第八章:聚合物的
第八章、聚合物的高弹性和黏弹性
![第八章、聚合物的高弹性和黏弹性](https://img.taocdn.com/s3/m/eefe2b01b7360b4c2e3f642f.png)
高弹性有如下特征:
①弹性形变很大,可高达1000%, 而金属材料的普弹形变不超过1% ②弹性模量小,10 达因cm ,而金属材料的弹性模量 达 10 达因 cm 。 ③聚合物发生高弹形变时,弹性模量与温度成正 比,即温度升高,弹性回力增高,从这个意上说, 与等容条件下气体的压力随温度升高而增加是相 似的。而金属的普通固体材料弹性模量随着温度 升高而下降。
平衡态形变(可逆) 高弹形变
非平衡态形变(不可逆)
假设橡胶被拉伸时发生高弹形变,除去 外力后可完全回复原状,即变形是可逆的, 所以可用热力学第一定律和第二定律来进 行分析。
u S f ( )T ,V T ( )T ,V l l
物理意义:外力作用在橡胶上,一方
面使橡胶的内能随伸长而变化,一方 面使橡胶的熵随伸长而变化。 或者说:橡胶的张力是由于变形时内 能发生变化和熵发生变化引起的。
“形变与时间有关”的原因:
橡胶是长链分子,整个分子的运动都要 克服分子间的作用力和内摩擦力。 高弹形变就是靠分子链段运动来实现的。 整个分子链从一种平衡状态过度到与外 力相适应的平衡状态,可能需要几分钟,几 小时甚至几年。 也就是说在一般情况下形变总是落后于 外力,所以橡胶形变需要时间。
2-2 平衡态高弹形变的热力学分析
1.加增塑剂
2. 共聚
3.降低结晶能力
第三节 粘弹性
3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9
力学松弛现象 蠕变 应力松弛 滞后 力学损耗 测定粘弹性的方法 粘弹性模型 粘弹性与时间、温度的关系(时温等效) 波尔兹曼迭加原理
高聚物的粘弹性——
聚合物的力学性能
![聚合物的力学性能](https://img.taocdn.com/s3/m/db1ca3353169a4517723a367.png)
第八章 聚合物的力学性能
(3)内力、应力 材料在外力作用下发生形变的同时,在其内部还会产生对抗 外力的附加内力,以使材料保持原状,当外力消除后,内力 就会使材料回复原状并自行逐步消除。当外力与内力达到平 衡时,内力与外力大小相等,方向相反。单位面积上的内力 定义为应力。
2
第八章 聚合物的力学性能
(4)形变 化。 材料在外力作用下,其几何形状和尺寸所发生的变
(5)应变 在应力作用下,单位长度(面积、体积)所发生 的形变来表征。 (6) 弹性模量 是引起单位应变所需要的应力。是材料刚硬度的 一种表征。模量的倒数称为柔量,是材料容易形变程度的一种 表征,以J表示。 (7)强度 在一定条件下,材料断裂前所能忍受的最大应力, 称为强度,常用单位Pa。
强迫高弹形变产生的原因
8
聚合物的力学性能
强迫高弹形变的定义 处于玻璃态的非晶聚合物在拉伸过程中屈服点后产生的
较大应变,移去外力后形变不能回复。若将试样温度升
到其Tg附近,该形变则可完全回复,因此它在本质上仍 属高弹形变,并非粘流形变,是由高分子的链段运动所 引起的。 这种形变称为强迫高弹形变
9
3
聚合物的力学性能
8.2 聚合物的应力应变特性
材料的大形变—破坏过程 实验条件:一定拉伸速率和温度 在实验和应用中:
宽 度
厚度d
b
P
图1 Instron 5569电子万能材料试验机 (electronic material testing system)
必须标明温度和施力 速率(或形变速率), 切勿将正常形变速率下 测得数据用于持久力作 用或冲击力作用下的场 合下;切勿将正常温度 下得到的数据用于低温 或高温下。
15
高分子物理--聚合物的粘弹性ppt课件
![高分子物理--聚合物的粘弹性ppt课件](https://img.taocdn.com/s3/m/1b678820fd4ffe4733687e21af45b307e871f91a.png)
粘弹体的应力与应变的相位关系
一、 粘弹性现象 (二) 动态粘弹性
力学损耗:由于滞后,周期性应力应变变化过程将伴随能量消耗, 称之为力学损耗。 损耗的大小同滞后角有关,常以tanδ 表示
橡胶拉伸与回缩的应力-应变关系示意图
一、 粘弹性现象 (二) 动态粘弹性
聚合物的内耗与频率的关系
表示在复平面上的复模量 E* D* ﹦1
一、 粘弹性现象 (三) 粘弹性参数
G*﹦G1+iG2
J* ﹦ J1 - iJ2
tan δ ﹦ E2 / E 1
﹦ D2 / D 1 ﹦ G2 / G 1 ﹦ J2 / J 1
链段运动的松弛时间同 作用频率(速率)相匹 配时(ω ~ 1/τ ),粘 弹性现象最显著。
二、 粘弹性的数学描述
(一) Boltzmann叠加原
在Δ σ31 、、
u2 、 ……
u3 、 Δ σn
……
un时刻,对试样加应力Δ σ1 、 Δ σ2 、
ε(t)﹦ ∑Δσi D(t-ui)
i: 1→ n
连续对试样加应力,变化率为? σ (u)/? u
t﹥ un
ε(t)﹦ ∫ D(t-u)(? σ (u)/? u) du u:- ∞ → t
ηs*﹦ηs1-ηs2 ηs1 ﹦(σ0/γ0 ω)sinδ ηs2 ﹦(σ0/γ0 ω)cosδ
ηs1 ﹦G2/ω
ηs2 ﹦G 1/ω
二、 粘弹性的数学描述
(一) Boltzmann叠加原
