大跨度空间结构体系

合集下载

大跨度空间结构

大跨度空间结构

摘要:随着技术的发展,大跨度空间结构越来越多的在各领域运用,本文先对大跨度空间结构的起源与历史进行介绍,再对空间结构委员会成立三十年来在空间结构领域作了介绍,重点系统论述了三十年来各时期大跨度空间结构发展与应用情况。

全面阐述了我国大跨度空间结构近期发展的特点,包括在各类公共建筑中的应用情况、空间结构体系的发展与技术进步。

关键词:发展历程,我国进展1.简介:横向跨越60米以上空间的各类结构可称为大跨度空间结构。

常用的大跨度空间结构形式包括折板结构、壳体结构、网架结构、悬索结构、充气结构、篷帐张力结构等。

大跨度空间结构是国家建筑科学技术发展水平的重要标志之一。

世界各国对空间结构的研究和发展都极为重视,例如国际性的博览会、奥运会、亚运会等,各国都以新型的空间结构来展示本国的建筑科学技术水平,空间结构已经成为衡量一个国家建筑技术水平高低的标志之一。

2.大跨度发展历程:实际上,人类很早以前就认识到穹隆具有用最小的表面封闭最大的空间的优点。

效仿洞穴穹顶,人们建造了许多砖石穹顶,如我国东汉时期河南洛阳的地下砖砌墓穴,公元前1185年古希腊迈西尼国王墓等。

古罗马最著名的穹顶是万神殿,也是建筑史上最早、最大跨度的拱建筑。

被誉为展现穹力的杰作。

然而,在尚无力学与结构理论以前,凭借已有的经验与大胆探索来建造房屋,难免发生事故。

公元537年东罗马帝国建造的圣索亚教堂,还有公元1612年建造的罗马圣彼得教堂都出现多较严重问题。

1742年罗马教皇下令检查圣彼得教堂问题原因,三位科学家经过认真调研和计算分析后,作出了解决方案。

这工程实例表明工程结构经验时代的结束和科学时期的到来。

工程结构的发展推动了理论研究的进步,理论成果的指导完善了工程实践,这是建筑结构科学得以不断进步的历史规律。

19世纪的工业革命促使科学技术飞快进步。

生铁材料出现以后引起了建筑结构革命性的变化。

1787年英国出现机扎熟铁条,1831年英国有出现机扎出角铁,1845年法国人碾压出熟铁工字梁。

大跨度空间结构

大跨度空间结构

结构类型
1
折板屋顶结构
2
壳体屋顶结构
3
架屋顶结构
4
悬索屋顶结构
5
充气屋顶结构
一种由许多块钢筋混凝土板连接成波折形的整体薄壁折板屋顶结构。这种折板也可作为垂直构件的墙体或其 他承重构件使用。折板屋顶结构组合形式有单坡和多坡,单跨和多跨,平行折板和复式折板等,能适应不同建筑平 面的需要。常用的截面形状有V形和梯形,板厚一般为5~10厘米,最薄的预制预应力板的厚度为3厘米。跨度为 6~40米,波折宽度一般不大于12米,现浇折板波折的倾角不大于30°;坡度大时须采用双面模板或喷射法施工。 折板可分为有边梁和无边梁两种。无边梁折板由若干等厚度的平板和横隔板组成,V形折板是无边梁折板的一种常 见形式。有边梁折板由板、边梁、横隔板等组成,一般为现浇,如1958年建成的巴黎联合国教科文组织总部大厦 会 议 厅 的 屋 顶 , 是 意 大 利 P . L . 奈 尔 维 设 计 施 工 的 。 •他 按 照 应 力 变 化 的 规 律 , 将 折 板 截 面 由 两 端 向 跨 中 逐 渐 增 大 结构。这种结构整体性强,稳定性好,空间刚度大,防震性能好。构架高度 较小,能利用较小杆形构件拼装成大跨度的建筑,有效地利用建筑空间。适合工业化生产的大跨度架结构,外形 可分为平板型架和壳形架两类,能适应圆形、方形、多边形等多种平面形状。平板型架多为双层,壳形架有单层 和双层之分,并有单曲线、双曲线等屋顶形式。
大跨度空间结构
建筑名词
01 定义
03 结构类型
目录
02 简介 04 发展
大跨度空间结构是国家建筑科学技术发展水平的重要标志之一。世界各国对空间结构的研究和发展都极为重 视,例如国际性的博览会、奥运会、亚运会等,各国都以新型的空间结构来展示本国的建筑科学技术水平,空间 结构已经成为衡量一个国家建筑技术水平高低的标志之一。

简述大跨度空间结构的主要形式及特点

简述大跨度空间结构的主要形式及特点

简述大跨度空间结构的主要形式及特点摘要:大跨度空间结构往往是衡量一个国家或地区建筑技术水平的重要标志。

其结构形式主要包括网架结构、网壳结构、悬索结构、膜结构、薄壳结构等五大空间结构及各类组合空间结构。

形态各异的空间结构在体育场馆、会展中心、影剧院、大型商场、工厂车间等建筑中得到了广泛的应用。

关键词:大跨度空间结构形式特点1网架结构由多根杆件按照某种规律的儿何图形通过节点连接起来的空间结构称之为网格结构,其中双层或多层平板形网格结构称为网架结构或网架。

