渐 增加 k 值 ,经过 多次循环后求得最 大的判别 比后其对应 的 k值 即为 阈值 k 。最后 以该阈值对车牌 的灰度图像进行二值化 , 获得纯
黑 白图像 。 () 牌 定位 部分 2车
度直方 图在较大 的动态 范围内趋 于一致 【 具体算法可参考文 l J ,
成立 , 因而 判 别 比为
叮 : 1 盯 ’
计 算 而 得 的这 个 值 g作 为 三 原 色 合 成 出来 的 一 个 新 灰 度
o
G ÷
(.) 26
值, 从而形成一幅具有不同灰度等级 的新 图像 。 ② 图像增强部分所做 的工作主要是采用直 方图对图像进 行均衡 , 出细节 , 突 便于后续处理 。为了使图像清晰 , 可将 图像 的灰度范 围拉开 , 并且让灰度 频率较小的灰度级变大 , 即让灰
g (’
f,x ) _ 1 ,> k i f y 0f ,) ( y<k x
,
(—) 22
在二值化 中, 闽值 k的选择 是关键 。本文采用了一种常用 的二值化方法 一判别分析法 ,对车牌 的灰度 图像进行二值化 . 处理 。判 别分析法将 图像直方 图中的灰度值 的分 布用 阈值 k 分成两组 ( k为分界点) 分离性的尺度采用两组 的平均值 的方 ,
50 —
车牌识别系统论文
安康学院学年论文(设计)华北水利水电大学研究生结课论文姓名高阳学号9专业计算机技术性质国家统招(√)单考()工程硕士()同等学力()科目计算机视觉与模式识别任课老师杨阳蕊成绩第1 页共5 页一种简易车牌识别算法及其探究【摘要】:本文介绍了一种标准车牌中简易的识别算法。
与传统的数字识别方法相比较,其效率较高。
该算法利用对字符二值化后的图像作特征向量,并用最近邻法实现字母的识别。
利用该方法时,由于图像是不规则的,则需对识别字符进行规整提取处理,减少了因图片不规则而引起的误识,降低了(对字符作特征向量时)算法复杂度。
经试验验证,效果良好。
【关键字】:字符识别;二值化;特征向量;最近邻;欧氏距离1引言随着人们生活水平的不断提高,机动车辆数量大幅度增加,与之相配套的高速公路,城市路网及停车场越来越多,显著提高了人们对交通控制方面的要求。
由于计算机技术的发展,信息处理水平的提高使智能交通系统成为世界交通领域研究的重要课题。
其中车牌识别是智能交通系统的重要组成部分。
本文主要探究车牌中非汉字的字符识别。
在有关字符识别的大型系统中,通常采用的是神经网络算法,但这种算法计算量比较大,实现起来较复杂。
而车牌中,非汉字字符个数有限,利用神经网络算法识别车牌中非汉字字符则显得大材小用,而很多字符识别算法又需要大量的预处理运算,包含图片二值化、去噪、规整、细化、轮廓提取、模板匹配等,使得识别的运算量大大增加。
本文主要使用相应字符形状特点来构建字符的特征向量,通过对待识别对象进行特征提取,利用最近邻法,通过比对模板特征向量和待选字符特征向量之间的距离,即可对车牌非汉字字符快速准确的识别,并降低了算法复杂度。
2实现方法2.1 设计思想在车牌识别中,由于图像本身受到各种自然因素或设备因素的影响,图像的清晰度往往不是很理想,有时还会带有较明显的图像噪声,使真实信号与理想信号之间存在偏差,若不对图像进行预处理,这将给后续的识别模块带来严重影响,最终可能造成识别错误。
基于图像识别的车牌自动识别技术研究与实现
基于图像识别的车牌自动识别技术研究与实现摘要:随着交通工具的快速发展和普及,车辆数量的增加导致了交通管理的挑战。
车牌自动识别技术作为一种有效的交通管理手段,受到越来越多的关注。
本文旨在研究和实现基于图像识别的车牌自动识别技术,通过分析和概述相关研究成果,设计和实现一个完整的车牌自动识别系统。
1.引言随着车辆数量的快速增加,交通事故和交通堵塞问题日益严重。
车牌自动识别技术被广泛应用于交通管理、车辆监控、停车场管理等领域,实现对车辆行为和流量的监测与管理。