1. 数理学表达式
在零时刻,对试样加应力σ0 ε0 (t)﹦σ0 D(t)
在u1时刻,对试样加应力σ1 ε1 (t)﹦σ1 D(t-u1)
粘性响应 理想液体
第八章聚合物的屈服和断裂
![第八章聚合物的屈服和断裂](https://img.taocdn.com/s3/m/eef1def50242a8956bece4ec.png)
第八章聚合物的屈服和断裂一、基本概念1、韧性破坏;脆性破坏;脆化温度2、强迫高弹形变;冷流;细颈3、银纹;屈服;银纹屈服;剪切屈服4、拉伸强度;抗弯强度;弯曲模量;冲击强度;硬度5、应变诱发塑料─橡胶转变6、应变软化现象;应变变硬化现象7、银纹;裂缝;应力集中二、选择题1、下列高聚物中,拉伸强度最高的是( )A,低密度聚乙烯B,聚苯醚C,聚甲醛2、非晶态聚合物作为塑料使用的最佳温度区间为( )A,Tb---Tg B,Tg---Tf C,Tg以下3、甲乙两种聚合物材料的应力---应变曲线如图所示, 其力学性能类型和聚合物实例分别为( )A,甲聚合物:硬而强,硬聚氯乙稀;乙聚合物:软而韧,聚异戊二稀B,甲聚合物:硬而脆,聚甲基丙稀酸甲酯;乙聚合物:软而弱,聚丁二稀C,甲聚合物:硬而强,固化酚醛树酯;乙聚合物:软而韧 ,聚合物凝胶D,甲聚合物:硬而脆,硬聚氯乙稀;乙聚合物:软而弱,聚酰胺4、韧性聚合物单轴拉伸至屈服点时,可看到剪切带现象,下列说法错误的是()。
A、与拉伸方向平行B、有明显的双折射现象C、分子链高度取向D、每个剪切带又由若干个细小的不规则微纤构成5、拉伸实验中,应力-应变曲线初始部分的斜率和曲线下的面积分别反映材料的()。
A、拉伸强度、断裂伸长率B、杨氏模量、断裂能C、屈服强度、屈服应力D、冲击强度、冲击能6、在聚甲基丙烯酸甲酯的拉伸试验中,温度升高则()。
A、σB升高、εB降低,B、σB降低、εB升高,C、σB升高、εB升高,D、σB降低、εB降低,7、聚苯乙烯在张应力作用下,可产生大量银纹,下列说法错误的是()。
A、银纹是高度取向的高分子微纤构成。
B、银纹处密度为0,与本体密度不同。
C、银纹具有应力发白现象。
D、银纹具有强度,与裂纹不同。
8、杨氏模量、冲击强度、应变、切变速率的量纲分别是()。
A、N/m2, J/m2, 无量纲, S-1,B、N, J/m, 无量纲, 无量纲C、N/m2, J, 无量纲, 无量纲D、N/m2, J, m, S-19、可较好解释高抗冲聚苯乙烯(HIPS)增韧原因的为()。
第八章聚合物的化学反应
![第八章聚合物的化学反应](https://img.taocdn.com/s3/m/0de44e16a8114431b90dd8f0.png)
第八章聚合物的化学反应重点、难点指导一、重要术语和概念概率效应、功能高分子、离子交换树脂、高分子试剂、接枝、嵌段、扩链、遥爪聚合物、老化、降解、解聚、燃烧性能、氧化指数二、难点概率效应、邻近基团效应1、聚合物化学反应的特点及影晌因素聚合物化学反应系指以聚合物为反应的化学反应。
聚合物化学反应可分为三类:聚合度不变的反应(如侧基反应);聚合度增加的反应(如接枝、扩链、嵌段和交联等);聚合度减小的反应(如降解、解聚、分解和文化等)。
(1)特点:反应复杂,产物多样.不均匀。
(2)影响因素①聚合韧聚集态的影响:处于结晶态的聚合物几乎不能参加化学反应,因为结晶区聚合物分子链间作用力强,链段堆砌十分致密,化学试剂不易扩散进去,难于产生化学反应。
②邻近基团位阻的影响:聚合物分子镊上参加化学反应的基团邻近体积较大的基团时由于位阻效应而使低分子反应物难于接近反应部位,而无法继续进行反应。
③邻近基团的静电效应:当聚合物化学反应涉及酸碱催化过程,或者有离子态反应物参与反应,或者有离子态基团生成时,在化学反应进行到后朗,未反应基团的进一步反应往往会受到邻近带电荷基因的静电作用而改变速率。
④构型的影响:具有不同立构异构体的聚合物参加的化学反应中,反应速率不相同。
⑤基团的隔离作用或“孤立化”:在聚合物化学反应中.如果参加反应的聚合物官能团必须是两个或两个以上.当反应进行到后期,当一个官能团的周围已经没有能够与之协同反应的第二个官能团,则这个官能团就好做“隔离”或“孤立”起来而无法继续进行反应。
⑥相容性的影响。
总之,影响聚合物化学反应的因素多种多样。
研究聚合物肋化学反应需综合考虑。
2、聚合废不变的反应—聚合物侧基反应聚合物侧基反应是大分子链上除端基以外的原子或原子团所进行的化学反应。
侧基反应是对聚合物进行化学改性的重要手段,同时也是制备那些无法由单体直接聚合得到或者对应单体无法稳定存在的聚合物的唯一方法。
3、聚合度增大的化学反应—接枝、扩链、交联(1)接枝:即在聚合物主链上引入一定数量与主链结构相同或不同文链的过程。
第八章 聚合物的化学反应总结
![第八章 聚合物的化学反应总结](https://img.taocdn.com/s3/m/3c1220f45ebfc77da26925c52cc58bd630869361.png)
第八章聚合物的化学反应一、课程主要内容本章研究聚合物化学反应的意义和聚合物的化学反应。
聚合物的化学反应包括:聚合度相似的化学反应;聚合度变大的化学反应和聚合度变小的化学反应。
通过学习第八章,掌握聚合物可能发生的聚合反应,以便对聚合物进行改性;了解聚合物老化的原因和防止聚合物老化的方法。
二、试题与答案本章有基本概念题、填空题、选择填空题和简答题。