它通常是采用钢管或型钢材料制作而成。

1.1网架结构的形式(1)平而桁架系组成的网架结构。

主要有:两向正交正放网架、两向斜交斜放网架、两向正交斜放网架、三向网架等型式。

(2)四角锥体组成的网架结构。

主要有:正放四角锥网架、斜放四角锥网架、正放抽空四角锥网架、棋盘形四角锥网架、星型四角锥网架、单向折线型网架等型式。

(3)三角锥组成的网架结构。

主要有:三角锥网架、抽空三角锥网架(分1型和11型)、蜂窝形三角锥网架等型式。

(4)六角锥体组成的网架结构。

主要形式有:正六角锥网架。

1.2网架结构的主要特点空间工作,传力途径简捷;重量轻、刚度大、抗震性能好;施工安装简便;网架杆件和节点便于定型化、商品化、可在工丨中成批生产,有利于提高生产效率;网架的平而布置灵活,屋盖平整,有利于吊顶、安装管道和设备;网架的建筑造型轻巧、美观、大方,便于建筑处理和装饰。

2网壳结构曲而形网格结构称为网壳结构,有单层网壳和双层网壳之分。

网壳的用材主要有钢网壳、木网壳、钢筋混凝土网壳等。

2.1网壳结构的形式主要有球而网壳、双曲而网壳、圆柱而网壳、双曲抛物而网壳等。

2.2网壳结构主要特点兼有杆系结构和薄壳结构的主要特性,杆件比较单一,受力比较合理;结构的刚度大、跨越能力大;可以用小型构件组装成大型空间,小型构件和连接节点可以在工)预制;安装简便,不需大型机具设备,综合经济指标较好;造型丰富多彩,不论是建筑平而还是空间曲而外形,都可根据创作要求任意选取。

最新大跨建筑 结构——空间结构体系

最新大跨建筑 结构——空间结构体系

大跨建筑结构——空间结构体系大跨建筑屋架结构体系——高跨比:1:6屋架形式及适用跨度平行弦屋架拱形屋架折线形屋架梯形屋架杆件受力不均匀,用料较多力情况虽然合理,但由于上弦各节点都落在抛物线上,尺寸很零件,施工不方便三角形屋架适用于较小跨度的屋盖(跨度宜在15m以内)弦支点座落在抛曲线附近,所以,受力比较合理,折线形屋架采用较多上弦扦出两个坡度较小的斜直线组成,半边屋架的外轮廓线为梯形,斜杆呈人字形。

这种屋架的刚度、构造比较简单,自重较大,一般用于跨度为24m一36m的工业建筑物二、空间结构体系(一)网架结构体系网架的优点•结构组成灵活多样但又有高度的规律性,适应各种支承条件和各种建筑造型,可适应各种建筑方面的要求•网架高度内的空间可以用以设置管道等设施,网架结构外露或部分外露,因其几何图形的规则,可以丰富建筑效果•网架的结构高度较小,不仅可以有效地利用建筑空间,而且能够利用较小规格的杆件建造大跨度的结构•杆件类型划一,适合于工厂化生产、地面拼装和整体吊装网架结构受力特点•具有各向受力的性能,它改变了一般平面桁架的受力状态,是高次超静定空间结构•网架结构的各杆件之间互相起支撑作用,整体性强、稳定性好,空间刚度大,是一种良好的抗震结构型式,尤其对大跨度建筑其优越性更为显著•在结点荷裁作用下,网架的杆件主要承受轴力,充分发挥材料强度,节省钢材网架的分类1、几何形态上分:平板网架、柱面网架、球面网架2、平面桁架系、四角锥体系、三角锥体系3、螺栓球节点、焊接球节点4、双层网架、多层网架网架材料——钢材:钢管、型钢、钢球双向正交正放、斜放三向交叉正放四角锥体系四角锥体网架的上弦和下弦平面均为方形网格,上下弦错开半格,用斜腹杆连接上下弦的网格交点,形成一个个相连的四角锥体。

四角锥体网架上弦不易再分杆,因此网格尺寸受限制,不宜太大。

它用于中小跨度斜放四角锥•所谓斜放,是指四角锥单元的底边与建筑平面周边夹角为45。

大跨度结构其结构体系有很多种

大跨度结构其结构体系有很多种

大跨度结构其结构体系有很多种,如网架结构、索结构、薄壳结构、充气结构、应力膜皮结构、混凝土拱形桁架等,常用于展览馆、体育馆、飞机机库等。

一.网架结构网架结构为大跨度结构最常见的结构形式,因其为空间结构,故一般称为空间网架。

其杆件多采用钢管或型钢,现场安装。

常见的为平面桁架、四角锥体和三角形锥体组成,其节点形式可分为焊接钢板节点和焊接空心球节点两种。

二.索结构索结构是将桥梁中的悬索“移植”到房屋建筑中,可以说是土木工程中结构形式互通互用的典型范例。

三.薄壳结构薄壳结构常用的形状为圆顶、筒壳、折板、双曲扁壳和双曲抛物面壳等。

圆形圆顶结构是轴对称结构,在轴对称荷载作用下,将只产生两种力:径向力和环向力。

径向力为沿经线方向的力,因其要平衡垂直向下荷载,所以必定为压力。

环向力为沿纬线方向的力。

圆形屋顶在垂直荷载作用下,上部的圆顶部分将受压收缩,其直径将变小,而下部近支承部分直径将增大,即上部将产生环向压力,而下部将产生环向拉力,中间将有一截面,为环向压力向环向拉力转变的交界线,该处的环向力为0,该截面称为“过渡缝”。

