开关电源EMI设计-电源PCB设计要点

合集下载

电源PCB设计注意事项及经验

电源PCB设计注意事项及经验

电源PCB设计注意事项及经验1.确定功率需求:首先需要明确电源的功率需求,包括输入和输出电压、电流的范围。

这可以帮助选择合适的元件和设计适当的线路布局。

2.分开地平面:在设计电源PCB时,最好采用分开的地平面。

将输入和输出部分的地平面分开,可以减少干扰,并提高信号完整性。

3.短路保护:为了避免短路引起的问题,应该在设计中加入短路保护电路。

短路保护电路可以监测电流并在达到预定阈值时切断电源。

4.降噪滤波:电源的稳定性非常关键,因此在设计中应该考虑降低噪声的滤波电路。

可以使用电容和电感器来滤除高频噪声。

5.散热设计:电源PCB在工作时会产生热量。

为了确保稳定性和可靠性,需要设计合适的散热系统,如散热片或散热器。

6.安全性考虑:在设计电源PCB时,安全是非常重要的。

应该采取必要的安全措施,如过压保护、过流保护和过温保护。

7.电源PCB尺寸:电源PCB的尺寸应该根据设备的需求来进行调整。

尽量保持尺寸小巧,以节省空间和成本。

8.接地设计:接地是电源PCB设计中的一个关键问题。

良好的接地设计可以减少电磁干扰和信号损失。

应尽量避免共地,可以采用保持短而直接的接地路径,并使用大地平面来降低噪声。

9.充分测试:在将电源PCB投入量产之前,必须进行充分的测试。

测试可以包括功率测试、效率测试、负载稳定性测试等,以确保电源的工作正常。

10.参考设计:如果缺乏经验,可以参考已有的电源PCB设计进行学习和借鉴。

也可以寻求专业人士的建议和指导,以确保设计的正确性和可靠性。

总之,电源PCB的设计需要考虑很多因素,包括功率需求、短路保护、降噪滤波、散热设计、安全性等。

通过合理的设计和充分的测试,可以获得一套稳定可靠的电源PCB。

开关电源的EMI设计

开关电源的EMI设计

图1:脉冲信号开关电源的EMI 设计摘要:本文从电路原理上分析了开关电源EMI 信号的特点及频率范围,并针对其传导发射和辐射发射提出一些抑制措施。

术语:开关电源,电磁干扰(EMI ),脉冲宽度调制(PWM )一. 前言由于开关电源在重量、体积、用铜用铁及能耗等方面都比线性电源有显著减少,而且对整机多项指标有良好影响,因此得到了广泛的应用。

近年来许多领域,如邮电通信、军用设备、交通设施、仪器仪表、工业设备、家用电器等都越来越多应用开关电源,取得了显著效益。

现在开关电源一般都采用了脉冲宽度调制(PWM )技术,其特点是:频率高、效益高、功率密度高、可靠性高。

然而,由于开关电源工作在通断状态,会有很多快速瞬变过程,它本身就是一种EMI 源,它产生的EMI 信号有很宽的频率范围,又有一定的幅度。

若把这种电源直接用于数字设备,则设备产生的EMI 信号会变得更加强烈和复杂。

以下便从开关电源的工作原理出发,探讨其传导干扰抑制的EMI 滤波器的设计以及辐射发射的抑制。

本文主要参考的实例是微机的开关电源,其输出功率较小,对于大电流大功率的通讯设备电源,本文也有一定的参考价值,但具体实施时一定要考虑到通讯设备电源大电流大功率的特点,在元件的选择上要注意其额定电流及高频特性。

二. 开关电源产生EMI 信号的特点数字设备中的逻辑关系是用脉冲信号来表示。

为便于分析,把这种脉冲信号适当简化,可以图1所示的等腰梯形脉冲串表示。

根据傅里叶级数展开的方法,可以下式计算出脉冲串信号所有各谐波的电平:n=1、2、3…A n 脉冲中第n 次谐波的电平V 0 脉冲的电平T 脉冲串的周期T w 脉冲宽度T r 脉冲的上升时间和下降时间开关电源具有各式各样的电路形式,但它们的核心部分都是一个高电压、大电流的受控脉冲信号源,这一点是共同的,为便于分析,也可把该脉冲信号源的波形简化为图1中的等腰梯形脉冲串,并用上式来算出它的各次谐波电平。

假定某PWM 开关电源脉冲信号的主要参数为: V 0=500V ,T =2×10-5S ,T w =10-5S ,T r =0.4×10-T T n TT n Sin T T n T T n Sin T T V A ww r r w n ππππ∙∙=026S,则其谐波电平如下图:电平(dBuV)16012080400.05 0.5 5 50 500 频率(MHz)图2:开关电源的谐波电平从EMI的观点来分析,图2中开关电源内脉冲信号产生的谐波电平,对于其它电子设备来说即是EMI信号。

电源电路emi设计

电源电路emi设计

电源电路emi设计一、概述电源电路的EMI(电磁干扰)设计是确保电子设备稳定运行的关键环节。

以下介绍电源电路EMI设计的各个方面,包括输入滤波器设计、输出滤波器设计、接地设计、屏蔽设计、布局设计、电缆设计、去耦电容设计、电源模块选择、传导干扰抑制和辐射干扰抑制。