㈠基本概念题1.聚合物的化学反应:天然聚合物或由单体经聚合反应合成的聚合物为一级聚合物,若其侧基或端基为反应性基团,则在适当的条件下可发生化学反应,从而形成新的聚合物(为二级聚合物),由一级聚合物变为二级聚合物的化学反应,谓之。
2.聚合度相似的化学反应:如果聚合物的化学反应是发生在侧基官能团上,很显然这种化学反应不涉及聚合物的聚合度,反应前后聚合度不变(或相似),将这种聚合物的化学反应称为聚合度相似的化学反应。
3.聚合度变大的化学反应:如果聚合物的化学反应是交联、嵌段或接枝等,使聚合物的聚合度变大,将这种聚合物的化学反应称为聚合度变大的化学反应。
4.聚合度变小的化学反应:如果聚合物的化学反应是降解(热降解、化学降解等)很显然这种化学反应使聚合物的聚合度变小,将这种聚合物的化学反应称为聚合度变小的化学反应。
5.聚合物的老化:聚合物在使用或贮存过程中,由于环境的影响,性能变坏、强度和弹性降低、颜色变暗、发脆或发粘等现象叫聚合物的老化。
6.聚合物的无规降解:聚合物在热的作用下,大分子链发生任意断裂,使聚合度降低,形成低聚体,但单体收率很低(一般小于3%),这种热降解称为无规降解。
7.聚合物的解聚:聚合物在热的作用下发生热降解,但降解反应是从链的末端开始,降解结果变为单体,单体收率可达90%~100%,这种热降解叫解聚。
8.聚合物的侧链断裂:聚氯乙烯和聚偏二氯乙烯加热时易着色,起初变黄,然后变棕,最后变为暗棕或黑色,同时有氯化氢放出。
这一过程是链锁反应,连续脱氯化氢的结果使分子链形成大n键或交联,这种热降解称为侧链断裂。
第八章聚合物的高弹性与黏弹性
![第八章聚合物的高弹性与黏弹性](https://img.taocdn.com/s3/m/ac8617abbceb19e8b8f6ba78.png)
u S 即 : f ( )T .V T ( )T .V l l
物理意义:外力作用在橡胶上
或者说,橡胶的张力是 由于变形时内能发生变 化和熵发生变化共同引 起的。
(5)
使橡胶的内能随着伸长而变化
使橡胶的熵随着伸长而变化
u S f ( )T .V T ( )T .V l l
(5)
S ( )T .V 不能直接测量 l
F H TS u PV TS 对于微小的变化 : dF du PdV VdP TdS SdT 将(4)式du TdS PdV fdl 代入 : dF TdS PdV fdl PdV VdP TdS SdT 即 : dF fdl VdP SdT 当维持P不变时(dP 0) : dF fdl SdT
N0V0 kT N0 F0l0 kT 1 1 f ( 2 ) ( 2 ) l0 l0
f 1 N0 kT ( 2 ) F0
一般固体物质符合虎克定律
交联橡胶的状态方程
1
2 2
(l l0 ) E E E ( 1) l0
f S f T ( )l .V T ( )T .V T l
( 1 )说明橡胶拉伸时, (3)橡皮拉伸时,熵值由大到小,dS<0 内能几乎不变,而主 恒温可逆过程:δQ=TdS 要是引起熵的变化, dS<0 → δQ<0 高弹性主要是橡皮内 所以橡皮在拉伸过程中会放出热量 部熵的贡献; 可以证明,压缩也会放热,回缩吸热。 ( 2 )在外力作用下, 橡胶的分子链由原来 的蜷曲状态变为伸展 f S 状态,熵值由大变小, 对理想高弹体:f T ( )l .V T ( )T .V T l 终态是一种不稳定的 体系,当外力除去后, (5)理想高弹体拉伸时,只引起熵变,或说 只有熵的变化对理想高弹体的弹性有贡献, 就会自发的回复到初 这种弹性称为熵弹性。 态——说明橡胶高弹 形变是可回复的; (6)实际上,内能对聚合物的高弹性也有一 定的贡献(fu),约10%;P222图8-3
第八章 聚合物的化学反应分析
![第八章 聚合物的化学反应分析](https://img.taocdn.com/s3/m/2edb37d95fbfc77da269b151.png)
第八章聚合物的化学反应一、课程主要内容本章研究聚合物化学反应的意义和聚合物的化学反应。
聚合物的化学反应包括:聚合度相似的化学反应;聚合度变大的化学反应和聚合度变小的化学反应。
通过学习第八章,掌握聚合物可能发生的聚合反应,以便对聚合物进行改性;了解聚合物老化的原因和防止聚合物老化的方法。
二、试题与答案本章有基本概念题、填空题、选择填空题和简答题。
㈠基本概念题⒈聚合物的化学反应:天然聚合物或由单体经聚合反应合成的聚合物为一级聚合物,若其侧基或端基为反应性基团,则在适当的条件下可发生化学反应,从而形成新的聚合物(为二级聚合物),由一级聚合物变为二级聚合物的化学反应,谓之。
⒉聚合度相似的化学反应:如果聚合物的化学反应是发生在侧基官能团上,很显然这种化学反应不涉及聚合物的聚合度,反应前后聚合度不变(或相似),将这种聚合物的化学反应称为聚合度相似的化学反应。
⒊聚合度变大的化学反应:如果聚合物的化学反应是交联、嵌段或接枝等,使聚合物的聚合度变大,将这种聚合物的化学反应称为聚合度变大的化学反应。
⒋聚合度变小的化学反应:如果聚合物的化学反应是降解(热降解、化学降解等)很显然这种化学反应使聚合物的聚合度变小,将这种聚合物的化学反应称为聚合度变小的化学反应。
⒌聚合物的老化:聚合物在使用或贮存过程中,由于环境的影响,性能变坏、强度和弹性降低、颜色变暗、发脆或发粘等现象叫聚合物的老化。
⒍聚合物的无规降解:聚合物在热的作用下,大分子链发生任意断裂,使聚合度降低,形成低聚体,但单体收率很低(一般小于3%),这种热降解称为无规降解。