悉尼歌剧院格拉加尼亚修道院教堂上页下页四.混凝土拱形桁架混凝土拱形桁架在以前的工程中应用较多,但因其自重较大,施工复杂,现已很少采用。

目前最大跨度的拱形桁架为贝尔格莱德的机库,为预应力混凝土桁架结构,跨度为135.8m。

日本姬路市中心体育馆五.充气结构充气结构又称充气薄膜结构,是在玻璃丝增强塑料薄膜或尼龙布罩内部充气形成一定的形状,作为建筑空间的覆盖物。

对角跨长200m,由室内地面至顶高6.07m的东京穹顶,是不用柱子,只依靠室内外气压差来制成的膜屋盖结构,也是在日本最初用于多功能全天候的体育场,约30,000平方米超大椭圆形屋顶,采用悬索加强的充气膜结构。

其双向各配置14根共28根钢索,在其上张拉着涂有特富龙的玻璃纤维布。

请看充气膜的充气过程:六.应力膜皮结构应力膜皮结构一般是用钢质薄板做成很多块各种板片单元焊接而成的空间结构。

最新大跨与空间结构(网架及网壳结构)

最新大跨与空间结构(网架及网壳结构)

两向正交正放网架的受力状况取决于平面尺寸 及支承情况。对于周边支承、正方形平面的网架,其 受力类似于双向板。
两向正交正放网架沿两个方向的杆件内力差别 不大,受力比较均匀。但随着边长比的变化,单向传 力作用渐趋明显,两方向杆件内力差别也随之加大。 对于点支承网架,支承附近的杆件及主桁架跨中弦杆 的内力最大,其它部位杆件的内力很小。
b)。对中、小型网架亦可选择增加网架高度或局
部加大杆件截面等方法。
按网格组成分类
1 交叉桁架体系 这类网架由若干平
面桁架相互交叉组成。 竖向平面桁架的形式与 一般平面桁架相似,根 据平面桁架布置方式及 交角的不同,可分为几 种形式。
(1)两向正交正放网架
两向正交正放网架的构成特点是:两个方向的平 面桁架垂直交叉,且分别与边界方向平行。这种网架 的上、下弦平面呈正方形,基本单元为六面体,属几 何可变。为保证结构的几何不变性以及增加空间刚度, 应适当设置水平支撑,以有效 传递水平力。对周边支承网架, 水平支撑宜在上弦或下弦网格 内沿周边设置;对点支承网架, 水平支撑则应在通过支承点的 主桁架附近设置。
(a)
(b)
点支承网架主要用于大柱距工业厂房、仓库以 及展览厅等大型公共建筑。由于支承点较少,支点 反力较大。为了使通过支点的主桁架及支点附近的 杆件内力不致过大,宜在支承点处设置柱帽以扩散 反力。点支承网架周边应有适当悬挑以减少网架跨 中挠度与杆件的内力。
(3) 周边支承与点支承混合网架 在点支承网架中, 当周边设有维护结构 和抗风柱时,可采用 周边支承与点支承混 合的形式。这种支承 方式适用于工业厂房 和展览厅等公共建筑。
正放四角锥网架的杆件受力比较均匀,空间刚度 较其它类型四角锥网架及两向网架为好。当采用钢筋 混凝土板作屋面板时,板的规格单一,便于起拱,屋 面排水相对容易处理。但因杆件数目较多其用钢量可 能略高些。

大跨度空间结构(城规专业)

大跨度空间结构(城规专业)

大跨度空间结构空间结构与高耸结构空间结构与平面结构梁、拱等,所承受的壳、网架等,荷载、空间结构与航天结构•太阳帆板可展结构•雷达天线结构生活中的空间结构蜘蛛网强度相当于钢材的50倍直径几微米1:120“形态学”(Morphology)起源于古希腊,Morphology一词由希腊语Morphe(形态)和Ology (科学)构成。

