考研数学各章.ppt
离散数学 课件 PPT 精品课程 考研 大学课程 数学一 第九章 树
例 (2)为(1)的一棵生成树T,(3)为T的余树.
(1)
(2)
(3)
余树可能不连通,也可能含回路。
2019/1/30
11
定理9.3 任何连通图G至少存在一棵生成树. 推论1 设n阶无向连通图G有m条边,则 m≥n-1. 推论2 设n阶无向连通图G有m条边,T是G的生 成树,T'是T的余树,则T'中有m-n+1条边.
(1)
(2)
(3)
m=8,n=5
2019/1/30 12
a
d b
f
e
图中, 初级回路aed, bdf,cef.
c
这3个回路中每一 个回路都只含一条 弦,其余的边都是树 枝,这样的回路称为 基本回路.
2019/1/30
13
定义9.3 设T是n阶连通图G=<V,E>的一棵生成 树,G有n条边.设e1,e2· · · ,em-n+1为T的弦,设Cr是T 加弦er产生的G的回路,r=1,2,…m-n+1.称Cr为 对应于弦er的基本回路,称{C1,C2,· · · ,Cm-n+1}为 对应生成树T的基本回路系统.
连通分支数大于等于2,且每个连通分支均
平凡图称为平凡树. 设T=<V,E>为一棵无向树,v∈V,若d(v)=1,
则称v为T的树叶.若d(v)≥2,则称v为T的分 支点.
2019/1/30 3
例
(a)
(b)
(c )
图中(a),(b)为树,而(c)不是树, 但(c)为森林。
2019/1/30 4
T有5个树枝a, b, c, d, e, 因而有5个 基本割集:Sa={a,g,f } ; Sb={b,g,h } ; Sc={c,f,h } ; Sd={d,i,h } ; Se={e,f,i}. 基本割集系统为{Sa,Sb,Sc, Sd,Se}.
2014年考研数学基础经典课件第三章-中值定理
f ( x)
e, x2
f (e) 1 0, f ( x)在x e处取得极小值, e
又 f ( x)可导且只有唯一驻点,
f ( x)的极小值就是最小值, 对一切x e,有f ( x) f (e), f (π) f (e) 0,
π e ln π>0, 即eπ πe .
24
第24页,共35页。
22
第22页,共35页。
例2. 证明 ln(1 x) arctan x ( x 0) . 1 x
证 设( x) (1 x)ln(1 x) arctan x,( x 0)
则( x)在(0, )内连续可导,且(0) 0,
( x)
1
ln(1
x)
1 1 x2
ln(1
x)
x2 1 x2
如:y x , x 0 连续不可导,
y
却是极小值点.
第11页,共35页。
o
x 11
1
如:y x 3 ,在 x 0 处连续不可导,
也不是极值点. 3:极值点的可疑点: 驻点,不可导点.
12 第12页,共35页。
3.取得极值的充分条件:
(1)第一充分条件: 设连续函数 f (x)的极值可疑点
y
y
y
o x0 x o
x0
xo
左正右负极大 左负右正极小
y
x左0 右同x 号o无极值x0
x
13
第13页,共35页。
(2)第二充分条件: 设函数 f ( x) 在点x0 处具有
二阶导数, 且 f ( x0 ) 0,f ( x0 ) 0,那么
(1)当f ( x0 ) 0时, 函数 f ( x)在点 x0 处取得极大值;
线性代数考研课件完整版
考研数学线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲基本概念1.线性方程组的基本概念线性方程组的一般形式为:a11x1+a12x2+…+a1n x n=b1,a21x1+a22x2+…+a2n x n=b2,…………a m1x1+a m2x2+…+a mn x n=b m,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2, …,k n)(称为解向量),它满足:当每个方程中的未知数x i都用k i替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b1=b2=…=b m=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n 型矩阵.例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个4⨯5矩阵.对于上面的线性方程组,称矩阵a11 a12… a1n a11 a12… a1n b1A= a21 a22… a2n 和(A|β)= a21 a22… a2n b2…………………a m1 a m2… a mn a m1 a m2… a mnb m为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,⋯ ,a n的向量可表示成a1(a1,a2,⋯ ,a n)或 a2 ,┆a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n矩阵,右边是n⨯1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个m⨯n的矩阵的每一行是一个n维向量,称为它的行向量; 每一列是一个m维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A的列向量组为α1, α2,⋯ ,αn时(它们都是表示为列的形式!)可记A=(α1, α2,⋯ ,αn).矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量α和β相等(记作α=β),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m⨯n的矩阵A和B可以相加(减),得到的和(差)仍是m⨯n矩阵,记作A+B (A-B),法则为对应元素相加(减).数乘: 一个m⨯n的矩阵A与一个数c可以相乘,乘积仍为m⨯n的矩阵,记作c A,法则为A 的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:①加法交换律:A+B=B+A.②加法结合律:(A+B)+C=A+(B+C).③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A.④数乘结合律: c(d)A=(cd)A.⑤ c A=0⇔ c=0 或A=0.转置:把一个m⨯n的矩阵A行和列互换,得到的n⨯m的矩阵称为A的转置,记作A T(或A').有以下规律:① (A T)T=A.② (A+B)T=A T+B T.③ (c A)T=c A T.转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当α是列向量时, α T表示行向量, 当α是行向量时,α T表示列向量.向量组的线性组合:设α1, α2,…,αs是一组n维向量, c1,c2,…,c s是一组数,则称c1α1+c2α2+…+c sαs为α1, α2,…,αs的(以c1,c2,…,c s为系数的)线性组合.n维向量组的线性组合也是n维向量.(3) n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵.把n阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法.对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|β),用初等行变换把它化为阶梯形矩阵(B|γ).