二、输入滤波器设计输入滤波器的主要目的是减小电源线上的传导干扰。

设计时应考虑使用低通滤波器,以减小高频率的噪声。

同时,要选择适当的元件参数,以在不影响正常工作电流的情况下,有效滤除噪声。

三、输出滤波器设计输出滤波器的目的是减小设备对外的电磁辐射。

应使用适当阶数和元件参数的滤波器,并根据设备的工作频率和可能的辐射频率来确定滤波器的特性。

四、接地设计良好的接地是EMI设计的关键。

应选择适当的接地方式,如单点接地、多点接地或混合接地,以减小接地阻抗,降低因地线导致的电压降,从而减小共模电流。

五、屏蔽设计屏蔽是减少电磁辐射的有效方法。

可以使用金属屏蔽材料对电源线和电源组件进行屏蔽,以减少外部电磁场对设备的影响和设备对外部的电磁辐射。

六、布局设计电源电路的布局设计对于EMI控制至关重要。

应合理安排电源电路中各元件的位置,尽量减小元件间的电磁耦合,降低噪声的传播。

七、电缆设计电缆是电磁干扰的主要传播途径之一。

应选择低阻抗、低感抗的电缆,并进行合理的电缆布局和捆扎,以减小电缆对电磁干扰的传播。

八、去耦电容设计去耦电容可以减小电源中的噪声,提高电路的稳定性。

在电路板上的关键元件附近应合理放置去耦电容,并选择适当的电容值和耐压值。

九、电源模块选择在电源模块的选择上,应优先考虑具有良好EMI性能的模块。

这可以大大简化EMI设计的难度,提高系统的稳定性。

十、传导干扰抑制传导干扰可以通过在设备的输入端加装滤波器来抑制。

根据干扰的频率和强度,可以选择使用各种不同类型的滤波器,如π型滤波器、级联滤波器等。

此外,合理选择和使用电容器、电感器等元件,也可以有效地抑制传导干扰。

开关电源设计时的PCB规范及走线技巧

开关电源设计时的PCB规范及走线技巧

开关电源PCB设计原则及走线技巧一、引言开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。

因为开关三极管总是工作在“开”和“关”的状态,所以叫开关电源。

开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。

开关电源与变压器相比具有效率高、稳性好、体积小等优点,缺点是功率相对较小,而且会对电路产生高频干扰,变压器反馈式振荡电路,能产生有规律的脉冲电流或电压的电路叫振荡电路,变压器反馈式振荡电路就是能满足这种条件的电路。

开关电源分为,隔离与非隔离两种形式,在这里主要谈一谈隔离式开关电源的拓扑形式,在下文中,非特别说明,均指隔离电源。

隔离电源按照结构形式不同,可分为两大类:正激式和反激式。

反激式指在变压器原边导通时副边截止,变压器储能。

原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管多,双管的不常见。

正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。

按规格又可分为常规正激,包括单管正激,双管正激。

半桥、桥式电路都属于正激电路。

正激和反激电路各有其特点,在设计电路的过程中为达到最优性价比,可以灵活运用。

一般在小功率场合可选用反激式。

稍微大一些可采用单管正激电路,中等功率可采用双管正激电路或半桥电路,低电压时采用推挽电路,与半桥工作状态相同。

大功率输出,一般采用桥式电路,低压也可采用推挽电路。

反激式电源因其结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。

在有些介绍中讲到反激式电源功率只能做到几十瓦,输出功率超过100瓦就没有优势,实现起来有难度。

本人认为一般情况下是这样的,但也不能一概而论,PI公司的TOP芯片就可做到300瓦,有文章介绍反激电源可做到上千瓦,但没见过实物。

输出功率大小与输出电压高低有关。

反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。

开关电源的pcb设计规范

开关电源的pcb设计规范

开关电源的PCB设计规范在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析:一、从原理图到PCB的设计流程建立元件参数->输入原理网表->设计参数设置->手工布局->手工布线->验证设计->复查->CAM输出.二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些.最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil. 焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损.当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开.三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响.例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法.每一个开关电源都有四个电流回路: 1. 电源开关交流回路2. 输出整流交流回路3. 输入信号源电流回路4. 输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量.所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去.电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns.这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路,每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短.建立开关电源布局的最好方法与其电气设计相似,最佳设计流程如下:·放置变压器·设计电源开关电流回路·设计输出整流器电流回路·连接到交流电源电路的控制电路·设计输入电流源回路和输入滤波器设计输出负载回路和输出滤波器根据电路的功能单元,对电路的全部元器件进行布局时,要符合以下原则:1 首先要考虑PCB尺寸大小.PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小则散热不好,且邻近线条易受干扰.电路板的最佳形状矩形,长宽比为3:2或4:3,位于电路板边缘的元器件,离电路板边缘一般不小于2mm.2 放置器件时要考虑以后的焊接,不要太密集.3 以每个功能电路的核心元件为中心,围绕它来进行布局.元器件应均匀、整齐、紧凑地排列在PCB上,尽量减少和缩短各元器件之间的引线和连接, 去耦电容尽量靠近器件的VCC.4 在高频下工作的电路,要考虑元器件之间的分布参数.一般电路应尽可能使元器件平行排列.这样,不但美观,而且装焊容易,易于批量生产.5 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向.6 布局的首要原则是保证布线的布通率,移动器件时注意飞线的连接,把有连线关系的器件放在一起.7 尽可能地减小环路面积,以抑制开关电源的辐射干扰.四、布线开关电源中包含有高频信号,PCB上任何印制线都可以起到天线的作用,印制线的长度和宽度会影响其阻抗和感抗,从而影响频率响应.即使是通过直流信号的印制线也会从邻近的印制线耦合到射频信号并造成电路问题甚至再次辐射出干扰信号.因此应将所有通过交流电流的印制线设计得尽可能短而宽,这意味着必须将所有连接到印制线和连接到其他电源线的元器件放置得很近.印制线的长度与其表现出的电感量和阻抗成正比,而宽度则与印制线的电感量和阻抗成反比.长度反映出印制线响应的波长,长度越长,印制线能发送和接收电磁波的频率越低,它就能辐射出更多的射频能量.根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻. 同时、使电源线、地线的走向和电流的方向一致,这样有助于增强抗噪声能力.接地是开关电源四个电流回路的底层支路,作为电路的公共参考点起着很重要的作用,它是控制干扰的重要方法.因此,在布局中应仔细考虑接地线的放置,将各种接地混合会造成电源工作不稳定.在地线设计中应注意以下几点:1. 正确选择单点接地通常,滤波电容公共端应是其它的接地点耦合到大电流的交流地的唯一连接点,同一级电路的接地点应尽量靠近,并且本级电路的电源滤波电容也应接在该级接地点上,主要是考虑电路各部分回流到地的电流是变化的,因实际流过的线路的阻抗会导致电路各部分地电位的变化而引入干扰.在本开关电源中,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而采用一点接地,即将电源开关电流回路中的几个器件的地线都连到接地脚上,输出整流器电流回路的几个器件的地线也同样接到相应的滤波电容的接地脚上,这样电源工作较稳定,不易自激.做不到单点时,在共地处接两二极管或一小电阻,其实接在比较集中的一块铜箔处就可以.2. 尽量加粗接地线若接地线很细,接地电位则随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏,因此要确保每一个大电流的接地端采用尽量短而宽的印制线,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,如有可能,接地线的宽度应大于3mm,也可用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用.进行全局布线的时候,还须遵循以下原则:1.布线方向:从焊接面看,元件的排列方位尽可能保持与原理图相一致,布线方向最好与电路图走线方向相一致,因生产过程中通常需要在焊接面进行各种参数的检测,故这样做便于生产中的检查,调试及检修注:指在满足电路性能及整机安装与面板布局要求的前提下.2.设计布线图时走线尽量少拐弯,印刷弧上的线宽不要突变,导线拐角应≥90度,力求线条简单明了.3.印刷电路中不允许有交叉电路,对于可能交叉的线条,可以用“钻”、“绕”两种办法解决.即让某引线从别的电阻、电容、三极管脚下的空隙处“钻”过去,或从可能交叉的某条引线的一端“绕”过去,在特殊情况下如何电路很复杂,为简化设计也允许用导线跨接,解决交叉电路问题.因采用单面板,直插元件位于top面,表贴器件位于bottom 面,所以在布局的时候直插器件可与表贴器件交叠,但要避免焊盘重叠. 3.输入地与输出地本开关电源中为低压的DC-DC,欲将输出电压反馈回变压器的初级,两边的电路应有共同的参考地,所以在对两边的地线分别铺铜之后,还要连接在一起,形成共同的地.五、检查布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查线与线、线与元件焊盘、线与贯通孔、元件焊盘与贯通孔、贯通孔与贯通孔之间的距离是否合理,是否满足生产要求. 电源线和地线的宽度是否合适,在PCB中是否还有能让地线加宽的地方.注意:有些错误可以忽略,例如有些接插件的Outline的一部分放在了板框外,检查间距时会出错;另外每次修改过走线和过孔之后,都要重新覆铜一次.六、复查根据“PCB检查表”,内容包括设计规则,层定义、线宽、间距、焊盘、过孔设置,还要重点复查器件布局的合理性,电源、地线网络的走线,高速时钟网络的走线与屏蔽,去耦电容的摆放和连接等.七、设计输出输出光绘文件的注意事项:a. 需要输出的层有布线层底层、丝印层包括顶层丝印、底层丝印、阻焊层底层阻焊、钻孔层底层,另外还要生成钻孔文件NC Drillb. 设置丝印层的Layer时,不要选择Part Type,选择顶层底层和丝印层的Outline、Text、Linec. 在设置每层的Layer时,将Board Outline选上,设置丝印层的Layer时,不要选择Part Type,选择顶层底层和丝印层的Outline、Text、Line.d. 生成钻孔文件时,使用PowerPCB的缺省设置,不要作任何改.。