形态学最初是一门研究人体、动物、植物的形式和结构的科学。

结构形态学作为形态学的一个分支是一门从整体上研究建筑形状与结构受力之间关系的学科,目的在于寻求二者的协同统一。

“形”关注的是结构的外形,即结构的几何形状;“态”关注的是结构的受力,可以延伸为“力流”、连接方式或是一种变化。

蜂窝Eden Project(British)Polyhedron (Platonic and Archimedean)Frei Otto’s greenhouseP. Drew, Frei Otto Form und Konstruktion, Verlag Gerd Hatje, Stuttgart, 1976The fly’s eye dome (Buckminster Fuller)1895-1983American architect,systemstheorist, author,designer, inventor,and futuristSPUNT’S MODULAR DOMECSU at Northridge, CA, USA. Design by Leonard Spunt in the 1970’s.Geodesic dome (Paris)2002年美国盐湖城冬奥会颁奖广场舞台Hoberman拱门Basket with fabric空间结构的主要形式空间结构发展简史皮革、木材智能结构2008鸟巢结构1856智能材料1986索穹顶膜结构19751970网格结构1957混凝土薄壳悬索结构1953A. D123拱壳B.C3000帐篷钢筋混凝土1864B.C2000largest span masonry domesSt Peter’s Basilica in Rome (1588–93)圣母百花大教堂Santa Maria del Fiore in Florence (1420–34),approximately 42 m diameter世界上跨度最大的薄壳(边长218m,矢高48m)法国巴黎国家工业与技术中心陈列大厅(1959)深圳国际机场广东省人民体育场Xian Gymnasium(1999)96mX96m,4 supports上海美罗城D=48mCoal storage(Beijing,2004, span:120m)天津新体育馆(直径135m )1994首都机场T3航站楼北京首都国际机场新航站楼T3A(180,000m2)属铝板。

大跨度空间结构的主要形式及特点

大跨度空间结构的主要形式及特点
部门职责 1、政府教育处:政府、教育行业的招投标、采购工作; 2、企业客户处:各行业的销售 3、技术安装组:公司销售机器的安装、调试,新产品的宣传, 方案的撰写,网站建设,公司内部网络的维护。
膜结构的主要形式
膜结构形式上主要有气 压式膜结构、气承式膜 结构、混合式膜结构和 悬挂薄膜结构。
膜结构主要特点
膜结构主要有自重轻、跨度 大,建筑造型自由、丰富,施工 方便,具有良好的经济性和较高 的安全性,透光性和自结性好, 耐久性较差等特点。
团结 信赖 创造 挑战
4、悬索结构
悬索结构是以能受拉的索作为基本承重构件并将索 按照一定规律布置所构成的一类结构体系。悬索屋 盖结构通常由悬索系统、屋面系统和支撑系统三部 分构成。用于悬索结构的钢索大多采用由高强钢丝 组成的平行钢丝束、钢绞线或钢缆绳等,也可采用 圆钢、型钢、带钢或钢板等材料。
团结 信赖 创造 挑战
国家大剧院
团结 信赖 创造 挑战
悉尼歌剧院
团结 信赖 创造 挑战
本次结构分析总结
相对而言,网架结构和网壳结构在施工、结构
上比较简单,方便,稳定。但在造型上相对单
一,变化不大。而膜结构,悬索结构在造型上
较多变,灵活,适合多种形式,但对于结构受
力等要求更高。
在本次设计上,我们认为这几种结构对于我们
团结 信赖 创造 挑战
2、网壳结构
曲面形网格结构称为网壳结构。有单层网 壳和双层网壳之分,网壳的用材主要有钢网 壳、木网壳、钢筋混凝土网壳等。
团结 信赖 创造 挑战
球面网壳
双曲面网壳
圆柱面网壳
双曲抛物面鞍型网壳
单块扭网壳ຫໍສະໝຸດ 四块组合型扭网壳团结 信赖 创造 挑战
网壳结构主要特点

大跨度空间结构的主要形式及特点

大跨度空间结构的主要形式及特点

大跨度空间结构的主要形式及特点大跨度建筑通常是指跨度在30米以上的建筑,我国现行钢结构规范则规定跨度在60米以上结构为大跨度结构。

大跨度空间结构往往是衡量一个国家或地区建筑技术水平的重要标志。

其结构形式主要包括拱结构、刚架结构、桁架结构、网架结构、折板结构、网壳结构、悬索结构、膜结构、薄壳结构等空间结构及各类组合空间结构。

形态各异的空间结构在体育场馆、会展中心、影剧院、大型商场、工厂车间等建筑中得到了广泛的应用。

结构是房屋的骨架,是形成建筑内部空间和外部形式的物质基础,结构是在特定的材料和施工技术条件下运用力学原理创造出来的。

某种新的结构一丹产生并在工程实践中反复出现时,便会逐渐形成一种崭新的建筑形式。

上面所提到的空间结构也可以分成:一实体结构类——薄壳结构、折板结构;二网格结构——网架结构、网壳结构;三张力结构——悬架结构、薄膜结构;四其他新型大跨度空间结构——可展开折叠式结构、开合屋顶、张拉整体结构、张弦结构、整体张拉预应拱架结构。