(2)用(B|γ)判别解的情况:如果最下面的非零行为(0,0, ⋯,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|γ)的零行,得到一个n×(n+1)矩阵(B0|γ0),并用初等行变换把它化为简单阶梯形矩阵(E|η),则η就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵⇒A是阶梯形矩阵.(B) A是上三角矩阵⇐A是阶梯形矩阵.(C) A是上三角矩阵⇔A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲 行列式一.概念复习1. 形式和意义形式:用n 2个数排列成的一个n 行n 列的表格,两边界以竖线,就成为一个n 阶行列式:a 11 a 12 … a 1na 21 a 22 … a 2n… … … .a n1 a n2 … a nn如果行列式的列向量组为α1, α2, … ,αn ,则此行列式可表示为|α1, α2, … ,αn |.意义:是一个算式,把这n 2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.)每个n 阶矩阵A 对应一个n 阶行列式,记作|A |.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a 11 a 12a 21 a 22 = a 11a 22-a 12a 21 .a 11 a 12 a 13a 21 a 22 a 23 = a 11a 22a 33+ a 12a 23a 31+ a 13a 21a 32-a 13a 22a 31- a 11a 23a 32-a 12a 21a 33.a 31 a 32 a 33一般地,一个n 阶行列式a 11 a 12 … a 1na 21 a 22 … a 2n… … …a n1 a n2 … a nn的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a Λ2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定τ(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项n nj j j a a a Λ2121所乘的是.)1()(21n j j j Λτ-全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:023********, τ(436512)=3+2+3+2+0+0=10.至此我们可以写出n 阶行列式的值:a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n n nj j j j j j j j j a a a ΛΛΛτ-∑ … … …a n1 a n2 … a nn这里∑n j j j Λ21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的n-1阶行列式称为(i,j)位元素a ij 的余子式,记作M ij .称A ij =(-1)i+j M ij 为元素a ij 的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题 第三类初等变换(倍加变换)不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:① 把行列式转置值不变,即|A T |=|A | .② 某一行(列)的公因子可提出.于是, |c A |=c n |A |.③ 对一行或一列可分解,即如果某个行(列)向量α=β+γ ,则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量α换为β或γ 所得到的行列式.例如|α,β1+β2,γ |=|α,β1,γ |+|α,β2,γ |.④ 把两个行(列)向量交换, 行列式的值变号.⑤ 如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0.⑥ 某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.⑦ 如果A 与B 都是方阵(不必同阶),则A * = A O =|A ||B |.O B * B范德蒙行列式:形如1 1 1 (1)a 1 a 2 a 3 … a na 12 a 22 a 32 … a n 2… … … …a 1n-i a 2n-i a 3n-i … a n n-i的行列式(或其转置).它由a 1,a 2 ,a 3,…,a n 所决定,它的值等于).(i j ji a a -∏< 因此范德蒙行列式不等于0⇔ a 1,a 2 ,a 3,…,a n 两两不同.对于元素有规律的行列式(包括n 阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n 阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D 1/D, D 2/D,⋯,D n /D),这里D 是系数行列式的值, D i 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A |β)作初等行变换,使得A 变为单位矩阵: (A |β)→(E |η),η就是解.用在齐次方程组上 :如果齐次方程组的系数矩阵A 是方阵,则它只有零解的充分必要条件是|A |≠0.二. 典型例题1.利用性质计算元素有规律的行列式例1 ① 2 a a a a ② 1+x 1 1 1 ③ 1+a 1 1 1 a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a 3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例3 1+x 1 1 1 11 1+x2 1 1 .1 1 1+x 3 11 1 1 1+x 4例4 a 0 b c0 a c b .b c a 0 c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x 3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 3 3x 2-29 x 3 6 -6例7 求 x-3 a -1 4f(x)= 5 x-8 0 –2 的x 4和x 3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A =(α, γ1, γ2 ,γ3),B =(β, γ1, γ2 ,γ3),|A | =2, |B |=3 ,求|A +B | . 例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z. 1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01)2 2 2 20 -7 0 05 3 -2 23.几个n 阶行列式两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a nb 1c 2 0 … 0 0证明 0 b 2 c 3 0 0 =11111(1)n i i i i n i b b a c c --+=-∑L L .… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出).例12 a 0 a 1 a 2 … a n-1 a nb 1c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111n n i i i i i n i i a c c c a b c c -+==-∑∏L L .… … … …b n 0 0 … 0c n提示: 只用对第1行展开(M 1i 都可直接求出).