基于单片机的频率计设计学习资料

合集下载

基于C51单片机数字频率计课程设计资料

基于C51单片机数字频率计课程设计资料

(华)课程设计(论文)目录摘要................................................. .....错误!未定义书签。

1 引言 (2)1.1数字频率计概述 (2)1.2频率测量仪的设计思路与频率的计算 (2)1.3 基本设计原理 (3)2 数字频率计(低频)的硬件结构设计 (4)2.1 系统硬件的构成 (4)2.2 系统工作原理图 (4)2.3 AT89C51单片机及其引脚说明 (5)2.4 信号调理及放大整形模块 (7)2.5 时基信号产生电路 (7)2.6显示模块 (9)3软件设计 (13)3.1量程转换 (13)3.2 BCD转换 (13)3.3 LCD显示的功能 (13)4模块电路仿真 (14)5 结束语 (16)参考文献 (17)附录汇编源程序代码 (18)1 引言本应用系统设计的目的是通过在“单片机原理及应用”课堂上学习的知识,以及查阅资料,培养一种自学的能力。

并且引导一种创新的思维,把学到的知识应用到日常生活当中。

在设计的过程中,不断的学习,思考和同学间的相互讨论,运用科学的分析问题的方法解决遇到的困难,掌握单片机系统一般的开发流程,学会对常见问题的处理方法,积累设计系统的经验,充分发挥教学与实践的结合。

全能提高个人系统开发的综合能力,开拓了思维,为今后能在相应工作岗位上的工作打下了坚实的基础。

1.1数字频率计概述数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。

它是一种用十进制数字显示被测信号频率的数字测量仪器。

它的基本功能是测量正弦信号,方波信号及其他各种单位时间内变化的物理量。

在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。

本数字频率计将采用定时、计数的方法测量频率,采用一个1602A LCD 显示器动态显示6位数。

测量范围从1Hz —10kHz 的正弦波、方波、三角波,时基宽度为1us ,10us ,100us ,1ms 。

基于单片机控制的数字频率计设计

基于单片机控制的数字频率计设计

基于单片机控制的数字频率计设计1. 简介在电子领域中,频率对于信号处理和电路设计至关重要。

频率计是一种测量电信号频率的仪器,它可以帮助工程师们更好地理解信号的特性,并在电路设计和调试中起到至关重要的作用。

在本文中,我将详细探讨基于单片机控制的数字频率计的设计原理和实现方法,希望能帮助读者全面理解这一主题。

2. 频率计原理频率计的原理在于对输入信号的周期进行测量,并通过适当的算法将其转换为频率。

基于单片机的数字频率计设计采用计数的方法来测量信号周期,然后利用计数的结果和时间基准来计算频率。

在这个过程中,单片机起到了关键的控制和计算作用,能够精准地对输入信号进行测量和处理。

3. 单片机选择在设计数字频率计时,单片机的选择至关重要。

一般情况下,我们会选择性能稳定、计算能力强、易于编程的单片机作为核心控制芯片。

常用的单片机包括STC系列、STM32系列和PIC系列等,它们都具有较好的性能和可靠性,适合用于数字频率计的设计和实现。

4. 系统设计数字频率计系统一般由信号输入、单片机控制、显示模块和电源模块等部分组成。

在系统设计中,信号输入模块用于接收待测信号,并将其转换为数字信号输入到单片机中;单片机控制模块负责对输入信号进行计数和处理,并输出结果到显示模块;显示模块一般采用数码管或液晶显示屏,用于显示测量的频率数值。