下面我就各空间结构作分析。

1拱结构1.1定义与特点拱结构是一种主要承受轴向压力并由两端推力维持平衡的曲线或折线形构件。

拱结构由拱圈及其支座组成。

拱是古代大跨度建筑的主要结构形式。

由于拱呈曲面形状,在外力作用下,拱内的弯矩可以降低到最小限度,主要内力变为轴向压力,且应力分布均匀,能充分利用材料的强度,比同样的梁结构断面小,能承受较大空间。

但是拱结构在承受荷载后将产生横向推力,为了维持结构的稳定性,必须设置宽厚坚固的拱脚支座抵抗横推力。

常见的方式是在拱的两侧作两道后墙来支承拱,墙厚随拱跨增大而加厚。

这样就会使建筑的平面空间组合受到约束。

1.2拱结构形式拱结构应用广泛,形式多种多样。

按建造的材料分类,有砖石砌体拱结构、钢筋混凝土拱结构、钢拱结构、胶合木拱结构等;按结构组成与支承方式分类,有无铰拱、两铰拱和三铰拱,无拉力杆拱和有拉杆拱;按拱轴的形式分类,常见的有半圆拱和抛物线拱;按拱身截面分类,有实腹式和格构式、等截面和变截面等。

大跨度建筑结构体系简述-各种大跨度结构类型

大跨度建筑结构体系简述-各种大跨度结构类型

大跨度空间结构是目前发展最快的结构类型。

大跨度建筑及作为其核心的空间结构技术的发展战况是代表一个国家建筑科技水平的重要标志之一。

而大跨度结构的表现形式是多种多样的。

大跨度空间结构;拱券结构及穹隆结构;椼架结构与网架结构;壳体结构;悬索结构;膜结构一、拱券结构及穹隆结构从迄今还保存着的古希腊宏大的露天剧场遗迹来看,人类大约在两千多年前,就有扩大室内空间的要求。

古代建筑室内空间的扩大是和拱结构的演变发展紧密联系着的,从建筑历史发展的观点来看,一切拱结构-包括各种形式的券、筒形拱、交叉拱、穹隆-的变化和发展,都可以说是人类为了谋求更大室内空间的产物。

券拱技术是罗马建筑最大的特色及成就,它对欧洲建筑做出了巨大的贡献,影响之大无与伦比。

罗马建筑典型的布局方法、空间组合、艺术形式和风格以及某些建筑的功能和规模等等都是同券拱结构有密切联系。

拱形结构在承受荷重后除产生重力外还要产生横向的推力,为保持稳定,这种结构必须要有坚实、宽厚的支座。

例如以筒形拱来形成空间,反映在平面上必须有两条互相平行的厚实的侧墙,拱的跨度越大,支承它的墙则越厚。

很明显,这必然会影响空间组合的灵活性。

为了克服这种局限,在长期的实践中人们又在单向筒形拱的基础上,创造出一种双向交叉的筒形拱。

而之后为了建筑的发展热门又创造出了穹隆结构穹隆结构也是一种古老的大跨度结构形式,早在公元前14世纪建造的阿托雷斯宝库所运用的就是一个直径为14.5米的叠涩穹隆。

到了罗马时代,半球形的穹隆结构已被广泛地运用于各种类型的建筑,其中最著名的要算潘泰翁神庙。

神殿的直径为43.3米,其上部覆盖的是一个由混凝土做成的穹隆结构。

在大跨度结构中,结构的支点越分散,对于平面布局和空间组合的约束性就越强;反之,结构的支承点越集中,其灵活性就越大。

从罗马时代的筒形拱衍变成高直式的尖拱拱肋结构;从半球形的穹隆结构发展成带有帆拱的穹隆结构,都表明由于支承点的相对集中而给空间组合带来极大的灵活性。

大跨度空间结构概述

大跨度空间结构概述

1975年建成的美国新奥尔良“超级 穹顶”(Superdome),直径 207m,长期被认为是世界上最大的 球面网壳。
美国新奥尔良“超级穹顶”
东京代代木国立体育中心莫斯 Nhomakorabea中央红军之家综合体育馆
巴塞罗那圣乔地体育馆
3.大跨空间结构问题及解决方法
多种作用耦合情况对结构影响(温度应力,风载,焊接残余应力等)
70年代以来,由于结构用织物材料的改进,膜结构或索 -膜结构(用索加强的膜结构)获得了发展: 1988年东京建成的“后乐园”棒球馆,就采用这种结构, 技术尤为先进,其近似圆形平面的直径为202m; 1996年,美国亚特兰大为奥运会修建的“佐治亚穹顶” (Geogia Dome,1992年建成)采用新颖的索穹顶结构,其 准椭圆形平面的轮廓尺寸达192mX241m。
第29届奥运会主场馆:北京奥林匹克体育场
悉尼超级穹顶体育馆是被作为 2000年奥林匹克运动会的多功能 体育馆进行设计的。 菲利普· 考克斯与其合作者们 把大穹顶体育馆想象成一座庞大、 水平且半透明的建筑。建筑外形 呈鼓状,由24根钢柱支撑着的放 射状网架结构形成了遮盖赛场的 轻型屋盖体系。为使其尺度不至 于过大,他们在两侧设置了环抱 体育场的轻质廊道,这就给这个 大尺度的表皮添上了一些人性化 的细部。但是要欣赏大穹顶还是 需要一定的角度和高度,所以他 们在设计时运用了一种类似桅杆 的结构,就像是一个花冠围绕在 体育馆的周围。他们以其纤细但 不失强度的悬索和自由排列的柱 廊强调大穹顶的整体外观。支撑 柱廊的是树状的柱子,屋顶采用 了有拉索支撑的桁架结构,大尺 度出挑的屋檐为场馆提供了阴凉 的空间。
扩展内容:
空间网格结构 网壳结构的出现早于平板网架结构。在国外,传统的肋环型穹顶已有一百多 年历史,而第一个平板网架是1940年在德国建造的(采用Mero体系)。中国第 一批具有现代意义的网壳是在50和60年代建造的,但数量不多。当时柱面网壳大 多采用菱形“联方”网格体系,1956年建成的天津体育馆钢网壳(跨度52m)和 l961年同济大学建成的钢筋混凝土网壳(跨度40m)可作为典型代表。球面网壳 则主要采用肋环型体系,1954年建成的重庆人民礼堂半球形穹顶(跨度46.32m) 和1967年建成的郑州体育馆圆形钢屋盖(跨度64m)可能是仅有的两个规模较大 的球面网壳。自此以后直到80年代初期,网壳结构在我国没有得到进一步的发展。 相对而言,平板网架结构自60年代后期起获得较多应用,1967年建成的首都体育 馆和1973年建成的上海体育馆是早期成功采用平板网架结构的杰出代表,对这种 结构形式在其后一段时期的持续发展有很大影响。80年代后期北京为迎接1990亚 运会兴建的一批体育建筑中,多数仍采用平板网架结构。随着经济和文化建设需 求的扩大和人们对建筑欣赏品位的提高,在设计日益增多的各式各样大跨度建筑 时,设计者越来越感觉到结构形式的选择余地有限,无法满足日益发展的对建筑 功能和建筑造型多样化的要求。这种现实需求对网壳结构、悬索结构等多种空间 结构形式的发展起了良好的刺激作用。