另一个常见的n 阶行列式:例13 证明a+b b 0 … 0 0a a+b b … 0 0… … … … = 110n n n n i ii a b a b a b ++-=-=-∑(当a ≠b 时). 0 0 0 … a+b b0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题例14设有方程组 x 1+x 2+x 3=a+b+c,ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等.(2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.② x 3(x+4). ③ a 3(a+10).例2 1875.例3 x 1x 2x 3x 4+x 2x 3x 4+x 1x 3x 4+x 1x 2x 4+x 1x 2x 3.例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a 2-a 3+a 4-a 5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x 1=a,x 2=b,x 3=c..第三讲矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A的列数和B的行数相等时,和A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.设 a11 a12... a1n b11 b12... b1s c11 c12 (1)A= a21 a22... a2n B= b21 b22... b2s C=AB=c21 c22 (2)………………………a m1 a m2… a mn ,b n1 b n2… b ns ,c m1 c m2… c ms ,则c ij=a i1b1j+a i2b2j+…+a in b nj.矩阵的乘法在规则上与数的乘法有不同:①矩阵乘法有条件.②矩阵乘法无交换律.③矩阵乘法无消去律,即一般地由AB=0推不出A=0或B=0.由AB=AC和A≠0推不出B=C.(无左消去律)由BA=CA和A≠0推不出B=C. (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:①加乘分配律 A(B+C)= AB+AC,(A+B)C=AC+BC.②数乘性质 (c A)B=c(AB).③结合律 (AB)C= A(BC).④ (AB)T=B T A T.2. n阶矩阵的方幂和多项式任何两个n阶矩阵A和B都可以相乘,乘积AB仍是n阶矩阵.并且有行列式性质:|AB|=|A||B|.如果AB=BA,则说A和B可交换.方幂设k是正整数, n阶矩阵A的k次方幂A k即k个A的连乘积.规定A 0=E.显然A的任何两个方幂都是可交换的,并且方幂运算符合指数法则:①A k A h= A k+h.② (A k)h= A kh.但是一般地(AB)k和A k B k不一定相等!n阶矩阵的多项式设f(x)=a m x m+a m-1x m-1+…+a1x+a0,对n阶矩阵A规定f(A)=a m A m+a m-1A m-1+…+ a1A+a0E.称为A的一个多项式.请特别注意在常数项上加单位矩阵E.乘法公式一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有:(A ±B )2=A 2±2AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ).二项展开式成立: B AC B A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A 的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A 11 A 12B 11 B 12 = A 11B 11+A 12B 21 A 11B 12+A 12B 22 A 21 A 22 B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22 要求A ij 的列数B jk 和的行数相等. 准对角矩阵的乘法: 形如A 1 0 ... 0 A = 0 A 2 0… … … 0 0 … A n的矩阵称为准对角矩阵,其中A 1,A 2,…,A k 都是方阵.两个准对角矩阵A 1 0 ... 0 B 1 0 0A = 0 A 2 … 0 ,B = 0 B 2 … 0 … … … … … … 0 0 … A k 0 0 … B k 如果类型相同,即A i 和B i 阶数相等,则A 1B 1 0 0AB = 0 A 2B 2 … 0 . … … …0 0 … A k B k(2)乘积矩阵的列向量组和行向量组 设A 是m ⨯n 矩阵B 是n ⨯s 矩阵. A 的列向量组为α1,α2,…,αn ,B 的列向量组为β1, β2,…,βs , AB 的列向量组为γ1, γ2,…,γs ,则根据矩阵乘法的定义容易看出(也是分块法则的特殊情形):① AB 的每个列向量为:γi =A βi ,i=1,2,…,s. 即A (β1, β2,…,βs )= (A β1,A β2,…,A βs ).② β=(b 1,b 2,…,b n )T,则A β= b 1α1+b 2α2+…+b n αn .应用这两个性质可以得到:如果βi=(b1i,b2i,…,b ni)T,则γi=AβI=b1iα1+b2iα2+…+b niαn.即:乘积矩阵AB的第i个列向量γi是A的列向量组α1, α2,…,αn的线性组合,组合系数就是B的第i个列向量βi的各分量.类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A的第i个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵Λ从左侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵Λ从右侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(α,β,γ), C=(α+2β-γ,3α-β+γ,α+2γ),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i 个元素改为c.E(i,j(c))(i≠j):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设 B=(β1, β2,…,βs),则 X也应该有s列,记X=(X1,X2,…,X s),则有AX i=βi,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)→(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)→(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵.此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C.(左消去律);BA=0⇒B=0;BA=CA⇒B=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C. BA=C⇔B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理 n阶矩阵A可逆⇔|A|≠0.