⒎聚合物的解聚:聚合物在热的作用下发生热降解,但降解反应是从链的末端开始,降解结果变为单体,单体收率可达90%~100%,这种热降解叫解聚。
⒏聚合物的侧链断裂:聚氯乙烯和聚偏二氯乙烯加热时易着色,起初变黄,然后变棕,最后变为暗棕或黑色,同时有氯化氢放出。
这一过程是链锁反应,连续脱氯化氢的结果使分子链形成大π键或交联,这种热降解称为侧链断裂。
第八章聚合物的力学性能
![第八章聚合物的力学性能](https://img.taocdn.com/s3/m/7e7ef1bc960590c69ec37651.png)
3)聚合物的屈服应力对应变速率有依赖性,随应 变速率增加屈服应力增加;
4)聚合物的屈服应力随温度的增加而降低,到达 玻璃化温度时屈服应力降低为零; 5)聚合物可以产生两种形式屈服:银纹屈服和剪 切屈服;
一、银纹屈服——Craze 聚合物受到张应力作用后,
由于应力集中产生分子链局部取向和塑性变形,在材料表 面或内部垂直于应力方向上形成的长100、宽10、厚为微米 左右的微细凹槽或裂纹的现象。
可以向真应力—应 变曲线作出两条切 线,说明试样受力 会屈服并稳定发展, 直至所有试样都细 颈化。
§8-3 聚合物的屈服
1)聚合物材料的屈服应变比一般材料的屈服应变 大的多。金属材料的屈服应变一般为0.01或更小, 而高分子材料的屈服应变可达0.1~0.2左右;
2)许多聚合物屈服后随应变增加应力反而有一定 的下降——应变软化现象;
σ
在高拉伸速度下 σY >σB,导致试样在未发生屈 服就断裂。因此只有在较慢的拉伸速度下,玻璃态 聚合物的强迫高弹形变才可以发生。
3)分子结构 分子链柔性好的聚合物不容易在玻璃态下发生 强迫高弹形变,而刚性链聚合物却相对容易发生强 迫高弹形变。 1)柔性链聚合物形成玻璃态时分子链堆砌非常紧 密,链段活动空间很小,在玻璃态下链段运动非 常困难,需要很大外力才能使链段发生运动。所 以柔性链聚合物在玻璃态下难以发生强迫高弹形 变———Tb较高。 2)刚性链聚合物冷却成玻璃态时分子链之间堆砌 的比较松散,链段活动余地很大,施加不太大的 外力作用链段的运动就可以发生,容易出现强迫 高弹形变——Tb较低。
三、聚合物应力— 应变曲线的类型
五种应力-应变曲线的特征
类型
硬而脆 硬而强 强而韧 软而韧 软而弱
模量
第八章聚合物的力学性能
![第八章聚合物的力学性能](https://img.taocdn.com/s3/m/84c7dcbcc1c708a1294a4409.png)
橡胶拉伸-回缩和拉伸-压缩循环应力-应变曲线
表征滞后现象参数:储存模量、损耗模量(或复数模 量)损耗角正切
四、粘弹性力学模型
理想模型:理想弹簧和理想粘壶 理想弹簧:代表符合虎 克定律的理想固体
E / D
应力松弛过程总形变恒定,有:
d 1 d 0 dt E dt
d E dt
(t) 0et /
t = 0-τ,有: 0 / e 0.370
2、伏伊特模型
结构:由一个理想弹黄与一 σ1
E
ησ2
个理想粘壶并联而成,如图
1 2
定义:高分子材料在交变应力作用下,形变落后于应力 的现象
橡胶轮胎应力和应变随时间的变化曲线,如图 滞后现象,如图
原因:高分子材料也是一个松弛过程
影响因素: 1.) 化学结构; 2.) 外力作用频率、温度等
对聚合物性能的影响:
1.) 如果使用的聚合物发生了滞后现象,则在每一个循 环中都要消耗功-力学损耗;这种消耗功转变成热 能释放出来,会导致聚合物本身的温度升高,从而 影响材料的使用寿命;
晶态聚合物的拉伸: 晶态聚合物典型的应力-应变曲线,如图
未经拉伸的晶态聚合物中,其微晶排列是杂乱的, 拉伸使得晶轴与外力方向不同的微晶熔化,分子链沿 外力方向取向再重排结晶,使得取向在熔点以下不能 复原,使得产生的形变也不能复原,但加热到熔点附 近形变能复原,因此晶态聚合物的大形变本质上也属 高弹性
0
E0
0
E
1
exp
t
聚合物的结构与性能
![聚合物的结构与性能](https://img.taocdn.com/s3/m/f2745c3c10661ed9ad51f360.png)
聚合物取向方法Hale Waihona Puke 纤维 熔融挤出的管材和棒材
第八章 聚合物的结构与性能
2.3.1 聚合物的取向方式
单轴取向(Uniaxial Orientation)
纤维纺丝 薄膜的单 向拉伸
第八章 聚合物的结构与性能
双轴取向 (Biaxial Orientation)
一般在两个垂直方向施加外力。如薄膜双轴拉伸,使 分子链取向平行薄膜平面的任意方向。在薄膜平面的 各方向的性能相近,但薄膜平面与平面之间易剥离。
(9-7)
~ P 、M、 分别为电介质的摩尔极化率、分子量和密度, 式中: N0 为阿佛加德罗常数。对非极性介质,此式称Clausius-
Mosotti方程;对极性介质,此式称Debye方程。
根据上式,我们可以通过测量电介质介电系数 求得分 子极化率 。另外实验得知,对非极性介质,介电系数 2 与介质的光折射率n的平方相等, n ,此式联系着介质 的电学性能和光学性能。
熔融指数:是在一定温度和负荷下,于十分钟内从一定 直径和长度的标准毛细管中挤出的聚合物熔体的重量克 数。
第八章 聚合物的结构与性能
4.聚合物的力学性能
4.1玻璃态和晶态聚合物的力学性能 (1)张应力 (2)切应力 4.1.1玻璃态聚合物的屈服和断裂 4.1.2晶态聚合物的拉伸
