断裂力学概述及其应用

合集下载

断裂力学的发展与及应用

断裂力学的发展与及应用

断裂力学的发展与及应用机械四班第一小组指导老师:胡xx摘要断裂力学这一固体力学的新分支就是二十世纪六十年代发展起来的一门边缘学科。

它不仅是材料力学的发展与充实,而且它还涉及金属物理学、冶金学、材料科学、计算数学等等学科内容。

断裂力学的创立对航天航空、军工等现代科学技术部门都产生了重大影响。

随着科学技术的发展,断裂力学这门新的学科在生产实践中得到越来越广泛的应用。

以此同时,断裂力学也得到不断地发展和充实。

关键词发展史现状应用1.发展简史近几十年来,世界各国生产实践表明,按传统的强度理论设计的构件,虽然材料强度满足了许用应力,有时也会意外地发生低应力断裂破坏事故,无情的事实尖锐地揭示了人们长久以来使用的传统强度理论的局限性。

人们通过对断裂事故的分析和大量的实验研究,说明低应力脆性断裂总是由裂纹扩展所导致的。

这就催生了断裂力学的产生。

经典断裂力学包括线弹性断裂力学、弹塑性断裂力学、断裂动力学、刚塑性断裂力学、粘弹性断裂力学、断裂动力学、复合材料断裂力学等分支.从宏观的连续介质力学角度出发,研究含缺陷或裂纹的物体在外界条件(荷载、温度、介质腐蚀、中子辐射等)作用下宏观裂纹的扩展、失稳开裂、传播和止裂规律。

2.发展现状2.1现存矛盾由于是一门新学科,断裂力学现在还存在的一些问题。

经典断裂力学源于Griffith的断裂理论,是建立在奇异性基础上的,即均基于裂纹顶端应力与应变为无限大的模式展开的.弹性力学求出的应力分量,在裂纹顶端处为无限大,即所谓的奇异性。

奇异性断裂力学在物理上存在本质的缺陷,其一,在实际中发现的裂纹,其上、下表面间距,以及裂纹顶端曲率半径,都是有限值,不等于零;其二,实际裂纹,即使在裂纹顶端,应力与应变均为有限值,不存在所谓应力与应变的奇异性.这样,基于数学尖裂纹和应力奇异性的物理量缺乏坚实的物理基础.为了完善理论,可采用比较符合真实情形的半圆形顶端的钝裂纹(或切VI)模型,但钝裂纹的曲率半径的测量需要用金相的方法来测出,这又促使了金相断裂力学的发展。

第三章 断裂力学与断裂韧度

第三章 断裂力学与断裂韧度

定义
也就是G表示弹性应变能的释放率或者为裂纹扩展力。 也就是 表示弹性应变能的释放率或者为裂纹扩展力。 表示弹性应变能的释放率或者为裂纹扩展力 因为G是裂纹扩展的动力,当G达到怎样的数值时, 达到怎样的数值时, 因为 是裂纹扩展的动力, 是裂纹扩展的动力 达到怎样的数值时 裂纹就开始失稳扩展呢? 裂纹就开始失稳扩展呢 按照Griffith断裂条件 断裂条件G≥R R=γs 按照 断裂条件 γ 按照Orowan修正公式 修正公式G≥R R=2(γ s+γ p) 按照 修正公式 γ γ
如对无限大平板内中心含有穿透K 如对无限大平板内中心含有穿透 1为
因此, 线弹性断裂力学并不象传统力学那样 , 单 因此 , 线弹性断裂力学并不象传统力学那样, 纯用应力大小来描述裂纹尖端的应力场, 纯用应力大小来描述裂纹尖端的应力场 , 而是同 时考虑应力与裂纹形状及尺寸的综合影响。 时考虑应力与裂纹形状及尺寸的综合影响。 教材p67 教材
其研究结果在当时并未引起重视
对于大多数金属材料, 对于大多数金属材料 , 虽然裂纹尖端由于应力集中 作用, 局部应力很高, 作用 , 局部应力很高 , 但是一旦超过材料的屈服强 就会发生塑性变形。 在裂纹尖端有一塑性区, 度 , 就会发生塑性变形 。 在裂纹尖端有一塑性区 , 材料的塑性越好强度越低, 材料的塑性越好强度越低 , 产生的塑性区尺寸就越 裂纹扩展必须首先通过塑性区, 大 。 裂纹扩展必须首先通过塑性区 , 裂纹扩展功主 要耗费在塑性变形上, 要耗费在塑性变形上 , 金属材料和陶瓷的断裂过程 不同,主要区别也在这里。 不同,主要区别也在这里。
工作应力σ<许用应力 工作应力 许用应力[σ] 许用应力
即认为是安全的
塑性材料 脆性材料

