悬架系统设计规范05
商用车空气悬架设计规范
商用车空气悬架设计规范1.材料选择:设计时要考虑到商用车在实际使用过程中要面对不同的工况,因此在选择悬架的材料时,就需要考虑到应具有良好的耐腐蚀性,耐磨性,高强度和固定性等性能。
而且还要对所选的材料进行理化检验,以确保其质量。
2.结构设置:商用车空气悬架设计中一定要充分考虑其车辆整体与部件的匹配性和配合性。
包括其与车辆载荷的匹配,与车辆底盘的配合,与车轮的协调等,以提供最佳的悬挂工作状态。
3.安全设计:商用车的悬架应该有足够的强度和稳定性,为此其设计中要考虑其强度,硬度,并且要进行加载试验,以验证其有效性和安全性。
此外,要考虑应急处理能力,如泄气等突发情况的处理。
4.舒适性设计:商用车空气悬架要考虑驾驶员和乘员的舒适性。
设计应采用尽可能减小振动、噪音的悬架结构和材料。
尽量减少驾驶员和乘员在行驶过程中的颠簸感。
5.调节能力:商用车空气悬架的设计应该具有一定的调整能力。
悬架系统应当能够根据不同的荷载和行驶状态进行自我调节,以提供最佳的驾驶体验。
6.维修和保养:商用车空气悬架应易于检修和保养。
悬架的各个部件应该设计得尽可能简单,并且易于更换,以便于更快地完成维修和保养工作。
7.功能性和通用性:设计商用车空气悬架时,还要考虑其通用性和功能性。
尽可能使其兼容各种类型的商用车,并且具备空气悬架的一般性能和特性。
8.遵守法规与规范:商用车空气悬架设计必需遵守各项安全法规及行业规范,确保产品符合市场要求和环保要求。
9.经济性考虑:在满足上述所有要求的同时,还要兼顾商用车空气悬架的经济性。
在可能的情况下,尽可能降低生产成本和维修成本。
总的来说,商用车空气悬架设计规范要达到的目标是:强度高、稳定安全、舒适、能够适应各种工况的变化、便于维修保养、具有良好的经济效益。
这样才能使得商用车在运输过程中,既能降低运输成本,提高运输效率,又能提供良好的驾驶感受,满足使用者的需求。
商用汽车空气悬架系统设计规范
《商用汽车空气悬架系统设计规范》编制说明1.制订依据随着国内空气悬架在商用汽车中所占比例地不断加大,空气悬架作为一个新兴行业,急需一系列的标准以规范该行业。
故2007年8月正式启动了国家863项目—“汽车空气悬架系列标准”的编制工作。
而《商用汽车空气悬架系统设计规范》亦作为“汽车空气悬架系列标准”中的其中一项标准予以制定。
本标准由东风汽车公司主导、上海科曼车辆部件系统有限公司作为主要起草单位,并吸收部分汽车生产企业、研究机构及一些有技术实力的整车生产厂参与标准的起草工作。
2.修订目的和意义由于商用汽车空气悬架在我国是一个新兴的行业。
在此之前并无相关的国家标准,国内汽车行业设计人员对此概念较为模糊。
为使设计人员了解空气悬架的基本概念、空气悬架在整车设计中的地位、与整车及其它系统的相关性,并提供实用的设计方法,特制定本规范。
3.国内外相关标准和法规情况对于商用汽车空气悬架的设计规范,目前在国内和国外都没有正式的规范标准,仅有一些各大公司或协会的内部规范标准。
如:美国工程师协会发布的“SAE HS1576-1994 空气悬架在汽车悬架设计中的应用手册”。
4.标准研究主要工作过程国家标准委批准立项后,全国汽车标准化技术委员会组织了由部分汽车生产企业、橡胶厂家、研究机构等参与的标准起草组共同制定本标准。
为协调《商用车空气悬架术语》、《汽车空气悬架用橡胶铰接头》、《汽车悬架用空气弹簧》、《商用汽车空气悬架系统设计规范》四个标准的关系,保证将来这四个标准在汽车产品设计和认证检验工作中的顺利实施,2008年5月26日、2008年10月17日、2009年3月19日以及2009年9月11日由东风汽车公司组织共举行了四次《汽车空气悬架系列标准》的工作会议。
在会上对各项标准作了深入的研究与讨论。
在前期准备会上东风汽车公司安排上海科曼车辆部件系统有限公司负责《商用汽车空气悬架系统设计规范》标准起草。
在接到标准起草任务后,参照科曼公司原有企业标准《空气悬架系统设计规范》,在此基础上进行了全面修订。
汽车悬架系统设计说明书.2doc
轻型轿车悬架系统的设计【摘要】本次毕业设计的课题是轻型轿车悬架系统的设计。
必须满足以下几个要求:可靠,坚固,耐用,使用成本较低,油耗处于国内中低等水平,为当前主流技术水平。
所以,悬架的设计宜选用成熟技术,零部件,彻底的贯彻“三化”原则,较为合理的成本控制。
麦弗逊式独立悬架有着结构简单、紧凑、占用空间小等众多优点,在现代轻型汽车中得到了广泛运用。
鉴于此,此次设计,该车的前悬架采用麦弗逊式独立悬架,后悬架采用钢板弹簧式整体后悬架.这样设计可以使本车无论从经济角度还是从舒适角度,都可以达到一个较为理想的结果。
本毕业设计要求根据某较车总体方案要求,对其悬架进行设计计算。
为了阐述悬架的设计过程,说明书从设计计算对麦式悬架的设计过程进行了介绍。
说明书首先阐述了悬架中关键零部件如:螺旋弹簧、减振器等的设计、选型和计算;进而分析了悬架的结构特点和运动特征,并以此为基础建立了悬架的物理模型。