PCB EMI设计规范

PCB EMI设计规范

PCB EMI设计规范IC的电源PIN都有一个0.1UF的去耦电容,对于BGA CHIP,要求在BGA的四角分别有0.1UF、0.01UF的电容共8个。

对PCB走线的电源尤其要注意加滤波电容,如VTT等。

这不仅对稳定性有影响,对EMI也有很大的影响。

1 、IC的电源处理1.1)保证每个IC的电源PIN都有一个0.1UF的去耦电容,对于BGA CHIP,要求在BGA的四角分别有0.1UF、0.01UF的电容共8个。

对PCB走线的电源尤其要注意加滤波电容,如VTT 等。

这不仅对稳定性有影响,对EMI也有很大的影响。

2、时钟线的处理2.1)建议先走时钟线。

2.2)频率大于等于66M的时钟线,每条过孔数不要超过2个,平均不得超过1.5个。

2.3)频率小于66M的时钟线,每条过孔数不要超过3个,平均不得超过2.5个2.4)长度超过12inch的时钟线,如果频率大于20M,过孔数不得超过2个。

2.5)如果时钟线有过孔,在过孔的相邻位置,在第二层(地层)和第三层(电源层)之间加一个旁路电容,以确保时钟线换层后,参考层(相邻层)的高频电流的回路连续。

旁路电容所在的电源层必须是过孔穿过的电源层,并尽可能地靠近过孔,旁路电容与过孔的间距最大不超过300MIL。

2.6)所有时钟线原则上不可以穿岛。

下面列举了穿岛的四种情形。

2.6.1) 跨岛出现在电源岛与电源岛之间。

此时时钟线在第四层的背面PCB走线,第三层(电源层)有两个电源岛,且第四层的PCB走线必须跨过这两个岛。

2.6.2) 跨岛出现在电源岛与地岛之间。

此时时钟线在第四层的背面PCB走线,第三层(电源层)的一个电源岛中间有一块地岛,且第四层的PCB走线必须跨过这两个岛。

如图2.6-2所示。

2.6.3) 跨岛出现在地岛与地层之间。

此时时钟线在第一层PCB走线,第二层(地层)的中间有一块地岛,且第一层的PCB走线必须跨过地岛,相当于地线被中断。

如图2.6-3所示。

2.6.4) 时钟线下面没有铺铜。

降低EMI的layout及走线技巧

降低EMI的layout及走线技巧

开关电源的PCB布线设计开关电源PCB排版是开发电源产品中的一个重要过程。

许多情况下,一个在纸上设计得非常完美的电源可能在初次调试时无法正常工作,原因是该电源的PCB排版存在着许多问题.0、引言为了适应电子产品飞快的更新换代节奏,产品设计工程师更倾向于选择在市场上很容易采购到的AC/DC适配器,并把多组直流电源直接安装在系统的线路板上。

由于开关电源产生的电磁干扰会影响到其电子产品的正常工作,正确的电源PCB排版就变得非常重要。

开关电源PCB排版与数字电路PCB排版完全不一样。

在数字电路排版中,许多数字芯片可以通过PCB软件来自动排列,且芯片之间的连接线可以通过PCB软件来自动连接。

用自动排版方式排出的开关电源肯定无法正常工作。

所以,没计人员需要对开关电源PCB排版基本规则和开关电源工作原理有一定的了解。

1、开关电源PCB排版基本要点1.1 电容高频滤波特性图1是电容器基本结构和高频等效模型。

电容的基本公式是式(1)显示,减小电容器极板之间的距离(d)和增加极板的截面积(A)将增加电容器的电容量。

电容通常存在等效串联电阻(ESR)和等效串联电感(ESL)二个寄生参数。

图2是电容器在不同工作频率下的阻抗(Zc)。

一个电容器的谐振频率(fo)可以从它自身电容量(C)和等效串联电感量(LESL)得到,即当一个电容器工作频率在fo以下时,其阻抗随频率的上升而减小,即当电容器工作频率在fo以上时,其阻抗会随频率的上升而增加,即当电容器工作频率接近fo时,电容阻抗就等于它的等效串联电阻(RESR)。

电解电容器一般都有很大的电容量和很大的等效串联电感。

由于它的谐振频率很低,所以只能使用在低频滤波上。

钽电容器一般都有较大电容量和较小等效串联电感,因而它的谐振频率会高于电解电容器,并能使用在中高频滤波上。

瓷片电容器电容量和等效串联电感一般都很小,因而它的谐振频率远高于电解电容器和钽电容器,所以能使用在高频滤波和旁路电路上。

开关电源PCB设计要点及实例分析

开关电源PCB设计要点及实例分析

开关电源PCB设计要点及实例分析开关电源PCB设计要点及实例分析开关电源PCB设计要点及实例分析为了适应电子产品飞快的更新换代节奏,产品设计工程师更倾向于选择在市场上很容易采购到的AC/DC适配器,并把多组直流电源直接安装在系统的线路板上。