电源模块需要为整个系统提供稳定的工作电压,确保系统正常运行。

5. 算法设计在数字频率计的设计中,算法的设计对于测量结果的准确性和稳定性至关重要。

一般而言,常见的测频算法包括时间测量法、计数器法和分频计数法等。

这些算法都需要考虑精确的计数和时间基准,以确保测量结果的准确性。

在算法设计中还需要考虑到单片机的计算能力和存储空间,选择合适的算法和数据结构来降低系统的复杂度和成本。

6. 实现方法基于单片机的数字频率计的实现方法有多种,可以根据具体的需求和应用场景选择合适的硬件和软件方案。

在硬件设计方面,需要考虑信号输入电路、计数电路、显示电路和电源电路等部分;在软件设计方面,需要编写相应的程序代码,实现信号测量、数据处理和显示控制等功能。

基于单片机的频率计设计_2

基于单片机的频率计设计_2

2.LED动态显示流程图
· 要显示的数据以BCD码的方式存放在单片机RAM的存
储单元中。
开始
返回
位选码左移1位 N
显示完 Y
指向下一个显示单元
延时1ms
置段选、位选码初 位选码送P2口 段选码转字型码
段选码送P0口
系统仿真电路图
误差分析
· 1、低频测量误差大。(原因:在低频测量时用的是 测频法,实际测量低频时需要用测周法才能对低频 准确测量)
· 2、测量低频的时候显示不稳定。(原因:受到高频 信号的影响)
· 3、频率精度不高。(原因:单片机的定时时钟的精 度影响基准时间)
减小误差措施
· 1.选用频率较高和稳定性好晶振。如选24MHZ的晶振 可使测量范围扩大,稳定性好的晶振可以减小误差。
· 2.测量频率低的信号时,可适当调整程序,延长门 限时间,减少相对误差。
· 最后,衷心感谢各位评阅老师,感谢您们参与我的 论文评阅工作!
谢谢大家!
·6.七段LED显示器共阴极字型码
·7.定时/计数器T0、T1方式0的结构
· C/T为定时或计数方式选择位。 · 当C/T=1时,定时/计数器工作在计数方式。 · 当C/T=0时,定时/计数器工作在定时方式。
软件部分设计
1.软件设计流程
待测信号
AT89C52单片机
译码
否 有ห้องสมุดไป่ตู้ 位判 断

数据显示电路
· 本设计的总体功能是完成对被测信号脉冲进行计 数,数据处理,输出显示控制。
硬件部分设计
·1.总体结构
· 频率计由单片机AT89C52 、信号预处理电路、测量 数据显示电路所组成,其中信号预处理电路包括待 测信号放大电路、波形变换、整形和分频电路。

基于单片机简易频率计设计

基于单片机简易频率计设计

基于单片机简易频率计设计一、前言频率计是一种测量电信号频率的仪器,其应用广泛。

本文将介绍如何基于单片机设计一个简易的频率计。

二、设计思路本次设计采用单片机作为核心控制芯片,通过捕获输入信号的上升沿和下降沿来计算出信号的周期,从而得到信号的频率。

具体实现过程如下:1. 选择合适的单片机选择一款适合本次设计要求的单片机,需要考虑其性能、价格、易用性等因素。

常见的单片机有STC89C52、AT89C51等。

2. 硬件电路设计硬件电路主要包括输入端口、捕获定时器模块、显示模块等。

其中输入端口需要接收待测信号,捕获定时器模块用于捕获信号上升沿和下降沿的时间,显示模块则用于显示测得的频率值。

3. 软件程序设计软件程序主要包括初始化程序、捕获中断服务函数和主函数等。

其中初始化程序用于设置捕获定时器模块和显示模块参数,捕获中断服务函数则是实现对输入信号上升沿和下降沿时间的捕获与计算,主函数则用于控制程序流程和显示结果。

三、硬件设计1. 输入端口设计输入端口需要接收待测信号,一般采用BNC接头。

由于输入信号可能存在较高的电压和噪声,因此需要加入滤波电路以保证输入信号的稳定性。

2. 捕获定时器模块设计捕获定时器模块是本次设计的核心部分,其主要功能是捕获输入信号的上升沿和下降沿时间,并通过计算得到信号周期和频率值。

常见的捕获定时器模块有16位定时器/计数器、32位定时器/计数器等。

在本次设计中,我们选择了16位定时器/计数器。

3. 显示模块设计显示模块主要用于显示测得的频率值。

常见的显示模块有LED数码管、LCD液晶屏等。

在本次设计中,我们选择了LCD液晶屏。

四、软件程序设计1. 初始化程序初始化程序主要包括设置捕获定时器模块参数、设置LCD液晶屏参数等。

2. 捕获中断服务函数捕获中断服务函数是实现对输入信号上升沿和下降沿时间的捕获与计算,其具体实现过程如下:(1)当捕获定时器模块捕获到输入信号上升沿时,记录当前时间值。