证明“⇒”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|≠0. (并且|A-1|=|A|-1.) “⇐”因为|A|≠0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E⇔BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c≠0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)②如果A和B都可逆,则AB也可逆,并且(AB)-1=B-1A-1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c)).(4) 逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1是矩阵方程AX=E的解,于是可用初等行变换求A-1:(A|E)→(E|A-1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.②伴随矩阵若A是n阶矩阵,记A ij是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵为 A11 A21… A n1A*= A12 A22… A n2 =(A ij)T.………A1n A2n… A mn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但是在A可逆时, A*和A-1有密切关系.基本公式: AA*=A*A=|A|E.于是对于可逆矩阵A,有A-1=A*/|A|, 即A*=|A|A-1.因此可通过求A*来计算A-1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc≠0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A; n=2时,(A*)*=A.二典型例题1.计算题例1 α=(1,-2,3) T,β=(1,-1/2,1/3)T, A=αβ T,求A6.讨论:(1)一般地,如果n阶矩阵A=αβ T,则A k=(βTα)k-1A=(tr(A ))k-1A .(2)乘法结合律的应用:遇到形如βTα的地方可把它当作数处理.① 1 -1 1ααT= -1 1 -1 ,求αTα.(2003一)1 -1 1②设α=(1,0,-1)T, A=ααT,求|a E-A n|.③ n维向量α=(a,0,⋯,0,a)T, a<0, A=E-ααT, A-1=E+a-1αα T,求a. (03三,四)④ n维向量α=(1/2,0,⋯,0,1/2)T, A=E-αα T, B=E+2αα T,求AB. (95四)⑤ A=E-αβ T,其中α,β都是n维非零列向量,已知A2=3E-2A,求αTβ.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)1 0 1例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n=A n-2+A2-E. (2) 求A n.0 1 0例4 设A为3阶矩阵, α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3, Aα2=2α2+ α3, Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2005年数学四)例5设3阶矩阵A=(α1,α2,α3),|A|=1,B=(α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3),求|B|.(05)例6 3维向量α1, α2, α3, β1, β2, β3满足α1+α3+2β1-β2=0, 3α1-α2+β1-β3=0, -α2+α3-β2+β3=0,已知|α1, α2, α3|=a,求| β1, β2, β3|.例7设A是3阶矩阵, α是3维列向量,使得P=(α,Aα,A2α)可逆,并且A3α=3Aα-2A2α.又3阶矩阵B满足A=PBP-1.(1)求B.(2)求|A+E|.(01一)2 1 0例8 3阶矩阵A,B满足ABA*=2BA*+E,其中A= 1 2 0 ,求|B|.(04一)0 0 1例9 3 -5 1设3阶矩阵A= 1 -1 0 , A-1XA=XA+2A,求X.-1 0 2例10 1 1 -1设3阶矩阵A= -1 1 1 , A*X=A-1+2X,求X.1 -1 1例11 4阶矩阵A,B满足ABA-1=BA-1+3E,已知1 0 0 0A*= 0 1 0 0 ,求B. (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A= 2 1 0 , B= 0 0 0 , XA+2B=AB+2X,求X11.2 13 0 0 -1例13设α1=(5,1,-5)T, α2=(1,-3,2)T, α3=(1,-2,1)T,矩阵A满足Aα1=(4,3) T, Aα2=(7,-8) T, Aα3=(5,-5) T,求A.2.概念和证明题例14 设A是n阶非零实矩阵,满足A*=A T.证明:(1)|A|>0.(2)如果n>2,则 |A|=1.例15 设矩阵A=(a ij)3⨯3满足A*=A T,a11,a12,a13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A 0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) |B|A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)≠0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设α是n维非零列向量,记A=E-ααT.证明(1) A2=A⇔αTα =1.(2) αTα =1⇒ A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆⇔ E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab≠0,证明(1) A-b E和B-a E都可逆.(2) A可逆⇔ B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵, E+AB可逆,证明(E+AB)-1A也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果A.B都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例135A=35 -2 1 –2/3 .3 -3/2 1① 3.② a2(a-2n). ③ -1. ④ E. ⑤ 4.例2 O.例3 (1)提示: A n=A n-2+A2-E⇔A n-2(A2-E)=A2-E ⇔ A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例 4 1 0 0B= 1 2 2 .1 1 3例5 2.例 6 –4a.例 7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例 9 -6 10 4X= -2 4 2 .-4 10 0例 10 1 1 0(1/4) 0 1 1 .1 0 1例 11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例 12 1 0 02 0 0 .6 -1 -1例 13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例 17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19 E(i,j).