材料的断裂力学分析

材料的断裂力学分析

材料的断裂力学分析在材料科学和工程领域中,断裂力学是一门研究材料在外力作用下如何发生破坏的学科。

通过断裂力学的分析,我们可以了解材料在正常使用条件下的破坏原因,以及如何提高材料的断裂韧性和强度。

本文将对材料的断裂力学进行详细分析。

1. 断裂力学的基本概念在了解材料的断裂力学之前,我们需要了解几个基本概念。

1.1 断裂断裂是指材料在外部应力作用下发生破坏、分离的过程。

断裂可以分为韧性断裂和脆性断裂两种类型。

韧性断裂是指材料在破坏之前会出现塑性变形,具有一定的延展性;而脆性断裂是指材料在外力作用下迅速发生破坏而不发生明显的塑性变形。

1.2 断裂韧性断裂韧性是指材料抵抗断裂破坏的能力。

一个具有高断裂韧性的材料可以在外力作用下发生一定程度的塑性变形,从而使其拉伸长度增加。

1.3 断裂强度断裂强度是指材料在破坏前能够承受的最大应力。

断裂强度可以通过拉伸实验等方式进行测定。

2. 断裂力学的分析方法断裂力学的分析方法主要有线弹性断裂力学和非线弹性断裂力学两种。

2.1 线弹性断裂力学线弹性断裂力学假设材料在破坏前的行为是线弹性的,并且材料的破坏是由于应力达到了一定的临界值所引起的。

在线弹性断裂力学中,断裂过程可以通过应力强度因子和断裂韧性来描述。

2.2 非线弹性断裂力学非线弹性断裂力学考虑了材料在破坏前的非线性行为,如塑性变形、蠕变等。

非线弹性断裂力学可以更准确地预测材料的破坏行为,但其计算复杂度较高。

3. 断裂力学的应用断裂力学在材料科学和工程中具有广泛的应用。

3.1 破坏分析通过断裂力学的分析,我们可以确定材料在受力状态下的破坏原因,从而改进材料的设计和制备工艺。

例如,在航空航天领域,对材料的断裂力学进行精确分析可以提高飞行器的安全性和可靠性。

3.2 材料评估通过断裂力学的测试和分析,我们可以评估材料的断裂韧性和强度,为材料的选择和应用提供依据。

这对于许多行业来说是至关重要的,如汽车制造、建筑工程等。

3.3 研发新材料断裂力学的理论和实验研究对于开发新的高性能材料具有重要意义。

理论与应用断裂力学

理论与应用断裂力学

理论与应用断裂力学断裂力学是研究材料在外部载荷作用下发生裂纹和断裂的科学,它涉及材料的断裂行为、裂纹扩展规律、断裂韧性等内容,具有广泛的理论与应用价值。

断裂力学不仅是材料科学与工程的重要组成部分,还在实际工程中起着重要的作用。

在航空航天、汽车工业、建筑工程、能源领域等各个领域,断裂力学都被广泛应用,并为材料设计与结构可靠性提供了重要的理论指导。

一、断裂力学的基本原理1. 断裂力学的基本概念断裂力学是研究材料在外部载荷作用下发生裂纹和断裂的科学。

断裂是指材料在外部力作用下发生的破坏过程,其本质是裂纹的生成、扩展和相互作用。

断裂行为受到外部载荷、裂纹形态、材料性能等多种因素的影响。

2. 裂纹力学与断裂韧性裂纹力学是断裂力学的基础理论,它描述了裂纹在材料中的行为。

裂纹尖端附近的应力场具有奇异性,裂纹尖端处的应力集中导致材料发生拉伸和剪切破坏,从而导致裂纹的扩展。

断裂韧性是衡量材料抗裂纹扩展能力的参数,它描述了材料在裂纹扩展过程中所能吸收的能量大小。

3. 断裂力学的应用范围断裂力学不仅涉及金属材料、混凝土、陶瓷材料等传统材料,还包括了纳米材料、复合材料等新型材料。

它在制造领域、材料科学、产品设计等领域都有重要的应用价值。

二、断裂力学的研究方法1. 实验方法实验是研究断裂力学的重要手段。

通过拉伸试验、冲击试验、疲劳试验等实验方法,可以获得材料的断裂行为、裂纹扩展规律、断裂韧性等重要参数。

实验结果可以验证理论模型的准确性,为理论研究提供数据支持。

2. 数值模拟方法数值模拟是断裂力学研究的重要手段之一。

有限元分析、分子动力学模拟等数值方法可以模拟材料的断裂过程,揭示裂纹扩展的规律,预测材料的断裂行为。

数值模拟方法在工程设计和材料优化中具有重要的应用价值。

3. 理论分析方法理论分析是断裂力学研究的基础。

裂纹力学理论、断裂力学理论等提供了描述裂纹扩展规律、预测裂纹扩展速率、计算断裂韧性等重要方法。

理论分析方法为工程实践提供了重要的指导,为材料设计提供了理论基础。

断裂力学讲义(学生讲义)

断裂力学讲义(学生讲义)

第一章 绪论§1.1 断裂力学的概念任何一门科学都是应一定的需要而产生的,断裂力学也是如此。

一提到断裂,人们自然而然地就会联想到各种工程断裂事故。

在断裂力学产生之前,人们根据强度条件来设计构件,其基本思想就是保证构件的工作应力不超过材料的许用应力,即σ≤[σ]~安全设计安全设计对确保构件安全工作也确实起到了重大的作用,至今也仍然是必不可少的。

但是人们在长期的生产实践中,逐步认识到,在某些情况下,根据强度条件设计出的构件并不安全,断裂事故仍然不断发生,特别是高强度材料构件,焊接结构,处在低温或腐蚀环境中的结构等,断裂事故就更加频繁。

例如,1943~1947年二次世界大战期间,美国的5000余艘焊接船竟然连续发生了一千多起断裂事故,其中238艘完全毁坏。

1949年美国东俄亥俄州煤气公司的圆柱形液态天然气罐爆炸使周围很大一片街市变成了废墟。

五十年代初,美国北极星导弹固体燃料发动机壳体在试验时发生爆炸。

这些接连不断的工程断裂事故终于引起了人们的高度警觉。

特别值得注意的是,有些断裂事故竟然发生在σ<<[σ]的条件下,用传统的安全设计观点是无法解释的。

于是人们认识到了传统的设计思想是有缺欠的,并且开始寻求更合理的设计途径。

人们从大量的断裂事故分析中发现,断裂都是起源于构件中有缺陷的地方。

传统的设计思想把材料视为无缺陷的均匀连续体,而实际构件中总是存在着各种不同形式的缺陷。

因此实际材料的强度大大低于理论模型的强度。

断裂力学恰恰是为了弥补传统设计思想这一严重的缺陷而产生的。

因此,给断裂力学下的定义就是断裂力学是研究有裂纹(缺陷)构件断裂强度的一门学科。

或者说是研究含裂纹构件裂纹的平衡、扩展和失稳规律,以保证构件安全工作的一门科学。

断裂力学在航空、机械、化工、造船、交通和军工等领域里都有广泛的应用前景。

它能解决抗断设计、合理选材、制定适当的热处理制度和加工工艺、预测构件的疲劳寿命、制定合理的质量验收标准和检修制度以及防止断裂事故等多方面的问题,因此是一门具有高度实用价值的学科。

断裂力学

断裂力学

断裂是材料在外力作用下的分离过程,主要有脆性断裂和延性断裂延性断裂:有许多的 被称为韧窝的微型空洞组成,韧窝的形状因应力大小而定,韧窝的大小和深浅取决于第二相的数量分部以及基体塑性变形能力。

韧性断裂过程可以概括为微孔成核,微孔长大和微孔长大三个阶段。

内因 :材料本身的性质。

厚度,冶金因素。

脆断裂的转变:内因和外因 应力状态:斜率 外因 温度加载速率1,应力状态:TK 是剪切盈利的剪断极限,Tt 是屈服极限,SOT 是正断应力。

斜率即载荷的加载方式影响较大。

2,温度:温度对剪切极限的影响远远比对正断极限大,所以当温度降低是,同样的加载方式下,更先达到的是正断的极限,对于一定的加载方式有一个温度临界值有延性断裂转化脆性断裂。

面心立方点阵金属在低温下也不易发生脆性断裂。

3,加载速率:加载速率的影响方式同温度相似,随着加载速率的增大材料的剪切显著提高而正断极限变化不大,所以加载速率的增大是材料有延性断裂变为脆性断裂。

O T TS t d dtεd d t临界O T TS t TT 临界maxτm axσ0断裂机制:第一类是由材料屈服为主的塑性破坏,第二类是一裂纹失稳扩展的断裂破坏。