4.1.3影响高分子材料强度的因素
第八章 聚合物的结构与性能
5.2导电高分子材料 导电高分子的研究和应用是近年来高分子科学最重要 的成就之一。 1974年日本白川英树等偶然发现一种制备聚乙炔自支 撑膜的方法,得到聚乙炔薄膜不仅力学性能优良,且有明 亮金属光泽。 而后MacDiarmid、Heeger、白川英树等合作发现聚 乙炔膜经过 AsF5、I 2等掺杂后电导率提高13个数量级,达 3 到 10 S · ,成为导电材料。 cm 1 这一结果突破了传统的认为高分子材料只是良好绝缘体 的认识,引起广泛关注。
八章聚合物的化学反应
![八章聚合物的化学反应](https://img.taocdn.com/s3/m/64e3622ec850ad02de8041a3.png)
C2H 2 CH
C2C H2C HH
C2H
H C2H
分子内“回咬”
CH2 C2H
CH2 CH2CH
CH2
CH3
CH2 + CH2 CHCH2CH2CH2CH2
CH2CH2CH CH2 +
CH2CH2CH3
(4)基团的脱除
聚氯乙烯、聚醋酸乙烯酯、聚丙烯腈等受热时, 将脱除取代基。自由基机理。
C H 2 C H C l C H 2 C H C l
第八章 聚合物的化学反应
(1) 活性阴离子聚合:依顺序加入单体。
SBS的合成: S段分子量1~1.5万,B段约
5~10万。常温下,SBS反应出B段 弹性体的性质, S段处于玻璃态微 区,起到物理交联的作用。温度升 到聚苯乙烯Tg以上,SBS具有流动 性,可以模塑。因此,SBS称作热 塑性弹性体,且无须硫化。
(3)淬灭剂 这类稳定剂能与被激发的聚合物分子作用,把激发能
转移给自身并无损害地耗散能量,使被激发的聚合物分子 回复原来的基态。
常用的有过渡金属的络合物。
6. 老化和耐候性
聚合物的老化:是指聚合物在加工、贮存及使用过程中, 其物理化学性能及力学性能发生不可逆坏变的现象。
热、光、电、高能辐射和机械应力等物理因素以及氧化、 酸碱、水等化学作用,以及生物霉菌等都可导致聚合物的老化。 因此聚合物的老化是多种因素综合的结果,并无单一的防老化 方法。
(3)根据具体聚合物材料的主要老化机理和制品的 使用环境条件添加各种稳定剂,如热、氧、光 稳定剂以及防霉剂等;
(4)采用可能的适当物理保护措施,如表面涂层等。
8. 8 反应功能高分子
功能高分子按应用功能分:
反应功能高分子:高分子试剂、高分子药 物
聚合物的化学反应的概述和意义
![聚合物的化学反应的概述和意义](https://img.taocdn.com/s3/m/3b92c602b7360b4c2e3f6481.png)
-
OH-
NH2
CH2CH CH2CH CH2CH C O C O C O O NH2 O OH-
(ii) 功能基孤立化效应(几率效应)
当高分子链上的相邻功能基成对参与反应时,由于成对 基团反应存在几率效应,即反应过程中间或会产生孤立的 单个功能基,由于单个功能基难以继续反应,因而不能 100%转化,只能达到有限的反应程度。 如聚乙烯醇的缩醛化反应,最多只能有约80%的-OH能 缩醛化:
交联 CH C CH CH2 CH3 + S8 Sm CH C CH CH2 CH3
Sm CH
C CH CH2 CH3
CH Sm
C CH CH2 CH3
+
CH2 C CH CH2 CH3
CH2 C CH CH2 CH3
硫化常加入促进剂,以增加硫化速率和硫的利用率。 常用促进剂多为有机硫化物:
N S SH
CH2 CH n CN
CH2 CH CN
CH2 CH
CH2 CH COOH
CONH2
反应不能用小分子的“产率”一词来描述,只能用基 团转化率来表征:即指起始基团生成各种基团的百分 数
(2)聚合物化学反应的复杂性。由于聚合物本身是聚合度 不一的混合物,而且每条高分子链上的功能基转化程度不一 样,因此所得产物是不均一的,复杂的。其次,聚合物的化 学反应可能导致聚合物的物理性能发生改变,从而影响反应 速率甚至影响反应的进一步进行。
CH2CH2
其反应历程跟小分子饱和烃的氯化反应相同,是一个自由 基链式反应:
光 Cl2 或有机过氧化物 +Cl + Cl2 2 Cl CH2CH CH2CH Cl + HCl + Cl
高分子科学-第8章 聚合物的屈服与断裂讲解
![高分子科学-第8章 聚合物的屈服与断裂讲解](https://img.taocdn.com/s3/m/37ce1f466bd97f192379e920.png)
聚合物的断裂
脆性断裂 :屈服点前断裂 韧性断裂 :屈服点后断裂
12
8.1.2 影响应力-应变曲线的因素
1. 温度
1
曲线1: T《Tg ,硬玻璃态,键长 键角的变化,形变小,高模量——
2
3
T
脆性断裂
4
曲线2.3: Tb<T<Tg,软玻璃态:
出现强迫高弹形变,外力除
16
玻璃态聚合物与结晶聚合物的拉伸比较
相似:
都经历弹性形变、屈服、发展大形变、应变硬化、断裂等阶段。
其中大形变在室温时都不能自发回复,加热后可回复,故本质 上两种拉伸造成的大形变都是强迫高弹形变——“冷拉”。
区别:
(1)产生冷拉的温度范围不同,
非晶态Tb~Tg
结晶态Tb~Tm
(2)玻璃态聚合物在冷拉过程中凝聚态只发生分子链的 取向不发生相变;晶态聚合物还包含结晶的破坏、取向 和再结晶等过程(相变)。
屈服