例22 提示:用克莱姆法则.例如证明 ,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例 24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系设α1,α2,…,αs是一个n维向量组.如果n维向量β等于α1,α2,…,αs的一个线性组合,就说β可以用α1,α2,…,αs线性表示.如果n维向量组β1, β2,…,βt 中的每一个都可以可以用α1,α2,…,αs线性表示,就说向量β1,β2,…,βt可以用α1,α2,…,αs线性表示.判别“β是否可以用α1, α2,…,αs线性表示? 表示方式是否唯一?”就是问:向量方程x1α1+ x2α2+…+x sαs=β是否有解?解是否唯一?用分量写出这个向量方程,就是以(α1, α2,…,αs |β)为增广矩阵的线性方程组.反之,判别“以(A|β)为增广矩阵的线性方程组是否有解?解是否唯一?”的问题又可转化为“β是否可以用A的列向量组线性表示? 表示方式是否唯一?”的问题.向量组之间的线性表示问题与矩阵乘法有密切关系: 乘积矩阵AB的每个列向量都可以表示为A的列向量组的线性组合,从而AB的列向量组可以用A的列向量组线性表示;反之,如果向量组β1,β2,…,βt可以用α1,α2,…,αs线性表示,则矩阵(β1,β2,…,βt)等于矩阵(α1,α2,…,αs)和一个s⨯t矩阵C的乘积. C可以这样构造: 它的第i个列向量就是βi对α1,α2,…,αs的分解系数(C不是唯一的).向量组的线性表示关系有传递性,即如果向量组β1,β2,…,βt可以用α1,α2,…,αs线性表示,而α1,α2,…,αs 可以用γ1,γ2,…,γr线性表示,则β1,β2,…,βt可以用γ1,γ2,…,γr线性表示.当向量组α1,α2,…,αs 和β1,β2,…,βt互相都可以表示时,就说它们等价,并记作{α1,α2,…,αs }≅{β1,β2,…,βt}.等价关系也有传递性.2. 向量组的线性相关性(1) 定义(从三个方面看线性相关性)线性相关性是描述向量组内在关系的概念,它是讨论向量组α1, α2,…,αs 中有没有向量可以用其它的s-1个向量线性表示的问题.定义设α1,α2,…,αs 是n维向量组,如果存在不全为0的一组数c1,c2,…,c s使得c1α1+c2α2+…+c sαs=0,则说α1,α2,…,αs 线性相关,否则(即要使得c1α1+c2α2+…+c sαs=0,必须c1,c2,…,c s全为0)就说它们线性无关.于是, α1,α2,…,αs “线性相关还是无关”也就是向量方程x1α1+ x2α2+…+x sαs=0“有没有非零解”,也就是以(α1,α2,…,αs )为系数矩阵的齐次线性方程组有无非零解.当向量组中只有一个向量(s=1)时,它相关(无关)就是它是(不是)零向量.两个向量的相关就是它们的对应分量成比例.(2) 性质①当向量的个数s大于维数n时, α1, α2,…,αs 一定线性相关.。
考研数学一二微分中值定理(题)PPT课件
设f(x)在[a,b]开区间连续闭区间可导,且ab均大于0,证明:必存 在ξ≠η∈(a,b)使得f'(ξ)= [f'(η)/2η]*(a+b)用两次拉格朗日中 值定理 先由拉格朗日中值定理得:f'(ξ)=[f(b)-f(a)]/(b-a),ξ∈(a,b)。 又由柯西中值定理有:[f(b)-f(a)]/(b^2-a^2)=f'(η)/2η,η∈(a,b)。 即[f(b)-f(a)]/(b-a)=f'(ξ)=[f'(η)/2η](a+b),此即所证等式。
2) 罗尔定理涉及了方程根的问题
B
b xx
4
例2 若 f (x)在 0, 1上连续, 在 (0,1)内可导, 且 f (1)=0 ,
则在 (0,1) 内存在点ξ, 使
f'() f
解 f'()f () f'()f() 0 , (0 ,1 )
[x(x f)x ] '0 , (0 ,1 )
取辅助函数 F(x)x(fx),则 F(x)在 0, 1上连续,
Байду номын сангаас
[2 3
,1]
使
1 f (x)dx f () 1 f()f(0)
2
3
3
又 f (x) 在 0, 上连续, 在(0,)内可导,据罗尔定理,
存在ξ0, (0 , 1) 使
f'()0 11
例8 设函数 f (x)在闭区间0, 1上连续, (0,1)内可导, 且
f(0)f(1)0, f(1)1 22
据罗尔定理,ξ(a, b) 使 F'()0
即 f(b ) f() f'()( a ) 8
例6 设 f (x)在 0, 1 上连续, 在(0,1)内可导, f(0)=0 , 证明: 在(0 , 1)内至少存在一点ξ, 使得
考研报告数学 PPT课件
选择题
填空题
解答题
关于无穷小 量的比较
……
中值定理的 证明
共34个题型
命题指导思想
既有利于高层次人才的选拔,又有 利于相关考试课程教学质量的提高.
围绕基本内容,注重运算能力、 解题技巧的考察.
灵活性、综合性和应用性.
硕士研究生入学考试系列教材 张天德 胡金德主编:
《高等数学辅导(同济六版)》
高等数学 116分
77.3%
线性代数 34分
22.7%
客观题 56分 37% 主观题 94分 63%
数学二考点分布
极限与连续 一元微分学 一元积分学
高数
116
8 二重积分
14
32
28
多元微分学 常微分方程
15
19
线代 34
行列式 4
向量 4
线性方程组 11
特征值和特征向量 15
试卷三
题型及内容比例: 微积分 线性代数
I
1
0
1 x2
1
1
dx x2 dx
0
4 1
4
4
1.上辅导班前的准备工作 2.目前的辅导班简介
好的辅导班应该是 高效率、快节奏、高信息量
走考研这条路就要作好吃苦的思想准备
3.原来的数学基础对复习的影响问题
考研大纲
考点? 题型?
考点
…... 等价无穷 洛必达法则
小求极限
求极限
共66个考点
题型
1
( x)dx
100 1
=25
0
0
4
2.广度不够
方向导数、梯度、斯托克斯公式、曲率、数理统计
本科阶段只要 求掌握结论
研究生入学考试高等数学课件.ppt
E0
pc
作业 4-19
l
´=
x
´
2
x ´ 在相对运动参照系中测得的物长 1
l´ = l 1 β 2
l
´
动
<
l静
运动着的物体在其运动方向上的长
度缩短了,变为其固有长度的 1 2
倍或 1 ,这就是所谓的长度收缩.
5、时序与因果律 时序: 两个事件发生的时间顺序。
开枪 事件1: (x 1,t1) 前
v 子弹
鸟死
事件2: (x 2,t 2 ) 后
动量定义 P=mv
牛顿力学:质量与速度无关
相对论动量及动量守恒必须满足以下两个条件:
a.在洛氏变换下保持不变;
b.在 v c 的条0 件下,还原为牛顿力学的
动量形式。
相对论力学:质量与速度有关,否则动量守 恒定律不能在洛仑兹变换下保持形式不变。
一、相对论质量和动量
K系:有M, 静止于O
y
ui' ui'
Δ t = t2 t1 在静系中测得的时间间隔(寿命)
Δ t´= t2´ t1´ 在动系中测得的时间间隔(寿命)
Δ t = t2 t1 在静系中测得的时间间隔(寿命) Δ t´= t2´ t1´ 在动系中测得的时间间隔(寿命)
Δ t´ =
Δt 1β
2
同一地点的两件事情间隔
t2´
t1´= t 2
t1
的质量为 m ,则太阳的辐射功率为 mc2
ms = 1·99×1030kg
例4-3: 原子核的结合能。已知质子和中子的质量分
别为:
MP 1.0007 28 u
Mn 1.0008 66 u
两个质子和两个中子组成一氦核
2014考研数学基础课件第11章无穷级数
(1)
n 1
u n1 n ((ii{i)) ulnni}m单u调n递减0.