【关键词】:麦弗逊式悬架;钢板弹簧整体悬架;设计计算;选型The design of Light passenger vehicle Suspension SystemChen xiang(grade06,class01, Heat Energy and Dynamical Engineering,Shaanxi University of Technology,Hanzhong723000,Shaanxi ,Tutor:shi shao ning)AbstractTime of graduation practice problem is that the light saloon hangs to put up systematic design. As a result, Must satisfy several the following call for: Reliable , sturdy and durable, use cost comparatively low, the low grade is horizontal in oil being consumed being in in the homeland , the technology is horizontal for current main current. The design putting up therefore, hanging ought to select and use the mature technology , component and part , put "three into effect completely spending " principle , comparatively rational cost controls.Maifuxun style has had structure simple , compact independent dangerous rack , has occupied space waiting for a lot of merit for a short time , in modern light automobile to apply broadly. Because of this , this time, going forward designing that , that vehicle hangs to adopt the dyadic independent dangerous Maifuxun rack , rear overhang puts up adopt the dyadic overall of band spring rear overhang rack. Such designs that the angle still is from comfortable angle from economy being able to make this vehicle regardless of , can reach a comparatively ideal result.Graduation practice requires that comparatively, the vehicle overall plan demands , the design being in progress to whose dangerous rack secretly schemes against according to some. For the design setting forth the dangerous rack, process , specifications introduce that from designing that the process calculating the design to dyadic dangerous wheat rack has been in progress. Specifications has set forth dangerous rack middle key component and part first such as: Spiral spring , the design that the shock absorber waits for, choose a type and secretly scheme against; Have analysed the dangerous rack structure characteristic and the physics model moving a characteristic, and being that the basis has built the dangerous rack on this account then.Key words: McPherson suspension;The whole steel spring suspension; design and selection;目录中文摘要 (1)ABSTRACT (2)第一章绪论 (6)1.悬架的功用 (6)2.悬架系统的组成 (7)3.悬架的类型及其特点 (8)3.1非独立悬架的类型及特点 (9)3.2独立悬架的类型及特点 (10)4悬架形式的选择 (13)4.1总评 (13)4.2前后悬架的确定 (14)第二章悬架的设计计算 (14)1.悬架设计要求 (15)2.前悬架的设计计算 (16)2.1弹簧形式的选择 (16)2.2材料的选择 (16)3.弹簧参数的计算 (17)3.1圆柱螺旋弹簧直径d的计算 (17)3.2求有效圈数 (17)3.3其它参数 (18)4.弹簧的校验 (19)5.后悬架的设计计算 (20)5.1弹性元件的选择 (20)5.1.1加工要求 (20)5.2.2材料的参数 (20)6.钢板弹簧参数的设计计算 (21)6.1挠度的确定 (21)6.2各片长度的确定 (22)6.3断面高度及片数的确定 (22)6.4厚度的确定 (23)6.5板簧总成在自由状态下得弧高及其曲率半径 (23)7.钢板弹簧的强度校验 (24)第三章减振器的结构原理及其功用 (25)1.减震器的作用 (26)2.减震器的结构 (27)3.减震器的工作原理 (27)第四章横向稳定器的作用 (28)第五章麦佛逊式悬架导向机构 (30)1独立悬架导向机构 (38)2麦弗逊式悬架系统物理模型的建立 (40)结论 (42)参考文献 (42)致谢 (43)引言此次毕业设计的课题是轻型轿车的悬架系统。