基于51单片机的频率计的设计

基于51单片机的频率计的设计

基于51单片机的频率计的设计频率计是一种测量信号频率的仪器或装置,其原理是通过对信号进行计数和定时来测量信号的周期,并进而计算出信号的频率。

在本篇文章中,我们将设计一个基于51单片机的频率计。

设计方案:1.硬件设计:(1)时钟电路:使用11.0592MHz晶振为主频时钟源。

(2)信号输入:选择一个IO口作为信号输入口,通过外部电平转换电路将信号转换为51单片机能够处理的电平。

(3)显示装置:使用一个数码管或液晶显示屏来输出测量结果。

2.软件设计:(1)初始化:设置51单片机的工作模式、引脚功能、定时器等。

初始化时,将IO口配置为输入模式,用于接收外部信号。

(2)定时器设置:利用定时器来进行时间的测量,可以选择适当的定时器和计数器来实现定时功能。

(3)外部中断设置:使用外部中断来触发定时器,当外部信号边沿发生变化时,触发定时器的启动或停止。

(4)中断处理:通过中断处理程序来对定时器进行启动、停止和计数等操作。

(5)频率计算:将计数结果经过一定的处理和运算,计算出信号的频率。

(6)结果显示:将计算得到的频率结果通过数码管或液晶显示屏输出。

3.工作流程:(1)初始化设置:对51单片机进行初始化设置,包括端口、定时器、中断等的配置。

(2)外部信号输入:通过外部电平转换电路将要测量的信号输入至51单片机的IO口。

(3)定时测量:当外部信号发生边沿变化时,触发外部中断,启动定时器进行定时测量。

(4)停止计时:当下一个信号边沿出现时,中断处理程序停止定时器,并将计数结果保存。

(5)频率计算:根据定时器的设置和计数结果,计算出信号的周期和频率。

(6)结果显示:将计算得到的频率结果通过数码管或液晶显示屏进行显示。

4.注意事项:(1)确保信号输入的稳定性:外部信号输入前需要经过滤波处理,保证稳定且无杂波的输入信号。

(2)测量精度的提高:如有必要,可以通过增加定时器的位数或扩大计数范围来提高测量精度。

(3)显示结果的优化:可以根据需要,通过增加缓冲区、优化数码管显示等方式来改善结果的可读性。

基于单片机的频率计的设计

基于单片机的频率计的设计

基于单片机的频率计的设计一、频率计的基本原理频率是指单位时间内信号周期性变化的次数。

频率计的基本原理就是在一定的时间间隔内对输入信号的脉冲个数进行计数,从而得到信号的频率。

常用的测量方法有直接测频法和间接测频法。

直接测频法是在给定的闸门时间内测量输入信号的脉冲个数,计算公式为:频率=脉冲个数/闸门时间。

这种方法适用于测量高频信号,但测量精度会受到闸门时间和计数误差的影响。

间接测频法是先测量信号的周期,然后通过倒数计算出频率。

其适用于测量低频信号,但测量速度较慢。

在实际设计中,通常会根据测量信号的频率范围选择合适的测量方法,或者结合两种方法来提高测量精度和范围。

二、系统硬件设计1、单片机选型在基于单片机的频率计设计中,单片机是核心控制部件。

常用的单片机有 51 系列、STM32 系列等。

选择单片机时需要考虑其性能、资源、价格等因素。

例如,对于测量精度和速度要求不高的应用,可以选择51 单片机;而对于复杂的系统,可能需要选择性能更强的 STM32 单片机。

2、信号输入电路为了将输入信号接入单片机,需要设计合适的信号输入电路。

一般需要对输入信号进行放大、整形等处理,使其成为标准的脉冲信号。

常见的整形电路可以使用施密特触发器来实现。

3、显示电路频率计的测量结果需要通过显示电路进行显示。

常用的显示器件有液晶显示屏(LCD)和数码管。

LCD 显示效果好,但驱动较为复杂;数码管显示简单直观,驱动相对容易。

4、时钟电路单片机需要一个稳定的时钟信号来保证其正常工作。

时钟电路可以采用外部晶振或内部振荡器,根据系统的精度和稳定性要求进行选择。

5、复位电路为了确保单片机在系统启动时能够正常初始化,需要设计复位电路。

复位电路可以采用上电复位和手动复位两种方式。

三、系统软件设计1、主程序流程系统启动后,首先进行初始化操作,包括设置单片机的工作模式、初始化显示、设置定时器等。

然后进入测量循环,等待输入信号,在给定的闸门时间内进行计数,并计算频率,最后将结果显示出来。

基于单片机的频率计设计的参考文献

基于单片机的频率计设计的参考文献

基于单片机的频率计设计的参考文献基于单片机的频率计设计在现代电子技术领域,频率计是一种非常常见且重要的仪器,它可以实时测量信号的频率,并在很多电子设备和系统中发挥着重要作用。