(u n
0)
第7页,共50页。
(1) u n1 n收敛.
n 1
7
★正项级数审敛程序:
必要条件
lim
n
un
0
满足
不满足 发 散
比值审敛法 根值审敛法
lim un1
u n n
lim n
n
un
比较审敛法
1不确定
定义法
用其它法判别 性质法
n1
1
发散 ,
n1 n 1
故原级数发散 .
第9页,共50页。
9
请熟记:lim n n 1; lim n a 1(a 0)
n
n
解(2)
P323 题2(1)
1 发散 , 故原级数发散 .
n n1
(3)
n2 sin
n1
2n
解(3) lim un1
u n n
lim
n
(
n
1)2
sin
2n1
C.
u 收敛 n
u 收敛. n
若
un收敛
un1收敛.
n1
n1
n1
n1
性质3.在级数前面加上或去掉有限项, 不会影响级数
的敛散性. 16
第16页,共50页。
16
3. [04数三、4分] 设有下列命题:
(1) 若 (u2n1 u2n ) 收敛,则 un收敛.
n1
n1
(2) 若 un收敛,则 un1000 收敛.
n1
n1
n1
n1
性质2. 设 两un,级v数n收收敛敛 s ( un vun )n收,敛且 ( unvn,vn ) ( un vn ).
考研数学基础经典第一章函数与极限课件
函数与极限2
考研数学基础经典第一章函数与极限
11
•第一个重要极限
•应注意的问题
lim sin x =1 x0 x
在极限 lim
sina(x) a(x)
中
只要a(x)是无穷小
就有
lim
sina(x) a(x)
=1
这是因为 令u=a(x) 则u 0 于是
lim sina(x) =lim sinu =1 a(x) u0 u
x0
x
2 x
2
1
1
limarccotx=0, limarccotx=,limex =,limex =0.
x
x
x0
x0
2 . 极 限 不 存 在 的 例 子
1
limex, limarctanx,limarccotx,limex,limsinx,limcosx,
x x
x
x 0 x
x
1
1
1
limtanx,limcotx,limsin ,limcos ,limarctan .
2
考研数学基础经典第一章函数与极限
5
常用等价无穷小:
当 x0时 ,
sinx~ x, tanx~ x, arcsixn~ x, arctaxn~ x, ln1(x)~ x, ex 1~ x, 1co sx~1x2, ax 1~ xlna,
2
(1x)a 1~ax.
考研数学基础经典第一章函数与极限
6
例1 : 计算下列极限 .
解
原式 =
lim x ( 3
x
1 x3
1a
b x
)=0
lim( 3
x
考研数学 一PPT课件
A
B
S
(6) 事件A与B的差
由事件A出现而事件B不出现所组成的事件称 为事件A与B的差.记作 A- B.
图示 A 与 B 的差. BA
BA
A AB B S
B AAB S
(7) 事件A的对立事件 设 A 表示 “事件A出现” , 则 “事件A不出现” 称为事件 A 的对立事件或逆事件. 记作 A . 图示 A 与 B 的对立 .
教学内容 以教学大纲为中心 以考试大纲为中心
各自为政
全国统一
考试性质 水平性测试
选拔性测试
考试难度 划重点、难度低 综合性强、难度高
2、命题规律
重基础 重计算 重复率高 综合性强
PROBABILITY & STATISTICS
PROBABILITY
PROBABILITY & STATISTICS
(A)C B A (B).C 3o分 配 律 (A B )C(A C ) (B C )A C B,C (A B ) C(A C )(B C )(A C )B ( C ).
4 o 德 摩 : A B A 根 B , A B A 律 B .
例0 一个工人 3个 生零 产 ,以 件 了 事Ai件 表示他
考研数学
考试时间180分钟
试卷满分150分
题型:选择题(每题4分) 填空题(每题4分) 解答题(每题10分左右)
考研数学一(工学大部分) 数学三(经济管理大部分)
高等数学:82分 8小5大 线性代数:34分 3小2大 概率统计:34分 3小2大
1.大学数学与考研数学的区别
大学数学
考研数学
教学目标 重过程、轻结果 重结果、轻过程
高等数学考研重要ppt课件
• 1函数与某点在极限与该点有没有定义毫无 关系,比如说 lim sin x 1,跟这一点的去心领 域邻近点的函数x值0 有x 关。比如说:
•
sin ( x sin 1 )
•
lim
x0
x x sin 1
1 ( ×)原因是在
零点附近找不到一个x 很小的去心领域满足,
x=1/(πn),n无论取什么书,分母都会为0.
