倒易点阵(ppt)

合集下载

§1.5 倒易点阵

§1.5 倒易点阵

′ ′ ′ ′ ′ ′ = 2 π( l1h1 + l 2 h2 + l 3 h3 )
= 2 πµ
3.
(2π)3 Ω* =
Ω* = b 1 ⋅ b 2 × b 3
3
(

分别为正、倒格原胞体积) (其中Ω和Ω*分别为正、倒格原胞体积 其中
)
) [( ) ( )]
2π = a2 × a3 ⋅ a3 × a1 × a1 × a2 Ω
′ ′ ′ Rl′ = l1 a1 + l2 a 2 + l3 a 3
′ ′ ′ K h′ = h1 b1 + h2 b2 + h3 b3
上页 下页 返回 结束
第一章 晶体结构
′ ′ ′ ′ ′ ′ Rl′ ⋅ K h′ = (l1 a1 + l2 a 2 + l3 a 3 ) ⋅(h1 b1 + h2 b2 + h3 b3 )
2π a
2π a
上页 下页 返回 结束
第一章 晶体结构 例2:证明体心立方的倒格是面心立方。 证明体心立方的倒格是面心立方。 体心立方的原胞基矢: 解: 体心立方的原胞基矢:
a1 a a
2
3
a = − i + j + k 2 a i − j + k = 2 a i + j − k = 2
( ( (
a a 2 +k 2 a a 2 2

a 2 a 2
a2 a2 j+ k = 2 2
上页 下页 返回 结束
第一章 晶体结构
a2 a2 a2 × a3 = j + k 2 2
2π b1 = a2 × a3 = Ω

2-4-倒易点阵

2-4-倒易点阵

第二讲主要内容一些晶格实例(自己看)简单与复式晶格晶格周期性的几何描述晶列和晶面晶体宏观对称性和结构分类倒易点阵(倒格子)1倒格矢由倒易基矢b 1、b 2、b 3定义倒易空间的矢量可以表示为:332211b n b n b n G n v v v v++=n 矢量1、n 2、n 3为整数,矢量G n 称为倒易矢量或倒格矢。

矢量G n 端点的集合构成倒易点阵或称倒格子。

相对应,也常把正空间的晶体点阵成为正点阵。

显然,倒易点阵也具有平移不变性,G n 为倒空间的平移矢量。

我们知道正点阵的原胞体积为我们知道,正点阵的原胞体积V a 为:)a a (a V a 321vv v ×⋅=类似地,我们倒易基矢b 1、b 2、b 3构成的平行六面体称为倒点阵。

其体积用V 3的原胞其体积用b 表示)b b (b V b 321vv v ×=•倒点阵性质I. 正倒点阵的基矢互相正交,即:iji i b a πδ2=⋅⎪⎬⎫======••••••0231332123121a b a b a b a b a b a b vv v v v v v v v v v v v v v v v v ⎪⎭===•••π2332211a b a b a b 且任意正、倒格矢满足关系:m 为整数mG R n l π2=⋅vv v v v v332211a l a l a l R l v v v v ++=正格矢:倒格矢证明倒格矢的定义式,即332211b n b n b n G n ++=倒格矢:)b n b n b (n a l a l a l 332211332211 )(v v v vv v ++⋅++=⋅n l G R v v 满足此式的矢量G n 必为倒格矢。

5)(2332211n l n l n l ++=πmπ2=)根据晶面指数定义,(n 1n 2n 3) 该组晶面中最靠近原点的晶面与坐标轴a 1、a 2、a 3交点的位矢:a 332211 n OC n a OB n a OA ===(n 1n 2n 3)晶面上两条相交直线AB 和AC的位矢r 的位矢:- -33112211n a n a CA n a n a BA ==33/n a 22/n a r)() -(3322112211b n b n b n n a n a G BA n ++⋅=⋅11/n a rVI 证明过程:由于晶格的周期性如点某一物理量则有:)()(l U U R r r +=由于晶格的周期性,如U(r)表示r 点某一物理量,则有:r 为晶格中任一点位置,R n 为晶格平移矢量,记做:321a a a r 321ξξξ++=a a a R l l l ++=321321l ξ1、ξ2、ξ3为实数,l 1、l 2、l 3为整数。