随着单片机技术的不断发展和进步,基于单片机的频率计设计逐渐成为了研究和应用的热点之一。

本篇文章将综述基于单片机的频率计设计的相关参考文献,并对其深度和广度进行全面评估,以期为读者提供有价值的信息和启发。

1. 研究背景介绍在研究背景介绍中,我们将阐述频率计在现代电子技术领域中的重要性和应用价值,以及单片机技术在电子测量仪器设计中的广泛应用。

我们会引用相关的学术文献和工程案例,分析基于单片机的频率计设计在实际应用中的优势和潜在挑战,为读者建立一个更加全面的认识和理解。

2. 基于单片机的频率计原理在这一部分,我们将详细阐述基于单片机的频率计的工作原理和设计思路,包括频率测量的基本原理、单片机的选择与应用、信号采集和处理方式等内容。

文中将引入一些典型的频率计设计方案,并对其进行比较和分析,以便读者能够全面了解基于单片机的频率计设计的技术特点和优势。

3. 基于单片机的频率计设计实现在这一部分中,我们将重点关注基于单片机的频率计设计的实际实现过程,包括硬件电路设计、软件算法实现、系统性能测试等内容。

我们将引用一些实际案例和研究成果,对基于单片机的频率计设计进行深入剖析和评估,以及对比不同设计方案的优劣势,为读者提供更多的实践经验和启发。

4. 文献综述和展望我们将对相关文献进行综述和总结,梳理出基于单片机的频率计设计的研究现状和发展趋势,并对未来的研究方向和应用前景进行展望。

我们会结合自身的实践经验和见解,共享对基于单片机的频率计设计的个人观点和理解,为读者提供更多的思考和交流空间。

基于单片机的频率计设计是一个备受关注的研究领域,它融合了电子技术、信号处理、嵌入式系统等多个学科领域的知识和技术,具有广阔的应用前景和发展空间。

通过全面评估和深入探讨基于单片机的频率计设计,我们将帮助读者更全面、深刻和灵活地理解这一领域的重要内容,为相关研究和应用提供有价值的参考和启发。

基于单片机的频率计设计

基于单片机的频率计设计

目录摘要 (1)关键词 (1)1 引言 (1)1.1研究背景及意义 (2)1.2国内外发展现状及研究概况 (2)2 研究内容和要求 (5)3 频率计的工作原理 (5)4 硬件电路的设计 (7)4.1电路工作原理及设计 (7)4.2放大整形模块 (7)4.3单片机控制系统模块 (9)4.3.1 单片机STC89C52引脚说明及主要特性 (10)4.3.2 定时器/计数器TMOD的工作原理 (12)4.4液晶显示模块 (13)4.4.1 1602液晶基本特性及引脚图 (14)5 系统软件设计 (15)5.1初始化阶段 (15)5.2频率计算阶段 (16)5.3显示阶段 (16)6 运行和调试 (16)6.1测量结果 (17)6.2误差分析及减小误差措施 (17)7 总结 (18)参考文献 (19)致谢 (20)附件一电路图 (21)附件二实物图 (22)附件三程序 (23)基于单片机的频率计设计摘要:本文介绍了一款能够实现对信号源进行测量的基于STC89C52RC单片机的数字频率计。

系统主要由整形放大模块,单片机控制模块和显示模块组成。

待测信号先送入整形放大模块,将信号整形成闸门可识别的方波信号,再经单片机系统,单片机系统通过定时器、计数器对整形后的方波信号进行脉冲计数,将得到的频率数据在液晶显示屏上进行显示。

最终能实现对输入幅度在50mV-5V之间频率在20HZ~400KHZ之间的未知信号进行频率计数,并显示在液晶屏上。

关键词:单片机;频率计;液晶显示The design of frequency meter based onMCUAbstract:This article describes a signal source can be measured to achieve STC89C52RC microcontroller based digital frequency meter. System consists of shaping amplifier module, MCU module and display module. Measured signal is first fed into the shaping amplifier module, the whole forming a square wave signal signal gate identifiable, and then by MCU system, MCU system through the timer, counter to a square wave signal shaping the pulse count, the resulting frequency data displayed on the LCD screen. Eventually realize the magnitude of the input frequencies between 50mV-5V between 20HZ ~ 400KHZ unknown signal frequency count, and displayed on the LCD screen.Key Words: MCU; frequency counter; LCD1 引言随着电子信息产业的发展,频率测量是电子学测量中最为基本的测量之一。

基于单片机的频率计的设计与制作

基于单片机的频率计的设计与制作

基于单片机的频率计的设计与制作一、设计背景与意义频率是指在单位时间内信号的周期次数或波形的周期数,是电子通信、自动化控制、测量仪器等领域中常用的参数之一、频率计是一种用来测量信号频率的仪器,广泛应用于各个领域。