lim x a 0 rc1 xta 2 nxl i0 m arc1 xta 2 n
注意:确定水平渐近线是要考虑x → ∞的极限值
• lim ex, 而 lim ex0
•x
x
所以存在一
条水平渐近线
1x2
1x2
lim 1lim
1
x
x x
0
0
0
1
2
• (2011、数三 1)
设函 zf(x数 ,y)满xl 足 im 0f(xx ,y 2) (2 yx 1 )y2 20,则 dz(0,1 ) y 0
设f (x,y)有二阶连续导g(数 x,y, ) f (exy,x2 y2)且
满足lim f (x,y)xy1证明g(x,y)在(0,0)取得
x 0
lim arctan 1 x
x 0
lim e x
• x
limarctanx
x
lim 1 x 2 1 x
x
lim
1
ex
(0 ×)
x 0
1
• 错因:lim e x ≠
x0
1
lim e x
x 0
0
• •
limarctan1x
x0
考研高数总复习无穷小的比较(讲义)PPT课件
导数的应用
在研究函数的单调性、极值和拐 点等问题时,需要利用导数的性 质和无穷小的关系。
在积分中的应用
积分的定义
积分是通过无穷小分割和 求和来定义的,无穷小在 积分定义中扮演着重要的 角色。
积分的几何意义
无穷小表示面积或体积的 微元,通过积分可以计算 曲线下的面积、曲面下的 体积等。
积分的应用
在解决实际问题时,如求 曲线的长度、物体的质量、 做功等,需要利用积分和 无穷小的关系。
无穷小的性质
总结词
无穷小具有一些重要的性质,这些性质在研究函数的极限、导数和积分等数学概念时非 常有用。
详细描述
1. 无穷小与任何常数的和、差、积仍然是无穷小。例如,如果 (x rightarrow 0) 时,(x) 是无穷小,那么 (x+2)、(x-2)、(3x) 和 (x^2) 也是无穷小。2. 无穷小与有界函数的乘 积仍然是无穷小。例如,如果 (x rightarrow 0) 时,(x) 是无穷小,而 (|f(x)| < M)(其
求解极限
在求解某些极限问题时, 可以利用无穷小的性质进 行化简,从而得出结果。
无穷小的等价替换
在某些极限计算中,可以 将无穷小替换为其他无穷 小,简化计算过程。
在导数中的应用
导数的定义
导数是通过无穷小增量和自变量 的比值来定义的,无穷小在导数 定义中起着关键作用。
导数的几何意义
无穷小表示函数图像在某一点的 切线斜率,通过导数可以研究函 数的几何性质。
05 习题与解析
基础习题
基础习题1
比较以下无穷小量的大小:$frac{1}{x}, frac{1}{x^2}, frac{1}{x^3}$ 当 $x to 0$。
考研高数总复习第一章多项式第七节(讲义)PPT课件
.
Foil 9
如果 f (x) - g(x) 0 ,那么它就是一个次数不超过 n
的多项式, 由 定理 8 P它[x不] 中可能n有次n多+ 1项个式根.( n 0 ) 在
因此, f (x) = g(x) .
中的根不可能多于 n 个,重根按重数证计毕算.
为 f (x) 的 k 重根,如果 ( x - ) 是 f (x) 的 k 重因式.
单根 当 k = 1 时, 称为
;
根. .
重 当 k > 1 时, 称为
称
Foil 6
定理 8 P[x] 中 n 次多项式 ( n 0 ) 在数域 P
中的根不可能多于 n 个,重根按重数计算.
证明 对零次多项式定理显然成立.
第七节 多项式函数
主要内容
定义 性质
.
Foil 1
一、定义
直到现在为止,我们始终是纯形式地讨论多项
式,也就是把多项式看作形式的表达式.
在这一节
我们将从另一个观点,即函数的观点来考察多项式
设
f (x) = anxn + an-1xn-1 + … + a1x + a0
(1)
是 P[x] 中的多项式, 是 P 中的数,在 (1) 中用
以 代 x ,得 f ( ) = c .
.
证毕
Foil 5
如果 f (x) 在 x = 时函数值 f ( ) = 0,那么
根 零点 就称为 f (x) 的一个 或
.
由余数定理我们得到根与一次因式的关系:
推论 是 f (x) 的根的充分必要条件是
数学考研ppt课件
Life is tough,but I'm tougher. 生活是艰苦的,但我应更坚强.
数1 的分值结构
高等数学 所占比例 56% 4选择 4填空 5个 解答题;客观题每题4分,解答题共50分, 总计82分。
2/28/2022
数2 的分值结构
高等数学 所占比例 78% 6选择 5填空 7个 解答题;客观题每题4分,解答题共72分, 总计116分。
线性代数 所占比例 22% 2选择 1填空 2个 解答题;客观题每题4分,解答题每题11分, 总计34分。
2/28/2022
数3的分值结构
高等数学 所占比例 56% 4选择 4填空 5个 解答题;客观题每题4分,解答题共50分, 总计82分。
数二: 第一、二、三、四、五、六、七、九、十(二重积分)章
数三: 第一、二、三、四、五、六、七、九、十(二重积分)章、
十二章
2、线性代数:同济第五版
考试内容:
线性代数的第1——5章(数一、二、三)
3、概率统计:浙大第四版 (不要求)
2、线性代数:同济第五版
考试内容:
线性代数的第1——5章(数一、二、三)
You should never say no to a gift from a child. 永远不要拒绝孩子送给你的礼物.
Sometimes all a person needs is a hand to hold and a heart to understand. 有时候,一个人想要的只是一只可握的手和一颗感知的心.
世界上最好的课堂在老人的脚下.
Having a child fall asleep in your arms is one of the most peaceful feeling in the world. 让一个孩子在你的臂弯入睡,你会体会到世间最安宁的感觉.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 1 求 z ln(1 x2 y2 )在点(1,2)处的偏导数.
解 偏导数
z x
1
2x x2
y2
, z y
1
2y x2
y2
,
在(1,2)处的偏导数就是偏导数在(1,2)处的值,
所以
z x
(1, 2 )
1 , z 3 y
(1, 2 )
2. 3
例2
设
f
(x,
y
)
=
e
arctan
y x
ln( x 2
lim f ( x0 x, y0 ) f ( x0 , y0 )
x 0
x
存在,则称此极限为函数 z f (x, y)在点(x0 , y0 )处对 x 的偏
导数,记为
z x
f
x x0 y y0
,
x
xx0 , zx
y y0
xx0 或f x (x0 , y0 ).
y y0
类似地,当 x 固定在 x0 ,而 y 在 y0 处有改变量y ,
lim f (x, y) A或 lim f (x, y) A.
