反三角函数公式大全
常用反三角函数公式
反三角函数公式arc sin x+ arc sin y= arc sin x – arc sin y =arc cosx + arc cos y = arc cos x –arc cos y=arc tan x + arc tany = arc tan x – arc tan y =2 arc sin x = 2 arccos x =2 arc tanx = cos (n arc cosx) =反三角函数图像与特征反正弦曲线图像与特征反余弦曲线图像与特征拐点(同曲线对称中心):,该点切线斜率为1 拐点(同曲线对称中心):ﻫ,该点切线斜率为-1反正切曲线图像与特征反余切曲线图像与特征拐点(同曲线对称中心):,该点切线斜率为1 拐点:ﻫ,该点切线斜率为-1渐近线: 渐近线:名称反正割曲线反余割曲线方程图像顶点渐近线反三角函数得定义域与主值范围函数主值记号定义域主值范围反正弦若,则反余弦若,则反正切若,则反余切若,则反正割若,则反余割若,则式中n为任意整数、反三角函数得相互关系cos x=1-+1/2*x3/3 + 1*3/(2+ 、、、) (|x|<1))ArcSin(x) 函数功能:返回一个指定数得反正弦值,以弧度表示,返回类型为Double。
语法:ArcSin(x)。
说明:其中,x得取值范围为[-1,1],x得数据类型为Double。
程序代码:Function ArcSin(xAs Double) As DoubleﻫIf x>= -1 And x< -0、5Then ArcSin= -Atn(Sqr(1-x* x) / x) - 2* Atn(1)ﻫIf x>= -0、5 And x <= 0、5 Then ArcSin = Atn(x / Sqr(1 - x* x))If x > 0、5 And x<=1ThenArcSin = -Atn(Sqr(1 - x* x) / x) + 2 * Atn(1)ﻫEndFunctionArcCos(x) 函数功能:返回一个指定数得反余弦值,以弧度表示,返回类型为Double。
常用反三角函数公式表
常用反三角函数公式表在数学的广阔天地中,反三角函数是一个重要的概念,它们在解决各种数学问题时经常被用到。
为了更好地理解和运用反三角函数,我们有必要熟悉一些常用的反三角函数公式。
首先,让我们来了解一下什么是反三角函数。
反三角函数是三角函数的反函数,简单来说,如果给定一个三角函数的值,反三角函数可以帮助我们求出对应的角度。
常见的反三角函数有反正弦函数(arcsin)、反余弦函数(arccos)、反正切函数(arctan)等。
一、反正弦函数公式1、 arcsin(x) = arcsinx这个公式表明,反正弦函数是一个奇函数,即其图像关于原点对称。
2、 arcsin(sinx) = x (π/2 ≤ x ≤ π/2)这是反正弦函数的基本定义,意味着在其定义域内,对正弦函数的值求反正弦,就可以得到原来的角度。
3、 sin(arcsinx) = x (-1 ≤ x ≤ 1)这是反正弦函数与正弦函数的相互转换关系。
二、反余弦函数公式1、 arccos(x) =π arccosx与反正弦函数类似,反余弦函数也是一个非奇非偶函数。
2、 arccos(cosx) = x (0 ≤ x≤ π)3、 cos(arccosx) = x (-1 ≤ x ≤ 1)三、反正切函数公式1、 arctan(x) = arctanx反正切函数是一个奇函数。
2、 arctan(tanx) = x (π/2 < x <π/2)3、 tan(arctanx) = x (x 为任意实数)四、反余切函数公式1、 arccot(x) =π arccotx2、 arccot(cotx) = x (0 < x <π)3、 cot(arccotx) = x (x 为任意实数)五、其他常用公式1、 arcsinx + arccosx =π/2 (-1 ≤ x ≤ 1)这个公式表明,在定义域内,反正弦函数和反余弦函数的值之和为常数π/2。
2、 arctanx + arccotx =π/2 (x 为任意实数)反正切函数和反余切函数的值之和也为常数π/2。
常用反三角函数公式
WORD格式专业分享反三角函数公式arc sin x + arc sin y = arc sin x –arc sin y = arc cos x + arc cos y = arc cos x –arc cos y = arc tan x + arc tan y = arc tan x –arc tan y = 2 arc sin x = 2 arc cos x =2 arc tanx = cos (n arc cos x) =WORD格式专业分享反三角函数图像与特征反正弦曲线图像与特征反余弦曲线图像与特征拐点( 同曲线对称中心) :拐点( 同曲线对称中心) :,该点切线斜率为 1,该点切线斜率为- 1 反正切曲线图像与特征反余切曲线图像与特征拐点:拐点( 同曲线对称中心) :,该点切线斜率为1,该点切线斜率为- 1渐近线:渐近线:WORD格式名称反正割曲线反余割曲线方程图像顶点渐近线反三角函数的定义域与主值范围函数主值记号定义域主值范围反正弦若,则反余弦若,则反正切若,则反余切若,则反正割若,则反余割若,则一般反三角函数与主值的关系为式中n为任意整数.专业分享反三角函数的相互关系arc sin x = arc cos x = arc tan x = arc cot x =sin x= x-x3/3!+x5/5!-...(-1)k-1* x2k-1/(2k-1)!+... (- ∞<x<∞)cos x= 1- x2/2!+ x4/4!-...(-1)k* x2k/(2k)!+... (- ∞<x<∞)arcsin x= x+ 1/2* x3/3 + 1*3/(2*4)* x5/5 + ... (|x|<1)arccos x= π- ( x+ 1/2* x3/3 + 1*3/(2*4)* x5/5 + ... ) (|x|<1)arctan x= x- x^3/3 + x^5/5 - ... (x≤ 1)ArcSin(x) 函数为Double。
反三角函数计算公式大全
反三角函数计算公式大全1. 反正弦函数(arcsin或sin^-1)的计算公式:arcsin(x) = y其中,-1≤x≤1,-π/2≤y≤π/22. 反余弦函数(arccos或cos^-1)的计算公式:arccos(x) = y其中,-1≤x≤1,0≤y≤π。