大跨度建筑结构体系简述各种大跨度结构类型

大跨度建筑结构体系简述各种大跨度结构类型

大跨度建筑结构体系简述各种大跨度结构类型大跨度建筑结构体系是指横跨较大距离的建筑结构系统,以其独特的设计和建造方式,为人们提供了更广阔的室内空间和更舒适的居住环境。

大跨度结构通常用于体育馆、展览中心、机场终端、会议中心等大型场所。

本文将简要介绍几种常见的大跨度结构类型。

1.钢结构钢结构是应用最广泛的大跨度结构类型之一,其特点是轻巧、强度高、施工方便,适用于跨度较大的建筑。

钢结构使用钢材作为主要构件,通过焊接、螺栓连接等方式进行安装。

钢结构的优点包括重量轻、可塑性好、耐腐蚀等,缺点则包括易受火灾影响、维护成本高等。

常见的钢结构类型包括钢桁架、钢索悬挂结构等。

2.混凝土结构混凝土结构是另一种常见的大跨度结构类型,其特点是稳定性好、防火性能优异。

混凝土结构使用混凝土作为主要构件,通过浇筑成型,或者采用预制件的方式进行安装。

混凝土结构的优点包括耐久性好、抗震性好、隔热性能好等,缺点则包括重量重、施工周期长等。

常见的混凝土结构类型包括空间壳体结构、空中梁板结构等。

3.张拉结构张拉结构是一种通过张拉钢索或者预应力混凝土来形成稳定结构的建筑。

张拉结构的特点是跨度大、自重轻、构件适应性强。

张拉结构通过预应力钢索或者混凝土进行张拉,使结构产生压应力,从而提高结构的稳定性和承载能力。

张拉结构的优点包括大跨度、轴向力分布均匀、形式多样,缺点则包括施工复杂、工期长等。

常见的张拉结构类型包括张拉拱结构、张拉平板结构等。

4.空间网壳结构空间网壳是一种由柱、梁、网架等构成的三维网格结构,其特点是刚性好、稳定性好。

空间网壳结构通过三维网格结构的组合,使得结构能够均匀分布荷载,提高承载能力。

空间网壳的优点包括大跨度、稳定性好、形式美观等,缺点则包括施工复杂、构件连接困难等。

常见的空间网壳结构类型包括球面网壳结构、大跨度格构结构等。

总之,大跨度建筑结构体系是一种为了满足大型场所空间需求的特殊结构设计和建造方式。

钢结构、混凝土结构、张拉结构和空间网壳结构都是常见的大跨度结构类型,每种类型都具有独特的优点和缺点,设计师在选择结构类型时需要根据具体情况进行考虑。

大跨度空间结构

大跨度空间结构
工程实例: 工程实例: 1:佛山罗村文化广场 : 2:南宁澳海蓝湾 :
佛山罗村 文化广场
大梅沙 体育公园
索穹顶结构
索穹顶结构实质是用一个周边受压环梁来平衡张拉 体系的结构。索穹顶较之于其它结构形式, 体系的结构。索穹顶较之于其它结构形式,具有特殊 优越性。首先, 优越性。首先,它大量采用预应力钢索而较少使用压 能够充分利用钢材的抗拉刚度, 杆,能够充分利用钢材的抗拉刚度,若能避免柔性结 构有可能的结构松弛, 构有可能的结构松弛,索穹顶结构便不存在弹性失稳 问题。其次,使用薄膜等轻质材料作为屋面材料, 问题。其次,使用薄膜等轻质材料作为屋面材料,使 得结构自重相当轻。 得结构自重相当轻。
兰伯特圣路易市 航空港候机室
展览馆(波形装配式薄壳) 都灵 展览馆(波形装配式薄壳)
网架结构
使用比较普遍的一种大跨度屋顶结构。 网架屋顶结构 使用比较普遍的一种大跨度屋顶结构。这种结构 整体性强,稳定性好,空间刚度大,防震性能好。 整体性强,稳定性好,空间刚度大,防震性能好。网构架高度 较小,能利用较小杆形构件拼装成大跨度的建筑, 较小,能利用较小杆形构件拼装成大跨度的建筑,有效地利用 建筑空间。适合工业化生产的大跨度网架结构, 建筑空间。适合工业化生产的大跨度网架结构,外形可分为平 板型网架和壳形网架两类,能适应圆形、方形、 板型网架和壳形网架两类,能适应圆形、方形、多边形等多种 平面形状。平板型网架多为双层,壳形网架有单层和双层之分, 平面形状。平板型网架多为双层,壳形网架有单层和双层之分, 并有单曲线、双曲线等屋顶形式。 并有单曲线、双曲线等屋顶形式。