本文将设计一种基于单片机的频率计,具有结构简单、精度高、易于实现批量生产等特点。

二、设计原理与电路结构本频率计的设计原理基于定时器的计数功能。

具体电路结构如下:1.接收电路:接收被测信号,并经过滤波电路对信号进行滤波处理。

2.方波信号发生电路:采用集成电路产生频率为1MHz的方波信号。

3.单片机控制电路:使用单片机控制定时器1进行计数,并通过串口与PC机进行通信。

三、程序设计与实现1.初始化设置:设置单片机的工作模式和波特率,以及定时器的计数参数。

2.接收输入信号:从信号输入引脚读取信号,并通过滤波电路进行滤波处理。

3.方波信号计数:使用定时器对方波信号进行计数,并保存计数值。

4.系统中断处理:当定时器溢出时,触发中断函数对计数值进行处理。

5.输出结果:将计数值发送到PC机上,通过串口进行通信。

四、制作过程与方法1.电路制作:根据上述电路结构图,选择合适的元器件进行电路制作,焊接完整电路板。

2.程序编写:使用C语言或汇编语言编写单片机的程序,实现频率计的功能。

3.调试测试:将电路板接入供电并连接到PC机上,通过串口与PC机进行通信,测试频率计的测量精度和稳定性。

4.性能优化:对频率计的测量精度和稳定性进行优化,例如增加滤波电路、调整定时器参数等。

五、结论与展望本文设计与制作了一种基于单片机的频率计,实现了对输入信号频率的测量。

经过实际测试,频率计具有测量精度高、稳定性好等优点,能够满足实际应用的需求。

在今后的研究中,可以进一步优化频率计的设计,提高测量精度和稳定性,并拓展其在更多领域的应用。

基于单片机的频率计设计的参考文献

基于单片机的频率计设计的参考文献

文章标题:基于单片机的频率计设计与实现一、概述在现代电子领域中,频率计是一种常见的电子测量仪器,用于测量信号的频率。

基于单片机的频率计设计在实际应用中得到了广泛的应用。

本文将深入探讨基于单片机的频率计设计与实现,包括其原理、设计过程、实现步骤等内容,以便读者能够全面了解这一领域。

二、频率计原理及设计过程1. 频率计原理概述频率计是用于测量信号频率的仪器,其原理主要基于信号周期的测量。

在基于单片机的频率计设计中,一般通过计算脉冲信号的周期或脉冲数量来实现频率测量,然后利用单片机进行数据处理和显示。

2. 频率计设计过程基于单片机的频率计设计的关键步骤包括信号采集、信号处理、数据显示等。

首先需要设计信号采集电路,将待测频率信号转换为单片机可接受的电压信号;然后进行信号处理,包括周期测量、频率计算等;最后通过数码显示、液晶显示等方式将测量结果进行显示。

三、基于单片机的频率计实现步骤1. 信号采集电路设计在基于单片机的频率计设计中,信号采集电路的设计是至关重要的一步。

一般可以采用信号调理电路、滤波电路等手段,将待测频率信号进行合理的处理,以适应单片机的输入要求。

2. 单片机程序设计单片机程序设计是基于单片机的频率计设计中的核心环节。

通过合理的程序设计,可以实现脉冲信号的计数、周期测量、频率计算等功能,从而得到准确的频率测量结果。

3. 数据显示方式选择在频率计的实现中,数据显示方式的选择也是需要考虑的重要因素。

常见的数据显示方式包括LED数码管显示、液晶显示、数码管显示等,可以根据实际需求进行选择。

四、频率计设计的应用价值基于单片机的频率计设计具有广泛的应用价值。

在电子测量领域中,频率计可用于对各种信号频率进行准确测量;在电子教学和科研中,基于单片机的频率计设计也可以作为一个实验评台,帮助学生和研究人员深入了解频率计的原理和实现。