3. 反正切函数(arctan或tan^-1)的计算公式:arctan(x) = y其中,-\(+\)π/2≤y≤\(+\)π/2接下来,我们将详细讨论每个反三角函数的性质和计算公式。
一、反正弦函数(arcsin或sin^-1):反正弦函数是正弦函数的反函数,用于求得给定比值的角度。
1.定义域和值域:-1≤x≤1,-π/2≤y≤π/22.公式:-特殊值:a. arcsin(0) = 0b. arcsin(1) = π/2c. arcsin(-1) = -π/2-一般公式:arcsin(x) = y这个公式表示给定x值,求其对应的角度y,满足-π/2≤y≤π/2二、反余弦函数(arccos或cos^-1):反余弦函数是余弦函数的反函数,用于求得给定比值的角度。
1.定义域和值域:-1≤x≤1,0≤y≤π。
2.公式:-特殊值:a. arccos(1) = 0b. arccos(-1) = π-一般公式:arccos(x) = y这个公式表示给定x值,求其对应的角度y,满足0≤y≤π。
三、反正切函数(arctan或tan^-1):反正切函数是正切函数的反函数,用于求得给定比值的角度。
1.定义域和值域:-\(+\)π/2≤y≤\(+\)π/22.公式:-特殊值:a. arctan(0) = 0b. arctan(∞) = π/2c. arctan(-∞) = -π/2-一般公式:arctan(x) = y这个公式表示给定x值,求其对应的角度y,满足-\(+\)π/2≤y≤\(+\)π/2需要注意的是,在计算反三角函数值时,可以使用计算器或查表进行查找,也可以使用数学库中提供的反三角函数函数进行计算。
三角函数-反三角函数公式大全
三角函数-反三角函数公式大全tan (π+α)= tanα cot (π+α)= cotα 公式三:任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα 公式六:2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A正切函数sin tan cos x x x =;余切函数cos cot sin xx x =; 正割函数1sec cos x x =;余割函数1csc sin x x= 三角函数奇偶、周期性sin x ,tan x ,cot x 奇函数;cos x 偶函数;sin x,cos x 周期2π;sin()t ωϕ+ 周期2πω;tan x ,cot x 周期π常用三角函数公式:22cos sin 1x x += 22cos sin cos2x x x -=2s i n c o ssx x x = 21cos 22sin x x -= 21c o s 22c o sx x +=22211tan sec cos x x x+== 22211cotcsc sin x x x +==1sin sin [cos()cos()]2x y x y x y =-+-- 1c o sc o s[c o s ()c o s ()]2x y x y x y =++-1sin cos [sin()sin()]2x y x y x y =++-反三角函数:a r c s i na r c c o s 2x x π+=a r c t a na r c c o t2x x π+=arcsin x:定义域[1,1]-,值域[,]22ππ-;arccos x :定义域[1,1]-,值域[0,]π;arctan x:定义域(,)-∞+∞,值域(,)22ππ-;arccot x :定义域(,)-∞+∞,值域(0,)π式中n为任意整数.arc sin x = arc cos x = arc tan x = arc cot x =。
大一反三角函数基本公式大全
大一反三角函数基本公式大全反三角函数是正弦、余弦、正切函数的反函数。
在数学中,反三角函数有很多基本公式,下面我将列举一些常见的反三角函数基本公式:1. 正弦函数的反函数:arcsin(x) = y, 其中 -π/2 ≤ y ≤ π/2, -1 ≤ x ≤ 1。
2. 余弦函数的反函数:arccos(x) = y, 其中0 ≤ y ≤ π, -1 ≤ x ≤ 1。
3. 正切函数的反函数:arctan(x) = y, 其中 -π/2 < y < π/2, -∞ < x < ∞。
这些基本公式是反三角函数的定义域和值域的范围,以及它们与正弦、余弦、正切函数之间的关系。
除此之外,还有一些重要的性质和公式:1. 反三角函数的和差化简公式:arcsin(u) ± arcsin(v) = arcsin(uv ± √(1 u^2)(1v^2))。
arccos(u) ± arccos(v) = arccos(uv -/+ √(1 u^2)(1v^2))。
arctan(u) ± arctan(v) = arctan((u ± v)/(1 -/+ uv))。
2. 反三角函数的倍角化简公式:sin(2arcsin(x)) = 2x√(1 x^2)。
cos(2arccos(x)) = 2x^2 1。
tan(2arctan(x)) = (2x)/(1 x^2)。
3. 反三角函数的积分:∫arcsin(x) dx = xarcsin(x) + √(1 x^2) + C.∫arccos(x) dx = xarccos(x) √(1 x^2) + C.∫arctan(x) dx = xarctan(x) ln|1 + x^2| + C.这些公式和性质是反三角函数的重要基本知识,它们在解决三角函数相关的数学问题时起着重要的作用。
希望这些信息能够帮助到你。
如果你对反三角函数还有其他问题,欢迎继续提问。
三角函数反三角函数公式大全