由于开关电源产生的电磁干扰会影响到其电子产品的正常工作,正确的电源PCB设计就变得非常重要。

开关电源PCB设计与数字电路PCB设计完全不一样。

在数字电路排版中,许多数字芯片可以通过PCB软件来自动排列,且芯片之间的连接线可以通过PCB软件来自动连接。

用自动排版方式排出的开关电源肯定无法正常工作。

所以,设计人员需要对开关电源PCB设计基本规则和开关电源工作原理有一定的了解。

1 开关电源PCB设计基本要点1.1 电容高频滤波特性图1是电容器基本结构和高频等效模型。

图1 电容器结构和寄生等效串联电阻和电感电容的基本公式是C=Εrε0 (1)式(1)显示,减小电容器极板之间的距离(D)和增加极板的截面积(A)将增加电容器的电容量。

电容通常存在等效串联电阻(ESR)和等效串联电感(ESL)二个寄生参数。

图2是电容器在不同工作频率下的阻抗(ZC)。

图2 电容阻抗(ZC)曲线一个电容器的谐振频率(F0)可以从它自身电容量(C)和等效串联电感量(LESL)得到,即F0= (2)当一个电容器工作频率在F0以下时,其阻抗随频率的上升而减小,即ZC= (3)当电容器工作频率在F0以上时,其阻抗会随频率的上升而增加,即ZC=J2πfLESL(4)当电容器工作频率接近F0时,电容阻抗就等于它的等效串联电阻(RESR)。

电解电容器一般都有很大的电容量和很大的等效串联电感。

由于它的谐振频率很低,所以只能使用在低频滤波上。

钽电容器一般都有较大电容量和较小等效串联电感,因而它的谐振频率会高于电解电容器,并能使用在中高频滤波上。

瓷片电容器电容量和等效串联电感一般都很小,因而它的谐振频率远高于电解电容器和钽电容器,所以能使用在高频滤波和旁路电路上。

开关电源PCB布局指南

开关电源PCB布局指南

开关电源PCB布局指南开关电源是一种常见的电源供应器件,可将输入电压转换为所需的输出电压,广泛应用于各种电子设备中。

为了确保开关电源的正常运行和安全性,合理的PCB布局设计是非常重要的。

下面是一些开关电源PCB布局的指南。

1.分离高频和低频部分开关电源由高频和低频电路组成,应将它们分离开来以避免互相干扰。

将高频部分放在一块区域,并采取适当的隔离措施,例如增加地平面间距和降噪电容。

2.确保良好的地面平面地面平面是开关电源PCB布局的关键之一、地面平面应尽可能大,并尽量避免断裂和断层,以提供稳定的地面引用。

在地面平面上加入一些分隔岛来隔离高频和低频部分。

3.确保短而粗的电流路径为了减少损耗和EMI干扰,应尽量缩短电流路径。

合理优化布局,使输入和输出的电流路径尽量短。

同时,应采用足够宽的供电和接地线,以降低电阻和电感。

4.高频组件的布局高频组件包括开关管、变压器和滤波电容器等。

这些组件之间应尽量缩短距离,以降低电感和串扰。

变压器应放置在开关管附近,并与开关管垂直放置,以减少磁耦合和电感。

5.散热片和散热孔的布局开关电源的工作过程中会产生较大的热量,因此必须确保良好的散热能力。

散热片应尽量与功率器件接触紧密,并通过散热孔将热量导出。

散热片和散热孔的布局要合理,以确保均匀散热和良好的风流。

6.调试界面和滤波器为了便于调试和测量,应在PCB上设置相应的调试接口。

此外,为了减少EMI干扰,应在输入和输出端口附近添加合适的滤波器,以滤除高频噪声。

7.引脚位置和距离组件的引脚位置和距离对于开关电源的性能和可靠性至关重要。

引脚之间应尽量保持足够的距离,以避免串扰和短路。

同时,引脚的布局也应考虑到易于焊接和布线的因素。

8.信号和功率的分离为了避免信号和功率互相干扰,应尽量将它们分离开来。

信号线和电源线应尽量平行布置,但不要交叉或靠得太近。

此外,还可以在它们之间添加隔离层或屏蔽层,并使用差分传输线来减少干扰。

以上是关于开关电源PCB布局的一些指南。

开关电源电磁干扰(EMI)整改汇总要点

开关电源电磁干扰(EMI)整改汇总要点

开关电源电磁干扰(EMI整改汇总开关电源类产品的频率大概分四段:150K-400K-4M-20M-30M,这样分的好处是找问题迅速,一般前一段的主要问题在于滤波元器件上。

小功率开关电源用一个合适的X电容和一个共模电感可消除,从增加的元件对测试结果来看,一般电感对AV值有效,电容对QP值有效。

当然,这只是一般规律。

电容越大,滤除的频率越低。

电感越大(适可而止),滤除的频率越高。

400K-4M这一段主要是开关管,变压器等的干扰。

可以在管与散热片之间加屏蔽层(云母片),或者在引脚上套磁珠。

吸收电路上套磁珠有时也很有效。

变压器初次级之间的Y电容也是不容忽视的。

次级对初级高压端合适还是低压端有时候对这段频率影响很大。

除此之外,调整滤波器也可以抑制其骚扰。

4M-20M这段主要是变压器等高频干扰,在没有找到根源前,大概通过调整滤波,接地,加磁珠等手段解除,有时也可能是输出端的问题。

20M以后主要针对齐纳二级管,输出端电源输入端整改。

一般是用到磁珠,接地等。

值得注意的是,滤波器件因该远离变压器,散热器,否则容易耦合。

镇流器整改原理和开关电源类似,但是前部分超标并非调整滤波器件就都可以解除,最有效的办法是Y电容金属外壳,外壳再连接地线。

磁珠对高频抑制效果不错。

根据IEC 60384-14,电容器分为X电容及Y电容,1. X电容是指跨于L-N之间的电容器,2. Y电容是指跨于L-G/N-G之间的电容器。

(L="Line", N="Neutral", G="Ground"X电容底下又分为X1, X2, X3,主要差別在于:1. X1耐高压大于2.5 kV, 小于等于4 kV,2. X2耐高压小于等于2.5 kV,3. X3耐高压小于等于1.2 kVY电容底下又分为Y1, Y2, Y3,Y4, 主要差別在于:1. Y1耐高压大于8 kV,2. Y2耐高压大于5 kV,3. Y3耐高压 n/a4. Y4耐高压大于2.5 kVX,Y电容都是安规电容,火线零线间的是X电容,火线与地间的是Y电容.它们用在电源滤波器里,起到电源滤波作用,分别对共模,差模工扰起滤波作用.作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板 (PCB走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度。