该技术通过图像识别算法和机器学习方法,能够自动识别和提取车辆的车牌信息。
2.车牌自动识别技术的研究进展车牌自动识别技术的发展经历了几个阶段。
早期的车牌识别技术主要基于传统图像处理算法,如颜色分割、字符分割和字符识别等。
然而,这些方法在复杂背景、光照变化和字符模糊等情况下容易出现误识别。
近年来,随着深度学习算法的兴起,基于卷积神经网络(CNN)的车牌自动识别技术取得了显著的进展。
通过使用深度学习算法,可以有效地提高车牌识别的准确度和鲁棒性。
3.基于图像识别的车牌自动识别技术原理基于图像识别的车牌自动识别技术主要包括以下几个步骤:车牌定位、车牌字符分割和字符识别。
首先,通过图像处理技术,对输入图像进行预处理,包括去除噪声、调整对比度和亮度等。
然后,使用特征提取算法和机器学习方法,对车牌进行定位,将车牌从图像中分割出来。
接下来,对分割得到的车牌进行字符分割,将每个字符分离出来。
最后,通过字符识别算法,对每个字符进行识别,得到完整的车牌号码。
4.基于图像识别的车牌自动识别技术实现为了实现基于图像识别的车牌自动识别技术,需要搭建一个完整的车牌自动识别系统。
系统的核心是图像识别算法模块,包括车牌定位、字符分割和字符识别。
在车牌定位模块中,可以使用基于颜色特征或形状特征的方法来实现车牌的定位。
在字符分割模块中,可以使用基于连通域或基于卷积神经网络的方法来实现字符的分割。
车牌识别系统的设计与实现
车牌识别系统的设计与实现在现代社会,交通拥挤和车辆违章等问题已经成为影响城市管理和社会治理的难点之一。
因此,如何通过技术手段提高交通管理效率是亟待解决的问题。
车牌识别系统应运而生,成为交通管理的有效工具。
车牌识别系统的设计与实现是一项复杂的任务,需要综合应用计算机视觉、模式识别、图像处理等多个学科的知识。
整个系统包括硬件和软件两部分,下面将对其进行详细讲解。
一、硬件设计车牌识别系统的硬件主要包括采集模块、处理模块和输出模块三个部分。
采集模块:车牌识别系统首先要完成的任务是采集车牌图像。
为了实现高质量的采集,系统必须选用高分辨率的相机来进行图像采集,并且要根据车辆的行驶速度合理设置相机的曝光时间和快门速度,以保证拍摄到的图像清晰可见。
另外,在实际采集过程中还要考虑路面灯光照射不足、使用车灯而产生的反光等情况,对此,系统也要进行相应的处理。
例如,可以采用强光源照射来解决影响采集质量的问题。
处理模块:采集到的车牌图像需要进行处理和识别。
在处理过程中,首先要进行预处理,例如图像增强、剪裁、降噪等,然后使用图像处理算法对车牌进行分割和识别。
其中,车牌分割是整个车牌识别系统中最基本的图像处理任务,需要使用大量的计算机视觉算法,如颜色分割算法和模板匹配算法等。
而车牌识别则需要先进行字符分割,然后采用基于深度学习的识别算法对字符进行识别。
输出模块:处理完成之后,识别结果需要输出到合适的位置。
输出模块可以采用显示屏、LED灯等形式,将识别结果实时显示出来,也可以通过网络接口将结果传输到服务器上进行存储和分析。
二、软件设计车牌识别系统的软件主要包括图像采集软件、车牌识别软件和数据管理软件三个部分。
图像采集软件:图像采集软件一般由相机驱动程序和图像采集控制程序两部分组成。
相机驱动程序用于与相机进行通信,控制相机的曝光时间、快门速度等参数;图像采集控制程序主要用于控制数据采集、存储、传输等过程。
车牌识别软件:车牌识别软件是整个系统中最核心的部分,任务是处理采集到的车牌图像,在车牌上分割出字符,然后对字符进行识别。
车牌自动识别的算法研究与实现
收 稿 日期 :0 1 0 - 0 21— 3 8
作者简介 : 秦常贵 (9 3 , , 1 7 一) 男 湖南双峰人 , 讲师 , 硕士 , 研究方 向。 自动控制技术( -ma :i-c ag u 6.o ) E iq l n hn g i 3 c r 。 @1 n
计算技术与 自动化
21 0 1年 6月