(链段开 始运动)
应变硬化
(分子链沿 外力取向形 变不可回复)
应变软化
(链段运动)
冷拉(强
迫高弹形变)
7
强迫高弹形变
玻璃态高聚物在屈服点后大外力作用下发生的大形变,本质与橡胶的高弹 形变一样都是链段运动引起的,并不是分子链的滑移,只不过表现形式有差别。 由于聚合物处在玻璃态,形变在停止拉伸后无法自动恢复,但是如果让温度升 到Tg附近形变又可恢复。
(1)温度:Tb~Tg
0
exp
E
RT
温度越低
链段运动的松 强迫高弹形变 弛时间τ越大
必须使用更 大外力
存在一个特征温度Tb,如果低于该温度,玻璃态高聚物不 能发生强迫高弹形变,而只会发生脆性断裂,该温度称为
第八章:聚合物的电性质
![第八章:聚合物的电性质](https://img.taocdn.com/s3/m/116caffd551810a6f524867f.png)
在理论上,聚合物的电学性质往往最灵敏的反映 了聚合物内部结构与精细运动之间的关系。尤其可在 相当宽的频率范围内进行观察,所得的结果有时比力 学性能的更可靠,更深入。因此聚合物电学性能的研 究已成为高分子物理学科研究高分子运动最重要的手 段之一。 通过聚合物电性能的研究可以为电气工程提供选 材的数据和理论依据。
非极性聚合物的tgδ<1X10-4,极性聚合物的
tgδ=1X10-1~5X10-3 在交变电量中介电系数写成复数形式
*
ε*=ε′-iε″ 通常用作绝缘材料或电容器材料的聚合物要求tgδ越 小越好。否则不仅会消耗较多的电能,还会引起材料本 身发热,加速材料老化。如果需要对聚合物高频加热进 行干燥,模塑或对塑料薄膜进行高频焊接,则要求聚合 物具有较高的tgδ值。
1
S R h
h G S
上式中,ρ—电阻率,Ω.m; ζ—电导率,Ω-1 .m-1 显然电阻率或电导率与材料的尺寸无关,而只 决定于材料的性质,故用来表征材料的导电性,电 阻率越小或导电率越大,则导电性越好。
有时需要分别表示材料表面和内部不同的导电性, 其指标为表面电阻率和体积电阻率。 通过试样表面的电流Is I 相应R 通过试样体积内的电流IV Rs—表面电阻 RV—体积电阻
电阻越大,或电阻率越高,电导率越小,绝缘性 越好。 按电阻率或电导率的大小可分为绝缘体,半导体, 导体,超导体。 电阻率(Ω .m) 绝缘体 半导体 导体 超导体 1018 ~107 107 ~10-5 10-5 ~10-8 <10-8 电导率(Ω-1 .m-1 ) 10-18 ~10-7 10-7 ~105 105 ~108 >108
弱极性聚合物: 0<μ≤0.5 ε=2.3~3.0 tgδ=4x10-4 ~10-3 ρv=1015 ~1016 如:PS,PIB,NR
_聚合物的化学反应
![_聚合物的化学反应](https://img.taocdn.com/s3/m/09dd136a767f5acfa1c7cdea.png)
1. 化学反应方程式的局限性
在低分子有机化学反应中,用化学反应方程式 就可以表示反应物和产物之间的变化及其定量关系。 但是,聚合物的化学反应虽也可用反应式来表示, 其意义却有很大的局限性。如聚丙烯腈的水解
CH 2 CH n CN H2O H CH 2 CH n C O OH
许多反应中,大分子链中一种官能团转化为离 子后,如果它带的电荷与进攻试剂相同,由于静电 相斥效应,会显著阻碍邻近基团受试剂的进攻。 实例1:阻碍效应
甲基丙烯酰胺碱性水解程度不超过72%。
解释方法有两种:一是静电排斥,一是氢键限制。
CH 3 CH 2 C O C CH 2 O 排斥
CH 3 C CH 2 O
RCHO CH 2 CH CH 2 CH CH 2 CH OH OH OH CH 2 CH O CH R CH 2 CH CH 2 CH O OH
+
H2O
当缩醛化反应随机进行反应到转化率较高时, 大分子链上总有一部分孤立的未反应的羟基残留下 来。
O R
O
OH O R
O
O R
O
OH O R
O
OH O R
k
温度
100 120 129 名称
k 温度 30
4.4 3.1 4.8 聚乙酸乙烯酯
H2 C H C O C CH 3 O
4.8 2.7 4.7 乙酸异丙酯
H3C H C CH 3 O C CH 3 O
0.37
0.57
3. 邻近基团的静电和立体位阻
大分子链上反应基团甚多,邻近基团相距很近, 因此,基团之间的静电和立体位阻会增加或降低大 分子链上官能团的反应能力。 静电效应
高分子物理第八章 聚合物的屈服和断裂
![高分子物理第八章 聚合物的屈服和断裂](https://img.taocdn.com/s3/m/d5c2d0274b73f242336c5fca.png)
后球晶产生形变。晶区形变是应力作用使原有的结晶结构破坏,
球晶、片晶被拉开分裂成更小的结晶单元,分子链从晶体中被 拉出、伸直,沿着拉伸方向排列形成的
第八章 聚合物的屈服和断裂
影响拉伸行为的外部因素
结晶的影响
结晶度
球晶大小
第八章 聚合物的屈服和断裂
第八章 聚合物的屈服和断裂
剪切带屈服机理
( 1 )剪切带是韧性聚合物在单向拉伸至屈服点 时出现的与拉伸方向成约 45°角倾斜的剪切滑移 变形带。 (2)剪切带的厚度约1µ m,在剪切带内部,高分 子链沿外力方向高度取向,剪切带内部没有空隙, 因此,形变过程没有明显的体积变化。 ( 3 )剪切带的产生与发展吸收了大量能量。同 时,由于发生取向硬化,阻止了形变的进一步发 展。 第八章 聚合物的屈服和断裂