三角函数反三角函数公式大全Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+倍角公式 tan2A =Atan 12tanA2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A Acos 1sin +和差化积 sina+sinb=2sin2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2ba -tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 诱导公式s in(-a) = -sina c os(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosasin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2a a + cosa= 22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan2aa- 其它公式asina+bcosa=)b (a 22+×sin(a+c) [其中tanc=ab]asin(a)-bcos(a) = )b (a 22 ×cos(a-c) [其中tan(c)=ba ]1+sin(a) =(sin 2a +cos 2a )21-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三:任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosαtan (π-α)= -tanα cot (π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα 公式六:2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用Asin(ωt+θ)+ Bsin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A正切函数sin tan cos x x x =;余切函数cos cot sin xx x =; 正割函数1sec cos x x =;余割函数1csc sin x x= 三角函数奇偶、周期性sin x ,tan x ,cot x 奇函数;cos x 偶函数; sin x ,cos x 周期2π;sin()t ωϕ+ 周期2πω;tan x ,cot x 周期π常用三角函数公式:22cos sin 1x x += 22cos sin cos2x x x -= 2sin cos sin 2x x x = 21cos 22sin x x -= 21cos 22cos x x += 22211tan sec cos x x x +== 22211cot csc sin x x x+== 1sin sin [cos()cos()]2x y x y x y =-+-- 1cos cos [cos()cos()]2x y x y x y =++-1sin cos [sin()sin()]2x y x y x y =++-反三角函数: arcsin arccos 2x x π+=arctan arccot 2x x π+=arcsin x :定义域[1,1]-,值域[,]22ππ-;arccos x :定义域[1,1]-,值域[0,]π;arctan x :定义域(,)-∞+∞,值域(,)22ππ-;arccot x :定义域(,)-∞+∞,值域(0,)π式中n 为任意整数.arc sin x = arc tan x = arc cot x =。
反三角函数公式(完整)
反三角函数公式(完整)反三角函数分类反正弦正弦函数 $y=\sin x$ 在 $[-\pi,\pi]$ 上的反函数,叫做反正弦函数。
记作 $\arcsin x$,表示一个正弦值为 $x$ 的角,该角的范围在 $[-\frac{\pi}{2},\frac{\pi}{2}]$ 区间内。
定义域 $[-1,1]$,值域 $[-\frac{\pi}{2},\frac{\pi}{2}]$。
反余弦余弦函数 $y=\cos x$ 在 $[0,\pi]$ 上的反函数,叫做反余弦函数。
记作 $\arccos x$,表示一个余弦值为 $x$ 的角,该角的范围在 $[0,\pi]$ 区间内。
定义域 $[-1,1]$,值域 $[0,\pi]$。
反正切正切函数 $y=\tan x$ 在 $(-\frac{\pi}{2},\frac{\pi}{2})$ 上的反函数,叫做反正切函数。
记作 $\arctan x$,表示一个正切值为 $x$ 的角,该角的范围在 $(-\frac{\pi}{2},\frac{\pi}{2})$ 区间内。
定义域 $\mathbb{R}$,值域 $(-\frac{\pi}{2},\frac{\pi}{2})$。
反余切余切函数 $y=\cot x$ 在 $(0,\pi)$ 上的反函数,叫做反余切函数。
记作 $\operatorname{arccot} x$,表示一个余切值为$x$ 的角,该角的范围在 $(0,\pi)$ 区间内。
定义域$\mathbb{R}$,值域 $(0,\pi)$。
反正割正割函数$y=\sec x$ 在$[0,\pi)\cup(\pi,2\pi]$ 上的反函数,叫做反正割函数。
记作 $\operatorname{arcsec} x$,表示一个正割值为 $x$ 的角,该角的范围在$[0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi]$ 区间内。
定义域 $(-\infty,-1]\cup[1,+\infty)$,值域$[0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi]$。
反三角函数公式表
反三角函数公式包括1、arcsin(-x)=-arcsinx。
2、arccos(-x)=π-arccosx。
3、arctan(-x)=-arctanx。
4、arccot(-x)=π-arccotx。
5、arcsinx+arccosx=π/2=arctanx+arccotx。
6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)。
7、当x∈[—π/2,π/2]时,有arcsin(sinx)=x。
8、当x∈〔0,π〕,arccos(cosx)=x。
9、x∈(—π/2,π/2),arctan(tanx)=x。
反三角函数是一种基本初等函数。
它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x 的角。