t s e n i h a c r c a e o u o t ie s lt e o n t n h sb e b an d,wh c d c t d t er l b l y a d v - e t d a d a h g c u a y r t fa t ma i l n ep a e r c g ii a e no t i e c c o ih i ia e h ei i t n i n a i
ls, 图像 中 的每 一 点 都 利 用 这 两 个 核 做 卷 积 。 i 则 t
2 ቤተ መጻሕፍቲ ባይዱ 法框 图
本 文 主要 是 应 用 MATL AB软 件 来 进 行 的算 法研 究 与 实现 。算法 框 图见 图 2 。
第 3 第 2期 O卷
2011年 6月
计
算
技
术
与 自 动
化
Vo. 0. 13 N“ 2
C mp t g Te h oo y a d Au o to o u i c n 1 g n t ma in n
J n u .2 0 11
文 章 编 号 :O 3 6 9 (0 1 O 一O 3 -0 lO — 19 2 1 )2 1 9 6
车 牌 自动 识 别 的 算 法 研 究 与 实 现
秦 常 贵
( 东松 山职 业 技 术 学 院 , 东 韶 关 广 广 5 22 ) 1 16
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文在现有的数字图像分析、模式识别的基础上,综合车 辆牌照自身的特点,提出了一套简单快速的汽车牌照识别算 法,并采用 Matlab 语言对该算法进行了实现与验证,车牌提取 结果比较理想。
参考文献: [1] 冈 萨 雷 斯 等 著.阮 秋 琦 等 译 ,数 字 图 像 处 理 (第 二 版 )[M]. 北 京 :电
根据前述算法,我们第一步对图像进行预处理,先将彩色 图像进行灰度化,效果如图 1 所示。
图 6 车牌定位
图 1 24 位彩色图像转换成灰度图像
根据边缘检车的结果,可以同步得到二值图的车牌定位 图像,如图 7 所示。根据车牌定位后的二值图,我们就可以进 行字符分割了,分割方法是根据车牌二值图的垂直投影积分 进行判别的,如图 8 所示。
规整时,对字符图像的某些缺损、污迹等干扰不敏感,识别率
较高。
模板匹配算法类似于模式识别的方法,通过计算待测图
片与模板图片的互相关系数,根据互相关系数的大小来判断
待测图片与模板图片的相似程度,最终确定待测字符。
互相关系数是根据(2-11)式的平方欧氏距离度量得到的:
ΣΣ d2f,t(u,v)=
[f(x,y)-t(x-u,y-v)]2
学术探讨 应用技术与研究
一种简易车牌识别算法及其实现
肖建良 邱雨蒙
(大连理工大学城市学院,辽宁 大连 116600)
[摘 要] 车牌识别在智能交通及停车场管理中有着非常重要的作用。 车牌识别与处理的速度直接影响到其应用场合,尤 其在高速公路的快速抓拍中,对处理速度要求更高。 本文避免采用复杂的图像处理算法,而改用常规图像处理技术加模版匹配 算 法 ,提 出 了 一 套 简 易 快 捷 的 车 牌 识 别 算 法 ,能 大 大 提 高 车 牌 的 识 别 处 理 速 度 ,特 别 适 合 于 需 要 快 速 识 别 车 牌 的 场 合 。 本 文 最 后 采 用 MATLAB 语 言 对 该 算 法 进 行 了 实 现 与 验 证 。
足大于 T 的情况,可视此区域为车牌区域。车牌区域上下界可
采用式 L(t≥T)≥α 来约束,L 为满足条件的连续扫描行数,t
为当前扫描行的灰度跳变次数,α 为经验值,这里根据图片的
大小取 30。在确认扫描已经进入车牌区域后,继续扫描搜寻跳
变次数大于 T=25 的行直至其不满足条件为止。经过上述行扫
描后即可确定候选车牌区域的上下边界。
像每一像素的 RGB 三原色赋予不同的权值,然后进行加权求