缺陷对两类破坏都有重要影响,但是机制不同。

塑性破坏而言缺陷主要影响了结构的有效承载面积,破坏的临界条件主要有塑性极限载荷控制。

裂纹失稳扩展的断裂而言缺陷引起的局部应力应变场对结构强度起主导作用。

高强材料:断裂时,裂纹端部发生很小的的屈服:线弹性断裂力学理论。

含有裂纹的材料 延性材料:断裂时裂纹端部发生很大的屈服:弹塑性断裂力学理论。

完全塑性材料:断裂时构件整体发生均匀屈服:塑性材料断裂力学。

剩余强度:含有裂纹的结构在使用过程中任意时刻所具有的承载能力就被称为剩余强度。

所有的断裂理论的落脚点都是比较剩余强度和设计强度的大小。

能量分析:英国物理学家Griffith,在1921年首次提出了裂纹扩展时能量释放的概念。

找他的理论解释,裂纹的上下表面形成导致了应变能的释放。

应用断裂力学

应用断裂力学

应用断裂力学一、断裂力学的形成断裂力学是固体力学的一个新分支,它研究物体裂纹扩展的条件和规律,预测物体裂纹扩展的寿命。

断裂力学起源于对航空航天、能源、化工、机械和材料科学等领域中出现的脆性材料或构件的断裂问题进行研究而发展起来的。

断裂力学与材料力学、塑性力学、弹性力学等基本理论相互渗透,已逐渐形成了自己的体系。

二、断裂力学的基本内容断裂力学的基本内容包括裂纹的分类、裂纹的萌生和扩展机理、裂纹的宏观扩展阻力、材料抵抗裂纹扩展的能力等。

其中,对裂纹尖端的应力场和位移场的研究是研究断裂力学的重要手段。

1. 裂纹的分类根据裂纹的形状和扩展方向,可以将裂纹分为三种类型:张开型(Ⅰ型)、滑开型(Ⅱ型)和撕开型(Ⅲ型)。

这三种类型的裂纹在受力时,裂纹尖端附近的应力场和位移场有明显的不同。

2. 裂纹的萌生和扩展机理在材料或构件受力时,裂纹会在材料的缺陷或应力集中处萌生。

当受力超过某一临界值时,裂纹将迅速扩展,直至构件断裂。

为了预测材料的断裂寿命,需要研究裂纹的萌生和扩展机理。

3. 裂纹的宏观扩展阻力当裂纹扩展时,会受到材料内部和外部阻力(如其他材料的摩擦力、外部施加的载荷等)的作用。

这些阻力将阻止裂纹的扩展,使裂纹扩展的速度逐渐减缓。

研究这些阻力对预测材料的断裂寿命具有重要意义。

4. 材料抵抗裂纹扩展的能力材料抵抗裂纹扩展的能力是其抵抗外力作用的固有属性,主要取决于材料的成分、显微组织、热处理状态和工作环境等。

这种能力可以通过实验进行测定,如通过测定材料的韧性、强度等指标来评估其抵抗裂纹扩展的能力。

三、断裂力学的应用断裂力学在许多领域中得到了广泛的应用,包括航空航天、能源、化工、机械和材料科学等。

以下是一些具体的实例:1. 航空航天领域:飞机和航天器的结构和零部件在制造和使用过程中可能会产生裂纹,这些裂纹可能会导致灾难性的后果。

应用断裂力学可以预测和防止这些裂纹的产生和发展,提高航空航天器的安全性和可靠性。

2. 能源领域:在石油和天然气开采中,管道和储罐可能会因为受到内部压力和其他因素的影响而发生破裂。

断裂力学及其工程应用

断裂力学及其工程应用

断裂力学及其工程应用概述断裂力学是研究材料在外界加载下发生断裂的力学学科,它研究材料的断裂机理、断裂过程以及预测和评估断裂行为。

在工程应用方面,断裂力学为我们提供了对结构材料的强度和可靠性进行评估的依据。

断裂理论基础断裂分类1.脆性断裂:材料在加载情况下突然断裂,没有明显的塑性变形。

2.韧性断裂:材料在加载情况下发生明显的塑性变形后才发生断裂。

断裂模式1.剪切断裂:沿一个平面发生剪切破坏。

2.弯曲断裂:材料在受到弯曲力作用下发生断裂。

3.拉伸断裂:材料在受到拉力作用下发生断裂。

断裂力学的应用断裂评估断裂力学可以用于评估材料的强度和可靠性,为工程结构的设计提供依据。

通过对材料的本构关系、断裂韧度等参数的计算和预测,可以预防工程结构的断裂失效。

断裂预测断裂力学可以通过对材料的试验研究和模型建立,预测材料在不同加载情况下的断裂性能。

这对于材料选择、设计优化以及工程结构的安全性评估非常重要。

断裂控制利用断裂力学的理论和方法,可以通过控制和改善材料的断裂性能,提高工程结构的抗断裂能力。

例如,在航空航天工程中,采用了各种断裂控制技术来提升飞机的安全性能。

断裂分析通过断裂力学的分析方法,可以对已发生断裂的材料进行破坏模式分析和失效原因分析。

这有助于我们总结经验教训,改进设计和制造工艺,减少事故的发生。

断裂力学研究的挑战断裂力学的研究面临着许多挑战,其中主要包括以下几个方面: 1. 多尺度效应:材料的断裂行为在不同尺度下表现出不同的特性,从宏观到微观的转换是一个难点。