汽车悬置系统设计规范指南.doc
悬置系统设计指南编制:审核:批准:主题与适用范围1、主题本指南介绍了动力总成悬置系统开发的基本知识和基本过程,以及所涉及到的基本流程文件核技术文件。
2、适用范围本指南适用于奇瑞所有装汽油或柴油发动机的M1类车动力总成悬置系统的设计。
目录一、悬置系统中的基本概念 (4)1.1 悬置系统设计时的基本概念 (4)1.2动力总成振动激励简介 (6)二、悬置系统的作用 (8)2.1 悬置系统的设计意义及目标简介 (8)2.2 动力总成悬置系统对整车NVH性能的影响 (8)三、悬置系统的概念设计 (10)3.1 悬置系统的布置方式选择 (10)3.2 悬置点的数目及其位置选择 (11)3.3 悬置系统设计的频率参数 (13)四、悬置系统相关设计参数 (14)4.1动力总成参数 (14)4.2 制约条件 (15)五、悬置系统设计过程中的相关技术文件 (16)5.1 悬置系统VTS (16)5.2 悬置系统DFMEA (17)5.3 悬置系统DVP&R (17)5.4 其它技术及流程文件 (17)一、悬置系统中的基本概念1.1 悬置系统设计时的基本概念1:整车坐标系:原点在车身前方,正X方向从前到后,正Y方向指向右侧(从驾驶员到副驾驶),正Z方向朝上如图(1-1)。
(图1-1)整车坐标系2:发动机坐标系:原点在曲轴中心线与发动机和变速箱结合面的交点处;正X方向从变速箱到发动机,沿着曲轴中心线,正Y方向指向右侧如果沿着正X方向看,正Z方向朝下如图(1-2)。
(图1-2)发动机坐标系3:主惯性矩坐标系:原点在动力总成的质心位置,正X方向从变速箱到发动机,沿着最小主惯性矩轴线,正Y方向通常沿着最大主惯性矩轴线,正Z方向朝下并且沿着中等主惯性矩轴线如图(1-3)。
(图1-3)主惯性坐标系4:扭矩旋转轴坐标系:原点在动力总成的质心位置,正X方向从变速箱到发动机,沿着TRA方向,Y方向和Z方向可任意选择只要符合右手法则。
悬架系统设计步骤
悬架系统设计步骤在此主要是分析竞争车型的底盘布置。
底盘布置首先要确定出轮胎、悬架形式、转向系统、发动机、传动轴、油箱、地板、前纵梁结构(满足碰撞)等,因为这些重要的参数,如轮胎型号、悬架尺寸、发动机布置、驱动形式、燃油种类等在开发过程中要尽可能早地确定下来。
在此基础上,线束、管路、减振器、发动机悬置等才能继续下去悬架选择对各种后悬架结构型式进行优缺点比较,包括对后部轮罩间空间尺寸的分析比较,进行后悬架结构的选择。
常见的后悬架结构型式有:扭转梁式、拖曳臂式、多连杆式。
扭转梁式悬架优点:1.与车身连接简单,易于装配。
2.结构简单,部件少,易分装。
3.垂直方向尺寸紧凑。
4.底板平整,有利于油箱和后备胎的布置。
5.汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定作用,若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。
6.两侧车轮运转不均衡时外倾具有良好的回复作用。
7.在车身摇摆时具有较好的前束控制能力。
8.车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。
9.通过障碍的轴距具有相当好的加大能力,通过性好。
10.如果采用连续焊接的话,强度较好。
缺点:1.对横向扭转梁和纵向拖臂的连续焊接质量要求较高。
2.不能很好地协调轮迹。
3.整车动态性能对轴荷从空载到满载的变化比较敏感。
4.但这种悬架在侧向力作用时,呈过度转向趋势。
另外,扭转梁因强度关系,允许承受的载荷受到限制。
扭转梁式悬架结构简单、成本低,在一些前置前驱汽车的后悬架上应用较多。
拖曳臂式悬架优点:1.Y轴和X轴方向尺寸紧凑,非常有利于后乘舱(尤其是轮罩间宽度尺寸较大)和下底板备胎及油箱的布置。
2.与车身的连接简单,易于装配。
3.结构简单,零件少且易于分装;4.由于没有衬套,滞后作用小。
5.可考虑后驱。
缺点:1.由于沿着控制臂相对车身转轴方向控制臂较大的长宽比,侧向力对前束将产生不利的影响。
2.车身摇摆(body roll)对外倾产生不利影响;(适当的控制臂转轴有可能改善外倾的回复能力,但这导致轮罩间宽度尺寸的减小。
道路悬挂规范标准最新
道路悬挂规范标准最新道路悬挂系统是确保车辆在各种路面条件下平稳行驶的关键技术之一。
随着技术的发展,道路悬挂规范标准也在不断更新以适应新的使用需求和安全标准。
以下是最新的道路悬挂规范标准概述:1. 悬挂系统分类:- 刚性悬挂:适用于重型载重车辆,提供良好的载重能力和稳定性。
- 独立悬挂:适用于乘用车,提供更好的舒适性和操控性。
- 半独立悬挂:介于刚性和独立悬挂之间,适用于轻型车辆。
2. 悬挂系统设计要求:- 悬挂系统必须能够承受车辆的最大载重量。
- 悬挂系统应具备良好的减震性能,减少路面不平对车辆的影响。
- 悬挂系统设计应考虑车辆的重心分布,确保车辆行驶稳定。
3. 材料和制造标准:- 悬挂系统的主要部件应使用高强度材料制造,以承受反复的应力和冲击。
- 制造过程应符合ISO或同等国际标准,确保产品质量和一致性。
4. 安全性能要求:- 悬挂系统必须通过严格的安全测试,包括耐久性测试、冲击测试和振动测试。
- 悬挂系统应配备必要的安全装置,如限位器和缓冲器,以防止极端情况下的损坏。