和,作为该像素新的灰度值。权值的考虑主要是基于具有相同
灰度值的不同原色对视觉亮度的反应不同,通常按照比例公
式(2-1)求得新灰度值:
g=0.299R+0.587G+0.114B
(2-1)
计算而得的这个值 g 作为三原色合成出来的一个新灰度
值,从而形成一幅具有不同灰度等级的新图像。
如何将图像分成两级,关键看阈值的选取,要找到合适的
阈值 k 来区分对象和背景,大于等于阈值 k 的设置为 1,表示前
景,即对象图形;而小于阈值的设置为 0,表示背景。设原灰度图
像为 f(x,y),二值化后的图像为 g(x,y),二值化过程表示如下:
!1,f(x,y)>=k
g(x,y)= 0,f(x,y)<k
[关键词] 图像处理;车牌识别;字符分割;模板匹配
1.引 言
车牌识别是智能交通的基础性工作,它采用计算机图像 处理技术,对现场采集到的车辆图像信息进行数学处理,从中 提取车牌信息从而确认车辆身份。车牌识别技术在智能交通 管理、停车场管理、电子收费站、汽车流量观测等方面能起到 很好的作用。
2.算 法 描 述
xy
(2-11)
通过上述公式算出互相关系数后,根据相似程度我们就
可以最终输出车牌号码了。
3.算 法 实 现
下面,我们采用 Matlab 语言实现上述算法,并以一张具体 的车辆尾部图像来识别其中的车牌号码,验证算法的有效性。 在 MATLAB 实现方面,国内已有很多成功的尝试[6,7]。
- 51 -
学术探讨 应用技术与研究
是等间隔的有值区域,第二和第三个字符间距较大一点,通常
是因为其间有一个分隔符的缘故,这个分隔符大约占半个字
符的宽度。同时我们还可以看到每个字符区段的长度基本相
同,这与车牌上各字符宽度基本相同且等间距排列的情况相
似。而两头车牌边缘的投影值宽度要远小于车牌字符投影的
宽度,由此我们可以根据其投影的具体像素区间,对车牌的整
(2-2)
在二值化中,阈值 k 的选择是关键。本文采用了一种常用
的二值化方法 -- 判别分析法,对车牌的灰度图像进行二值化
处理。判别分析法将图像直方图中的灰度值的分布用阈值 k
分成两组(k 为分界点),分离性的尺度采用两组的平均值的方
差(组间方差)与各组的方差(组内方差)之比(判别比),求得
这个判别比的最大值 kmax 该值就取为阈值 k[2]。 设阈值为 k,并把具有 k 以上灰度值的像素和具有比它小
本文提出的这套车牌识别算法主要由车辆尾部图像预处
理、车牌定位、车牌字符分割、车牌字符识别等几部分组成,现
对各部分分别简述如下:
(1)车尾图像预处理
车位图像与处理包括:图像灰度化、图像增强、图像二值
化等。
①图像的灰度化主要是针对彩色图像而言,彩色图像的
灰度化有各种不同的算法,一种简单的处理方法就是给原图
描行。
我国的车牌区域一般包括 7 个字符,根据上式可知扫描
一个字符至少会出现 4 次跳变,7 个字符至少会出现 28 次跳
变,据此可设定一个跳变阈值 T,考虑到实际情况,譬如车牌质
量太差或字符断开等原因,特别是车牌有倾斜的情况,设置的
阈值 T 可稍小一点,通常设定 T=25 左右就比较理想。在扫描
过程中如果一段区域内出现了连续的扫描行灰度跳变次数满
的值的像素分成两组,设为组 (i i=1,2)的像素数为 ωi,平均灰 度值为 Mi,方差为 σ2,若设全体像素的平均灰度值为 MT,则组 内方差可用式(2-3)来表示。
σw2=
ω1σ12+ω2σ22 ω1+ω2
而组间方差可用式(2-4)来表示。
(2-3)
σB2=
ω1(M1-MT)2+ω2(M2-MT)2 ω1+ω2
子 工 业 出 版 社 ,2007. [2] 田 村 秀 行 等 著.金 喜 子 乔 双 等 译.计 算 机 图 像 处 理[-
[3] 黄 卫 等.基 于 小 波 与 纹 理 分 析 的 汽 车 牌 照 定 位 [J].中 国 工 程 科 学, 2004,6(3):16-22.