三角函数的反函数是个多值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x 对称。
欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。
反三角函数(inverse trigonometric function)是一类初等函数。
指三角函数的反函数,由于基本三角函数具有周期性,所以反三角函数是多值函数。
这种多值的反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,分别记为Arcsin x,Arccos x,Arctan x,Arccot x,Arcsec x,Arccsc x。
常用反三角函数公式表
反三角函数公式arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y = 2 arc sin x = 2 arc cos x =2 arc tanx = cos (n arc cos x) =反三角函数图像与特征反正弦曲线图像与特征反余弦曲线图像与特征拐点(同曲线对称中心):,该点切线斜率为1拐点(同曲线对称中心):,该点切线斜率为-1 反正切曲线图像与特征反余切曲线图像与特征拐点(同曲线对称中心):,该点切线斜率为1 拐点:,该点切线斜率为-1渐近线:渐近线:名称反正割曲线反余割曲线方程图像顶点渐近线反三角函数的定义域与主值范围函数主值记号定义域主值范围反正弦若,则反余弦若,则反正切若,则反余切若,则反正割若,则反余割若,则一般反三角函数与主值的关系为式中n为任意整数.反三角函数的相互关系arc sin x = arc cos x = arc tan x = arc cot x =sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞)cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞<x<∞)arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1)arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1)arctan x = x - x^3/3 + x^5/5 - ... (x≤1)ArcSin(x) 函数功能:返回一个指定数的反正弦值,以弧度表示,返回类型为Double。
高中数学三角函数-反三角函数公式大全
14.已知λ∈R,函数f(x)= ,当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.
三.解答题(共6小题)
15.已知定义域为R的函数f(x)=﹣ + 是奇函数
(1)求a的值;
A. B.3C. 或3D. 或3
4.(5.00分)已知奇函数f(x),当x>0时单调递增,且f(1)=0,若f(x﹣1)>0,则x的取值范围为( )
A.{x|0<x<1或x>2}B.{x|x<0或x>2}
C.{x|x<0或x>3}D.{x|x<﹣1或x>1}
5.(5.00分)已知函数f(x)=logax(0<a<1)的导函数为f'(x),记A=f'(a),B=f(a+1)﹣f(a),C=f'(a+1),则( )
tan(2π-α)= -tanαcot(2π-α)= -cotα
公式六:
±α及 ±α与α的三角函数值之间的关系:
sin( +α)= cosαcos( +α)= -sinα
tan( +α)= -cotαcot( +α)= -tanα
sin( -α)= cosαcos( -α)= sinαtan( -α)= cotαcot( -α)= tanα
万能公式
sina= cosa= tana=
其他非重点三角函数
csc(a) = sec(a) = cot(a) =
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinαcos(2kπ+α)= cosα
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反三角函数公式大全
三角函数的反函数,是多值函数。
它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x,反正割Arcsec x=1/cosx,反余割Arccsc x=1/sinx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。
为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。
反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。
其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).
反三角函数主要是三个:
y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]
y=arccos(x),定义域[-1,1] ,值域[0,π]
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)
sinarcsin(x)=x,定义域[-1,1],值域【-π/2,π/2】
反三角函数公式:
arcsin(-x)=-arcsinx
arccos(-x)=∏-arccosx
arctan(-x)=-arctanx
arccot(-x)=∏-arccotx
arcsinx+arccosx=∏/2=arctanx+arccotx
sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x
当x∈〔0,∏〕,arccos(cosx)=x
x∈(—∏/2,∏/2),arctan(tanx)=x
x∈(0,∏),arccot(cotx)=x
x〉0,arctanx=arctan1/x,arccotx类似
若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)。