( x, y )( x0 , y0 )
xx0 y y0
同一元函数的极限一样,二元函数的极限也有类似的 四则运算法则.
2. 二元函数的连续性
定义 2 设函数 z f (x, y)在点 P0 (x0 , y0 )的某邻域内 有定义,如果
u = x y .把 z 和 x 暂时看作常量对 y 求导,得 x x2 y2 z
u y x .把 x 和 y 暂时看作常量对 z 求导,得 y x2 y2 z
u z
xy z2
.
高阶偏导数
对于二元函数 z f (x, y)的两个偏导数 z , z , x y
一般说来,它们仍然是自变量 x, y 的函数.如果 z , x
的偏导数都存在,且这个偏导数仍是 x, y 的函数,称
z x
,
f x
,
z
x或f
x
(
x,
y
)
为函数
z
f
(x, y) 对自变量
x 的偏导
数.
类似地,可以定义函数z f (x, y) 对自变量 y 的偏
导数,记为
z y
,
f y
,
z
y或f
y
(
x,
y)
.
偏导数的求法: 从偏导数的定义可以看到,偏导数的实质就是把一 个自变量固定,而将二元函数z f (x, y) 看成是另一个自 变量的一元函数的导数.因此,求二元函数的偏导数, 只须用一元函数的微分法,把一个自变量暂时视为常量, 而对另一个自变量进行一元函数求导即可.
dz Ax By.
定理 1 若z f (x, y) 在点(x, y) 处可微,则它在该点 一定连续.
定理 3 (可微的充分条件) 若z f (x, y) 在点 (x, y)处的两个偏导数连续,则z f (x, y) 在该点一定可 微.
全微分的概念也可以推广到三元或更多元的函 数.例如若三元函数u f (x, y, z) 具有连续偏导数,则 其全微分的表达式为
z 的偏导数存在,可以继续对 x或 y 求偏导数,则称 y 这两个偏导数的偏导数为函数 z f (x, y)的二阶偏数.这
样的二阶偏导数共有四个,分别表示为
(z ) x x
2z x 2
f xx (x, y),
(z ) 2 z y x xy
f xy (x, y),
(z ) x y
2z yx
第八讲 多元函数微分学
一、多元函数的极限及连续性 二、偏导数 三、全微分 四、多元函数的极值
一、二元函数的极限与连续性
1. 二元函数的极限
定义 1 设二元函数 z f (x, y),如果当点 (x, y)以任
意方式趋向点(x0 , y0 )时,f (x, y)总趋向于一个确定的常数 A,那么就称 A是二元函数 f (x, y)当 (x, y) (x0 , y0 )时的 极限,记为
如果极限 lim f (x0 , y0 y) f (x0 , y0 ) 存在,则称此极限为函
y0
y
数 z f (x, y)在点(x0,y0)处对 y 的偏导数,记为
z y
x y y0
,
f y
xx0 , z y
y y0
xx0 或f y (x0 , y0 ).
y y0
如果函数z f (x, y) 在区域 D 内每一点 (x, y)处对 x
y2 ),求
fx
(1,0) .
解 如果先求偏导数 fx (x, y) ,运算是比较繁杂的, 但是若先把函数中的 y 固定在 y 0,则有
f (x,0) 2 ln x ,从而
fx (x,0) =
2 x
, fx (1,0) 2 .
例 3 求u x2 y2 xy 的偏导数.
z
解 把 y 和 z 暂时看作常量对 x 求导,得
lim
x x0
f
(x, y)
f
(x0 , y0 )
y y0
则称二元函数 z f (x, y)在点 P0 (x0 , y0 )处连续.如果
f (x, y)在区域 D 内的每一点都连续,则称 f (x, y)在区域 D
上连续.
若令 x x0 x, y y0 y ,则式
lim
x x0
f
(x, y)
示为关于x,y的线性函数与一个比 (x)2 (y)2
高阶的无穷小之和,即
z f (x x, y y) f (x, y) Ax By o(). 其中, A, B 与x,y 无关,只与 x, y 有关,o()是 当 0时比 高阶的无穷小,则称二元函数 z f (x, y)
在 点 (x, y) 处 可 微 , 并 称 Ax By 是 z f (x, y) 在 点 (x, y)处的全微分,记作
f
(x0 , y0 ) ,
y y0
可写成 lim x0
f
( x0
x,
y0
y)
f
(x0 ,
y0 )
0.
y0
即
lim z 0.
x0
y0
二、偏导数
定义 设函数 z f (x, y)在点(x0 , y0 )的某一邻域内有
定义,当 y 固定在 y0而 x在 x0处有改变量 x时相应地函数
有改变量 f (x0 x, y0 ) f (x0 , y0 )如果极限
f yx (x, y),
y
(z ) y
2z y 2
f yy (x, y).
定理 若z f (x, y) 的两个二阶混合偏导数在点 (x, y)连续,则在该点有
2z 2z . xy yx
三、全微分
定义 设有二元函数 z f (x, y),如果在点 (x, y) 处,函数的全增量 z f (x x, y y) f (x, y) 可以表
du u dx u dy u dz . x y z