2. 多物理场耦合:许多工程应用中,断裂问题往往与温度、湿度、电磁场等物理场耦合,这给研究带来了复杂性。

3. 断裂预测精度:目前断裂力学的预测精度仍有待提高,特别是在复杂载荷和多尺度情况下。

结语断裂力学是一个综合性学科,它对材料的强度和可靠性评估以及工程结构的设计和安全性评估起着重要作用。

尽管面临许多挑战,但随着科学技术的不断进步,断裂力学将在未来发挥更重要的作用,并为工程领域的发展做出更大贡献。

断裂力学的发展与研究现状

断裂力学的发展与研究现状

断裂力学的发展与研究现状一、断裂力学概述断裂力学是一门研究材料或结构在断裂过程中力学行为的学科。

它专注于理解材料的微观结构和性能,以及在外力作用下材料裂纹萌生、扩展和断裂的机制。

断裂力学在工程应用中具有非常重要的意义,因为材料的断裂会直接导致灾难性的后果。

二、断裂力学的发展自20世纪60年代以来,断裂力学得到了迅速的发展。

这个领域的研究可以分为两个主要方向:线性断裂力学和非线性断裂力学。

1. 线性断裂力学:线性断裂力学研究裂纹在材料中扩展的规律,其理论基础主要是弹性力学和塑性力学。

这个方向的主要目标是预测裂纹扩展的速率,以及裂纹对材料性能的影响。

2. 非线性断裂力学:非线性断裂力学研究裂纹在非线性材料中扩展的规律。

这种材料的行为会随着裂纹的扩展而改变,因此需要使用更复杂的模型来描述。

非线性断裂力学的研究对于理解复合材料、金属、陶瓷等材料的断裂行为非常重要。

三、断裂力学的研究现状当前,断裂力学的研究主要集中在以下几个方向:1. 疲劳裂纹扩展研究:疲劳裂纹扩展是工程结构中最常见的断裂形式之一。

这个方向的研究主要关注疲劳裂纹的萌生和扩展机制,以及如何预测疲劳寿命。

2. 复合材料断裂研究:复合材料由于其各向异性和非线性特性,其断裂行为比金属材料更为复杂。

这个方向的研究主要关注复合材料的分层、脱层、破碎等行为,以及如何优化复合材料的结构设计。

3. 微裂纹扩展研究:微裂纹在材料中广泛存在,其对材料的性能和安全性具有重要影响。

这个方向的研究主要关注微裂纹的萌生、扩展和聚集机制,以及如何检测和预防微裂纹的产生。

4. 跨尺度断裂力学研究:这个方向的研究关注在不同尺度(如微观、介观和宏观)下材料的断裂行为。

它涉及到材料在不同尺度下的物理性质,以及不同尺度之间的相互作用。

这种跨尺度的方法有助于更全面地理解材料的断裂行为。

四、未来研究方向与挑战随着科学技术的发展,断裂力学仍面临许多新的挑战和研究机会。

未来几年,以下几个方向可能会成为研究的热点:1. 高性能计算与模拟:随着计算机技术的发展,高性能计算和模拟已经成为解决复杂工程问题的关键工具。

断裂力学在桥梁工程中的应用

断裂力学在桥梁工程中的应用

断裂力学在桥梁工程中的应用在桥梁工程中,断裂力学是一门极其重要的学科,它可以帮助工程师们更好地设计和建造桥梁结构,保障桥梁的安全和稳定。

断裂力学是研究材料在外力作用下发生断裂和破坏的力学学科,通过对材料断裂的研究,可以更准确地评估桥梁结构的抗裂能力,提高桥梁的使用寿命和安全性。

本文将通过介绍断裂力学的基本原理和在桥梁工程中的应用,探讨断裂力学在桥梁工程中的重要性和作用。

我们来了解一下断裂力学的基本原理。

断裂力学主要研究材料在外力作用下的断裂行为和裂纹扩展规律,包括裂纹形成、扩展和破坏等过程。

断裂力学的基本理论是弹性力学、塑性力学和断裂力学的结合,通过对材料的内部力学性质和外部加载条件进行分析,可以预测材料的破坏形式和破坏载荷。

在工程实践中,断裂力学可以帮助工程师们更好地预测和评估结构的疲劳裂纹扩展、板块断裂、裂纹的扩展速度和破坏形式等,为结构的设计和维护提供科学依据。

在桥梁工程中,断裂力学的应用主要体现在以下几个方面:1. 桥梁设计:在桥梁设计阶段,工程师需要考虑各种外部荷载对结构的影响,例如车辆荷载、风荷载、地震荷载等。

断裂力学可以帮助工程师们评估结构在外部荷载作用下的疲劳裂纹扩展和破坏形式,优化结构设计,提高桥梁的承载能力和安全性。

2. 材料选择:在桥梁材料的选择过程中,断裂力学可以帮助工程师们评估材料的抗裂能力和断裂韧性,选择合适的材料来保障桥梁的使用寿命和稳定性。

对于钢结构桥梁,工程师可以通过断裂力学的研究来选择合适的钢材等级和厚度,提高结构的耐久性和抗裂能力。

3. 结构监测与维护:在桥梁运营阶段,结构的监测和维护是非常重要的工作。

断裂力学可以帮助工程师们分析结构的裂纹扩展情况和破坏形式,制定科学的维护方案,延长桥梁的使用寿命和保障桥梁的安全性。

通过断裂力学的研究,工程师们可以根据裂纹扩展的速度和程度,制定合理的维护策略,及时修补和更换受损部件,提高桥梁的稳定性和可靠性。

断裂力学的发展及应用

断裂力学的发展及应用

断裂力学的发展及应用断裂力学是研究材料或结构在受到外力作用下发生断裂的科学学科。

它在材料科学、工程力学、机械工程、航空航天工程等领域得到了广泛应用。

本文将从断裂力学的发展历程、理论基础和应用领域等方面进行阐述。

断裂力学的发展可以追溯到19世纪60年代的英国。

当时,材料的断裂行为被认为是不可控的,因此无法进行可靠的工程设计和分析。

然而,随着强度学说的发展和研究方法技术的进步,人们开始关注材料的断裂现象,并逐渐形成了断裂力学的理论框架。

断裂力学的理论基础主要有线弹性断裂力学和粘弹性断裂力学两个方面。