5. 环境适应性:- 悬挂系统应能适应不同的气候和环境条件,包括高温、低温、潮湿和干燥环境。
- 悬挂系统应具备良好的耐腐蚀性和耐化学性,以适应各种路面条件。
6. 维护和寿命:- 悬挂系统应设计为易于维护,部件应易于更换。
- 悬挂系统的设计寿命应与车辆的整体寿命相匹配,减少更换成本。
7. 法规和标准遵循:- 悬挂系统的设计和制造必须符合国家和国际上的道路安全法规。
- 悬挂系统应遵循相关的环保标准,减少对环境的影响。
8. 技术更新和创新:- 随着新技术的出现,悬挂系统应不断更新以提高性能和效率。
- 鼓励使用智能悬挂系统,如自适应悬挂,以提高车辆的舒适性和安全性。
结束语:随着汽车工业的不断进步,道路悬挂规范标准也在不断地更新和完善。
制造商、工程师和监管机构需要共同努力,确保悬挂系统的性能、安全性和环境适应性,以满足日益增长的市场需求和法规要求。
悬架系统设计课件
1) 定义转向系统的几何尺寸
在转向系统的设计过程中,首先要确定转向梯形,以保证车轮能绕一个 转向中心在不同的圆周上作无滑动的纯滚动。对轿车来说,通常采用断开式 转向梯型机构,有时为了提高车辆的灵活性,减小转弯半径而改变转向梯型。 采用齿轮齿条式转向器时,转向横拉杆内端接头T的运动轨迹与地面平行, 相反外接头U的运动轨迹是一条圆弧线,当没有主销后倾时,U点的运动轨 迹于转向节轴线EG垂直。
汽车悬架系统设计
悬架系统设计
1
汽车悬架的主要功用
汽车悬架是将车架(或车身)与车轴(或直接与车 轮)弹性联接的部件。其主要功用如下: (1)缓和,抑制由于不平路面所引起的振动或冲击以保 证汽车具有良好的平顺性。 (2)迅速衰减车身和车桥(或车轮)的振动。 (3)传递作用在车轮和车架(车身)之间的各种力(垂 直力,纵向力,横向力)和力矩(制动力矩和反作用力 矩)。 (4)保证汽车行驶所必要的稳定性。
转向轴线 B
减振器轴线
下摆臂旋转轴线
E D
C
D
Z
F
A
Z
Y
Y A
悬架系统设计
X
27
与动力总成边界相关
B
得到足够的轮胎上下跳过程中外倾角的回正性
这可以通过将B点向内移,或抬高D点或向外移动A点, 但是所有这些都要同悬架的其他特性综合考虑。
与轮胎尺寸相关
C
与转动中心相关
A
Z
D
Y
悬架系统设计
车轮外倾角 (o)
悬架系统设计
2
悬架设计的基本概念
㈠悬架设计的矛盾 悬架是研究悬架系统的振动特性,讨论悬架设计对
平顺性,稳定性和通过性等性能的影响,从而做出妥善 设计。 ⑴柔与刚 悬架的发展趋势是弹簧越来越软(既由刚变柔)。 ⑵减振与激振 ⑶悬架特性与路面特性 ⑷坚固与笨重
悬架系统设计规范05
非独立悬架系统设计规范目录:一、概述二、设计输入1.市场分析报告2.产品概念报告3.技术方案分析报告4.产品信函5.项目描述书三、悬架系统设计目标1.承载性目标2.平顺性目标3.安全性目标4.成本目标5.总成重量目标6.整车姿态目标7.整车动行程目标四、悬架系统结构参数的确定1、前、后悬架系统结构形式(主要部件构成明细)2、安装尺寸的确定3、前后钢板弹簧最大工作空间确定(静挠度+动行程)4、减振器工作行程范围确定5、车架结构与悬架元件的物理接口6、前后桥与悬架元件的物理接口7、整车动行程确定(发动机油底壳与工字梁,前软垫与车架、后软垫与车架)8、其他五、悬架系统匹配1、偏频匹配2、减振器可行设计区六、前悬架设计1.钢板弹簧设计2.减振器设计3.悬架软垫设计4.其他部件设计七、后悬架设计1、钢板弹簧设计2、减振器设计3、悬架软垫设计4、其他部件设计八、悬架系统验证与试验项目1、动力学模型分析与验证2、整车性能试验项目与可靠性试验项目3、钢板弹簧台架试验项目4、减振器台架试验项目5、悬架软垫台架试验项目6、其他九、输出参数表1、整车公告相关参数表2、整车相关性能参数表3、钢板弹簧设计参数表4、减振器设计参数表5、前后悬架子组部件图纸及明细表附件:悬架系统相关标准与设计参考书1、平顺性评价标准\操纵稳定性2、钢板弹簧3、弹簧钢4、减振器一、概述本文适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。
1、悬架系统设计对整车性能的影响悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。
主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的振动,保证汽车的正常行驶。
悬架结构、性能不仅影响汽车的行驶平顺性,还对操纵稳定性、燃油经济性、通过性等多种整车性能有影响。
汽车悬置系统设计标准有哪些
汽车悬置系统设计标准有哪些
汽车悬架系统设计标准包括以下几个方面:
1. 载重能力:设计标准要求悬架系统能够承受车辆整备质量及额定载荷,并确保悬架系统在运行过程中不会失效或损坏。
2. 舒适性:悬架系统应具备良好的减震能力,能够有效地减少车辆在行驶过程中的颠簸感,提供乘坐舒适性。
3. 稳定性:悬架系统设计要求在车辆急转弯、行驶过程中具有良好的稳定性,能够保持车辆的姿态,并避免侧倾或失控。
4. 控制性:悬架系统设计要求能够使车辆具备良好的操控性能,能够快速、准确地响应驾驶员的操作,提供良好的操控感。
5. 可靠性:悬架系统设计要求能够在各种复杂的路况下正常工作,并保持长时间的稳定性和可靠性。
6. 安全性:悬架系统设计要求能够确保车辆在紧急制动或避让情况下稳定,避免侧滑、打滑或翻车等危险情况。
7. 经济性:悬架系统设计要求要考虑成本和效益,尽可能减少材料和零部件的使用,提高整体系统的寿命,降低维护和保养成本。