五、个人观点和总结基于单片机的频率计设计是一项充满挑战和机遇的工作。

通过深入研究和实践,可以更好地掌握电子测量技术和单片机应用技术。

基于单片机的频率计设计

基于单片机的频率计设计

基于单片机的频率计设计频率计是一种常用仪器,用于测量信号的频率。

本文将介绍一种基于单片机的频率计的设计。

设计思路:1. 选择合适的单片机:由于频率计需要精确测量信号的周期,所以选择一个具有高精度和稳定性的单片机至关重要。

常用的单片机有AT89S51、ATmega328等。

2.连接外部时钟源:为了提高计时的精度,可以选择连接一个外部时钟源,如晶振。

将晶振连接到单片机的计时器输入引脚,通过计时器来计算脉冲信号的周期。

3.配置计时器模式:根据信号的特性,选择合适的计时器模式。

常用的模式有边沿计数模式和脉冲计数模式。

边沿计数模式适用于非连续的信号,脉冲计数模式适用于连续的信号。

4.初始化计时器:在程序中对计时器进行初始化,设置计时器的工作模式、计数范围等参数。

还需设置中断使能和相应的中断处理函数。

5.开始计时:当信号输入到单片机的计时器引脚时,通过中断处理函数开始计时,记录起始时间。

6.结束计时:当信号的周期结束时,再次触发中断,记录结束时间。

7.计算频率:根据起始时间和结束时间,计算出信号的周期,再通过周期计算出频率。

可以选择在显示器上显示频率或者通过串口通信输出。

8.重复计算:根据需要,可以选择连续计算多个信号的频率,以增加测量的准确性。

这个设计是一个基本的频率计,可以测量连续或间断的信号频率。

根据实际需求,还可以进行一些改进和扩展,例如可以加入滤波电路来提高信号的稳定性和抗干扰能力,还可以增加输入和输出接口,方便与其他仪器和设备进行连接和通信。

总结:基于单片机的频率计是一种常见的测量仪器,通过利用计时器来测量信号的周期,从而计算出信号的频率。

这种设计简单易行,稳定性好,可以满足大多数频率测量的需求。

在实际应用中,可以根据具体要求进行相应的改进和扩展。

基于AT89C51单片机的频率计设计

基于AT89C51单片机的频率计设计

基于AT89C51单片机的频率计设计频率计是一种测量信号频率的仪器。

在工业自动化、仪器仪表和电子实验等领域广泛应用。

本文将基于AT89C51单片机设计一个简单的频率计。

一、设计原理频率计的工作原理是通过计数单位时间内输入信号的脉冲数量,并将其转化为频率进行显示。

本设计使用AT89C51单片机作为控制核心,采用外部中断引脚INT0作为计数脉冲输入口,通过对计数器的计数值进行处理,最终转化为频率并在LCD1602液晶屏上进行显示。

二、硬件设计硬件电路主要包括AT89C51单片机、LC1602液晶显示屏、脉冲输入引脚INT0,以及供电电路等。

其中,AT89C51单片机的P0口用于与LC1602液晶屏的数据口连接,P2口用于与液晶屏的控制口连接。

脉冲输入引脚INT0连接到外部信号源,通过中断请求实现计数器的计数功能。

液晶显示屏的VDD和VDDA引脚接5V电源,VSS和VSSA引脚接地,RW引脚接地,RS引脚接P2.0,E引脚接P2.1,D0-D7引脚接P0口。

三、软件设计软件设计主要包括初始化设置、中断服务程序、计数器计数和频率转换、液晶屏显示等模块。

1.初始化设置:首先设置P0和P2为输出端口,中断引脚INT0为外部触发下降沿触发中断,计数器为初始值0。

2.中断服务程序:中断服务程序负责处理外部脉冲输入引脚INT0的中断请求。

每当INT0引脚检测到下降沿时,计数器加13.计数和频率转换:在主函数中,通过读取计数器的值并根据单位时间计算频率。

通过AT89C51单片机的定时器模块,我们可以设置一个单位时间进行计数。

在单位时间结束后,将计数器的值除以单位时间得到频率。

4.液晶屏显示:通过P0口向液晶屏的数据口发送频率值,并通过P2口向液晶屏的控制口发送控制信号,完成频率的显示。

四、测试结果将生成的二进制固件烧录到AT89C51单片机中,将脉冲信号输入到INT0引脚,即可在LCD1602液晶显示屏上看到实时的频率值。

基于stm32单片机的频率计的设计

基于stm32单片机的频率计的设计

基于stm32单片机的频率计的设计介绍本文讲述了基于STM32单片机的频率计的设计与实现,本文首先简要介绍了STM32单片机,然后介绍了实现频率计的基本原理,接着介绍了设计所需的硬件以及用户间接口,最后介绍了STM32实现频率计的源代码。

1、STM32单片机STM32单片机是一种定时器和外部芯片,它具有微控制器的操作性能,可提供完整的系统开发环境,支持多个异构技术。

STM32单片机提供32位微控制器和多个外设来满足各种功能要求,可直接连接外设,如ADC,DAC,SPI,UART,CAN,I2C等,使用方便,可以通过采用数字信号处理器(DSP)的性能来提升加速系统的性能。

2、基本原理基于STM32单片机的频率计原理很简单,通过测量输入信号的波形,统计一段时间内输入信号的交叉点数量,根据单位时间的交叉点数量计算输入信号的频率。

3、硬件和用户接口硬件:STM32单片机是实现频率计的核心设备,以及部分外围芯片:可以通用逻辑元件(Logic Chip)或是数字信号处理器(DSP),作为系统搭建的基本单元。