第八章 聚合物的屈服和断裂
影响拉伸行为的外部因素
应变速率的影响
时温等效原理:
拉伸速度快 = 时间短
=温度低
第八章 聚合物的屈服和断裂
8.1.1.2 晶态聚合物
在Tm以下,适 当的拉伸速率下 拉伸得到的晶态 聚合物典型的应 力-应变曲线
成颈or冷拉
第八章 聚合物的屈服和断裂
结晶聚合物应力-应变曲线
8.1.5 银纹现象
银纹现象是聚合物在张应力的作用下,于材料某些薄弱部位出现
应力集中而产生局部的塑性形变和取向,以至在材料表面或者内
部垂直于应力方向上出现长度为 100um 、宽度为 10um 左右、厚 度为1um的细微凹槽或“裂纹”的现象。
第八章 聚合物的屈服和断裂
银纹
银纹的平面垂直于产生银纹的张应力,在张应力作用下,能产 生银纹的局部区域内,聚合物呈塑性形变,高分子链沿张应力 方向高度取向,并吸收能量。由于横向收缩不足以全部补偿塑 性伸长,导致银纹体内产生大量空隙。密度、折光指数降低。 第八章 聚合物的屈服和断裂
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RV=V / IV
Rs=V /Is
s RV = ρV d s — 测试电极的面积 d — 试样的厚度
b Rs = ρ s L b — 平行电极间距cm L — 平面电极的长度cm
ρ
V
= R
v
d s
ρ
s
= R
s
L b
式中, ρV—体积电阻率(体积电阻系数,比体积电阻), 表示1cm3单位体积的电介质对电流的阻抗。 ρs—表面电阻率(表面电阻系数,比表面电阻), 表示1cm2单位面积的电介质对电流的阻抗。
第八章: 第八章:聚合物的电性能
电性能:在外电场作用下,大分子运动的宏 观表现,即大分子对外电场作出的响应。 聚合物低的电导率,低的介电损耗,高击穿 强度等优良的电学性质使其在电子和电工技术中 成为不可缺少的材料。大多数聚合物固有的电绝 缘性,长期被利用来隔离与保护电流。对于具有特 殊电磁功能的高分子的研究,对于高分子半导体, 导体,超导体,永磁体的探索已取得了不同程度 的进展。
(三)影响聚合物导电性的因素
高分子的化学结构是决定其导电性的首要因素。 1、饱和非极性高分子具有优异的绝缘性能, ρV>1014 2 2、极性高分子ρV<1014 ρ 3、杂质↑,ρs↓,ρV↓
4、含共轭双键的高分子—半导体材料 加入电荷转移络合物 加入金属离子等 5、T↑,导电性↑。
Ee RT
键的极性和分子极性的大小,用偶极矩表示, 偶极矩()定义为电荷量(q)和电荷重心之间距 离(L)的乘积: =qL 的单位是德拜(D),1D=10-18库仑-厘米。 越大,极性越大。
根据极性的大小,把聚合物分成以下几类: 根据极性的大小,把聚合物分成以下几类:
非极性聚合物: =0 ε=2.0~2.3 tgδ=2x10-4 ~4x10-4 ρv=1016 ~1018 如:PE,PBD ,PP,PTFE 弱极性聚合物: 0<≤0.5 ε=2.3~3.0 tgδ=4x10-4 ~10-3 ρv=1015 ~1016 如:PS,PIB,NR I
2、介电损耗
在交变电场E=E0cosωt(E0为交变电流的峰值) 作用下,电位移矢量(D)也是时间的函数。由于聚 合物的粘滞力作用,偶极取向跟不上外场的变化,电 位移矢量滞后施加电场一个相位差δ,即:
D = D 0 cos( ω t δ ) = D 0 cos δ cos ω t + D 0 sin δ sin ω t = D1 cos ω t + D 2 sin ω t
本章主要讨论高分子的介电性或绝缘性, 具体内容如下:
在静电场和交变电场作用下的介电性 在弱电场作用下的导电性 在强电场作用下的击穿性 重点讨论这三者,此外还有聚合物的表面静电现 象及新的电学性质——力电、热电、光电等。
一、高分子的介电性
电介质:用作绝缘体的绝缘材料。或者说是 那些把带电体分开的绝缘体。也就是说电介质是电的 绝缘体,它在电场作用下不分裂为带电的粒子,但能 够极化。 介电性:电介质在电场作用下,由于极化表现 出对电能的储蓄和损耗的性质。在直流电场(静电场) 储蓄电能,在交变电场中损耗电能。介电性用ε和tgδ 来表示,ε和tgδ愈小,介电性愈好。
ε′ 10 20 15 5 9 3 0
0 ε″ 1.0 20 15 0.5 9 0
3
增塑剂含量不 同的聚氯乙烯 的介电常数和 介电损耗与温 度的关系(频 率为60赫,曲 线上数字为增 塑剂联苯的百 分含量
20
40
60
80
T/(℃)
本体聚合物杂质少,tgδ↓ 乳液聚合物杂质多,tgδ↑ 配位聚合物含有金属催化剂,tgδ↑ 水是一种常见的杂质,含水量增加,tgδ↑
2、聚合物分子的极化
无论是非极性还是极性的聚合物在平常情况 下都表现为电中性的。 极化:在外电场作用下,分子中电荷分布所 发生的变化,这种现象称为极化。
(1)极化的形式 按照极化机理不同极化形式可分为:
a、电子极化:在外电场中每个原子的价电子相 对于原子核的位移。 V↑,t↓,无损耗 b、原子极化:原子核间的位移,t↗,少量损耗
高分子一般是分子晶体和玻璃体,分子间堆砌由 范德华力控制,电子云交叠较差,分子内即使存在可 自由移动的载流子,也很难进行分子间的迁移,况且 许多聚合物分子内电荷移动区域也是十分有限的。因 此大部分聚合物是电的绝缘体。理论计算表明,聚合 物绝缘体电导率为10-23 -1 .m-1 ,而实测得的数据往 往要比它大几个数量级,因此认为聚合物的微弱导电 性往往是由于杂质引起的。具有特殊结构的聚合物有 可能成为半导体和导体,甚至具有超导性。