线弹性断裂力学主要研究刚性材料的断裂行为,在应力达到材料的破坏强度时,材料会发生断裂现象。

粘弹性断裂力学则是研究粘弹性材料在外力作用下的破坏行为,强调材料的时间依赖性。

断裂力学的应用十分广泛。

首先,在材料科学领域,断裂力学的研究可以帮助科学家、工程师更好地理解材料的断裂机制、破坏过程和破坏特征,为新材料的开发和设计提供理论指导。

例如,在航空航天工程中,断裂力学可以用于研究飞机结构的疲劳寿命和断裂危险性,以确保飞机的安全飞行。

其次,断裂力学对工程力学领域也有着重要的意义。

通过引入断裂力学,可以对工程结构和构件的破坏行为进行预测和分析,从而提高结构的安全性和可靠性。

例如,在建筑工程中,通过断裂力学可以研究混凝土、钢筋等材料的断裂行为,为建筑物的设计和施工提供技术支持。

此外,断裂力学还被广泛应用于汽车工程、机械工程、电子工程等领域。

在汽车工程中,断裂力学可以用于研究汽车材料的断裂特性和疲劳寿命,为汽车的制造和安全性评估提供依据。

在机械工程中,断裂力学可以用于分析和优化机械零件的设计,提高机械设备的使用寿命和可靠性。

在电子工程中,断裂力学可以研究材料的可靠性和耐久性,提高电子设备的性能和稳定性。

总之,断裂力学的发展及应用不仅推动了材料科学、工程力学等学科的进步,也在各个领域为科学研究和工程设计提供了理论基础和实际指导。

断裂力学与损伤分析

断裂力学与损伤分析

断裂力学与损伤分析断裂力学与损伤分析是研究材料在受力作用下发生断裂和损伤的科学。

在工程和材料科学领域中,准确地了解材料的断裂行为和损伤分析对于设计、生产和安全都是至关重要的。

一、断裂力学概述在工程和科学领域中,断裂力学研究材料在受力作用下如何发生断裂的规律。

它主要关注材料内部的微观结构和裂纹的扩展路径。

断裂力学实用于各种材料,如金属、陶瓷、复合材料和塑料等。

通过研究材料的断裂行为,我们可以预测材料在不同条件下的强度和寿命。

二、损伤分析的重要性损伤分析是研究材料在受力作用下如何发生损伤的科学。

它与断裂力学有密切的联系,两者共同研究材料的破坏行为。

损伤分析对于工程和材料科学非常重要。

它可以帮助我们预测材料的寿命和使用条件,并采取相应的措施来延长材料的使用寿命。

三、断裂力学参数的测量与计算在断裂力学与损伤分析中,我们需要测量和计算一些重要的参数,以了解材料的断裂行为。

其中一个重要的参数是断裂韧性。

它是材料在破坏前能吸收的能量的度量,通常用断裂韧性指数来表示。

另一个重要的参数是断裂强度。

它是材料在断裂前所能承受的最大应力。

除了这些参数,还有许多其他的参数,如断裂韧性曲线、缺口尺寸对断裂性能的影响等,都需要测量和计算。

四、断裂力学的应用领域断裂力学与损伤分析在许多工程领域具有广泛的应用。

在航空航天领域,了解材料的断裂行为和损伤分析对于设计和制造可靠的航空器件至关重要。

通过断裂力学,工程师和科学家可以预测材料在极端环境下的破坏行为。

在汽车工业中,断裂力学可以帮助我们设计和制造更坚固、安全的汽车构件。

通过了解材料的断裂机制,我们可以选择合适的材料和生产工艺,以提高汽车的安全性和耐用性。

此外,在建筑、能源和电子等领域,断裂力学与损伤分析也发挥着重要的作用。

五、结论断裂力学与损伤分析是研究材料在受力作用下发生断裂和损伤的科学。

它们对于工程和材料科学具有重要意义,可以帮助我们预测材料的寿命和破坏情况。

通过测量和计算一些重要的参数,我们可以更准确地了解材料的断裂行为,并应用于各个领域,如航空航天、汽车工业和建筑等。

断裂力学概述

断裂力学概述

断裂力学是近几十年才发展起来的一支新兴学科 ,它从宏观的连续介质力学角度出发 ,研究含缺陷或裂纹的物体在外界条件(荷载、温度、介质腐蚀、中子辐射等)作用下宏观裂纹的扩展、失稳开裂、传播和止裂规律。

断裂力学应用力学成就研究含缺陷材料和结构的破坏问题 ,由于它与材料或结构的安全问题直接相关 ,因此它虽然起步晚 ,但实验与理论均发展迅速 ,并在工程上得到了广泛应用。

例如断裂力学技术已被应用于估算各种条件下的疲劳裂纹增长率、环境问题和应力腐蚀问题、动态断裂以及确定试验中高温和低温的影响 ,并且由于有了这些进展 ,在设计有断裂危险性的结构时 ,利用断裂力学对设计结果有较大把握。

断裂力学研究的方法是:从弹性力学方程或弹塑性力学方程出发 ,把裂纹作为一种边界条件 ,考察裂纹顶端的应力场、应变场和位移场 ,设法建立这些场与控制断裂的物理参量的关系和裂纹尖端附近的局部断裂条件。

用弹性力学的线性理论研究含裂纹体在荷载作用下的力学行为和失效准则的工程学科成为线弹性断裂力学。

在分析中,可认为材料是线弹性的,并且不考虑裂纹尖端极小范围内的屈服问题。

研究含裂纹体的力学行为可以从两种观点出发,即从能量平衡观点和从裂纹尖端应力场强度的观点进行研究。

按裂纹的受力特点和位移特点,可以把它们抽象化为张开型、滑移型和撕开型三种基本类型,任何形式的裂纹,都可以看成上述三种基本类型的组合。

从应力场强度的观点研究裂纹体的力学行为和失效准则。

Ⅰ型和Ⅱ型的脆断问题归结为平面问题下含裂纹的线弹性体的线弹性力学分析,先选取满足双调和方程和边界条件的应力函数,极坐标系原点选在裂纹尖端,把裂纹看作一部分边界,就可以用弹性力学的方法求得裂纹体的应力场和位移场。