用户界面:为了使用户可以方便显示信息,设置等操作,需要实现一个用户交互接口,这里可以使用LCD屏幕或者LED手柄等外设。

4、源代码int main(void){//初始化STM32SystemInit();//初始化定时器timer_init();//初始化用户接口user_interface_init();//初始化输入信号gpio_init();while(1){//计算输入信号的交叉点数量int count = calucate_cross_point();//根据输入的交叉点数量计算频率double frequency = calculate_frequency(count);//显示计算出的频率display_frequency(frequency);}return 0;}。

基于51单片机的频率计的设计讲解

基于51单片机的频率计的设计讲解

基于51单片机的频率计的设计讲解频率计是一种测量信号频率的仪器。

基于51单片机的频率计设计能够实现对不同频率信号的测量,具有简单、可靠、价格低廉的优势。

本文将详细介绍基于51单片机的频率计的设计原理、电路设计和程序设计。

设计原理:基于51单片机的频率计的设计原理主要包括输入信号的检测和计数、计数值显示和频率计算。

当外部信号输入到单片机的输入引脚时,单片机通过计数器对输入信号的波形进行计数,计数值与输入信号的频率成正比。

通过将计数值转换为频率值,并在显示屏上显示,即可实现对输入信号频率的测量。

电路设计:输入电路:输入电路主要负责将外部信号通过耦合电容和电阻接入单片机的输入引脚。

在输入电路中,耦合电容的作用是将交流信号的AC分量通过,阻隔直流信号的DC分量。

电阻的作用是限制输入信号的幅值,防止单片机输入引脚的过大电流。

计数电路:计数电路是基于51单片机的频率计的核心部分,主要由计数器和时钟发生器组成。

计数器负责对输入信号的波形进行计数,时钟发生器负责提供计数脉冲。

计数器的选择应根据所需测量范围来确定,通常使用定时器/计数器来实现。

显示电路:显示电路主要由数码管和驱动电路组成。

通过将计数值转换为对应的数字,并将数字数据发送给数码管进行显示。

驱动电路负责控制数码管的亮度和显示方式。

程序设计:输入信号的采样:在程序中,通过定时器/计数器对输入信号进行采样,采样时间根据信号频率来确定。

采样得到的数据存储在特定的寄存器中,以供后续的计数和计算。

计数器的计数:通过对输入信号进行计数,得到计数值。

计数值的大小与输入信号的周期成反比,与输入信号频率成正比。

计数器的计数方式可以是边沿计数或脉冲计数,根据实际需求选择。

频率计算和显示:通过将计数值转换为频率值,并将频率值显示在数码管上。

频率计算可以采用简单的比例关系,如频率=计数值/计数时间。

将频率值转换为对应的数字,并通过驱动电路控制数码管的显示。

总结:基于51单片机的频率计通过对输入信号进行采样、计数、计算和显示,能够实现对不同频率信号的测量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的频率计
设计
基于单片机的频率计设计
摘要:数字频率计是现代科研生产中不可或缺的测量仪
器,它以十进制数显示被测频率,基本功能是测量正弦信号,方波信号,及其它各种单位时间内变化的物理量。

本系统采用AT89C52单片机智能控制,结合外围电子电
路,设计的频率计性能稳定。

在软件设计上采用了单片机
的C语言设计,通过单片机内部定时/计数器同时动作,在
测量频率时将测频率和测周期相结合,提高了频率计的测量
准确性。

测量结果在LCD1602上输出显示,结果精
确到整数位。

频率计的软件设计,系统软件设计简单明了,
适用于测量频率从1~99999Hz的脉冲信号。

关键词: AT89C52单片机数字频率计 74LS74 NE555 LCD1602
一、引言
1.1 数字频率计的发展和意义
随着电子技术的飞速发展,各类分立电子元件及其所构
成的相关功能单元已逐步被功能更强大、性能更稳定、使
用更方便的集成芯片所取代。

由集成芯片和一些外围电路
构成的各种自动控制、自动测量自动显示电路遍及各种电
子产品和设备已广泛应用于各个领域,更新换代速度可谓日新月异。

在电子系统广泛的应用领域中,到处看见处理离散信息的数字电路。

供消费用的冰箱、电视、航空通讯系统等设计过程中都用到数字技术。

数字频率计是现代通信测量设备系统中不可缺少的测量仪器,不但要求电路产生频率准确的和稳定度高的信号,而且能方便的改变频率。

与传统的测量方式相比,运用了单片机频率计有着体积更小,运算速度更快,测量范围更宽和制作成本更低的优点。

由于传统的频率计中有许多功能是依靠硬件来实现的,而采用单片机测频率后,有许多以前需要用硬件才能实现的功能现在仅仅依靠软件编程来实现,而且不同的软件编程代码能够实现不同的功能,从而大大降低了制作成本。