工程实例: 工程实例: 1:北京工人体育馆悬索屋盖 : 2:德国法兰克福国际航空港飞机库(斜拉索) :德国法兰克福国际航空港飞机库(斜拉索)

衡量大跨度空间结构优劣的五个指标

衡量大跨度空间结构优劣的五个指标

衡量大跨度空间结构优劣的五个指标一、概述所谓空间结构(Spatial structures),其形体呈空间状,并同时具有三维受力特性。

优秀的空间结构具有荷载传递路线最短,受力均匀等特点;而平面楼盖结构,由于构件分为板、次梁和主梁等"级别",荷载传递路线长,浪费材料。

自然界也有许许多多令人惊叹的空间结构,如蛋壳、海螺等是薄壳结构;蜂窝是空间网格结构;肥皂泡是充气膜结构;蜘蛛网是索网结构;棕榈树叶是折板结构等等。

因此,从某种意义上来说,空间结构是一种仿生结构,它们比平面结构更美观、经济和高效。

如何衡量一个大跨度空间结构(l≥60m)的优劣,本人曾提出四个指标[1]:1、材料强度充分发挥?2、基础推(拉)力H合理处理?快把结构工程师站点加入收藏夹吧!3、施工安装费小?4、跨度大?对大跨度结构来说,材料用量多,不仅是一个浪费,对结构的抗震,特别是竖向抗震极为不利。

广东省注册中心在2000年举办的《国家一级注册建筑师讲座》上,我再增加了一个指标:5、结构的艺术作用这一指标,把结构的型式与建筑的空间艺术形象融合起来,即结构本身富有美学表现力。

建筑师必须注意发挥这种表现力和利用这种装饰效果,自然地显示结构。

所谓自然的显示结构,不是说结构就是美,而是要袒露具有美学价值的部分,通过建筑师的艺术加工,达到表现建筑美的目的,而不是简单地表现结构本身。

这样,就可以使建筑最终达到实用、经济和美观的目的。

美国雷里(Rauleigh)竞技馆的受力特点是:受力明确,形成自平衡体系,索、拱的材料强度充分发挥,基础很小。

几乎符合上述五个衡量指标。

斜拱的周边以间距2.4m的钢柱支承,立柱兼作门窗的竖框,形成了以竖向分隔为节奏感很强的建筑造型。

被认为是世界上第一座优秀的大跨度索网结构屋盖建筑,开创了现代索结构的历史。

二、梁的演变与空间结构的分类从梁的弯矩图和应力图可见,梁沿跨度和截面上的受力都很不均匀,材料强度不能得到充分的发挥。

大跨度空间结构设计

大跨度空间结构设计
大跨度空间结构设计
contents
目录
• 引言 • 大跨度空间结构的特点与类型 • 大跨度空间结构的设计理念 • 大跨度空间结构的材料选择 • 大跨度空间结构的施工方法 • 大跨度空间结构的案例分析 • 大跨度空间结构的发展趋势与挑战

01 引言
主题简介
大跨度空间结构是指跨越较大空间的建筑结构,通常用于大型公共设施、工业厂 房、桥梁等。
其他建筑
大跨度空间结构还广泛应用于其他类型的建筑中,如机场航站楼、工业厂房、商业中心等。这些建筑 通常需要大跨度的屋盖结构或跨越障碍物的桥梁结构,以满足建筑的功能需求。
其他建筑的大跨度空间结构设计通常采用多种结构形式的组合,如预应力混凝土和钢结构的组合、混 合结构等。这些结构形式能够满足建筑的承载能力和稳定性要求,同时保证建筑的安全性和经济性。
大跨度空间结构设计涉及多个学科领域,如结构工程、材料科学、计算机科学等 ,需要综合考虑多种因素,如结构安全性、经济性、施工可行性等。
重要性及应用领域
大跨度空间结构设计在现代建筑中具 有重要意义,能够满足大型设施的建 筑需求,提高空间利用率和功能性。
应用领域包括大型体育场馆、会展中 心、机场航站楼、工业厂房等,这些 设施需要大跨度空间来满足多功能需 求和高效利用空间。
07 大跨度空间结构的发展趋 势与挑战
新材料的应用
高强度钢材
高强度钢材具有更高的屈服强度 和抗拉强度,能够减轻结构自重,
提高结构承载能力。
复合材料
如碳纤维、玻璃纤维等复合材料, 具有轻质、高强、耐腐蚀等特点, 可应用于大跨度空间结构的节点
和连接部位,提高结构性能。
智能材料
如形状记忆合金、光纤等智能材 料,能够实现自适应调节和实时 监测,提高大跨度空间结构的稳