求出的应力函数为Williams应力函数,得到极坐标下应力分量表达式,通过物理方程和几何方程得到几何分量表达式。

按远场的边界条件不同可分别求出Ⅰ型和Ⅱ型的裂纹尖端领域的应力场和位移场。

Ⅲ型问题为反平面应力问题,xy方向位移为零,只有z方向位移且是xy的函数,只有两个应变分量和两个应力分量,解一个平衡方程得Ⅲ型裂纹尖端领域的应力场合位移场。

断裂力学名词解释-概述说明以及解释

断裂力学名词解释-概述说明以及解释

断裂力学名词解释-概述说明以及解释1.引言1.1 概述在断裂力学领域,断裂现象是材料在承受外力作用下突然失效的过程。

这种突然失效可能导致严重的事故,因此研究断裂力学对于材料工程和结构设计具有重要意义。

本文将从断裂力学的基本概念入手,介绍塑性断裂和断裂韧性的相关理论和应用,并探讨其在工程领域中的实际意义。

通过深入分析断裂力学的相关名词和概念,可以更好地理解材料在断裂过程中的行为,为工程实践提供更可靠的依据。

1.2 文章结构文章结构部分内容:本文共分为引言、正文和结论三部分。

在引言部分中,将对断裂力学的概述进行介绍,解释本文的结构和目的。

正文部分将分为三个小节,分别讨论断裂力学、塑性断裂和断裂韧性的概念和相关内容。

最后在结论部分总结全文的内容并讨论其应用和未来展望。

文章结构清晰明了,有助于读者更好地理解和接受文章内容。

1.3 目的本文旨在通过对断裂力学相关名词的解释,帮助读者更深入地理解断裂力学领域的基本概念和原理。

通过对断裂力学、塑性断裂和断裂韧性等概念的深入讲解,读者可以了解不同类型的断裂行为及其在材料工程和结构设计中的重要性。

同时,通过本文的阅读,读者可以掌握相关名词的定义和内涵,为深入学习断裂力学奠定坚实基础。

通过本文的撰写,我们希望读者能够对断裂力学有一个全面而深入的理解,从而为工程实践中的断裂问题提供更有效的解决方案。

同时,我们也希望可以激发读者对断裂力学领域的兴趣,促进学术交流和探讨,推动该领域的发展和进步。

愿本文能够为读者带来启发和帮助,让我们共同探索断裂力学这一重要领域的奥秘。

2.正文2.1 断裂力学断裂力学是研究材料在外加载荷作用下如何发生裂纹和破坏的一门学科。

在工程学和材料科学领域中,断裂力学被广泛应用于预测材料的疲劳寿命、抗拉强度和韧性等参数。

断裂力学的基本原理是研究材料在受到外力作用下,裂纹会在材料内部扩展,并最终导致材料的破坏。

断裂力学中的一些重要概念包括裂纹尖端应力、裂纹尖端位移、裂纹扩展速率等。

断裂力学

断裂力学

断裂力学概述摘要:断裂力学是固体力学中研究带裂纹材料强度的一门学科。

它在生产中有着重要的应用价值,近年来在国内外发展很快。

材料在生产加工过程以及在随后的使用过程中中,不可避免的会产生缺陷和裂纹,会发生低应力脆性破坏。

断裂力学主要研究裂纹周围材料的形状断裂力学是传统力学的补充和发展。

本文介绍了断裂力学中的格里菲斯能量理论、COD准则、J积分理论等,并就简单介绍了其在疲劳断裂中的应用。

关键词:断裂力学,格里菲斯能量理论,COD准则,J积分理论;1 引言断裂力学是近几十年才发展起来的一支新兴学科,它应用力学成就研究含缺陷材料和结构的破坏问题。

由于它与材料或结构的安全问题直接相关,因此它虽然起步晚但实验与理论均发展迅速,并在工程上得到了应用,在材料评估、结构设计及至标准的交货条件中均已涉及使用了一些断裂力学参数。

世界上主要工业发达国家也先后颁布了断裂力学标准,其中以美国在此方面的工作领先。

随着现代生产的发展,新材料、新产品、新工艺不断涌现,在机械、结构等运行使用中经常发生脆断破坏事故。

例如:1947年前苏联4500m的大型石油储罐底部和下部壳连接处,在气温降到一43O℃时破断。

1969年美国F一n飞机在执行训练飞行途中作投弹恢复动作时,左翼脱落,导致飞机附毁。

当时飞机速度、总重量和过载等指标远低于设计指标。

今天,我们还能从新闻中听到某大桥或商业大厦突然断裂或坍塌。

这些器械或结构是在负载“还远低于传统的设计强度指标时发生断裂的。

用材料力学的传统设计思想是解释不了这类现象的。

从事故后的分析来看,上述脆断均是由宏观裂纹引起的[1]。

早在本世纪20年代英国人格里菲斯试想解释玻璃的实际强度远低于理论强度的原因时,以材料内部存在缺陷的观点提出在一定条件下,微小缺陷或裂纹将失稳扩展,从而导致材料或结构的破坏。

格里菲斯推测玻璃内部的细小缺陷或裂纹引起应力集中,使断裂在较低的名义应力下发生。

进而,他从能量观点出发提出裂纹失稳扩展条件:如果裂纹扩展释放的弹性应变能,克服了材料阻力所作的功,则裂纹失稳扩展。

材料科学中的断裂力学研究

材料科学中的断裂力学研究

材料科学中的断裂力学研究一、概述断裂力学是研究材料在外力作用下出现裂纹的形成、扩展和破坏过程的学科。

断裂力学不仅是材料科学的重要分支领域,也在机械、航空、造船、建筑等行业有着广泛的应用,在材料的设计、制造、使用等方面发挥着重要作用。

二、断裂的分类1. 韧性断裂:指材料在外力作用下,会伴随着大量的能量吸收,裂纹的扩展缓慢,最终会出现塑性变形,常见于金属材料。

2. 脆性断裂:指材料在外力作用下,裂纹迅速扩展,没有明显的塑性变形,常见于玻璃、陶瓷等材料。

3. 疲劳断裂:指材料在循环载荷作用下,长时间累积微小损伤后,发生的断裂。

4. 动态断裂:指材料在高速载荷下,断裂的速度与裂纹扩展速度均非常快,这种断裂过程需要考虑材料的动态响应。

三、断裂试验为了研究材料的断裂行为,需要进行一系列的断裂试验,常见的断裂试验有以下几种:1. 拉伸试验:将样品置于拉伸机上,以一定速度施加拉力,测量材料在拉力作用下的应力应变关系,以此来研究材料的韧性断裂行为。