开关电源EMI滤波器原理与设计

开关电源EMI滤波器原理与设计

02
EMI滤波器的工作原 理
EMI滤波器的电路组成
EMI滤波器通常由电感、电容和电阻等元件组成,根据需要还可以加入铁氧体磁 珠、二极管等其他元件。其中,电感和电容的作用是阻止特定频率的电磁波通过 ,而电阻则可以吸收电磁波的能量。
EMI滤波器的电路设计需要根据开关电源的工作频率、电磁干扰的频率和幅度、 以及所需的滤波效果等因素来确定元件的参数和电路结构。
利用仿真软件对所设计 的滤波器电路进行仿真 验证,确保其性能指标 符合要求。
将所设计的滤波器电路 制作成样品,并进行测 试,确保其实际性能符 合设计要求。
参数选择与Leabharlann 算确定插入损耗插入损耗是指滤波器插入前后信 号电平的差值,是衡量滤波器性 能的重要指标之一。插入损耗的 计算方法包括频域法和时域法等
EMI滤波器的频带宽度表示其 能够抑制的电磁波频率范围。 频带越窄,表示滤波器对电磁 波的抑制效果越集中;频带越 宽,表示滤波器对电磁波的抑 制效果越广泛。
EMI滤波器的耐压等级表示其 能够承受的最大电压。在选择 滤波器时,需要根据开关电源 的最大输出电压来确定耐压等 级。
03
EMI滤波器的设计方 法
方法
根据电源的特性,选择合 适的EMI滤波器器件,包 括电容器、电感器、二极 管等,进行电路设计。
结果
通过优化设计,有效地降 低了电源的电磁干扰,提 高了电源的稳定性和可靠 性。
案例二
1 2 3
背景
某复杂电路板在运行过程中出现了信号失真和噪 声干扰问题,需要进行EMI滤波器优化设计。
方法
对电路板进行电磁兼容性分析,找出电磁干扰的 主要来源,选择合适的EMI滤波器器件和电路拓 扑结构,进行优化设计。
VS

开关电源PCB Layout注意事项

开关电源PCB Layout注意事项

開關電源PCB Layout一般要求PCB Layout是開關電源研發過程中的极為重要的步驟和環節,關系到開關電源能否正常工作,生產是否順利進行,使用是否安全等問題。

開關電源PCB Layout比起其它產品PCB Layout來說都要複雜和困難,要考慮的問題要多得多,歸納起來主要有以下幾個方面的要求:一.電路要求1.PCB 中的元器件必須與BOM一致。

2.線條走線必須符合原理圖,利用網絡連線可以輕做到這一點。

3.線條寬度必須滿足最大電流要求,不得小於1mm/1A,以保證線條溫升不超過℃.為了減少電壓降有時還必須加寬寬度。

4.為了減小電壓降和損耗,視需要在線條上鍍錫。

二.安規要求1. 一次側和二次側電路要用隔離帶隔開,隔離帶清晰明確. 靠隔離帶的元件,在10N的推力作用下應保持電氣距離要求。

2. 隔離帶中線要用1mm的絲印虛線隔開,並在高壓區標識DANGER / HIGH VOLTAGE。

3. 各電路間電氣間隙(空間距離):(1) 一次側交流部分: 保險絲前L-N≧2..5mmL.N↔大地(PE)≧2. 5mm保險絲後不做要求.(2) 一次側交流對直流部分≧2mm(3) 一次側直流地對大地≧4mm(4) 一次側對二次側部分4mm(一二次側元件之間)(5) 二次側部分: 電壓低於100V≧0.5mm電壓高於100 V(6) 二次側地對大地≧1mm4. 各電路間的爬電距離:(1) 一次側交流電部分: 保險絲前L-N≧2..5mmL.N↔大地(PE)≧2. 5mm保險絲後不做要求.(2) 一次側交流對直流部分≧2mm(3) 一次側直流地對大地≧4mm(4) 一次側對二次側≧6.4mm光耦,Y電容,腳間距≦6.4時要開槽。

(5) 二次側部分之間:電壓低於100V時≧0.5mm; 電壓高於100V時,按電壓計算。

(6) 二次側對大地≧2mm.(7) 變壓器二次側之間≧8mm5. 導線與PCB邊緣距離應≧1mm6. PCB上的導電部分與機殼之空間距離小於4 mm時, 應加0.4 mm麥拉片。

开关电源emi滤波器原理与设计

开关电源emi滤波器原理与设计

1. 传导发射测试:测量开关电源EMI滤波器在电源线上 的传导发射电平。
3. 插入损耗测试:测量滤波器插入前后信号的衰减量, 反映滤波器的抑制能力。
测试结果分析与改进建议
结果分析
根据测试数据,分析开关电源EMI滤波器的性能,包括传导发射、辐射发射和 插入损耗等指标。
改进建议
根据分析结果,提出针对性的改进措施和建议,如优化滤波器电路设计、改进 元件参数等,以提高滤波器的性能。
05
开关电源EMI滤波器应用案例 分析
应用场景与案例选择
应用场景
开关电源广泛应用于各种电子设备中,如计算机、通信设备、家电等。在这些设 备中,EMI(电磁干扰)问题常常成为影响设备性能和稳定性的重要因素。
案例选择
为了更好地说明开关电源EMI滤波器的应用,本文选择了两个具有代表性的案例 进行分析,分别是计算机电源供应系统(PSU)和电动汽车充电桩。
03
开关电源EMI滤波器元件选择 与布局
元件选择的原则与技巧
元件选择的原则 选择低ESR(等效串联电阻)电容 选择低DCR(直流电阻)电感
元件选择的原则与技巧
选择低电阻、低电感的PCB(印刷电路板) 元件选择的技巧
根据EMI滤波器的性能要求,选择适当的元件值和类型
元件选择的原则与技巧
考虑元件的可靠性、耐温性能和寿命
考虑元件的成本和可获得性
元件布局的要点与注意事项
元件布局的要点 合理安排输入和输出线,避免平行布线
尽量减小电感器和电容器的距离
元件布局的要点与注意事项
输入和输出线应远离 PCB边缘
避免在PCB上形成大 的环路
元件布局的注意事项
元件布局的要点与注意事项
避免使用过长的元件引脚