PTFE的C—F键极性很大,但由于分子结构的对 称性,使得整个不具极性。 聚三氟氯乙烯的C—F和C—Cl键的极性不同,电 荷分布不对称,所以是极性分子。 主链有手性原子的聚合物,其电荷分布的对称性 同立体构型有关。对同一聚合物而言,全同立构的聚 合物分子电荷最不对称是极性分子,间同立构的分子 较对称,极性较弱,而无规立构居中。
t≈て,1/ω=t ωて=1
ε′,ε″
ε″
ε′ 0
ωτ=1
T
介电损耗与温度的关系
ω一定:T↓ 极化过程太慢,跟不上电场变化 ε′↓, ε″↓ T↑ 偶极能取向,但不能完全跟上电场的变化 ε′↑,ε″出现极值。 T大大增大 偶极跟得上电场的变化 ε′↑最大,ε″↓
③、增塑剂与杂质
增塑剂≈T↑,使ε↑,tgδ↓ 加入非极性增塑剂,介电损耗峰随增塑剂含量 增大而移向低温,即ε″↓ 加入极性增塑剂会使tgδ↑
电介质电容器的ε,定义为电介质电容器的电 容(C)与相应的真空电容器电容(C0)之比: ε=C/C0
ε是一个无量纲的量,在真空中,ε=1,在其它情 况下大于1。电介质的极化程度越大,ε越大。所以ε是 衡量电介质极化程度的宏观物理量。它表征电介质贮 存电能的能力,ε值表示电介质电容器的电容是真空电 容器电容的倍数。 聚合物的ε在2.0—8.4之间,大多数为2—4。
介电性是分子极化的反映,而导电性多半看作 聚合物含少量杂质的反映。
(二)导电性的表征
材料的导电性,可用电阻率或电导率表征。 根据欧姆定律,电阻(R)定义为加在试样两端 的电压与电流强度的比值,其单位是欧姆。试样的电 导(G)定义为电阻的倒数。 R=V/I G=1/R=I/V
电阻的大小同试样的尺寸有关,与试样长度h 成正比,与其横截面积S成反比。
(2)极化率(α)
α是表征极化程度的物理量。是一个与分子结构 有关而与电场无关的量。 =αE有效 不同的极化形式有不同的极化率,分子总的极化 率等于各种极化率之和。极性分子的总极化率为: α=αe+ αa+ αo 非极性分子: αo=0 α=αe+ αa α↑↑
(二)聚合物的介电性
1、介电系数(ε)
h R=ρ S 1 1S S G= = =σ h ρh h ρ S
σ=
1
ρ
S ρ = R h
h σ = G S
上式中,ρ—电阻率, .m; σ—电导率, -1 .m-1 显然电阻率或电导率与材料的尺寸无关,而只 决定于材料的性质,故用来表征材料的导电性,电 阻率越小或导电率越大,则导电性越好。
有时需要分别表示材料表面和内部不同的导电性, 其指标为表面电阻率和体积电阻率。 通过试样表面的电流Is I 相应R 通过试样体积内的电流IV Rs—表面电阻 RV—体积电阻
导体,超导体
σ = σ 0e
Ee — 电导活化能
三、聚合物的电击穿
聚合物作为绝缘材料,能耐多大的电压,能使 用多长时间,这些都关系到电气设备的可靠性和安全性, 在实际应用中极为重要。聚合物的电绝缘性并不是绝对 的,在弱电场中具有绝缘性的聚合物在强电场(107— 108V/m V/m)中随V↑,其绝缘性会↓,V↑到一定数值时, V↑ ↓ V↑ 介质可形成局部电导,材料的化学结构遭到破坏,发生 聚合物的电击穿。电介质的V和I的关系如下图所示。
式中,D1—电位移矢量与电场同相位部分; D2—电位移矢量滞后于施加电场的部分。
令:ε ′ = D1 / E 0
ε ′′ = D 2 / E 0
式中, ε′—实测的介电系数,代表体系的储电能力 ε″—损耗因子,代表体系的耗能部分。
通常用损耗角的正切表征聚合物电介质耗能与储能 之比: tgδ=ε″ / ε′ 非极性聚合物的tgδ<1X10-4,极性聚合物的 tgδ=1X10-1~5X10-3 在交变电量中介电系数写成复数形式
上述两种极化,又称诱导极化,或变形极化,或 位移极化。在高频区发生这种极化。由于极化使得分 子的正负电荷重心的位置发生变化:不重合(非极性 分子)—拉大(极性分子) c、取向极化:极性分子的固有偶极沿电场方向择 优排列。t↑,有一定的能量损耗,在低频区发生这种 t↑ 极化。与E、T有关。
d、界面极化:非均相介质中的电子或离子聚集 在不同组分的界面处而引起。 t增快很大。从几分之一秒→几秒,几分,几 个小时 前三种极化只发生在均匀介质中,极性分子可发 生电子,原子,取向极化;非极性分子只发生电子, 原子极化。
④、外加电场的电压增大,一方面有更多的偶极 按电场方向取向,流过的电导电流增大,tgδ↑
二、聚合物的导电性
(一)概念
物质内部存在着传递电流的自由电荷,这些 自由电荷称为载流子,载流子可以是电子,空穴,也 可以是正、负离子。 电导:载流子在电场作用下在介质中的迁移。 它是表征物体导电能力的物理量。
材料导电性的优劣,与其所含载流子的多少 及载流子的运动速度有关。具体来说与载流子所带 电荷量q,迁移速度V,载流子密度N有关,迁移速 度V正比于电场强度,其比例系数为——即材料的 迁移率,它是材料的特征参数,对于单位立方体有: Iu=N q V =N q E V= E
电阻越大,或电阻率越高,电导率越小,绝缘性 越好。 按电阻率或电导率的大小可分为绝缘体,半导体, 导体,超导体。 电阻率( 绝缘体 半导体 导体 超导体 .m) 电导率(