2. 冲击试验:将样品固定,用针锤突然撞击样品,记录击裂所需的针锤力,以此来研究材料的脆性断裂行为。

3. 疲劳试验:将样品置于振动台上或者重复加载样品,记录疲劳循环数和断裂数,以此来研究材料的疲劳断裂行为。

4. 梁三点弯曲试验:将样品放在两个支持点之间,施加一个力于中心点,记录样品受到力的弯曲程度以及可能的裂纹扩展的位置,以此来研究材料的韧性断裂行为。

四、裂纹扩展机理裂纹扩展机理是断裂力学研究的重要内容。

裂纹的产生和扩展是材料破坏的重要过程,其扩展方向和路径直接影响着材料的性能和寿命。

常见的裂纹扩展机理有以下几种:1. 涂层剥落:涂层与基材的粘结力不足时,就会发生剥离和分层现象。

2. 静态疲劳裂纹扩展:材料在长时间静止状态下,扩展的主要机理是疲劳裂纹扩展。

3. 动态裂纹扩展:材料在高速载荷和高速运动状态下,扩展的主要是动态裂纹扩展。

4. 起始裂纹:材料在外力作用下,由于材料存在初始裂纹缺陷或者为了刻意开裂,就会出现裂纹加速扩展。

断裂力学基础理论与应用

断裂力学基础理论与应用

断裂力学基础理论与应用断裂力学是力学中的一个重要分支,涉及到材料断裂的原因、机制以及如何预测和控制断裂行为。

本文将介绍断裂力学的基础理论和其在工程实践中的应用。

一、断裂力学的基础理论1. 断裂力学的研究对象断裂力学主要研究材料在外部加载下的断裂行为。

材料的断裂可以是由于外力作用下的应力超过了其所能承受的极限而导致的材料失效,也可以是由于材料内部存在的缺陷而导致的断裂。

2. 断裂力学的基本概念在断裂力学中,有几个基本概念需要了解。

首先是应力强度因子(stress intensity factor),它描述了在断裂前端的应力场。

其次是断裂韧性(fracture toughness),用于评估材料的抗断裂性能。

最后是断裂韧性的测量方法,如致裂韧性法(the J-integral method)和能量法(the energy method)等。

3. 断裂力学的理论模型为了描述材料的断裂行为,断裂力学采用了几种力学模型。

弹性断裂力学模型适用于弹性材料的断裂分析,而弹塑性断裂力学模型适用于弹塑性材料的断裂分析。

此外,还有一些其他的断裂模型,如脆性断裂模型、粘弹性断裂模型等。

二、断裂力学的应用1. 结构设计中的断裂力学断裂力学在结构设计中具有广泛的应用。

通过运用断裂力学的理论和方法,可以预测和评估结构在承受外部荷载时的断裂行为,为结构设计提供科学依据。

例如,在飞机、桥梁和船舶等的设计中,需要考虑材料的断裂性能,以确保结构的安全可靠性。

2. 材料评估与选用中的断裂力学在材料评估与选用中,断裂力学也发挥着重要的作用。

通过测定材料的断裂韧性指标,可以评估材料的抗断裂性能,为工程项目的材料选用提供参考。

例如,在核电站和航天器材料的选用过程中,需要考虑材料的断裂特性,以满足严格的安全性要求。

3. 断裂失效分析与预测断裂失效分析与预测是断裂力学的一项重要应用。

通过结合材料的断裂力学特性和结构的外部荷载,可以预测材料和结构在使用过程中可能出现的断裂失效。

断裂力学概述及其应用

断裂力学概述及其应用

断裂力学概述及应用定义:断裂力学(fracture mechanics) 是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。

起源:1957年,美国科学家G.R.Irwin提出应力强度因子的概念, 线弹性断裂理论的重大突破,应力强度因子理论作为断裂力学的最初分支——线弹性断裂力学建立起来。

发展:现代断裂理论大约是在1948—1957年间形成,它是在当时生产实践问题的强烈推动下,在经典Griffith理论的基础上发展起来的,上世纪60年代是其大发展时期。

我国断裂力学工作起步至少比国外晚了20年,直到上世纪70年代,断裂力学才广泛引入我国,一些单位和科技工作者逐步开展了断裂力学的研究和应用工作。

从上世纪五十年代中期以来,断裂力学发展很快,目前线性理论部分已比较成熟,在工程方面,已广泛应用于宇航、航空、海洋、兵器、机械、化工和地质等许多领域。

分类:断裂力学的类型分为:线性断裂力学、弹塑性断裂力学、断裂动力学。

研究的内容包括了:裂纹的起裂条件、裂纹在外部载荷和(或)其他因素作用下的扩展过程、裂纹扩展到什么程度物体会发生断裂。

1.线性断裂力学:应用线弹性理论研究物体裂纹扩展规律和断裂准则。

1921年格里菲斯通过分析材料的低应力脆断,提出裂纹失稳扩展准则格里菲斯准则。

1957年G.R.欧文通过分析裂纹尖端附近的应力场,提出应力强度因子的概念,建立了以应力强度因子为参量的裂纹扩展准则。

线弹性断裂力学可用来解决脆性材料的平面应变断裂问题,适用于大型构件(如发电机转子、较大的接头、车轴等)和脆性材料的断裂分析。

实际上,裂纹尖端附近总是存在塑性区,若塑性区很小(如远小于裂纹长度),则可采用线弹性断裂力学方法进行分析。

2.弹塑性断裂力学:应用弹性力学、塑性力学研究物体裂纹扩展规律和断裂准则,适用于裂纹体内裂纹尖端附近有较大范围塑性区的情况。

第五章断裂力学概述

第五章断裂力学概述

Y c a K IC
式中, c 为断裂应力; a 是裂纹深度;Y 是裂纹现状系数,与试件几何现状、载荷条件和 裂纹位置有关; 常数 K IC 是材料的断裂韧性, 表示材料抵抗裂纹失稳扩展能力的一个物理量。 已知裂纹深度 a ,上式可写成
c K IC Y a
或已知工作应力 ,则有
一、 张开型裂纹尖端应力场和应力强度因子
设一无限大板,中心有一裂纹,长为 2a,受双轴拉应力作用,如图 5-3 所示。按弹性力 学平面问题求解,其裂纹尖端的应力场为
x KI
y KI
xy K I
2r cos 21 sin 2 sin 3 2
图 5-2
§ 5-2 能量释放率与 G 准则
一、脆性断裂的能量理论
大量的研究表明,固体材料的实际断裂强度只有它理论断裂强度的 1 10 ~ 1 1000 。葛 里菲斯认为,在如何固体材料中存在一定数量和一定大小的裂纹和缺陷。 设在无限大平板上出现了一条垂直于拉应力 方向长度为 2a 的贯穿裂纹, 切开裂纹后, 平板内储存的弹性应变能将有一部分被释放出来, 其释放量为 U; 由于裂纹出现后有新的表 面形成,要吸收能量,其值为 W,则其能量的总改变量 E 为 E=-U+W 裂纹释放的能量为
da dN 是材料的一个指标,表示材料抵抗裂纹扩展的能力。
初始裂纹深度 a i ,临界裂纹深度 a c 和裂纹扩展速率 da dN 已知,则剩余寿命可由以下 积分求得
N p da da aN
ac ai
其中
da dN C K
m
C 与 m 是材料常数, K K max K min 是循环载荷的最大和最小应力强度因子之差, 称为应力强度因子幅度。在断裂力学中,与疲劳极限相当的是循环载荷的门槛值 K th ,当 应力强度因子幅度小于门槛值时,裂纹不扩展。

断裂力学及其工程应用(一)

断裂力学及其工程应用(一)