开关电源PCB设计规范

开关电源PCB设计规范

开关电源PCB设计规范一、安全距离(AC100V~240V)1, 保险之前标准,基本绝缘的电源距离≥2.5mm,加强绝缘的电源≥3.4mm,不足则开槽,槽宽≥0.8 mm.2, 保险之后到整流桥的距离200VRMS/1mm,整流桥后400VDC距离应≥1.0 mm.3, 初次级之间距离≥6 mm不足则PCB开槽, 槽宽≥0.8 mm.4, 不同电路中信号的走线及低压电路线与线之间距离不≥0.2 mm.,输出功率电路线与线之间距离不小于0.3 mm.焊盘和焊盘不小于0.6 mm .保护地和初级之间标准距离基本绝缘≥4.0 mm,加强绝缘≥5.0mm.二、EMI1, 主K的功率回路尽可能做到短小,吸收电路应紧靠变压器初级布置,吸收电路尽量短小.2, 从变压器次级到第一级滤波电容的环路尽量短小.3, 凡滤波电容的正极焊盘必须开槽(包括输入大电解,输出电解,VCC滤波电解)4, 凡EMI滤波器中的X电容焊盘必须开槽,若某种原因无法开槽者,必须把滤波电路的阻抗做小.5, 对于跨接在初次级间的Y1电容,在功率≤20W,Y1电容高压侧可以和IC,变压器散热片共地,但次级必须独立引出地线.功率>20W,Y1电容两侧必须独立接地.6, EMI滤波器中的差模和共模电感必须与变压器磁场方向正交,并且最大程度远离主功率变换部分.7, EMI滤波器走线必须短小,一目了然,不要有太多弯拆.如果位置足够大,则EMI滤波器所有元件呈直线排列,连线最短小.8, 输出主整流管必须有吸收电路,并最大限度靠近整流管.9, ESD措施在AC共模及AC差模下放置放电尖端距离是≥0.5,≤1在Y1电容两侧放置放电尖端一般是6 mm..三、信号的完整性和非易失性1, 原则上光耦处的连接电路尽量短小,以避免不必要的干扰.2, IC的驱动信号线可以放长一点,但确记不要和FB信号并行,也不要和IS信号并行.3, 各种保护信号不要和驱动信号并行,应独立走线,以防误动作.4, 对于384X、75XX、68XX、OB22XX、等PWM IC来说,振荡用的定时电阻和定时电容必须在IC附近以最短距离和相应的PIN连接,各种信号(包括FB和IS)的滤波电路及相位,频率、增益补偿电路也必须在IC附近以最短距离和相应的PIN连接.5, 恒压环路的电压取样应从输出的未端去取,TL431的地方也应接到输出的未端6, 在主功率电路中,采用单点接地法来防止公共阻抗耦合噪声,信号地和功率地必须分开,Y1电容和散热片必须独立接地,Y电容地尽可能铺完铜箔,并在该铜箔上铺镀锡层,减小此噪声旁路了的阻抗,最大限度减小流向LISN7, 对于单组输出而言,输出末端必须是经过LCπ型滤波,对于多组输出,从变压器返回端上独立分支每一路的地线,并保证整流电路最短小,最后在输出末端汇合所有地线,这样Noise最小8, 开关驱动MOSFC-T的,G(栅极)对地或者G(栅极)对S(源极)必须接一个10K电阻,以防静电、雷击、瞬态开机击穿.9, 适配器和开放板,铜箔的走线电流密度定为10A/mm 1盎司,电流不够的,则铺上阻焊层铜条,铜条宽度不小于0.8mm.10, 对于多路输出不共地者,在两个地之间接一个2200PF左右的瓷片或CBB或Y2电容.11,光藕上的偏流电阻接到输出滤波电感的前面,提高动态响应.如下图:四、热设计1, 目前的PWM IC的上限温度均为85℃,故该IC应远离发热源,比如IC不能放在变压器下面,不能和功率管距离太近,其它的控制IC也如此.2, 散热片不允许跨越初,次级,因存在安全隐患及生产不易操作.3, 有风扇者,按风道设计散热片位置,无风扇者,按自然散热通道设计位置.4,某些客户要求电源在50℃~60℃正常工作.在保证PCB结构强度的前提下,在变压器底部开通风槽,槽宽和槽长略小于变压器窗口部分.5, 对于某些高温环境下工作的电源,而MOSFET及输出整流管采用卧式安装者,可在其下方开槽或开孔,孔的直径为Φ3,孔的数量为2~4个.6, 开槽及开孔处生产时,贴高温胶纸过波峰,防止漏锡7,电容和发热元件(诸如MOSFET,变压器,整流二极管)至少相隔1mm..五、高频200~400KHZ 不隔离电源(5W~30W)布板规则1,对于双面板,必须把背面的铜箔尽可能铺满,所有的地线从该地平面引出(包括输出地).对于单面板,主功率地必须从地线输入单独引出,并留出足够多的铜箔宽度,主功率地必须和其它地线分离,最后汇集到地线引入端口.2,所有PWM IC的地线必须从输出地上引出,以最短距离连接取样电路,以防止地线上公共阻抗耦合的噪声.3,IC之驱动电路Iduive r≥500mA者可直接推MOSFET.不足而又用到低压大功率MOSFET者,必须加图腾柱,图腾柱与MOSFET就近连接,并且图腾柱上管之集电极就近对地连接1MF和0.1MF,耐压为25V或50V.六、UL1310安规距离1. AC100 ~ 240Vac ,L对N距离≥4.8mm2. AC50 ~150Vac ,L对N距离≥1.6mm对于金属外壳并且外壳接大地的L .N对PE 6.4mm.L对N 6.4mm。

电路板emi设计

电路板emi设计

电路板emi设计一、什么是电路板EMI设计?电路板EMI(Electromagnetic Interference)设计是指在电路板设计过程中,考虑到电磁干扰的问题,采取相应的措施来减少或避免电磁干扰对其他设备或系统的影响。

二、为什么需要进行电路板EMI设计?1. 法规要求:各国针对电子设备的电磁兼容性都有相关法规和标准,如欧盟CE标准、美国FCC标准等,要求产品在使用过程中不会对其他设备造成干扰。