8. 环保性:悬架系统设计要求考虑所使用的材料和技术对环境的影响,尽可能减少对自然资源的消耗和环境污染。
总之,汽车悬架系统设计标准旨在提高汽车悬架系统的性能、可靠性、安全性和经济性,为车辆提供良好的行驶稳定性和乘坐舒适性。
同时,还要考虑环境因素,减少对自然资源的消耗和环境的污染。
这些标准是汽车制造行业必须遵守的基本规范,确保汽车悬架系统的质量和性能达到国际标准。
悬架系统设计汽车悬架系统设计
装配与涂装
按照工艺流程进行装配,采用 自动化涂装设备,确保产品外
观质量。
检测与试验
对成品进行全面的检测和试验 ,确保产品性能符合设计要求
。
关键工艺参数控制
热处理工艺参数
控制加热温度、保温时间和冷却速度等参数,确 保材料的力学性能和金相组织符合要求。
焊接工艺参数
选择合适的焊接方法和焊接参数,确保焊缝质量 和强度。
解决关键技术难题
在悬架系统设计过程中,攻克了多项关键技术难题,如非线性阻尼特性控制、多自由度振 动解耦等,为悬架系统的研发和应用提供了有力支持。
行业发展趋势预测
智能化悬架系统成为发展热点
随着智能驾驶技术的不断发展,智能化悬架系统将成为未来汽车悬架 系统的重要发展方向,实现与车辆控制系统的高度集成和协同工作。
验证与测试
通过实车试验或台架试验等方式,验证优化后的悬架系统的性能和可 靠性,确保满足设计要求。
05 悬架系统制造工艺与质量 控制
制造工艺流程规划
01
02
03
04
原材料选择与检验
选用高强度、轻量化的材料, 并进行严格的入厂检验,确保
原材料质量。
零部件加工
采用先进的数控机床和加工工 艺,确保零部件的尺寸精度和
稳定性分析
研究车辆和悬架系统在受到外部扰动时的稳定性,包括侧倾稳定 性、俯仰稳定性和横摆稳定性等。
仿真模拟与优化设计
仿真模拟
利用计算机仿真软件,对悬架系统进行动力学仿真模拟,分析系统 的运动学和力学特性,以及车辆的行驶平顺性和操纵稳定性。
优化设计
根据仿真结果和实际需求,对悬架系统的结构参数、刚度和阻尼等 进行优化设计,提高车辆的行驶性能和舒适性。
悬挂结构规范标准最新
悬挂结构规范标准最新悬挂结构是一种广泛应用于桥梁、建筑物和塔架等工程中的结构形式,它通过悬挂元件将荷载传递给支撑结构。
以下是悬挂结构规范标准的一些关键点:1. 设计原则:- 悬挂结构的设计应遵循安全性、经济性、实用性和美观性的原则。
- 设计应考虑到结构的稳定性、耐久性以及对环境的适应性。
2. 材料选择:- 悬挂结构所用材料应具有足够的强度、韧性和耐久性。
- 材料应符合国家或国际标准,并通过相关质量认证。
3. 荷载与力的计算:- 应准确计算悬挂结构在各种使用条件下的静载荷和动载荷。
- 考虑风载、雪载、地震力以及温度变化等对结构的影响。
4. 结构分析:- 利用现代计算方法对悬挂结构进行静力分析和动力分析。
- 确保结构在各种荷载组合下的安全性和稳定性。
5. 连接与节点设计:- 悬挂结构的连接节点应设计得既牢固又易于施工。
- 节点设计应考虑到力的传递效率和结构的整体协调性。
6. 施工与安装:- 施工过程中应严格遵守设计规范和施工标准。
- 安装时应确保悬挂元件的正确位置和张力。
7. 维护与检测:- 悬挂结构应定期进行维护和检测,以确保其长期安全运行。
- 检测应包括材料状况、连接节点、悬挂元件等的检查。
8. 环境适应性:- 结构设计应考虑环境因素,如腐蚀、紫外线照射等,以确保结构的耐久性。
9. 安全措施:- 在施工和使用过程中,应采取必要的安全措施,防止事故的发生。
10. 法规与标准遵循:- 悬挂结构的设计、施工和使用应遵循国家或地区的相关法规和标准。
结尾:悬挂结构规范标准的制定是为了确保工程的安全性和可靠性,同时也为工程师和施工团队提供了明确的指导。
随着技术的发展和新材料的应用,悬挂结构规范标准也在不断更新和完善,以适应新的工程需求和挑战。
驾驶室悬置机构总成设计规范
ad od
(3-8)
oa――翻转中心与驾驶室重心的连线,也是常量,oa=
od (3-9) cos α
MG 随翻转角度β变化如图 3-3 所示,为余弦曲线的一部分 在驾驶室翻转过程中,由于预先把扭杆 扭过一定角度, 因此在打开锁止机构后, 驾驶 室在扭杆扭矩的作用下, 可以自行翻转一定的 角度,然后处于平衡状态。锁止时,需要在驾 驶室上施加一定的拉力(选择拉力为 100~150N) ,在乘以扭杆中心到把手的距离, 即得到锁止时需要的附加力矩 M 附,则 MG+M 附=Mmax (3-10)
211
因此,连接地板梁与翻转轴的翻转支架必须有足够的刚度和强度。在设计中往往 采用 5~10mm 厚的钢板冲压而成,或采用铸钢件。实际在设计时由于我们生产的 驾驶室自重不是太大,而翻转支架的钢材用的较好(通常用 16MnREL 或 Q345) , 采用 4mm 的厚度即可。翻转支架与驾驶室的连接要可靠,大多数在纵梁和横梁的 交接处连接。 在某些汽车中, 也有应用一厚壁钢管焊在纵梁前部经过加强的部位, 既可做前横梁又做翻转轴。 1.2 要从运动状态和间隙方面考虑 在驾驶室翻起的全过程中,驾驶室上的任何部分都不能与固定在车架上的 任何不翻转部分产生运动干涉。由于现在的货车对外型美观要求得越来越高,不 允许外观上有较大的间隙,而在以前的翻转车身,为了保证翻转,车身和安装在 车架上得保险杠往往留有很大的间隙。但通过对前围适当的造型,合理适当的翻 转中心位置可以使驾驶室在锁止时能保证和保险杠间隙较小又能保证驾驶室翻 转时的运动间隙。 1.3 接近性要好 为保证车辆在维修时便于方便的拆装驾驶室,以及对翻转系统的维护保养, 翻转点应当易于接近。 1.4 要求翻转轻便,运动自如 翻转中心越是靠近驾驶室的重心,翻转驾驶室时所需的翻转力矩越小。但 翻转重心越靠近驾驶室,前围部分的运动范围就越大,要求的空间就越大,车身 和保险杠的间隙也同时增大。所以翻转中心的布置要综合考虑。 2、驾驶室翻转角度的确定 从翻转中心到驾驶室重心的连线与水平面之间的夹角称之为驾驶室的重心 角。驾驶室翻转到最大角度时以重心过翻转中心的垂线为好。这时扭杆与驾驶室 脱离接触,限位器受力不大,而放下时只需轻轻拉动驾驶室,不用使很大的劲。 设计时保证翻转角度与驾驶室重心角互为余角即可。对于我们现生产的车型,一 般定义的翻转角度为 40°。 三、扭杆位置的确定 扭杆中心相对于翻转中心的位置可有以下几种情况。 1、扭杆中心与翻转中心重合 为了保证驾驶室能翻起来,应满足下式:
汽车悬架系统毕业设计
目录第1章绪论1.1 悬挂系统概述........................................1.2 设计要求.........................................第2章悬挂系统总体参数设计与计算2.1主要技术参数2.2悬架性能参数确定2.3悬架静挠度2.4悬架动挠度2.5悬架弹性特性曲线第3章弹性元件的设计计算3.1前悬架弹3.2后悬架弹第4章悬架导向机构的设计4.1导向机构设计要求4.2麦弗逊独立悬架示意图4.3导向机构受力分析4.4横臂轴线布置方式4.5导向机构的布置参数第5章减振器主要参数设计5.1减振器概述5.2减振器分类5.3减振器参数选取5.4减振器阻尼系数5.5最大卸荷力5.6筒式减振器主要尺寸第6章横向稳定杆设计6.1横向稳定杆参数确定第7章结论参考文献致谢附录Ⅰ附录II第一章悬挂系统概述(1)概述汽车悬架系统是底盘平台的重要组成部分,直接影响到汽车行驶的操作稳定性,乘坐的舒适性和安全性,往往被编入技术规格表,作为评价汽车性能品质的标准之一。
汽车悬架是安装在车桥和车轮之间用来吸收汽车在高低不平的路面上行驶所产生的颠簸力。
因此,汽车悬架系统对汽车的操作稳定性、乘坐舒适性都有很大的影响。
由于悬架系统的结构得到不断改进,其性能及其控制技术也得到了迅速提高。
尽管一百多年来汽车悬架从结构形式到作用原理一直在不断地演进,但从结构功能而言,它都是有弹性元件、减振装置和导向机构三部分组成。
在有些情况下,某一零部件兼起两种或三种作用,比如钢板弹簧兼起弹性元件和导向机构的作用,麦克弗逊悬架中的减振器柱兼起减振器及部分导向机构的作用,有些主动悬架中的作动器则具有弹性元件、减振器和部分导向机构的功能。
(2)总体设计方案1. 完成悬挂系统总体参数设计:2. 完成弹性元件设计计算3. 完成减震器主要参数选择4. 完成悬架导向机构及横拉杆设计5. 完成设计相关的图纸6. 编写设计说明书第2章悬挂系统总体参数设计与计算2.1主要技术参数整车的基本参数见表前悬非簧载质量为50kg 后悬非簧载质量为80kg簧载质量(满载)前簧载质量=满载轴荷质量—非簧载质量770—50=720kg后簧载质量=满载轴荷质量—非簧载质量860-80=780kg非簧载质量:前悬非簧载质量为50kg 后悬非簧载质量为80kg 3.2悬架性能参数确定(1)自振频率(固有频率)选取根据国家规定对发动机排量在1.6L以下的乘用车,前悬架满载偏频要求在1.00――1.45Hz,后悬架要求在1.17――1.58Hz。
悬架系统设计
n1 =
1 2π
c1 m1
n2 =
1 2π
c2 m2
(4-1)
式中, c1 、 c 2 为前、后悬架的刚度(N/cm); m1 、 m2 为前、后悬架的簧上质量(kg)。 当采用弹性特性为线性变化的悬架时,前、后悬架的静挠度可用下式表示
f c1 =
m1 g 2
2
式中,g 为重力加速度(g=981cm/ s )。 将 f c1 、 f c 2 代人式(6—1)得到
图 4—1 悬架弹性特性曲线 1—缓冲块复原点 2—复原行程缓冲块脱离支架 3—主弹簧弹性特性曲线 4—复原行 程 5—压缩行程 6—缓冲块压缩期悬架弹性特性曲线 7—缓冲块压缩时开始接触弹性 支架 8—额定载荷 载荷小时副簧不工作,载荷达到一定值(图 4—2 中的 FK )时,副簧与托架接触,开始与 主簧共同工作。
4.1.3 悬架弹性特性 悬架受到的垂直外力 F 与由此所引起的车轮中心相对于车身位移厂(即悬架的变形)的关 系曲线称为悬架的弹性特性。其切线的斜率是悬架的刚度。 悬架的弹性特性有线性弹性特性和非线性弹性特性两种。 当悬架变形厂与所受垂直外力 F 之间呈固定比例变化时,弹性特性为一直线,称为线性弹性特性,此时悬架刚度为常数。 弹性特性如图 4—1 所示。 此时, 当悬架变形 f 与所受垂直外力 F 之间不呈固定比例变化时, 悬架刚度是变化的,其特点是在满载位置(图中点 8)附近,刚度小且曲线变化平缓,因而平 顺性良好;距满载较远的两端,曲线变陡,刚度增大。这样可在有限的动挠度 f d 范围内, 得到比线性悬架更多的动容量。 悬架的动容量系指悬架从静载荷的位置起, 变形到结构允许 的最大变形为止消耗的功。悬架的动容量越大,对缓冲块击穿的可能性越小。 空载与满载时簧上质量变化大的货车和客车, 为了减少振动频率和车身高度的变化, 应 当选用刚度可变的非线性悬架。 轿车簧上质量在使用中虽然变化不大, 但为了减少车轴对车 架的撞击, 减少转弯行驶时的侧倾与制动时的前俯角和加速时的后仰角, 也应当采用刚度可 变的非线性悬架。 钢板弹簧非独立悬架的弹性特性可视为线性的,而带有副簧的钢板弹簧、空气弹簧、油 气弹簧等,均为刚度可变的非线性弹性特性悬架。 4.1.4 后悬架主、副簧刚度的分配 货车后悬架多采用有主、副簧结构的钢板弹簧。其悬架弹性特性曲线如图 6—10 所示。
悬架搭设规范要求
悬架搭设规范要求
悬架是为了保证各施工过程顺利进行而搭设的工作平台,作为建筑工程中几乎必不可少的内容,其搭设作业对整个项目都是至关重要的。
悬架搭设规范要求:
1.一次性悬挑脚手架不得超过20m。
2.型钢悬挑应采用双轴对称工字钢。
3.悬挑梁的截面高度不小于160mm,U型钢筋拉环或锚螺栓的直径不小于16mm。
.钢丝绳采用HPB235级钢筋,直径不小于20mm
4.悬挑钢梁的长度应按设计计算,固定长度不应小于悬挑长度的1.25倍,U型钢筋拉环或锚固螺栓应预埋至混凝土上梁板底部的钢筋位置;
5.悬挑梁一般情况下应为2m,且局部悬挑不宜超过3m;
6.锚固位置应设置在楼板室,且楼板应不小于120mm,如小于120mm时应采取加固措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非独立悬架系统设计规范目录:一、概述二、设计输入1.市场分析报告2.产品概念报告3.技术方案分析报告4.产品信函5.项目描述书三、悬架系统设计目标1.承载性目标2.平顺性目标3.安全性目标4.成本目标5.总成重量目标6.整车姿态目标7.整车动行程目标四、悬架系统结构参数的确定1、前、后悬架系统结构形式(主要部件构成明细)2、安装尺寸的确定3、前后钢板弹簧最大工作空间确定(静挠度+动行程)4、减振器工作行程范围确定5、车架结构与悬架元件的物理接口6、前后桥与悬架元件的物理接口7、整车动行程确定(发动机油底壳与工字梁,前软垫与车架、后软垫与车架)8、其他五、悬架系统匹配1、偏频匹配2、减振器可行设计区六、前悬架设计1.钢板弹簧设计2.减振器设计3.悬架软垫设计4.其他部件设计七、后悬架设计1、钢板弹簧设计2、减振器设计3、悬架软垫设计4、其他部件设计八、悬架系统验证与试验项目1、动力学模型分析与验证2、整车性能试验项目与可靠性试验项目3、钢板弹簧台架试验项目4、减振器台架试验项目5、悬架软垫台架试验项目6、其他九、输出参数表1、整车公告相关参数表2、整车相关性能参数表3、钢板弹簧设计参数表4、减振器设计参数表5、前后悬架子组部件图纸及明细表附件:悬架系统相关标准与设计参考书1、平顺性评价标准\操纵稳定性2、钢板弹簧3、弹簧钢4、减振器一、概述本文适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。
1、悬架系统设计对整车性能的影响悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。
主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的振动,保证汽车的正常行驶。
悬架结构、性能不仅影响汽车的行驶平顺性,还对操纵稳定性、燃油经济性、通过性等多种整车性能有影响。
悬架是整车的承载系统之一,其钢板弹簧设计能力的大小,直接关系到整车的承载能力。
设计中保证一定的使用寿命,重量轻,安全可靠。
汽车平顺性(乘坐舒适性)是汽车设计开发中的重要性能指标。
悬架是影响整车行驶平顺性的主要系统.悬架弹性特性、系统阻尼和非簧载质量是影响汽车平顺性的主要因素.在悬架设计中,力求保持整车承载载荷范围内,固有频率变化尽可能小,具有适当的阻尼衰减振动,减小非簧载质量避免高频共振。
悬架结构形式对汽车行驶稳定性有一定影响。
悬架的布置要使整车具有不足转向特性,导向机构与转向拉杆运动协调,前悬架的布置与刚度设计要考虑主销后倾角,避免前钢板弹簧在制动力作用下产生S 变形。
同时尽量提高前后悬架的侧倾角刚度,降低侧倾中心高度,以利于提高汽车行驶稳定性。
2、悬架设计流程概述设计输入→整车设计目标→物理边界确定→主要部件性能指标确定→结构设计→3、悬架的评价指标汽车的行驶平顺性的评价方法,通常是根据人体对振动的生理反应及对货物完整性的影响来制订的。
根据汽车理论及<客车平顺性评价指标及限值> 标准规定,一般用表征振动的物理量如振动频率、振幅、加速度均方根值、降低舒适性界限(Tcd)等作为行驶平顺性的评价指标。
由试验得知,为了保持汽车具有良好的平顺性,车身振动的固有频率应为人体所习惯的步行时身体上下运动的频率,约为60~85次/分(1~1.6Hz),振动的加速度的极限允许值为0.3~0.4g.( g为重力加速度),在悬架理论设计中以车身振动的固有频率作为评价平顺性的指标;在实际车辆检测中, 由于国内相关标准中,仅对客车的平顺性指标及限值作出规定其他车辆只参照执行。
一般按QC/T474-1999 客车平顺性评价指标及限制来参比判定。
注:该指标是指满载、车速为50km/h时限值。
4、悬架设计关联系统与工作接口部门二、设计输入主要获取信息:1、产品市场定位及用户目标,使用区域,平原/山区2、产品承载能力范围,整备质量、满载质量、超载质量3、耐久性要求(可靠性里程)4、平顺性及操稳性要求5、标杆车型及悬架标杆样车结构参数表__________________表3.3(检测后获得)三、悬架系统设计目标1. 承载性目标2. 平顺性目标3. 安全性目标4. 成本目标5. 总成重量目标6.整车姿态目标 7. 整车动行程目标四、悬架系统结构参数的确定1、前、后悬架系统结构形式(主要部件构成明细)2、安装尺寸的确定3、前后钢板弹簧最大工作空间确定(静挠度+动行程)4、减振器工作行程范围确定5、车架结构与悬架元件的物理接口6、前后桥与悬架元件的物理接口7、整车动行程确定(发动机油底壳与工字梁,前软垫与车架、后软垫与车架)8、其他1、典型前悬架结构附图11S表2、典型后悬架结构附图21S表3、安装尺寸的确定按整车总布置的要求,与车型主管一起确定下列安装布置内容五、悬架系统匹配1、偏频匹配为了使整车具有良好的行使稳定性,前后悬架偏频具有一定的匹配性。
一般情况下遵循下列规律2、减振器可行设计区减振器阻尼设计与悬架刚度及簧载质量相关。
同时也有一定的六、钢板弹簧设计1、前板簧:从上面的设计目标与安装尺寸中已得知质量参数、安装尺寸、板簧刚度,下面需进行进行板簧具体结构设计。
首先根据使用状况确定采用那种板簧(少片簧、渐变刚度簧、多片簧),确定后用现有板簧设计软件进行初步设计计算,结果如下表:前悬架钢板弹簧计算3、后板簧和副簧:从上面的设计目标与安装尺寸中已得知质量参数、安装尺寸、板簧刚度,需进行板簧具体结构设计。
对于主副簧结构,首先确定副簧起作用点,一般按平均载荷法和比例中项法。
对于平顺性要求较高的车型用比例中项法,对于经常超载的车型用平均载荷法。
具体数值的确定应核算主簧和副簧的应力,使他们有尽量相当的寿命。
后主簧计算后副簧计算2、减振器的设计悬架性能参数:公式= 推荐值:减振器阻尼系数r减振器阻尼特性和速度特性(图)国家标准=0.52m/s 日本标准分别控制多个速度点,为0.1, 0.3(控制), 0.6(控制), 1.03、缓冲块的设计悬架系统的缓冲块主要功能是限制悬架动行程。
一般情况下,悬架动行程Fd与悬架静挠度Fc存在一定关系,即Fd=(0.7~0.9)Fc,对于较差的路面车辆Fd可取大值.缓冲块骨架高度与总高度的确定.其尺寸关系如下式:见图3在前桥缓冲块设计时还存在另外一种情况,即动行程Fd小于理论值,使得骨架高度与总高度不协调.这是基于以下原因:受整车布置所限,发动机油底壳与前桥工字梁在满载时间隙较小,为了保证发动机油底壳安全,加大缓冲块骨架高度来保证铁碰铁有足够间隙.为了保证缓冲块的撞击不会给整车平顺性造成影响,缓冲块应具有一定的弹性特性。
一般选用天然橡胶使其有足够寿命。
4、钢板弹簧销钢板弹簧销的强度在弹簧设计时同步得到校核,同时确定钢板弹簧卷耳直径。
现在钢板弹簧销材料一般选用45#、40Cr。
5、钢板弹簧衬套钢板弹簧卷耳内的衬套有:金属,橡胶,聚氨酯,塑料等几种.双金属衬套一般适合中重型车,配合油脂润滑系统;橡胶衬套广泛用于小型车辆,承受力不大但能很好地吸收振动;聚氨酯衬套随着改良性能的提高,其承载能力和弹性性能都能很好的满足使用要求,进几年在轻卡上广泛应用;塑料衬套由于成本较低,在低速汽车上大量应用.十、悬架系统验证与试验项目1、动力学模型分析与验证2、整车性能试验项目与可靠性试验项目3、钢板弹簧台架试验项目4、减振器台架试验项目5、悬架软垫台架试验项目6、其他输入:输出:输入:输出:2、整车性能试验项目与可靠性试验项目试验任务书内容:3、钢板弹簧台架试验项目试验任务书内容:4、减振器台架试验项目试验任务书内容:5、悬架软垫台架试验项目试验任务书内容:输出参数表2、整车相关性能参数表3、钢板弹簧设计参数表结构形式\物理安装尺寸\刚度\4、减振器设计参数表结构\缸径\速度及阻尼特性值5、前后悬架子组部件图纸及明细表在整车各子系统中,悬架系统的型式、布置、性能参数的不同,对整车的各种性能尤其是行驶平顺性有着直接地影响。
汽车虽然是一个多质量的复杂振动系统,在理论计算时,我们可利用限制振动质量的部分位移方法,将其简化成一个自由度的振动系统,此时求得的频率为复杂振动之偏频 ,公式为:ω1=C1L / M1(L2+εL1)ω2=C2L / M2(L1+εL2)式中C1、C2___前、后悬架刚度M1、M2___前、后悬架簧载质量L___汽车轴距L1、L2___质量重心至前后轴距离ε___质量分配系数ε=1时,前后轴上车身点的振动不存在联系,此时的偏频为ω1=C1 / M1ω2=C2 / M2以每周多少赫兹表示,则n= 12πC / M ( 2-1 )从上述公式中可以看出,车身振动固有频率n,主要由簧载质量M、悬架刚度C决定。
在悬架设计中,通常把力和变形的关系曲线,称为悬架的弹性特性曲线。
图1a)所示的曲线特性为线性弹性特性,即悬架变形与所受载荷成正比,因此其悬架刚度C是常数.由公式(2-1)可知,车身振动的频率随载荷而变化,一般的前悬架采用普通钢板弹簧时,弹性特性即如此。
图1 弹性特性曲线图1-1b)所示的弹性特性曲线,为变刚度悬架的非线性弹性特性,由于刚度C随载荷而改变,可以使得在载荷变化时,保持车身的固有频率不变,从而获得良好的汽车行驶平顺性。
这时,在曲线上任意点M 满足P/C M=fc式中P——特性曲线上任意点M的载荷C M——任意点M的悬架刚度fc——在静载荷Pc时,为良好平顺性所要求的悬架静挠度需要说明的是,理想的弹性特性曲线上任意点M的静挠度 fc是相等的,车身的固有频率不变;这种等频特性,在主动控制悬架系统中(如空气悬架、油气悬架)由电脑系统智能控制是可以实现的。
独立悬架系统中可以通过合理选择导向杆系的运动关系,使线性的弹性元件在车轮接地点上转化为非线性的悬架特性。
在非独立悬架结构中,可以采用组合方式构成复式弹簧,或加装橡胶弹簧及限位块等措施,使弹性元件本身具有一定的非线性特性汽车的行驶平顺性的评价方法,通常是根据人体对振动的生理反应及对货物完整性的影响来制订的。
根据汽车理论及<客车平顺性评价指标及限值> 标准规定,一般用表征振动的物理量如振动频率、振幅、加速度均方根值、降低舒适性界限(Tcd)等作为行驶平顺性的评价指标。
由试验得知,为了保持汽车具有良好的平顺性,车身振动的固有频率应为人体所习惯的步行时身体上下运动的频率,约为60~85次/分(1~1.6Hz),振动的加速度的极限允许值为0.3~0.4g.( g为重力加速度),在悬架理论设计中以车身振动的固有频率作为评价平顺性的指标;在实际车辆检测中, 由于国内相关标准中,仅对客车的平顺性指标及限值作出规定其他车辆只参照执行。