大跨空间结构的主要形式及特点

大跨空间结构的主要形式及特点

悬索结构形式
北京工人体育馆
悬索结构的特点
悬索结构的受力特点是仅通过索的轴向拉伸 来抵抗外荷载的作用!结构中不出现弯距和 剪力效应,可充分利用钢材的强度,悬索结 构形式多样布置灵活,并能适应多种建筑平 面。由于钢索的自重很小,屋盖结构较轻, 安装不需要大型起重设备,但悬索结构的分 析设计理论与常规结构相比,比较复杂,限 制了它的广泛应用"
3、膜结构
薄膜结构也称为织物结构,是20世纪中叶发展 起来的一种新型大跨度空间结构形式。它以性能优良 的柔软织物为材料, 由膜内空气压力支承膜面,或利 用柔性钢索或刚性支承结构使膜产生一定的预张力, 从而形成具有一定刚度、能够覆盖大空间的结构体系。
膜结构的主要形式
膜结构形式上主要有气 压式膜结构、气承式膜 结构、混合式膜结构和 悬挂薄膜结构。
大跨度空间结构往往是衡量一个国家或 地区建筑技术水平的重要标志。其结构 形式主要包括网架结构、网壳结构、悬 索结构、膜结构和薄壳结构等
五大空间结构及各类组合空间结构,形 态各异的空间结构在体育场馆、会展中 心、影剧院、大型商场、工厂车间等建 筑中得到了广泛的应用。
1、 网架结构
由多根杆件按照某种规律的几何图形通 过节点连接起来的空间结构称为网格结构。 其中双层或多层平板形网格结构称为网架 结构或网架。通常采用钢管或型钢材料制 作而成。
网架结构的主要特点
空间工作,传力途径简捷。重量轻、刚度大、抗 震性能好、施工安装简便。网架杆件和节点便定 型化、商品化、可在工厂中成批生产,有利于提 高生产效率。网架的平面布置灵活,屋盖平整, 有利于吊顶、安装管道和设备。网架的建筑造型 轻巧、美观、大方。便于建筑处理和装饰。
2、网壳结构
曲面形网格结构称为网壳结构。有单层网 壳和双层网壳之分,网壳的用材主要有钢网 壳、木网壳、钢筋混凝土网壳等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大跨空间建筑结构
大跨度空间结构的特点
1、按空间结构的受力特点来划分 (1)刚性空间结构 刚性空间结构体系是指刚性构件构成的具有很好刚度的空 间结构体系。包括薄壳结构、空间网格结构以及立体桁架结构。 钢筋混凝土薄壳在施工中耗用模板及脚手架较多,所பைடு நூலகம்劳 动量较大,费用高,高空浇筑或吊装费工费时。因此,薄壳结 构的应用近年来有所减少。 空间网格结构根据外形分为两大类,一类称为网架,其外 形呈平板状(图1.2a);另一类称为网壳,其外形呈曲面状 (图1.2b) 。 立体桁架结构是以钢管通过焊接有机连接而成的一种空间 结构(图1.3)。立体桁架结构是在网架、网壳结构的基础上 发展起来的,与网架、网壳结构相比具有独特的优越性和实用 性。该结构省去一些纵向弦杆和球节点,并具有简明的结构传 力方式,可满足各种不同的建筑形式的要求,尤其是构筑圆拱 和任意曲线形状更有优势。
(a)南京会展中心
(b)沈阳奥体中心 图1.3 立体桁架结构
(2)柔性空间结构 柔性空间结构体系是指由柔性构件构成,如钢索、薄 膜等,通过施加预应力而形成的具有一定刚度的空间结构 体系。结构的形体由体系内部的预应力来决定。包括悬索 结构、膜结构和张拉整体结构等。 (3)杂交结构体系 将几种不同类型的结构体系组合成为一种新的结构体 系。 杂交体系按照其组合方式的不同可分为以下三类: 第一类为刚性结构体系之间的组合,如组合网架、组 合网壳、拱支网壳等; 第二类为柔性结构体系与刚性结构体系的组合,属于 半刚性结构,这种又可分为斜拉结构、拉索预应力结构、 张弦结构、支承膜结构等。 第三类为柔性体系之间的组合,如柔性拉索与索网的 杂交,柔性拉索与膜材之间的组合形成的索-膜结构。
相关文档
最新文档