2. 保证产品质量:如果产品存在较强的EMI问题,可能会导致产品性能下降、寿命缩短等质量问题。

3. 提高市场竞争力:通过进行EMI设计,可以提高产品的稳定性和可靠性,增强市场竞争力。

三、如何进行电路板EMI设计?1. 布局设计:尽可能地将信号线和地线分离,并采用合适的层次布局和分区布局。

同时,在布局时还需考虑到信号传输路径的长度、方向等因素。

2. 组件选择:选择符合EMC要求的元器件,并尽可能地选用抗干扰能力强的元器件。

同时,还需注意元器件的布局和连接方式。

3. 地线设计:地线是电路板EMI设计中最重要的因素之一。

需要确保地线尽可能宽且连续,并且各个部分之间要进行良好的连接。

4. 滤波器设计:在电路板上添加合适的滤波器可以有效地减少EMI问题,如降噪电容、滤波电感等。

5. 接口设计:对于涉及到接口的部分,需要采用合适的防干扰措施,如添加磁珠、使用屏蔽罩等。

6. 仿真测试:在进行实际生产前,需要进行仿真测试,以验证电路板EMI设计的效果是否符合预期。

四、常见的EMI问题及解决方案1. 信号串扰:信号线和地线之间距离过近或者布局不当可能会导致信号串扰。

解决方案包括增加信号线和地线之间距离、采用合适的层次2. 辐射干扰:较高频率的信号可能会通过空气传播而产生辐射干扰。

解决方案包括添加屏蔽罩、采用合适的滤波器等。

3. 接口干扰:接口部分容易受到外部干扰。

解决方案包括添加磁珠、使用屏蔽罩等。

4. 地线问题:地线不良可能会导致信号串扰、辐射干扰等问题。

电源设计过程中关于EMI的几条经验

电源设计过程中关于EMI的几条经验

几点经验:1、交流输入与直流输出要有较明确的布局区分,最佳办法是能够互相隔离。

2、输入端与输出端(包括DC/DC变换初级与次级)布线距离最少要在5毫米以上。

3、控制电路与主功率电路要有较明确的布局区分。

4、尽量避免大电流高电压布线与测量线、控制线的并行布线。

5、在空白的板面尽量敷铜。

6、在大电流高电压的布线连接中,尽量避免用导线在空间中长距离连接,它导致的干扰是很难处理的。

7、如果成本允许的情况下,可采用多层板布线,有专门的辅助电源层与地层,将大大降低EMC的影响。

8、工作地是最容易受干扰的,因此尽量采取大面积敷铜的布线办法。

9、屏蔽地的布线不能构成明显的环路,这样的话会形成天线效应,容易引入干扰。

10、大功率的器件最好能比较规整地布局,便于散热器的安装及散热风道的设计。

几点经验:1.合理选择"Y"电容的接地点.2.感性器件在PCB的合理分布,能使干扰电磁场相互削弱,避免干扰信号叠加形成更强的干扰.一、地线设计1.正确选择单点接地与多点接地相结合.2.将数字电路与模拟电路分开3.尽量加粗接地线4.将接地线构成闭环路二、电磁兼容性设计1.选择合理的导线宽度2.采用正确的布线策略采用平等走线可以减少导线电感,但导线之间的互感和分布电容增加,如果布局允许,最好采用井字形网状布线结构,具体做法是印制板的一面横向布线,另一面纵向布线,然后在交叉孔处用金属化孔相连。

为了抑制印制板导线之间的串扰,在设计布线时应尽量避免长距离的平等走线,尽可能拉开线与线之间的距离,信号线与地线及电源线尽可能不交叉。

在一些对干扰十分敏感的信号线之间设置一根接地的印制线,可以有效地抑制串扰.三、去耦电容配置在直流电源回路中,负载的变化会引起电源噪声。

例如在数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压。

配置去耦电容可以抑制因负载变化而产生的噪声,是印制电路板的可靠性设计的一种常规做法.怎样做好电磁屏蔽[转帖]电磁屏蔽是解决电磁兼容问题的重要手段之一。

开关电源PCB板的EMI抑制与抗干扰设计

开关电源PCB板的EMI抑制与抗干扰设计
p r o d u c t s P C B p l a t e a r e d i s c u s s e d . T h e c o mmo n t e c h n o l o g y o f i n h i b i t i o n a n d t h e a n t i . . i n t e r f e r e n c e d e s i g n
存在于通讯设备或者计算机操作设备中 , 有部



第1 6 卷
第6 期
奄涤艘 石闵
P 0 W ER S UP P L Y T E CHNOL OGl E S AND AP P L l C ATl ONS
Vo 1 . 1 6 No . 6 J u n e . 2 0 1 3
p r o b l e ms t h a t s h o u l d b e p a i d a t t e n t i o n t o w h e n d e s i g n i n g P C B b o a r d g r o u n d a r e a r a l y z e d
( 1 ) 辐 射 干扰
接 的提 供者 。而 所有 开关 电源 设计 的最 后一 步就 是 P C B线路 设 计 , 如果这部分设计不 当, 也会 导致 电 源 工作不 稳定 , 产 生过 量 的 E MI ( 电磁 干扰 ) 。
收 稿 日期 : 2 0 1 3 — 0 3 — 2 8
De s i g n o f S wi t c h i n g P o we r S u p p l y
F ANG L i — t i n g , XU Xi a o — q i a n g
Ab s t r a c t : T h e e l e c t r o m a g n e t i c i n t e r f e r e n c e( E MI )a n d t h e c a u s e s o f t h e c l a s s i f i c a t i o n o f e l e c t r o n i c

一文看懂EMI及PCB设计与开关频率

一文看懂EMI及PCB设计与开关频率

一文看懂EMI及PCB设计与开关频率
电源模块发展至今,工程师们都着眼于如何将模块做得更为小型化,轻量化,其实大家都明白可以通过提升开关频率来提高产品的功率密度。

但为什幺迄今为止模块的体积没有变化太大?是什幺限制了开关频率的提升呢? 开关电源产品在市场的应用主导下,日趋要求小型、轻量、高效率、低辐射、低成本等特点满足各种电子终端设备,为了满足现在电子终端设备的便携式,必须使开关电源体积小、重量轻的特点,因此,提高开关电源的工作频率,成为设计者越来越关注的问题,然而制约开关电源频率提升的因素是什幺呢?其实主要包括三方面,开关管、变压器和EMI及PCB设计。

 一、开关管与开关频率
 开关管作为开关电源模块的核心器件,其开关速度与开关损耗直接影响了开关频率的极限,下文为大家大概分析一下。

 1、开关速度
 MOS管的损耗由开关损耗和驱动损耗组成,如图1所示:开通延迟时间td(on)、上升时间tr、关断延迟时间td(off)、下降时间tf。

 图1 MOS管开关示意图
 以FAIRCHILD公司的MOS为例,如图2所示:FDD8880开关时间特性表。

 图2 FDD8880开关时间特性表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源EMI设计-电源PCB设计要点
摘要:由于开关电源的开关特性,容易使得开关电源产生极大的电磁兼容方面的干扰,作为一个电磁兼容工程师,或则一个PCB layout 工程师必须了解电磁兼容问题的原因已经解决措施,特别是layout 工程师,需要了解如何避免脏点的扩大,本文主要介绍了电源PCB 设计的要点。

1,几个基本原理:任何导线都是有阻抗的;电流总是自动选择阻抗最小的路径;辐射强度和电流、频率、回路面积有关;共模干扰和大dv/dt 信号对地互容有关;降低EMI 和增强抗干扰能力的原理是相似的。

2,布局要按电源、模拟、高速数字及各功能块进行分区。

3,尽量减小大di/dt 回路面积,减小大dv/dt 信号线长度(或面积,宽度也不宜太宽,走线面积增大使分布电容增大,一般的做法是:走线的宽度尽量大,但要去掉多余的部分),并尽量走直线,降低其隐含包围区域,以减小辐射。

4,感性串扰主要由大di/dt 环路(环形天线),感应强度和互感成正比,所以减小和这些信号的互感(主要途径是减小环路面积、增大距离)比较关键;容性串扰主要由大dv/dt 信号产生,感应强度和互容成正比,所有减小和这些信号的互容(主要途径是减小耦合有效面积、增大距离,互容随距离的增大降低较快)比较关键。

5,尽量利用环路对消的原则来布线,进一步降低大di/dt 回路的面积,如图1 所示(类似双绞线利用环路对消原理提高抗干扰能力,增大传输距离):
图1 ,环路对消(boost 电路的续流环)
6,降低环路面积不仅降低了辐射,同时还降低了环路电感,使电路性能更佳。

7,降低环路面积要求我们精确设计各走线的回流路径。

8,当多个PCB 通过接插件进行连接时,也需要考虑使环路面积达到最小,尤其是大di/dt 信号、高频信号或敏感信号。

最好一个信号线对应一条地线,两条线尽量靠近,必要时可以用双绞线进行连接(双绞线每一圈的长度对应于噪声半波长的整数倍)。

如果大家打开电脑机箱,就可以看到主板到前面板USB 接口就是用双绞线进行连接,可见双绞线连接对于抗干扰和降低辐射的重要性。

9,对于数据排线,尽量在排线中多安排一些地线,并使这些地线均匀分布在排线中,这样可以有效降低环路面积。

10,有些板间连接线虽然是低频信号,但由于这些低频信号中含有大量的高频噪声(通过传导和辐射),如果没有处理好,也很容易将这些噪声辐射出去。

11,布线时首先考虑大电流走线和容易产生辐射的走线。

12,开关电源通常有4 个电流环:输入、输出、开关、续流,(如图2 )。

其中输入、输出两个电流环几乎为直流,几乎不产生emi ,但容易受干扰;开关、续流两个电流环有较大的di/dt ,需要注意。

如果输入、输出两个电容用多
个电容并联使用,需保证每个电容的布线具有相近的阻抗(长度、宽度),并使阻抗尽量小,以减小串入输入、输出端干扰。

图2 ,Buck 电路的电流环
13,mos (igbt )管的栅极驱动电路通常也含有较大的di/dt 。

14,在大电流、高频高压回路内部不要放置小信号回路,如控制、模拟电路,以避免受到干扰。

15,减小易受干扰(敏感)信号回路面积和走线长度,以减小干扰。

16,小信号走线远离大dv/dt 信号线(比如开关管的 C 极或D 极,缓冲(snubber) 和钳位网络),以降低耦合,可在中间铺地(或电源,总之是常电位信号)进一步降低耦合,铺地和地平面要良好接触。

小信号走线同时也要尽量远离大di/dt 的信号线,防止感性串扰。

小信号走线最好不要走到大dv/dt 信号的下方。

小信号走线背面如果能够铺地(同性质地),也能降低耦合到的噪声信号。

17,比较好的做法是,在这些大dv/dt 、di/dt 信号走线(包括开关器件的C/D 极、开关管散热器)的周围和背面铺地,将上下两层铺地用过孔连接,并将此地用低阻抗走线接到公共接地点(通常为开关管的E/S 极,或取样电阻)。

这样可以减小辐射EMI 。

要注意,小信号地一定不能接到此屏蔽地上,否则会引入较大干扰。

大dv/dt 走线通常会通过互容将干扰耦合到散热器及附近的地,
最好将开关管散热器接到屏蔽地上,采用表贴开关器件也会降低互容,从而降低耦合。

18,易产生干扰的走线最好不要使用过孔,它会通过过孔干扰过孔所穿过的所有层。

19,屏蔽可以降低辐射EMI ,但由于增大了对地的电容,会使传导EMI (共模,或非本征差模)有所增大,不过只要屏蔽层接地得当,不会增大很多。

实际设计中可权衡考虑。

20,要防止共阻抗干扰,采用一点接地,电源从一点引出。

21,开关电源通常有三种地:输入电源大电流地、输出电源大电流地、小信号控制地,地的连接方法见如下示意图:
22,接地时首先应先判断地的性质,再进行连接。

采样及误差放大的地通常应当接到输出电容的负极,采样信号通常应从输出电容的正极取出,小信号控制地和驱动地通常要分别接到开关管的E/S 极或取样电阻上,防止共阻抗干扰。

通常IC 的控制地和驱动地不单独引出,此时取样电阻到上述地的引线阻抗必须尽量小,最大程度减小共阻抗干扰,提高电流采样的精度。

23,输出电压采样网络最好靠近误差放大器,而不是靠近输出端,这是由于低阻抗信号比高阻抗信号更不容易受到干扰,采样走线对要尽量相互靠近以减小拾取到的噪声。

24,布局注意电感要远离,并相互垂直,以减小互感,尤其是储能电感和滤波电感。

25,布局注意高频电容和低频电容并联使用时,高频电容靠近使用者。

26,低频干扰一般为差模(1M 以下),高频干扰一般为共模,通常通过辐射耦合。

27,如果高频信号被耦合到输入引线,很容易形成EMI (共模),可在输入引线接近电源处套一个磁环,如果EMI 降低就表明存在此问题。

解决此问题的方法是,降低耦合或降低电路的EMI 。

如果高频噪声没有被过滤干净而传导到输入引线,也会形成EMI (差模),此时套磁环不能解决问题,在输入引线接近电源处串两个高频电感(对称),如果EMI 降低就表明存在此问题。

解决此问题的方法是改善滤波,或采用缓冲、钳位等手段减小高频噪声的产生。

28,差模和共模电流的测量:
29,EMI 滤波器要尽量靠近进线,进线的走线要尽量短,尽量减小EMI 滤波器前后级的耦合。

进线最好用机壳地进行屏蔽(方法如上所述)。

输出EMI 滤波器也要作类似处理。

尽量拉开进线和高dv/dt 信号走线的距离,在布局上要加以考虑。

相关文档
最新文档