倒易点阵

倒易点阵

倒易点阵的应用—解释X射线及电子衍射
• 劳厄方程
当相邻原子的散射X射线光程差等于 入射X射线波长整数倍时发生衍射。
a(cosα-cosα0) = Hλ
一维原子列的衍射示意图
倒易点阵的应用—解释X射线及电子衍射
• 劳厄方程
设空间点阵的三个平移向量为a ,b和c,入射的X射线与它们的交角分别为α0,β0和γ0。 衍射方向与它们的交角分别为α,β和γ 。根据上述讨论可知,衍射角α,β和γ在x, y, z三个轴上应满足以下条件:
单晶体电子衍射花样标定
• 确定零层倒易截面上各ghkl矢量端点(倒易阵点)的指数,定出零层倒易截面的 法向(即晶带轴[uvw]),并确定样品的点阵类型、物相及位向。 (1)测量靠近中心斑点的几个衍射斑点至中心斑点距离R1、R2、R3、R4…及 R1与R2、R1与R3等衍射斑点之间的夹角。 (2) 计算R12∶R22∶R32∶…=N1∶N2∶N3∶… 其中N = h2 + k2 + l2

于是,它们的点乘 根据倒易基矢定义式,显然有

都为0。
倒易点阵的应用—解释X射线及电子衍射
• „ 劳厄的一个科学假设
1911年埃瓦尔德在索末菲的指导下在慕尼黑大学从事博士论文研究,劳厄在 与他的讨论中了解到晶格的平移周期与X射线的波长属于同一量级,因此想到 在二维光栅的两个衍射方程组中再加一个类似的方程,就可以描述X射线在三 维晶体中的衍射。 在此假设的指导下,Knipping和Friedrich在1912年4月开始用CuSO4 后来 用闪锌矿(立方ZnS)进行实验,很快就得到X射线衍射的证据。这不但证明 了X射线的波动性,还确定了晶体的三维周期性。
a*、b*、c*
即倒易基矢

晶体的投影和倒易点阵PPT课件

晶体的投影和倒易点阵PPT课件

6
-
2021年2月7日4时8分
2. 晶体的极射投影:是一种二次投影,即将晶体的晶面或晶向的球 面投影再以一定的方式投影到赤平面所获得的投影。包括心射极平 投影和极射赤平投影。
➢ 心射极平投影:
定义:将投影平面与上述带有晶面极点的球面相切与球面上的任一点, 以球心为视点,将球面上的晶面极点投影于投影平面上,即以球心与球 面上的晶面极点做直线延伸到投影平面,此直线与投影平面相交点即为 此晶面极点的投影点。 缺点:投影直线与投影平面平行的那些晶面极点无法做投影,一个投影 平面只能记录球面上部分晶面极点。 应用:诠释劳埃衍射照片十分有用。
1.正点阵 2.倒易点阵 3.倒易矢量的基本性质 4.正倒空间的关系 5.广义晶带理论
14 -
2021年2月7日4时8分
一、正点阵
概念:晶体的空间点阵。反映了晶体中的质点在三维空间中的周 期性排列;与晶体结构相关,描述的是晶体中原子的分布规律, 是实际物质空间,所在空间为正空间;
分类:7大晶系、14种晶胞类型; 晶面、晶向表征方法:米勒指数(hkl)、[uvw]或(hkil)、
7
-
➢ 极射赤平投影:
以赤道平面为投影平面,以南极(或北极)为视点,将球面上的各个点、 线进行投影。
晶体投影的基本要素
8
-
D’
C’
B’
A’
极射赤平投影
2021年2月7日4时8分
球面投影与极射赤面投影之间的关系: 球面上过南北轴的大圆,其极射赤面投影为过基圆中心的直径; 球面上未过南北轴的倾斜大圆,其投影为大圆弧,大圆弧的弦为基圆直径; 水平大圆即赤道平面与投影球的交线,其极射赤面投影为投影基圆本身; 水平小圆的极射赤面投影为与基圆同心的圆; 倾斜小圆的投影为椭圆; 直立小圆的极射赤面投影为一段圆弧,其大小和位置取决于小圆的大小和位置。