数字频率计主要实现方法有直接式、锁相式、直接数字式和混合式四种。

直接式的优点是速度快、相位噪声低,但结构复杂、杂散多,一般只用于地面雷达中。

锁相式和直接数字式都同时具有容易实现产品系列化、小型化、模块化和工程化特点,其中,锁相式更是以其容易实现相位同步的自动控制且低功耗的特点成为众多业内人士的首选,应用最为广泛。

1.2 数字频率计国内外的发展趋势
在国际上数字频率计的分类很多
按功能分类,电子计数器有通用和专用之分。

通用型计数器是一种具有多种测量功能、多种用途的万能计数器,它可测量频率、周期、多周期平均值、时间间隔、累加计数、计时等。

专用计数器指专门用来测量某种单一功能的计数器。

按频段分类有低速频率计数器、中速频率计数器、高速频率计数器和微波频率计数器之分。

其中低速频率计数器最高计数频率小于10MHZ;中速频率计数器最高频率计数频率为10到100MHZ;高速频率计数器最高计数频率大于
100MHZ;微波频率计数器的测量范围为1到80GHZ或更高。

数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功能,从而提高系统的可靠性和速度。

现如今,数字频率计已经不仅仅是测量信号频率的装置了,还可以测量方波的脉宽。

在人们的生产生活中数字频率计也发挥着越来越重要的作用,比如有数字频率计来监控生产过程,这样可以及时发现系统运行中的异常情况,以便给人们争取时间处理。

除此之外,它还可以应用于工业控制等其他领域。

在传统的电子测量仪器中,示波器在进行频率测量时测量精度
较低,误差较大。

频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速地跟踪捕捉到被测信号的频率变化。

正是由于频率计能够快速准确地捕捉到被测信号频率的变化,因此频率计拥有非常广泛的应用范围。

目前,市场上的频率计厂家可分为三类:中国大陆厂家、中国台湾厂家、欧美厂家。

其中欧美频率计厂家所占有的市场份额最大。

欧美频率计厂家主要有:Pendulum Instruments和Agilent科技。

现如今,对于频率计的设计目前也有专用芯片可以实现,如利用MAXIM公司的ICM7240来设计频率计,但由于这种芯片的计数频率比较低,远不能达到在一些场合而要测量很高的频率要求,而且测量精度也受到芯片本身的限制,因此提出用AT89C52单片机设计频率计来解决这些问题,从而实现高精度、宽范围测量的频率计设计。

二、方案设计
2.1 测频方法
在频率、速度等脉冲类测量过程中,在指定的时间内,计量脉冲个数,让脉冲个数与指定的时间比较来测频率、速度。

这样的采样方式叫定时采样。

这种方法其实是测量
单位时间的脉冲个数,这种测量脉冲的方法又叫做测频法。

2.2 系统设计思路
以单片机AT89C52单片机为核心,设计一种数字频率计,它由放大整形电路、触发电路、单片机、显示电路组成,应用单片机中的定时/计数器和中断系统等完成频率的测量。

在整个设计过程中,放大整形电路是应用NE555构成施密特触发器将非矩形波转化成矩形波,这样单片机才能识别;显示电路是应用LCD1602来显示测量值;所制作的频率计可以实现1~99999Hz的测量,而且量程自动转换。

2.3 电压供给
该电路采用5Vp-p供电,偏移为2.5V。

三、电路设计
图1 74ls74构成D触发器
四、系统设计框图
图3 频率计总体设计图
五、程序设计
整个系统软件设计的程序由C
语言编写,程序简单,通俗易懂。

图4 系统软件设计模块框图
5.1 频率计算模块
经过初始化计数器1,每一次下降沿触发一次计数器1中断,每次中断执行处理程序则counter1加1,所以counter1为信号下降沿次数,counter0=28时计时为1S,temp=counter0*65536+TH0*256+TL0为定时器计的总次数,22.1184MHz经过12分频后为1843200Hz,
fx=1843200/temp为计数器每计一次的频率,
counter1*65536+TH1*256+TL1为计数器计的总次数,
fx=fx*(counter1*65536+TH1*256+TL1)即为总频率。

六、数字频率计仿真。

相关文档
最新文档