断裂力学及其工程应用(一)断裂力学及其工程应用断裂力学是研究材料和结构在受到外部力作用下的破坏问题的科学。

它广泛应用于各个领域,为工程师和科学家提供了解决结构破裂问题的理论基础和方法。

以下是断裂力学及其工程应用的一些例子:1. 金属材料的断裂分析•研究目的:金属结构在使用或加工过程中,容易受到外部影响而出现断裂现象。

断裂力学可以帮助工程师确定材料的破坏强度,预测材料在不同应力条件下的断裂特性,从而优化材料的设计和使用。

•应用案例:例如,航空航天工程中的飞机结构材料,需要在高温、高压和极端条件下保持稳定和强度。

断裂力学的应用可以帮助工程师确定材料的破坏极限,从而确保结构的安全性和可靠性。

2. 薄膜的断裂与破裂行为研究•研究目的:薄膜广泛应用于光电子、微机电系统(MEMS)和纳米技术等领域。

薄膜在制备、加工和使用过程中容易出现断裂和破裂。

断裂力学可以帮助科学家和工程师研究薄膜的断裂原因、破裂行为和力学特性,以提高薄膜的性能和可靠性。

•应用案例:例如,柔性显示技术中的薄膜材料,需要具有良好的可弯曲性和抗拉伸能力。

断裂力学的应用可以帮助研究者确定薄膜材料的断裂强度,预测薄膜在不同形变条件下的断裂模式,为柔性显示器件的设计和制备提供理论指导。

3. 岩土工程中的断裂力学分析•研究目的:岩土工程是研究土壤和岩石的力学行为及其工程应用的学科。

土壤和岩石在受力过程中,容易出现裂缝和破裂。

断裂力学可以帮助工程师理解土壤和岩石的破坏机理,预测工程结构的稳定性和安全性。

•应用案例:例如,地下隧道和地铁工程中,土壤和岩石的断裂行为对工程结构的稳定性产生重要影响。

断裂力学的应用可以帮助工程师确定土壤和岩石的断裂参数,预测隧道和地铁的破坏机理,从而指导工程的设计和施工。

4. 复合材料的断裂分析与优化设计•研究目的:复合材料是由两种或两种以上不同性质的材料组成的复合结构。

复合材料在受到外部载荷作用时,容易发生复杂的断裂行为。

断裂力学可以帮助工程师分析和预测复合材料的断裂特性,优化复合材料的设计和使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

断裂力学概述及应用
定义:
断裂力学(fracture mechanics) 是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。

起源:
1957年,美国科学家G.R.Irwin提出应力强度因子的概念, 线弹性断裂理论的重大突破,应力强度因子理论作为断裂力学的最初分支——线弹性断裂力学建立起来。

发展:
现代断裂理论大约是在1948—1957年间形成,它是在当时生产实践问题的强烈推动下,在经典Griffith理论的基础上发展起来的,上世纪60年代是其大发展时期。

我国断裂力学工作起步至少比国外晚了20年,直到上世纪70年代,断裂力学才广泛引入我国,一些单位和科技工作者逐步开展了断裂力学的研究和应用工作。

从上世纪五十年代中期以来,断裂力学发展很快,目前线性理论部分已比较成熟,在工程方面,已广泛应用于宇航、航空、海洋、兵器、机械、化工和地质等许多领域。

分类:
断裂力学的类型分为:线性断裂力学、弹塑性断裂力学、断裂动力学。

研究的内容包括了:裂纹的起裂条件、裂纹在外部载荷和(或)其他因素作用下的扩展过程、裂纹扩展到什么程度物体会发生断裂。

1.线性断裂力学:
应用线弹性理论研究物体裂纹扩展规律和断裂准则。

1921年格里菲斯通过分析材料的低应力脆断,提出裂纹失稳扩展准则格里菲斯准则。

1957年G.R.欧文通过分析裂纹尖端附近的应力场,提出应力强度因子的概念,建立了以应力强度因子为参量的裂纹扩展准则。

线弹性断裂力学可用来解决脆性材料的平面应变断裂问题,适用于大型构件(如发电机转子、较大的接头、车轴等)和脆性材料的断裂分析。

实际上,裂纹尖端附近总是存在塑性区,若塑性区很小(如远小于裂纹长度),则可采用线弹性断裂力学方法进行分析。

2.弹塑性断裂力学:
应用弹性力学、塑性力学研究物体裂纹扩展规律和断裂准则,适用于裂纹体内裂纹尖端附近有较大范围塑性区的情况。

由于直接求裂纹尖端附近塑性区断裂问题的解析解十分困难,因此多采用J积分法、COD(裂纹张开位移)法、R (阻力)曲线法等近似或实验方法进行分析。

通常对薄板平面应力断裂问题的研究,也要采用弹塑性断裂力学。

弹塑性断裂力学在焊接结构的缺陷评定、核电工程的安全性评定、压力容器和飞行器的断裂控制以及结构物的低周疲劳和蠕变断裂的研究等方面起重要作用。

弹塑性断裂力学的理论迄今仍不成熟,弹塑性裂纹的扩展规律还有待进一步研究。

3.断裂动力学:
采用连续介质力学方法 , 考虑物体惯性,研究固体在高速加载或裂纹高速扩展下的断裂规律。

断裂动力学的主要研究内容为:①断裂准则,包括裂纹在高速加载下的响应及起始和失稳扩展准则、高速扩展裂纹的分叉判据。

②高速扩展裂纹尖端附近的应力应变场。

③裂纹高速扩展的极限速度。

④裂纹高速扩展的停止(止裂)原理。

⑤高应变率条件下的材料特性及其对高速扩展裂纹阻力的影响。

⑥裂纹高速扩展中的能量转换。

⑦高速碰撞下的侵彻和穿孔问题。

断裂动力学研究方法分理论分析和动态实验两方面。

断裂动力学已在冶金学、地震学、合成化学以及水坝工程、飞机和船舶设计、核动力装置和武器装备等方面得到一些实际应用,但理论尚不够成熟。

应用:
双悬臂梁试件断裂问题的求解
设B 为试件厚度,H 为试件半高度,a 为加载线到裂端的距离。

l/2为力作用点沿力方向的位移。

试件可简化为悬臂梁问题,上下每个梁的长度即为裂纹的长度a 。

由材料力学计算梁的挠度公式,可知力作用点的位移为:EI Pa l
323
= 式中,E 为弹性模量, 123BH
I = 是惯性矩。

当裂纹长度由a 增加到a+da 时,系统刚度会随之降低,因此,位移l 也会增至l+dl 。

此时P-l 关系如图所示。

这里OA 和 OB 分别为裂长为a 和a+da 的P-l 关系线。

由前式知,P 与l 成正比,在恒拉力P 的作用下,释放的能量d(W-U)
即为图中三角形OAB 的面积(阴影部分)。

说明:U1=Pl/2,U2=P(l+dl)/2,所以释放能量为: dU=U2-U1=Pdl/2=dW/2,就是图中阴影部分面积。

2)(Pdl
U W d =-
在恒拉力的作用下,对挠度公式进行微分得: EI da Pa dl 22=
⟹ EI da a P U W d 22)(=- EI
Pa l 323
= 代入上式得能量释放率G :
da
U W d B a U B G )(11-=∂∂= 322
22212H
EB a P EBI a P G == 利用Griffith 判据,可得在某裂纹长度a 时的临界拉力为:
s H EB a P G γ212322
2==⟹2/12326⎪⎪⎭⎫ ⎝⎛=a H EB P s cr γ 由于 0>da dG ,因此可以知道在恒拉力作用下断裂发生后的裂纹扩展为失稳扩展。

相关文档
最新文档