固体物理01_04_02

固体物理01_04_02

• Each vector defined as above is orthogonal to two vectors of the crystal lattice.
倒易点阵(Reciprocal Lattice)
• Thus the b1,b2,b3 have the property:
倒易点阵(Reciprocal Lattice)
• B1沿(a2,a3)平面的法线方向 • 而 为平行四边形(a2,a3)的面积, 故设(a2,a3)平面所在的晶面族的面间距为 d1
倒易点阵(Reciprocal Lattice)
• 则有:
• 表明倒易点阵基矢的长度正好与晶面间 距的倒数成正比
倒易点阵的物理意义:
(1) 倒易点阵的一个基矢是与正点阵的一组 晶面相对应的; (2) 倒易点阵基矢的方向是该晶面的法线方 向; (3) 倒易点阵基矢的大小是该晶面族的晶面 间距的倒数的2π倍。单位为长度的倒数
倒易点阵的物理意义:
• 可以说正点阵里的一族晶面与倒易点阵 中的一个点相对应。 • So every crystal structure has two lattices associated with it, the direct lattice and the reciprocal lattice. • Thus when we rotate a crystal in a holder, we rotate both the direct lattice and the reciprocal lattice.
倒易点阵(Reciprocal Lattice)
• 正点阵中的晶面方程为: (hb1+kb2+lb3)•x=2n n为整数, x=1a1+2a2+3a3 为晶面中的任意一点。 不同的n,表示不同的晶面。

倒易点阵介绍PPT

倒易点阵介绍PPT
P NhomakorabeaS/
g S S0
1/
2
A S0 /
O
14
❖ 3 、S长度为1/d,方向垂
直于hkl面网, 所以
❖ S=g* 即: ❖ 衍射矢量就是倒易矢量。
P
S/
g S S0
❖ 4 、可以A点为球心,以
1/
2
1/为半径作一球面,称为
A S0 /
O
反射球(Ewald 球)。衍
射矢量的端点必定在反射 球面上
❖ 围绕O点转动倒易晶格,使每个倒易点形 成的球称为倒易球
❖ 以O为圆心,2/λ为半径的球称为极限球。
25
(S-S0)/λ= 2sinθ)/λ=ghkl=1/d
2dsinθ =λ
11
Ewald 作图法
❖ Ewald 图解是衍射条件的几何表达式。 ❖ sinθ =λ/2d
g ❖ 令d= λ / hkl (此时比例系数用X射线的波长) ❖ 则sinθ = ghkl /2
❖ 即某衍射面( hkl)所对应的布拉格角的正弦等 于其倒易矢量长度的一半。
同名基矢点乘为1。 a*·a=b*·b=c*·c=1.
2. 在倒易点阵中,由原点O*指向任意坐标为hkl的阵点的矢量 g的h晶kl(倒面易指矢数量)为:ghkl=h a*+k b*+lc* 式中hkl为正点阵中
3. 倒易矢量的长度等于正点阵中相应晶面间距的倒数,即 ghkl=1/dhkl
4. 对正交点阵,有 a*∥a,b*∥b,c*∥c, a*=1/a,b*=1/b,c*=1/c,
倒易点阵简介
❖ 布拉格公式作为结构分析的数学工具,在 大多数场合已经足够,但是,还有一些衍射 效应是布拉格公式无法解释的,例如非布 拉格散射就是如此.

倒易点阵介绍

倒易点阵介绍
倒易点阵
1
倒易点阵
❖ 倒易点阵概念及定义 ❖ 倒易点阵的物理意义 ❖ 倒易点阵的应用是一个假想的点阵.
❖ 将空间点阵(真点阵或实点阵)经过倒易变换,就 得到倒易点阵,倒易点阵的外形也是点阵,但其 结点对应真点阵的晶面,倒易点阵的空间称为倒 易空间。
❖ 1860年法国结晶学家布拉菲提出并作为空间点 阵理论的一部分,但缺乏实际应用。
24
25
点阵中单胞的体积:V=a·(b×c)=b·(a×c) =c·(a×b)
5
倒易点阵基矢与正点阵基矢的关系
(仅当正交晶系)
6
倒易点阵的性质
1. 正倒点阵异名基矢点乘为0;
a*·b= a*·c=b*·a=b*·c=c*·b=0
同名基矢点乘为1。
a*·a=b*·b=c*·c=1.
2. 在倒易点阵中,由原点O*指向任意坐标为hkl的阵点
的。即倒易矢量ghkl是与相应指数的晶向[hkl] 平行的。
7
ghkl=h a*+k b*+lc* 表明:
❖ 1平.倒行易于矢它量的法gh向kl垂N直hkl于正点阵中相应的 [hkl]晶面,或 ❖ 2.倒易点阵中的一个点代表的是正点阵中的一组晶面
8
晶带定理
❖ 在正点阵中,同时平行于某一晶 向[uvw]的一组晶面构成一个晶带, 而这一晶向称为这一晶带的晶带 轴。
向平行于(hkl)晶面的法线,则有K‘ –K= G,即为布拉格方程 14
的矢量形式。
倒易点阵的应用
倒易点阵使许多晶体几何学问题的解决变得简易。例如单胞体 积,晶面间距、晶面夹角的计算以及晶带定理的推导等等。以 下是倒易点阵的应用。 1°由倒易点阵的基本性质可得: a*=1/d100,b*=1/d010,c*=1/d100 (a*=G100=1/d100) 在晶体点阵S 中,点之间或点阵平面之间的距离用Å 作单位, 因此,a*、b*、c*的单位为Å-1。在用图解法解决实际问题时, 用相对标度值表示相对大小即可。

倒易点阵

倒易点阵

向量P×Q正是沿晶面法向
P

b

a
Q

k c

h b
H

l
P
k
Q

(
b

a)

(
c

b)
kh lk
倒易点阵的引入(2)
H

P
Q

(
b

a)

( c

b)
kh lk
所以,为了方便表示, 我们引入新的矢量
H

(b

a)
如何确定倒易点阵上的阵点
根据基矢的对应关系式确定倒易基矢
a*

b
c
V
b*

a
c
c*

V a
b
V
a* 1 d100
b*
1
d 010
c* 1 d 001
倒易基矢的方向大小确定后,将基矢平移单位长度得到阵点
正点阵基矢间夹角和倒点阵基矢间夹角间的关 系
• 根据基矢之间的夹角的定义,有 • 把正点阵基矢与倒易点阵基矢的关系代入,得

(j 2 (i 2 (i
2
k) k) j)
体心立方的倒格子是边长为2/a的面心立方 。
变换矩阵的引入
由倒易矢量的定义可以知道,倒空间中的三个基矢其实 是正空间中与正空间基矢共原点的三个矢量,因此可以 用空间变换将两组基矢联系起来,从而将正、倒空间的 矢量计算结合起来。
ab bb
ac bc

a* b*

c c a c b c c c*

2-3-倒易点阵

2-3-倒易点阵
= 2π (l1n1 + l2 n2 + l3 n3 ) = 2πm
II. 倒点阵原胞的体积反比于正点阵原胞体积
( 2π ) 3 Vb = Va
证明:
2π 3 Vb = b1 • (b2 × b3 ) = ( ) (a2 × a3 ) ⋅ [( a3 × a1 ) × (a1 × a2 )]
U (ξ1 ξ 2 ξ 3 ) = U (ξ1a1 + ξ 2a 2 + ξ 3a 3 ) = U [(ξ1 + l1 )a 1 , (ξ 2 + l2 )a 2 , (ξ 3 + l3 )a 3 ]
其可以看作以ξ1、ξ2、ξ3为变量,周期为1的函数,因此可以写成傅立叶级数:
U (ξ 1 , ξ 2 , ξ 3 ) = ∑∑∑ um1m2 m3 e 2π i ( m1ξ1 + m2ξ 2 + m3ξ 3 )
Va 2π 3 = ( ) ( a2 × a3 ) ⋅ {[( a3 × a1 ) ⋅ a2 ]a1 − [( a3 × a1 ) ⋅ a1 ]a2 } Va
3 2π 3 ( 2 π ) = ( ) [( a3 × a1 ) ⋅ a2 ] ⋅ [( a2 × a3 ) ⋅ a1 ] = Va Va
• •
m
m
10
VI证明过程:
由于晶格的周期性,如U(r)表示r点某一物理量,则有:
U (r ) = U (r + R l )
r为晶格中任一点位置,Rl为晶格平移矢量,记做:
r = ξ 1a 1 + ξ 2 a 2 + ξ 3 a 3
R l = l1a 1 + l2a 2 + l3a 3

倒易点阵

倒易点阵

倒易点阵:晶体点阵结构与其电子衍射斑点之间可以通过另外一个假想的点阵很好地联系起来,这就是~零层倒易截面:电子束沿晶带轴的反向入射时,通过原点的倒易平面只有一个,我们把这个二维平面叫做~消光距离:透射束或衍射束在动力学相互作用的结果,在晶体深度方向上发生周期性的振荡,这种振荡的深度周期叫做~明场像:通过衍射成像原理成像时,让透射束通过物镜光阑而把衍射束挡掉形成的图像称为明场像。

暗场像:通过衍射成像原理成像时,让衍射束通过物镜光阑而把透射束挡掉形成的图像称为暗场像。

衍射衬度:由于样品中不同位向的晶体的衍射条件不同而造成的衬度差别叫~质厚衬度:是建立在非晶体样品中原子对入射电子的散射和透射电子显微镜小孔径角成像基础上的成像原理,是解释非晶态样品电子显微图像衬度的理论依据。

二次电子:在入射电子束作用下被轰击出来并离开样品表面的样品的核外电子叫~吸收电子:入射电子进入样品后,经多次非弹性散射能量损失殆尽,然后被样品吸收的电子。

透射电子:如果被分析的样品很薄,那么就会有一部分入射电子穿过薄样品而成为透射电子。

结构消光:当Fhkl=0时,即使满足布拉格定律,也没有衍射束产生,因为每个晶胞内原子散射波的合成振幅为零。

这叫做~分辨率:是指成像物体(试样)上能分辨出来的两个物点间的最小距离。

焦点:一束平行于主轴的入射电子束通过电磁透镜时将被聚焦在轴线上一点。

焦长:透镜像平面允许的轴向偏差.景深:透镜物平面允许的轴向偏差.磁转角:电子束在镜筒中是按螺旋线轨迹前进的,衍射斑点到物镜的而一次像之间有一段距离,电子通过这段距离时会转过一定的角度.电磁透镜:透射电子显微镜中用磁场来使电子波聚焦成像的装置。

透射电子显微镜:是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨率,高放大倍数的电子光学仪器。

弹性散射:当一个电子穿透非晶体薄样品时,将与样品发生相互作用,或与原子核相互作用,或与核外电子相互作用,由于电子的质量比原子核小得多,所以原子核入射电子的散射作用,一般只引来电子改变运动方向,而能量没有变化,这种散射叫做弹性散射。

倒易点阵

倒易点阵

倒易点阵的概念
• 定义 用a, b, c表示基矢量,用a*, b*, c*表示倒 易点阵的基矢量,则 •
倒易点阵的两个基本性质
• 倒易矢量的定义:从倒易点阵原点向任一倒易 点阵的阵点所连接的矢量叫倒易矢量。 r*=Ha*+Kb*+Lc* 1)r*HKL(HKL) , r*垂直于正点阵的(HKL)晶面;
倒易点阵
•倒易点阵的特点 •倒易点阵的概念 •倒易点阵的两个基本性质
倒易点阵的特点(从物理角度讲)
正点阵 从实际晶体结构中抽象出来,正点 阵与晶体的结构相关,是物质空 间(正空间)。
倒易点阵
由正点阵派生出的一种几何图象。 倒易点阵与晶体的衍射现象相关, 反映的是衍射强度分布
倒易点阵的特点
• 利用倒易点阵处理晶体几何关系和衍射 问题,使几何概念清楚,数学描述简化。 • 晶体点阵中的二维平面在倒易空间中对 应一个零维的倒易阵点。 • 晶面间距和取向两个参量在倒易空间中 仅用一个倒易矢量表示。
2)| r*HKL|=1/dHKL

倒易点阵

倒易点阵
r r G h1 k1l1 = h1 a ′ + k 1b ′ + l1 c ′ r r r r G h2 k 2 l 2 = h2 a ′ + k 2 b ′ + l 2 c ′ r r r r G h1 k1l1 ⋅ G h 2 k 2 l 2 = G h1 k1l1 G h 2 k 2 l 2 cos ϕ r r G h1 k1l1 G h 2 k 2 l 2 cos ϕ = r ⋅ r G h1 k1l1 G h 2 k 2 l 2
d hkl 1 = r G hkl
2)
一族晶面用倒易点阵中一个阵点来表示,就 是以正点阵中面指数为指数的倒易矢量。
r c
C
(hkl)
c l
d hkl
r G hkl
O
a h
b k
B
r b
A
1 r 1 r 证明1):BA = a − b h k r r r r ⎛ 1 r 1 r⎞ BA ⋅ G hkl = ⎜ a − b ⎟ ⋅ h a ′ + k b ′ + l c ′ k ⎠ ⎝h r r r r r r b ×c c×a = a⋅ r r r −b⋅ r r r = 0 a ⋅ (b × c ) a ⋅ (b × c )
r a r b
课堂练习:作出下图所示2D点阵的倒易矢量 G100、G010、G110示意图:
r b r a
G100 G110 G010
(110)
(100) (010)
第三章:倒易点阵 § 3.2 倒到易点阵的定义及应用 正交归一性(本质): r
r r a ′ ⋅ a = 1, r r b ′ ⋅ b = 1, r r c ′ ⋅ c = 1, r a ′ ⋅ b = 0, r r b ′ ⋅ c = 0, r r c ′ ⋅ a = 0,

倒易空间Ewald图解.ppt

倒易空间Ewald图解.ppt

2011-12-5
7
Ewald图解
设S0与S分别为入射线与反 射线方向单位矢量,S-S0称 为衍射矢量,则反射定律可 表达为:S0与S分居反射面 (HKL)法线(N)两侧且 S0、S与N共面,S0及S与 (HKL)面夹角相等(均为 θ)。据此可推知S-S0∥N (此可称为反射定律的数学 表达式),如图所示。
2011-12-5 15
第一 从已知条件中能读出多少内容: 1. 从|a|=3Å,|b|=2Å,gamma=60°,c//a×b可以看 出:这个点阵是一个简单单斜点阵 这个点阵是一个简单单斜点阵;a、b俩基矢间的夹角 这个点阵是一个简单单斜点阵 为60°;c轴垂直于a、b俩基矢所在平面;|c|没给出 没给出。 ; 没给出 2. 所求倒易矢为 g*110与g*210 。 第二,理清思路: 根据倒易矢与相应正点阵晶面之间的关系可知,所求倒易 矢的方向分别为正点阵中(110)和(210)晶面的法向, 倒易矢模长分别为晶面间距d110和d210的倒数。
2011-12-5
18
2011-12-5
19
倒易点阵的性质
倒易点阵是衍射波在空间的方位与强度的 分布。倒易空间的每一阵点都和正空间的相 应的晶面族对应。 1. 定义:设a、b、c为正空间单胞的三基矢, a、b、c a* 、b * 、c *为倒空间单胞的三基矢,则: a* • a = b* • b = c* • c = 1 (1) a* • b = b* • c = c* • a = a* • c = b* • a = c* • b=0 (2) (1)决定了倒易矢的长度;(2)给出了方向。
2011-12-5 8
讨论衍射矢量方程的几何图解形式
衍射矢量方程的几何图解如图所 示,入射线单位矢量S0与反射晶面 (HKL)倒易矢量R*HKL及该晶面反 射线单位矢量S构成矢量三角形( 称衍射矢量三角形)。该三角形为 等腰三角形(S0=S);S0终点是倒 易(点阵)原点(O*),而S终点 是R*HKL的终点,即晶面对应的倒易 点,S与S0之夹角为2θ,称为衍射 角,2θ表达了入射线与反射线的方

倒易点阵

倒易点阵

正点阵基矢间夹角和倒点阵 基矢间夹角间的关系
• 根据基矢之间的夹角的定义,有 • 把正点阵基矢与倒易点阵基矢的关系代入,得
• 最后得 • 同理得 • 按同样的方法,可用倒易点阵的α*、β*、γ*来表示正点阵的 α、β、γ。
正点阵与倒易点阵的关系
a
Hhkl
垂直关系(方向)
在倒易点阵中,从原点指向阵点[坐标hkl]的 倒易矢量 Hhkl = ha* +kb* +lc* Hhkl必和正点阵的(hkl)面垂直, 即倒易点阵的阵点方向[hkl]*和正点阵的(hkl) 面垂直:[hkl]*⊥(hkl)。
晶体学基础
倒易点阵
Outline
• 倒易点阵的定义
• 倒易点阵的基本性质
• 由正点阵导出倒易点阵 • 倒易矢量在晶体学中几何关系的应用
倒易点阵引入(1)
• 1913-1921年Ewald根据Gibbs倒易空间概念提出了倒易点阵。 • 晶体学中最关心通常是晶体取向,即晶面的法线方向。 • 用3个基失a, b, c表示某晶面的法向矢量Shkl。
• 底心点阵的倒易点阵仍为底心点阵,如果是C面有 心化,倒易点阵单胞的棱长已不是a*, b*, c*,而是 2a*, 2b*, c* 。单胞体积变为正点阵单胞的4倍。
SUMMARY
• 倒易点阵的定义
• 倒易点阵的基本性质(垂直及倒数关系) • 如何由正点阵导出倒易点阵 • 求点阵平面的法线方向指数
倒易点阵定义
点阵参数分别为a, b, c和a*,b*,c* 的两个点阵的基矢存在如下关系:
则,这两个点阵互为倒易。 正点阵晶胞体积为V,则 V = a●b×c 因a ● a*=1,则 a* =(b×c)/V 同理 b* =(c×a)/V; c* =(a×b)/V 同理 a =(b* ×c*)/V*; b =(c* ×a *)/V*; c =(a* ×b)/V* 正点阵晶胞体积与倒易点阵晶胞体积之间也存在倒易关系,即 V● V*≡1

晶体学基础-倒易点阵

晶体学基础-倒易点阵

倒易点阵晶体学中最关心通常是晶体取向,即晶面的法线方向。

倒易点阵是在晶体点阵的基础上按一定对应关系建立起来的空间几何图形(倒易空间),是晶体点阵的另一种表达形式。

将晶体点阵空间称为正空间。

倒易空间中的结点称为倒易点。

部分。

a a * = b把正点阵基矢与倒易点阵基矢的关系代入,得正点阵与倒易点阵的关系•O 点到(hkl)晶面的垂直距离就是晶面间距d hkl 。

倒数关系(大小)●d hkl =h a H H H1=•确定倒易矢量H ,就确定了正点阵晶面。

S hkl P 及Q ⊥•倒易矢量[hkl]的大小(模)就是其正点阵中相邻平行(hkl)晶面间距的倒数。

(倒—Reciprocal)进行矢量相乘并且展开。

a H hkl •在倒易点阵中,从原点指向阵点[坐标hkl ]的倒易矢量H hkl = ha* +kb* +lc*•H hkl 必和正点阵的(hkl )面垂直,•即倒易点阵的阵点方向[hkl ]*和正点阵的(hkl )面垂直:[hkl ]*⊥(hkl )。

CBAx y z(010)(100)(001)a例:由单斜点阵导出其倒易点阵•单斜点阵:b轴垂直于a和c轴。

左图图面为(010)面。

•从作图可以看出,正点阵和其对应的倒易点阵同属一种晶系。

把上面三个式子写成矩阵形式:•同理,可按下式求出与方向指数为[uvw]的方向相垂直的面的面指数(hkl):•例如,对立方系而言,a*●a* = b* ●b* = c*●c *=1/a2;a*●b* = b* ●c* = c*●a *=0;•u:v:w=h:k:l。

所以(hkl)面的法线指数和面指数同名,即为[hkl]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档