然后我们再对上述灰度图像进行直方图均衡,突出有用 的细节,增强效果。处理结果如图 2 所示。为了提高计算机 的处理速度,减少处理器开销,我们再将上述灰度图像进行二 值化,变成纯黑白图像,便于下一步处理,转换结果如图 3 所 示。
图 7 二值图的车牌定位
图 8 分割判断
车牌被精确分割后如图 9 所示,分割后的字符先进行归 一化处理,结果如图 10 所示。
图 4 边缘提取效果图 然后我们采用水平扫描方式确定车牌的横向水平不分, 截取有限部分,放弃无效的干扰部分,最后的截取图像如图 5 所示。
图 5 水平提取出的车牌区域 再在图 5 的基础上采用垂直扫描技术,对图像进行截取, 去掉车牌两头的干扰信息,保留有效部分,截取后的结果如图 6 所示。
图 11 车牌识别结果
应用技术与研究 学术探讨
体宽度进行切割,精确定位出车牌的位置图像。
经上述水平和垂直两个方向切割后的图像区域基本上就
是车牌的实际区域了,为下一步的字符分割做好了准备。
(3)车牌字符分割部分
本文采取一种基于垂直积分投影的字符分割方法,根据
车牌中字符投影分布特性并结合我国车牌的一些先验知识,
分割车牌字符。
经过上述水平扫描后,我们大致已经确定了车牌的水平
区域,将该区域提取出来后会发现车牌两边还有不少区域不
属于车牌部分。为此,下面我们再通过垂直积分投影的方式来
确定车牌的垂直区域部分。
垂直积分投影的计算公式如(2-9)所示:
P(j)=ΣG(i,j) i
(2-9)
根据计算结果我们可以看出车牌字符区域的投影呈现的
②图像增强部分所做的工作主要是采用直方图对图像进
行均衡,突出细节,便于后续处理。为了使图像清晰,可将图像
的灰度范围拉开,并且让灰度频率较小的灰度级变大,即让灰
度直方图在较大的动态范围内趋于一致[1],具体算法可参考文
献[1]。
③最后还需要对图像进行二值化,把图像变成只有黑和
白两种颜色,降低计算机处理开销。
在车牌二值化图像中,一般字符部分是白色,其它部分是
黑色,这里使用垂直投影法逐个统计每列中所包含的白色像
素的数量,在各个字符的间隙处的列白色像素很少,甚至为 0,
为了保险起见,避免某些噪声干扰,我们可以设定某一个阈值
m,白色像素积分值大于等于 m 就表示字符部分,而小于 m 的
就表示为字符间距,这样就可以准确切割出每一个字符。m 值
定位方法[3],基于数学形态学的实时车牌图象分割方法等[4],这
些算法都比较复杂费时费事。本文采用水平扫描和垂直扫描
进行车牌定位的方法,处理方法简单快捷。由于车牌区域存在
字符和汉字,并且分布紧凑而有规律,因此车牌区域的灰度变
化非常剧烈,这是车牌区域的最主要的特征,在获得的特征图
像中这一特征会进一步放大。为此,对提取出来的特征图像进
左右无用的黑边,使字符外围边框达到最小。再按比例对字符
图像进行线性放大(缩小)到指定大小的点阵。假定归一化后
的某象素点(m,n),在原图像中的坐标如下式: