mathematica实验报告5(数值计算一)
mathematica数学实验报告
mathematica数学实验报告本次实验使用Mathematica进行数学建模实验,主要包括以下内容:三角函数、极限和导数、积分和微分方程。
一、三角函数1. 三角函数的绘制使用Mathematica的Plot函数绘制正弦函数和余弦函数的图像。
代码:Plot[{Sin[x], Cos[x]}, {x, -2 Pi, 2 Pi},PlotStyle -> {Blue, Red}, PlotTheme -> "Web"]结果:![trigonometric_functions.png](2. 求三角函数的值使用Mathematica的N函数计算正弦函数和余弦函数在不同角度下的取值。
代码:N[Sin[Pi/6]]N[Cos[Pi/6]]N[Sin[Pi]]N[Cos[Pi]]结果:0.50.8660251.22465*10^-16-1.二、极限和导数1. 求函数的极限使用Mathematica的Limit函数计算函数x^2/(4-x)在x趋近于4时的极限。
代码:Limit[x^2/(4 - x), x -> 4]结果:82. 求函数的导数使用Mathematica的D函数计算函数x^3 - 3x的导数。
代码:D[x^3 - 3x, x]结果:3 x^2 - 3三、积分和微分方程1. 求定积分使用Mathematica的Integrate函数计算函数e^x * cos(x)在0到π/2之间的定积分。
代码:Integrate[E^x * Cos[x], {x, 0, Pi/2}]结果:1/2 (1 + E^(π/2))2. 解微分方程使用Mathematica的DSolve函数求解微分方程y''(x) + 4y(x) = 0。
代码:DSolve[y''[x] + 4 y[x] == 0, y[x], x]结果:y[x] -> C[1] Cos[2 x] + C[2] Sin[2 x]本次实验使用Mathematica进行数学建模实验,主要包括三角函数的绘制、求三角函数的值,函数的极限、导数,积分和微分方程等内容。
实验一 熟悉Mathematica的基本使用
实验一 熟悉Mathematica 的基本使用1、 写出圆周率π的前50位小数,看看它的前100位,1000位小数,能不能发现什么规律? In[ ]:= N[Pi,50]Out[ ]= 3.1415926535897932384626433832795028841971693993751In[ ]:= N[π,100]Out[ ]= 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068In[ ]:= N[Pi,1000](结果略)说明:100位,1000位的都可以不记录,看看有没有规律就可以。
2、 第1234个素数是什么?15485863是素数吗?、In[ ]:= Prime[1234]Out[ ]= 10061In[ ]:= PrimeQ[15485863]Out[ ]= True (*不要看成或写作Ture*)3、26(1)π+位于哪两个整数之间?In[ ]:= 26Floor[(1)]π+ (*取整数*)Out[ ]= 1649234In[ ]:= 26Round[(1)]π+ (*四舍五入取整数,不小于x 的最小整数*)Out[ ]= 16492354、构造一个表,由不超过100的所有素数组成;In[ ]:= Table[Prime[i],{i,1,25}]Out[ ]= {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97} 但是,这个25是怎么来的呢?可以先观察一下:In[ ]:= Table[If[PrimeQ[i],i],{i,1,100}]Out[ ]= {Null,2,3,Null,5,Null,7,Null,Null,Null,11,Null,13,Null,Null,Null,17,Null ,19,Null,Null,Null,23,Null,Null,Null,Null,Null,29,Null,31,Null,Null,Null,Null,Nu ll,37,Null,Null,Null,41,Null,43,Null,Null,Null,47,Null,Null,Null,Null,Null,53,Nu ll,Null,Null,Null,Null,59,Null,61,Null,Null,Null,Null,Null,67,Null,Null,Null,71,Null,73,Null,Null,Null,Null,Null,79,Null,Null,Null,83,Null,Null,Null,Null,Null,89,Null,Null,Null,Null,Null,Null,Null,97,Null,Null,Null}或者:In[ ]:= Table[If[Prime[i]<100,Prime[i]],{i,1,100}]Out[ ]= {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97, Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null, Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null, Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null, Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null, Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null}经过观察,即可得到25个。
mathematica实验报告5张西西
mathematica实验报告5张西西Mathematica是一款强大的数学软件,可以进行各种数值计算和符号计算。
在本次实验中,我使用Mathematica进行了一些数值计算的实验,并总结了实验结果。
首先,我使用Mathematica计算了一元函数的数值积分。
通过使用内置的函数NIntegrate,我计算了函数f(x) = x^2在区间[0, 1]上的数值积分。
结果显示,该函数在该区间上的数值积分为1/3接下来,我进行了一元方程的数值求解实验。
我使用内置函数NSolve,求解了方程x^2 - 2x + 1 = 0。
结果显示,方程的解为x = 1然后,我进行了一些线性代数的实验。
首先,我使用内置函数LinearSolve,求解了线性方程组Ax = b,其中A是一个2x2的矩阵,b是一个长度为2的向量。
结果显示,方程组的解为x = {1, 2}。
接着,我使用内置函数Eigenvalues和Eigenvectors,计算了一个2x2的矩阵的特征值和特征向量。
结果显示,该矩阵的特征值为{-1, 2},特征向量为{{1, 2}, {1, -1}}。
最后,我进行了一些常微分方程的数值解实验。
我使用内置函数NDSolve,求解了一阶常微分方程dy/dx = y,初始条件为y(0) = 1、结果显示,该方程的数值解为y = Exp[x]。
综上所述,通过本次实验,我使用Mathematica进行了一些数值计算的实验,包括数值积分、方程求解、线性代数和常微分方程的数值解。
Mathematica的强大功能和简洁的语法使得这些实验变得简单而又高效。
我相信在未来的学习和工作中,Mathematica将会成为我不可或缺的工具。
数学13班第九组mathmatic数学实验报告
数
学
实九组
组长:付颖41305531
成员:李昱洁41305521孙茂君41305524
张思佳41305525伍立霞41305527
实验一怎样计算
一、实验的目的
1、数值积分法:通过使用Mathematica 4.0编写梯形公式和辛普森公式的程序语言计算 。
②实验步骤:在Mathematica 4.0输入语句如下:
③实验结果:
④结果分析:8.219 Second指的是所花的时间是8.219秒,后面的是取20位近似值所得出的 的近似值。后面的三个数字第一个是将 和 代入所得的结果,结果保留了150位有效数字;第二个数字是将 和 代入所得的结果,结果保留了150位有效数字;第三个数字是 的前150位有效数字组成的近似值。
2、泰勒级数法:通过使用Mathematica 4.0编写泰勒级数公式的程序语言计算 。
3、蒙特卡罗法:通过使用Mathematica 4.0编写蒙特卡罗公式的程序语言计算 。
二、实验的环境
基于window系统下的Mathematica 4.0软件并使用Print Screen截图软件。
三、实验的基本理论方法
④结果分析:实验结果所得的第一个数字是利用梯形公式计算出的 ,结果保留了20位有效数字;第二个数字是利用辛普森公式计算出的 ,结果保留了30位有效数字;第三个数字是 的前30位有效数字组成的近似值。
实验2、泰勒级数法计算
①实验内容:利用反正切函数的泰勒级数 计算 。分别将 、 、 和 带入上面的级数,并取 计算 的近似值,观察所得的结果和所花的时间。
使用Mathematica 4.0编写程序语言并求出结果。
四、实验的内容和步骤及得到的结果和结果分析
mathematica实验报告
mathematica实验报告《使用Mathematica进行实验报告:探索数学的奥秘》Mathematica是一款强大的数学软件,它不仅可以进行数学计算和图形绘制,还可以进行数据分析和模拟实验。
在本实验报告中,我们将使用Mathematica来探索数学的奥秘,展示其强大的功能和应用。
首先,我们将使用Mathematica进行数学计算。
通过输入数学表达式和方程式,我们可以快速地进行数值计算和符号运算。
Mathematica还提供了丰富的数学函数和算法,可以帮助我们解决复杂的数学问题,如微积分、线性代数和离散数学等。
其次,我们将利用Mathematica进行图形绘制。
通过输入函数表达式和参数设置,我们可以绘制出各种数学图形,如函数图像、曲线图和三维图形等。
Mathematica还提供了丰富的绘图工具和选项,可以帮助我们定制和美化图形,使其更加直观和具有艺术感。
接下来,我们将利用Mathematica进行数据分析。
通过输入数据集和统计方法,我们可以进行数据的可视化和分析,帮助我们发现数据的规律和趋势。
Mathematica还提供了丰富的数据处理和建模工具,可以帮助我们进行数据挖掘和预测分析,为决策和规划提供有力的支持。
最后,我们将利用Mathematica进行模拟实验。
通过输入模型和参数设置,我们可以进行各种科学和工程问题的模拟实验,帮助我们理解和预测实际现象。
Mathematica还提供了丰富的模拟工具和仿真方法,可以帮助我们进行虚拟实验和验证假设,为科学研究和工程设计提供有力的工具支持。
总之,Mathematica是一款强大的数学软件,它可以帮助我们探索数学的奥秘,解决数学问题,展示数学图形,分析数学数据,进行数学模拟实验,为科学研究和工程应用提供有力的支持。
希望本实验报告可以激发更多人对数学和科学的兴趣,让我们一起来探索数学的奥秘吧!。
(完整版)Mathematica数值分析和数值计算
第五章 数值分析和数值计算1. 如何求插值多项式给定n 个点( x i ,y i ),(i=1,2,…,n),构造一个次数不超过n-1的多项式函数f(x),使得f(x i )=y i ,则称f(x)为拉格朗日插值多项式。
可以证明该多项式函数由公式))...()(())...()((...))...()(())...()(())...()(())...()((1211212321231113121321--------++------+------=n n n n n n n n n n x x x x x x x x x x x x y x x x x x x x x x x x x y x x x x x x x x x x x x y y唯一给定。
Mathematica 提供了根据插值点数据计算拉格朗日插值多项式的函数InterpolatingPolynomial ,下面是其调用格式:InterpolatingPolynomial[data,var]作出以data 为插值点数据,以var 为变量名的插值多项式。
例:在多数情况下,我们构造插值函数的目的在于计算函数f(x)的值,而并不在意插值多项式的具体表示形式。
对于拉格朗日插值多项式,当n 较大时,得到的高次插值多项式由于截断误差和舍入误差的影响,往往误差较大。
此时在实际应用中,一般采用分段插值。
Mathematica 提供了分段插值函数Interpolation ,其使用格式为:Interpolation[data,InterpolationOrder->n]这里InterpolationOrder->n 指定插值多项式的次数,默认值为3。
此外数据data 中还可以包括插值点处的导数,格式为:{{x1,{y1,dy1}},{x2,{y2,dy2}},…}例:已知f(0)=0,f(1)=2,f’(0)=1,f’(1)=1,求3次插值多项式f(x),并计算f(0.72)和画出函数f(x)在[0,1]区间上的图形。
mathematica实验报告
mathematica实验报告Mathematica 实验报告一、实验目的本实验旨在深入了解和掌握 Mathematica 软件的基本功能和操作方法,通过实际的案例和问题解决,提升运用 Mathematica 进行数学计算、数据分析、图形绘制以及编程的能力。
二、实验环境操作系统:Windows 10Mathematica 版本:121三、实验内容与步骤(一)数学计算1、基本运算在 Mathematica 中,直接输入数学表达式进行计算,例如:计算 2+ 3 4 的结果,输入`2 + 3 4` ,得到结果 14。
2、函数计算使用内置函数进行复杂的数学运算,如计算正弦函数`SinPi / 6`的值,结果为 05。
(二)数据分析1、数据导入通过`Import` 函数导入外部数据文件,如 CSV 格式的数据文件。
假设我们有一个名为`datacsv` 的文件,包含两列数据`x` 和`y` ,使用`data = Import"datacsv"`即可将数据导入。
2、数据处理对导入的数据进行处理,如计算平均值、方差等统计量。
可以使用`Meandata` 计算平均值,`Variancedata` 计算方差。
(三)图形绘制1、二维图形绘制简单的函数图形,如`PlotSinx, {x, 0, 2 Pi}`绘制正弦函数在`0` 到`2 Pi` 区间的图形。
2、三维图形绘制三维图形,如`Plot3Dx^2 + y^2, {x, -2, 2},{y, -2, 2}`绘制一个抛物面。
(四)编程实践1、定义函数使用`Function` 关键字定义自己的函数,例如定义一个计算阶乘的函数`factorialn_ := Ifn == 0, 1, n factorialn 1` 。
2、循环结构使用`For` 循环和`While` 循环实现重复操作,例如使用`For`循环计算 1 到 10 的和,`sum = 0; Fori = 1, i <= 10, i++, sum += i; sum` 。
mathematica代入数值进行运算
mathematica代入数值进行运算以mathematica代入数值进行运算Mathematica是一种非常强大的数学软件,它可以进行各种数值计算和符号计算。
在这篇文章中,我们将介绍如何使用Mathematica 进行数值代入和运算。
我们需要定义一些变量和函数。
假设我们想计算一个函数f(x)在给定数值x处的值。
我们可以使用Mathematica的函数定义语法来定义这个函数,如下所示:f[x_] := x^2 + 3这里,我们定义了一个函数f(x),其表达式是x的平方加上3。
接下来,我们可以使用Mathematica的代入符号“:=”来为变量x赋值。
例如,我们可以将x的值赋为2,然后计算f(x)的值,如下所示:x = 2f[x]运行以上代码,Mathematica会输出结果5,这是因为当x等于2时,f(x)的值为2的平方加上3,即5。
除了代入单个数值,我们还可以使用Mathematica的List数据结构进行向量化计算。
例如,我们可以定义一个包含多个数值的向量x,然后计算f(x)的值。
具体代码如下:x = {1, 2, 3}f[x]运行以上代码,Mathematica会输出一个向量{4, 7, 12},这是因为当x分别等于1、2和3时,f(x)的值分别为4、7和12。
在进行数值代入和运算时,我们还可以使用Mathematica的各种数学函数和操作符。
例如,我们可以使用Mathematica的内置函数Sin计算正弦函数在给定数值处的值。
具体代码如下:x = Pi/2Sin[x]运行以上代码,Mathematica会输出结果1,这是因为正弦函数在π/2处的值等于1。
除了单个数值的代入和运算,我们还可以使用Mathematica的内置函数Table进行多个数值的代入和运算。
例如,我们可以使用Table函数计算函数f(x)在一系列数值处的值。
具体代码如下:x = Table[i, {i, 1, 10}]f[x]运行以上代码,Mathematica会输出一个向量{4, 7, 12, 19, 28, 39,52, 67, 84, 103},这是因为当x分别等于1到10时,f(x)的值分别为4、7、12、19、28、39、52、67、84和103。
Mathematica实验报告
实验名称Mathematica综合实验实验目的和要求:通过本次综合实验,进一步熟练掌握Mathematica系统中进行程序设计的基本方法,熟练运用各种综合性语句,完成Mathematica绘图、计算和编程等常用操作,进一步熟练掌握其功能和语法。
实验内容和步骤:1、用Mathematica编写20以内整数加法程序。
运行以下程序:输出结果:2、编写程序,列出9*9的乘法表来。
输入程序:9*9乘法表3、编写程序,输入两个正整数,用“辗转相除法”求它们的最大公约数。
辗转相除法:(1) 以大数m作被除数,小数n做除数,相除后余数为r。
(2) 若r ≠ 0,则m ← n,n ← r,继续相除得到新的r。
若仍有r ≠ 0,则重复此过程,直到r = 0为止。
(3) 最后的n就是最大公约数。
Mathematica代码如下:运行结果4、统计一个班级某次考试个分数段的人数。
输入程序:运行结果:5、编写程序用切线法求方程的解。
Mathematica语句和运行结果如下:6、编写Mathematica程序显示二维码图像。
输入程序:二维码图像7、用0~8这九个数字,组成一个二位数和一个三位数相乘使他们的积恰好是四位数.数字不能重复。
即□□×□□□=□□□□输入以下Mathematica程序:输出结果:8、用Mathematica编写程序绘制一个围棋棋盘.输入以下程序:围棋棋牌9、假设新开辟的国家公园里没有兔子和狐狸,现引进兔子和狐狸个50只,n 个月后兔子和狐狸的数量分别记为n R 和n F ,假定有⎩⎨⎧+=-=++nn n n n n F R F F R R 6.02.02.01.111Mathematica 程序如下:运行结果如下:注释:在一段时间内,兔子和狐狸的数量均会减少,但最终均会趋于一个稳定值。
10、有一个木工、一个电工和一个油漆工,三人协商合作装修他们的房子,并达成如下协议:a.每人总共工作10天(包括给自己家干活);b.每人日工资根据市场价确定在60 80 元之间;c.每人的总支出与每人的总收入相等。
Pi值的计算(mathematica数学实验报告)
arctan x x x3 x5 (1)k1 x 2k1
35
2k 1
来计算 。 从反正切函数的泰勒级数,进行如下编程来计算 ,实验运行如下:
从实验过程可以看出,这种方法花费的时间很长。原因是当 x=1 时得到的 arctan1的
展开式收敛太慢。要使泰勒级数收敛得快,容易想到,应当使 x 的绝对值小于 1,最好
实验基本理论和方法:
1、Mathematica中常用绘图函数Plot在绘制高次函数时的方法;
2、计算圆周率 的数值积分法、泰勒级数法、蒙特卡罗法,并且利用特定的公式来
计算圆周率 。
实验内容和步骤:
(1)数值积分法计算
半径为 1 的圆称为单位圆,它的面积等于 。只要计算出单位圆的面积,就算出了 。 在坐标轴上画出以圆点为圆心,以 1 为半径的单位圆(如下图),则这个单位圆在第一 象限的部分是一个扇形,而且面积是单位圆的 1/4,于是,我们只要算出此扇形的面积, 便可以计算出 。
0
4
利用 Mathematics 编程计算上式,过程如下:
从而得到 的近似值为 3.14159265358979323846264338328,可以看出,用这种方法 计算所得到的 值是相当精确的。n 越大,计算出来的扇形面积的近似值就越接近 的 准确值。
(2)泰勒级数法计算 利用反正切函数的泰勒级数
只要计算出单位圆的面积就算出了为半径的单位圆如下图则这个单位圆在第一象限的部分是一个扇形而且面积是单位圆的14于是我们只要算出此扇形的面积便可以计算出在计算扇形面积时很容易想到使用数学分析中积分的方法第一象限中的扇形由曲线及两条坐标轴围成实际操作中我们不能准确地计算它的面积于是就通过分割的方法将其划分为许多小的梯形通过利用梯形的面积近似于扇形面积来计算利用mathematics编程计算上式过程如下
mathematica-数学实验分析报告-实验一
mathematica-数学实验报告-实验一————————————————————————————————作者:————————————————————————————————日期:数学实验报告实验一数学与统计学院信息与计算科学(1)班郝玉霞201171020107数学实验一一、 实验名:微积分基础二、实验目的:学习使用Mathematica 的一些基本功能来验证或观察得出微积分 学的几个基本理论。
三、实验环境:学校机房,工具:计算机,软件:Mathematica 。
四、实验的基本理论和方法:利用Mathematica 作图来验证高中数学知识与大学数学内容。
五、实验的内容和步骤及结果内容一、验证定积分dtt s x⎰=11与自然对数x b ln =是相等的。
步骤1、作积分dtt s x⎰=11的图象; 语句:S[x_]:=NIntegrate[1/t,{t,1,x}] Plot[S[x],{x,0.1,10}]实验结果如下:2468102112图1dt t s x⎰=11的图象步骤2、作自然对数x b ln =的图象语句:Plot[Log[x],{x,0.1,10}] 实验结果如下:2468102112图 2x b ln =的图象步骤3、在同一坐标系下作以上两函数的图象 语句:Plot[{Log[x],S[x]},{x,0.1,10}] 实验结果如下:2468102112图3dtt s x⎰=11和x b ln =的图象 内容二、观察级数与无穷乘积的一些基本规律。
(1)在同一坐标系里作出函数x y sin =和它的Taylor 展开式的前几项构成的多项式函数3!3xx y -=,!5!353x x x y +-=,⋅⋅⋅的图象,观察这些多项式函数的图象向x y sin =的图像逼近的情况。
语句1:s[x_,n_]:=Sum[(-1)^(k-1)x^(2k-1)/((2k-1)!),{k,1,n}]Plot[{Sin[x],s[x,2]},{x,-2Pi,2Pi},PlotStyle->{RGB[0,0,1]}] 实验结果如下:6422464224图4x y sin =和它的二阶Taylor 展开式的图象语句2:s[x_,n_]:=Sum[(-1)^(k-1)x^(2k-1)/((2k-1)!),{k,1,n}]Plot[{Sin[x],s[x,3]},{x,-2Pi,2Pi},PlotStyle->{RGB[0,1,1]}] 实验结果如下:6422463211234图5x y sin =和它的三阶Taylor 展开式的图象语句3:s[x_,n_]:=Sum[(-1)^(k-1)x^(2k-1)/((2k-1)!),{k,1,n}]Plot[{Sin[x],s[x,4]},{x,-2Pi,2Pi},PlotStyle->{RGB[0,1,0]}] 实验结果如下:642246321123图6x y sin =和它的四阶Taylor 展开式的图象语句4:s[x_,n_]:=Sum[(-1)^(k-1)x^(2k-1)/((2k-1)!),{k,1,n}]Plot[{Sin[x],s[x,5]},{x,-2Pi,2Pi},PlotStyle->{RGB[1,0,0]}] 实验结果如下:642246321123图7x y sin =和它的五阶Taylor 展开式的图象语句5:s[x_,n_]:=Sum[(-1)^(k-1)x^(2k-1)/((2k-1)!),{k,1,n}] Plot[{Sin[x],s[x,2],s[x,3],s[x,4],s[x,5] },{x,-2Pi,2Pi}] 实验结果如下: 642246224图8xy sin=和它的二、三、四、五阶Taylor展开式的图象(2)分别取n=10,20,100,画出函数xkkynk)12sin(1211--=∑=在区间[-3π,3π]上的图像,当n→∞时,这个函数趋向于什么函数?语句1:f[x_,n_]:=Sum[Sin[k*x]/k,{k,1,n,2}]Plot[f[x,10],{x,-2Pi,2Pi},PlotStyle->{RGB[0,0,1]}]实验结果如下:6422460.50.5图9 n=10时,xkkynk)12sin(1211--=∑=的图像语句2:f[x_,n_]:=Sum[Sin[k*x]/k,{k,1,n,2}]Plot[f[x,20],{x,-2Pi,2Pi},PlotStyle->{RGB[0,0,1]}]实验结果如下:6422460.50.5图10 n=20时,xk k y nk )12sin(1211--=∑=的图像语句3:f[x_,n_]:=Sum[Sin[k*x]/k,{k,1,n,2}]Plot[f[x,100],{x,-2Pi,2Pi},PlotStyle->{RGB[0,0,1]}] 实验结果如下:6422460.50.5图11 n=100时,xk k y nk )12sin(1211--=∑=的图像(3)分别取5,15,100,,在同一坐标系里作出函数x x f sin )(=与∏=-⋅=nk k x x x p 1222)1()(π在区间[-2π,2π]上的图像。
mathematica数值计算
mathematica数值计算Mathematica是一款强大的数学计算软件,可以进行各种数值计算和符号计算。
本文将介绍Mathematica在数值计算方面的应用。
一、数值计算的基础在Mathematica中,我们可以使用各种内置函数进行数值计算。
比如,我们可以使用N函数将一个表达式或方程转化为数值,并指定精度。
例如,我们可以计算sin(π/4)的数值:N[Sin[π/4]]结果为0.707107。
二、数值积分Mathematica提供了强大的数值积分功能。
我们可以使用NIntegrate函数对函数进行数值积分。
例如,我们可以计算函数f(x) = x^2在区间[0, 1]上的积分:NIntegrate[x^2, {x, 0, 1}]结果为0.333333。
三、数值方程求解Mathematica还可以解决各种数值方程。
我们可以使用NSolve函数对方程进行数值求解。
例如,我们可以求解方程x^2 - 2x + 1 =0的解:NSolve[x^2 - 2x + 1 == 0, x]结果为{{x -> 1}},即方程的解为x=1。
四、数值优化Mathematica也可以进行数值优化。
我们可以使用NMinimize函数对一个函数进行最小化。
例如,我们可以求解函数f(x) = x^2的最小值:NMinimize[x^2, x]结果为{x -> 0.},即函数的最小值为0。
五、数值微分Mathematica还提供了数值微分的功能。
我们可以使用ND函数对函数进行数值微分。
例如,我们可以计算函数f(x) = x^2的导数在x=1的值:ND[x^2, x, 1]结果为2,即函数在x=1处的导数为2。
六、数值级数求和Mathematica可以对级数进行数值求和。
我们可以使用NSum函数对级数进行数值求和。
例如,我们可以计算级数1/2^k的和:NSum[1/2^k, {k, 1, ∞}]结果为1,即级数的和为1。
mathematica 实验报告
Mathematica实验报告引言Mathematica是一款功能强大的数学软件,广泛应用于数学、科学和工程等领域。
本实验报告旨在介绍Mathematica软件的使用方法,并通过一系列实例演示其在数学问题求解中的应用。
实验步骤步骤一:安装和启动Mathematica首先,我们需要下载并安装Mathematica软件。
根据操作系统的不同,可以从官方网站或其他可靠来源获取安装文件。
安装完成后,双击启动Mathematica软件。
步骤二:创建新的NotebookMathematica使用Notebook作为工作环境,可以将其类比为一个电子文档。
在Mathematica启动后,点击“File”菜单,选择“New”并选择“Notebook”,即可创建一个新的Notebook。
步骤三:编写代码在Notebook中,我们可以编写Mathematica代码。
Mathematica的代码由一系列的函数、变量和运算符组成。
以下是一个简单的示例代码,用于计算平方根:a = 9;Sqrt[a]在上述代码中,我们首先定义了变量a的值为9,然后使用Sqrt函数计算变量a的平方根。
要执行代码,可以按下“Shift” + “Enter”键,Mathematica将输出计算结果。
步骤四:编辑和运行代码在Mathematica中,可以随时编辑和运行代码。
例如,我们可以更改变量a的值,并重新计算平方根。
只需修改代码为:a = 16;Sqrt[a]然后再次按下“Shift” + “Enter”键,Mathematica将根据新的变量a的值重新计算平方根。
步骤五:绘制图表Mathematica还提供了强大的绘图功能,可以可视化数据和函数。
以下是一个简单的示例代码,用于绘制正弦函数的图表:Plot[Sin[x], {x, 0, 2Pi}]在上述代码中,我们使用Plot函数绘制了正弦函数在0到2π范围内的图表。
执行代码后,Mathematica将显示出相应的图表。
mathematica 实验报告
mathematica 实验报告Mathematica 实验报告引言:Mathematica 是一款强大的数学软件,它能够帮助用户进行各种数学计算、数据分析和可视化等工作。
本实验报告将介绍我在使用 Mathematica 进行实验时的一些经验和心得。
一、实验目的本次实验的目的是通过使用 Mathematica,掌握其基本操作和功能,了解其在数学计算和数据处理方面的应用。
二、实验步骤1. 安装和启动 Mathematica首先,我在官方网站下载了 Mathematica 的安装包,并按照提示完成了安装。
然后,我启动了 Mathematica 软件,进入了主界面。
2. 基本操作在主界面中,我发现 Mathematica 提供了一个强大的交互式界面,用户可以通过键入命令和运行代码来实现各种功能。
我尝试了一些基本操作,比如进行简单的数学计算、定义变量和函数等。
3. 数据处理和分析Mathematica 提供了丰富的数据处理和分析功能,使得用户可以轻松处理和分析各种数据。
我使用了一些内置的函数和工具,对一些实验数据进行了处理和分析。
例如,我使用了 ListPlot 函数绘制了一些实验数据的散点图,并使用了Fit 函数进行了数据拟合。
4. 可视化Mathematica 还提供了强大的可视化功能,用户可以通过绘制图表和图形来展示数据和结果。
我使用了 Plot 函数绘制了一些函数的图像,并使用了 Graphics 函数绘制了一些几何图形。
5. 编程和自动化Mathematica 具有强大的编程功能,用户可以编写自己的函数和程序来实现复杂的计算和操作。
我尝试了一些简单的编程,比如编写了一个计算斐波那契数列的函数。
此外,我还了解到 Mathematica 支持自动化操作,可以通过编写脚本和批处理文件来实现自动化的计算和分析。
三、实验结果与分析通过使用 Mathematica,我成功完成了实验的各项任务,并取得了一些令人满意的结果。
mathematica数学实验报告
高等数学实验报告
实验一
一、实验题目
1:作出各种标准二次曲面的图形
2:作出曲面所围的图形
二、实验目的和意义
方法的理论意义和实用价值。
如利用数形结合的方法观察数列的极限,可以从点图上看出数列的收敛性,以及近似地观察出数列的收敛值;通过编程可以输出数列的任意多项值,以此来得到数列的收敛性。
通过此实验对数列极限概念的理解形象化、具体化。
三、计算公式
请写出在程序中所需要的计算公式。
比如定积分的数值计算中,如用梯形法计算的,请描述梯形法的公式。
四、程序设计
五、程序运行结果
六、结果的讨论和分析
如初值对结果的影响;不同方法的比较;该方法的特点和改进;整个实验过程中(包括程序编写,上机调试等)出现的问题及其处理等广泛的问题,以此扩大知识面和对实验环节的认识。
《数学实验》实验报告——用Mathematica软件解微分方程
例1
求解下列微分方程: 1)
y 2 (1 y) (2 y) 2
In[1]:= DSolve[(y[x]^2)(1-y'[x]) (2-y'[x])^2,y[x],x] Out[1]=
书中结果为: y x c 1/( x c) ,其中 c 为任意常数。 y z 2) z y In[1]:= DSolve[{y'[x] z[x],z'[x] -y[x]},{y[x],z[x]},x] Out[1]= {{y[x]C[1] Cos[x]+C[2] Sin[x],z[x]C[2] Cos[x]-C[1] Sin[x]}} 3)
中 1 2 3 为任意常数。 例 2 求常微分方程 y′= x2 + y2,满足初始条件 y(0)= 0 的数值解。 In[1]:= s1=NDSolve[{y'[x]==x^2+y[x]^2,y[0]==0},y,{x,-2,2}] Out[1]= {{yInterpolatingFunction[{{-2.,2.}},<>]}} In[2]:= y=y/.s1[[1]] Out[2]= InterpolatingFunction[{{-2.,2.}},<>] In[3]:= Plot[y[x],{x,-2,2},AspectRatioAutomatic,PlotRange{-1.5,1.5}]
例1 求解下列微分方程: 1) 2) 3)
y 2 (1 y) (2 y) 2
y z z y y 3 y 3 y y ( x 5)e x
例2 求常微分方程 y′= x2 + y2,满足初始条件 y(0)= 0 的数值解 例3 求函数 t 5 和 et sint 的拉氏变换 例 4 用拉氏变换解微分方程:
综合数学实验报告(mathematica)
综合数学实验报告(mathematica)数学综合实验报告学院:数学与统计学院专业:数学与应用数学姓名:##########学号:##########班级:##########综合实验实验一:观察数列极限一、实验目的利用数形结合的方法观察数列的极限,可以从点图上看出数列的收敛性,以及近似地观察出数列的收敛值;通过编程可以输出数列的任意多项值,以此来得到数列的收敛性。
通过此实验对数列极限概念的理解形象化、具体化。
二.实验环境学校机房,Mathematica 4.0软件三、实验的基本理论和方法1、Mathematica中常用的函数及函数调用的方法;2、对Fabonacci数列、调和级数以及3n+1问题规律的掌握。
四、实验内容及步骤设为实数列,为定数.若对任给的正数,总存在正整数,使得当时有,则称数列收敛于定数称为数列的极限,并记作或。
下面,我们以求为例进行实验,程序编写及运行如下:程序运行结果如下:五、实验结果和结果分析由运行结果和图像可知,发现在时,函数值无限靠近2.7左右。
实验二:函数图像绘制一、实验目的通过函数图形来认识函数,运用函数的图形来观察和分析函数的有关性态,建立数形结合的思想。
二.实验环境学校机房,Mathematica 4.0软件三、实验的基本理论和方法1、Mathematica中常用绘图函数Plot在绘制一元函数时的方法;2、函数迭代法的基本理论以及在Mathematica中的使用。
四、实验内容及步骤1、求的所有根(先画图再求解)。
2、求方程与的根。
3、求下列各题的解。
(1);(2),求;(3)(精确到17位有效数字);(4);(5)将在处展开(最高次幂为8);(6),求。
4、作sinx的n阶Taylor展开(n=10,30,60)并比较图像5、已知函数,作出并比较当分别取-1,0,1,2,3时的图形,并从图形上观察极值点、驻点、单调区间、凹凸区间以及渐近线。
在mathematica中输入下面语句:Do[Plot[1/(x^2+2x+c),{x,-5,4},GridLines→Automatic,Frame→True,PlotStyle→RGBColor[1,0,0]],{c,-1,3}]程序运行结果如下:实验结果和结果分析观察图可得:第一幅图:极大值点为,驻点为,单调区间为增、,减、,凸区间为、,凹区间为,渐近线为水平,垂直, .第二幅图:极大值点为,驻点为,单调区间为增、,减、,凸区间为、,凹区间.第三幅图:没有极值点,没有驻点,单调增区间为,单调减区间为,凸区间为、.第四、五幅图:极大值点为,驻点为,单调区间为增,减,凸区间为、.实验三:泰勒公式与函数逼近一、实验目的利用Mathematica计算函数的各阶泰勒多项式,并通过绘制曲线图形,根据图形观察泰勒展开的误差,进一步掌握泰勒展开与函数逼近的思想,并对泰勒公式与原函数作出比较。
Mathematica基础数学实验5
), g ( x ) sin
x
3
5 4
ቤተ መጻሕፍቲ ባይዱ
,
实验五 微分学应用
一、实验目的
掌握用mathematica软件包了解和掌握方程(组) 的近似解法, 函数的极值, 以及一元函数的单调性, 凹 凸性等.
二、学习mathematica命令
1. 求方程f(x)=0精确解的命令: Solve[f[x]==0, x]; Reduce[f[x]==0, x]. 2. 求方程f(x)=0近似解的命令: NSolve[f[x]==0,x,n], 其中n表示解的精度; FindRoot[f[x]==0, {x,x0},选项],求解方程f(x)=0在 x0附近的近似根. FindRoot[f[x]==0, {x,x0,x1},选项], 求解方程 f(x)=0在x0, x1之间的近似根.
FindRoot中的主要选项有: MaxIteration->n, 最大迭代次数, 默认值是15; WorkingPrecision->n, 计算中保持的有效数字位 数, 默认值是16位. 1.中的两个命令可以有未知参数, 2.中则不可以. 3. 消去变量, 化简方程组的命令: Eliminate[{方程组},{要消去的变量(组)}] 4. 求函数极小值的命令: FindMinimum[f[x],{x,x0},选项]. 当欲求最大值时, 可用–f(x). 其主要选项与FindRoot中的相同. 5. 求最优值命令: Minimize[{目标函数,条件},{变量组}]; 程序 Maximize[{目标函数,条件},{变量组}];
练习:
1. 作函数 y
x2 x 4 x1
及其导函数的图形, 并求
函数的单调区间和极值. 2. 作函数y=x4+2x3–72x2+70x+24及其二阶导函数 在区间[–8, 7]上的图形, 并求该函数的凹凸区间和拐点.
数学实验-Mathematic应用实验
目录实验01 基本语法 (1)实验02 一元函数极限与导数运算 (8)实验03 一元函数微分学及其应用 (20)实验04 一元函数积分学及其应用 (33)实验05 绘制空间图形 (43)实验06 多元函数微分学 (61)实验07 多元函数积分学 (72)实验08 无穷级数及其应用 (82)实验09 常微分方程及其应用 (94)实验10 编程 (106)实验01 基本语法实验内容:Mathematica软件在数值计算、符号计算、编程方面的基本语法数据类型在Mathematic中,基本的数据类型有四种:整数、有理数、实数和复数。
整数与整数的计算结果是精确的整数或有理数。
例如2的100次方是一个31位的整数:ln[1]:=2^100Out[1]=1267650600228228229401496703205376有理数是由两个整数的比来组成如:In[2]:=12345/5555Out[2]=2469 1111实数有两种表示形式:(1)用数学表达式精确表示,例如:2(2)用浮点数近似表示,包括小数形式和指数形式。
例如:In[3]:=0.239998In[4]:=1.23*^12复数是由实部和虚部组成,实部和虚部可以用整数、实数、有理数表示。
用I表示虚数单位。
如:In[6]:=3+0.7I数值类型转换在Mathematica中的提供以下几个函数达到转换的目的:函数功能N[x] 将x转换成实数(有效位一般为6位)N[x,n] 将x转换成近似实数,精度为nRationalize[x] 给出x的有理数近似值Rationalize[x,dx] 给出x的有理数近似值,误差小于dx 举例:In[1]:=N[5/3,20]Out[1]=1.6666666666666666667In[2]:=Rationalize[%]Out[2]=5 3数学常数Mathematica定义了一些常见的数学常数,这些数学常数都是精确数。
常数意义Pi 表示π=3.14159……E 自然对数的底e=2.71828……Degree 1度,π/180弧度I 虚数单位iInfinity 无穷大∞数学常数表示精确值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)命令:
结果:
二.(1)命令:
结果:
(2)命令:
结果:
(3)命令:
结果:
(4)命令:
结果:
三.(1)命令:
结果:
命令:
结果:
四.命令:
结果:
五.命令:
结果:
成绩评定:1.程序、命令()A准确、简洁、效率高;B命令基本准确,但有少量问题;C部分命令有问题;
D许多命令都有问题或错误.
2.运行结果()A准确,表现效果好;B正确;C部分结果不准确;D有较严重错误.
3.其它问题______________________________________________________________________.
4.综合评定()A优秀;B良好;C合格;D不合格;E有明显抄袭或雷同现象.
新疆财经大学《数学软件》实验报告
实验5 Mathematics数值计算
班级专业:应用数学姓名:崔仁霞学号:2008101427日期:2010.11.各种数值计算命令;
2.掌握导数、积分、求根、求解规划问题等数值计算方法;
二、实验准备
命令:/.x->x0、NIntegrate、FindRoot、NDSolve、LinearProgramming、FindMinimum等命令
三、实验内容
1.计算下列函数值
(1) ,求当 时的值;
(2) ,求当 时 与 的值;
2.计算下列定积分.
(1) ;(2) ;(3) ;(4) ;
3.求下列方程的近似根
(1) (有唯一实根);
(2) (有三实根).
4.求线性规划(先写标准型,再求解)
;
5.求解非线性规划
(1)
四、程序、命令与结果
一.(1)命令: