三角高程计算公式

合集下载

§5.9三角高程测量

§5.9三角高程测量

§5.9 三角高程测量三角高程测量的基本思想是根据由测站向照准点所观测的垂直角(或天顶距)和它们之间的水平距离,计算测站点与照准点之间的高差。

这种方法简便灵活,受地形条件的限制较少,故适用于测定三角点的高程。

三角点的高程主要是作为各种比例尺测图的高程控制的一部分。

一般都是在一定密度的水准网控制下,用三角高程测量的方法测定三角点的高程。

5.9.1 三角高程测量的基本公式1.基本公式关于三角高程测量的基本原理和计算高差的基本公式,在测量学中已有过讨论,但公式的推导是以水平面作为依据的。

在控制测量中,由于距离较长,所以必须以椭球面为依据来推导三角高程测量的基本公式。

如图5-35所示。

设0s 为B A 、两点间的实测水平距离。

仪器置于A 点,仪器高度为1i 。

B 为照准点,砚标高度为2v ,R 为参考椭球面上B A ''的曲率半径。

AF PE 、分别为过P 点和A 点的水准面。

PC 是PE 在P 点的切线,PN 为光程曲线。

当位于P 点的望远镜指向与PN 相切的PM 方向时,由于大气折光的影响,由N 点出射的光线正好落在望远镜的横丝上。

这就是说,仪器置于A 点测得M P 、间的垂直角为2,1a 。

由图5-35可明显地看出,B A 、 两地面点间的高差为NB MN EF CE MC BF h --++==2,1 (5-54)式中,EF 为仪器高NB i ;1为照准点的觇标高度2v ;而CE 和MN 分别为地球曲率和折光影响。

由2021s R CE =2021s R MN '= 式中R '为光程曲线PN 在N 点的曲率半径。

设,K R R='则 20202.21S RK S R R R MN ='=K 称为大气垂直折光系数。

图5-35由于B A 、两点之间的水平距离0s 与曲率半径R 之比值很小(当km s 100=时,0s 所对的圆心角仅5'多一点),故可认为PC 近似垂直于OM ,即认为 90≈PCM ,这样PCM ∆可视为直角三角形。

三角高程测距法计算公式

三角高程测距法计算公式

三角高程测距法计算公式在地理测量和导航领域,测距是一项非常重要的工作。

而三角高程测距法是一种常用的测距方法之一。

本文将介绍三角高程测距法的计算公式及其应用。

三角高程测距法是利用三角形的相似性原理,通过测量两个点之间的水平距离和垂直高程差来计算两点之间的实际距离。

这种方法通常用于测量山区或者其他地形复杂的地区,因为在这些地方使用其他测距方法可能会受到一些限制。

三角高程测距法的计算公式如下:d = √(ΔH^2 + ΔL^2)。

其中,d表示两点之间的实际距离,ΔH表示两点之间的垂直高程差,ΔL表示两点之间的水平距离。

在实际应用中,首先需要测量两个点之间的水平距离,通常可以使用测距仪或者全站仪来进行测量。

然后需要测量两个点之间的垂直高程差,这可以通过水准仪或者其他高程测量工具来实现。

最后,将这两个数据代入上述的计算公式中,就可以得到两点之间的实际距离。

三角高程测距法的应用非常广泛。

比如在地图制作中,为了准确绘制地图上的山脉、河流等地理要素,需要使用三角高程测距法来获取这些地理要素之间的实际距离。

另外,在军事领域和野外探险中,也常常需要使用三角高程测距法来获取地形的实际距离,以便进行作战或者导航。

除了上述的基本公式之外,三角高程测距法还有一些变种和衍生公式。

比如在实际测量中,可能会遇到一些地形复杂的地区,这时候就需要考虑地形因素对测距结果的影响。

在这种情况下,可以使用斜距修正公式来修正实际距离,以提高测距的准确性。

总之,三角高程测距法是一种简单而有效的测距方法,它通过测量水平距离和垂直高程差来计算实际距离,广泛应用于地理测量、地图制作、军事作战和野外探险等领域。

通过掌握三角高程测距法的计算公式及其应用,可以更好地进行地理测量和导航工作,提高测距的准确性和可靠性。

全站仪三角高程测量及计算公式

全站仪三角高程测量及计算公式

全站仪水平测量及计算公式因为用全站仪(附加棱镜)、经纬仪(附加塔尺)测量高程,是根据两点间的距离和竖直角,应用三角公式计算两点的高差,用全站仪测定高程的方法通常称为三角高程测量(或称测距高程)。

用全站仪测量高程的特点是,精度比用水准仪测量低,但是这种方法简便、灵活,受地形的限制小。

因此通常用于山区的高程测量和地形测量。

三角高程测量,一般应在一定密度的水准测量控制之下。

通常三角高程测量是高程控制测量的一种补充手段,其精度应同同等级的水准测量相同。

当我们采用全站仪(光电测距仪)进行高程测量放样时,如图2-2所示,由于全站仪的视线不都在一个水平面上,而全站仪所读读数由正负之分,在进行高程测量放样计算时,我们输入的数据必须以全站仪所读读数实际输入,设后视点BM 的高程为H0,在同一测站下(全站仪的仪器高恒等),放样点的实测高程的计算公式(以下为棱镜高度保持不变的放样点高程推导公式)如下:视线高程H视线 = H0-h0 + v放样点高程Hn = H视线-hn-v =(H0-h0 + v)+ hn-v= H0-h0 + hn当棱镜高度改变时,设棱镜改变后的高度相对与后视时的高度改变值为w (改变后的高度减去棱镜初始高度),则放样点的的实测高程为:Hn = H0-h0 + hn-w。

为避免误差因距离的传递,各等级的三角高程测量必须限制一次传递高程的距离。

三角高程测量路线的总长原则上可参考同等级的水准路线的长度,路线尽可能组成闭合多边形,以便对高差闭合差进行校核。

除以上介绍的基本方法外,采用全站仪测量高程中,视线高程有两种计算方法:一、若已知置站点地面高程,则视线高程为“置站点地面高程与全站仪仪器高之和”。

二、若已知后视点地面高程,则视线高程为“后视点地面高程减去后视高差读数加上棱镜高度”。

以上两种方法计算的视线高程是相等的。

由此可知,前视目标点的高程为“仪器视线高程加上前视高差读数减去棱镜高度”。

测绘常用计算公式

测绘常用计算公式

测绘常用计算公式
测绘是一门综合性学科,涉及到许多不同的测量和计算工作。

以下是一些测绘中常用的计算公式的示例:
1.距离测量:
-直角三角形定理:a^2+b^2=c^2(勾股定理),其中a和b是直角三角形的两条边,c是斜边的长度。

-视差公式:d=(hxb)/H,其中d是距离,h是测量点的高度差,b是视差(即测量点到目标的水平距离),H是测量点的仰角。

2.面积测量:
-自由多边形面积计算:根据测得的各个角点坐标,使用边积法或三角形面积法计算多边形的面积。

-圆形地块面积计算:A=πr^2,其中A是圆形地块的面积,r是圆的半径。

3.高程测量:
- 水平线测量高程变化:h = d x tan(α),其中h是高程变化,d 是水平距离,α是斜度角。

- 三角高程测量:H = D x tan(θ),其中H是高程变化,D是水平距离,θ是俯角。

4.坐标转换:
-大地平面坐标转高斯投影坐标:X=X0+N+ΔX,Y=Y0+N+ΔY,其中X 和Y是高斯投影坐标,X0和Y0是中央子午线的投影坐标,N是正算的纵向坐标增量,ΔX和ΔY是由于地球椭球体引起的坐标改正数。

-高斯投影坐标转大地平面坐标:N=Y-Y0-ΔY,E=X-X0-ΔX,其中N 和E是大地平面坐标,Y0和X0是中央子午线的投影坐标,ΔX和ΔY是由于地球椭球体引起的坐标改正数。

以上仅是一些测绘中常用的计算公式的示例,在实际测量和计算中可能还会使用其他公式和方法。

同时,注意在使用这些公式时,需要根据具体的测量条件和要求进行相应的修正和适用性验证。

利用matlab实现三角高程测量计算公式

利用matlab实现三角高程测量计算公式

利用matlab实现三角高程测量计算公式三角高程测量是一种常用的地形测量方法,其原理是根据三角形的内角和外角关系来计算高程。

这种测量方法既简单又精确,可以在不同的地形中使用,例如山地、平原、沙漠等地形。

三角高程测量的公式非常简单,通过利用三角形内角和外角的关系,可以推算出不同点之间的高程数据。

设在三角形ABC中,高为h,底角为A,那么有以下公式:h = AB * sin(C)/sin(180-A-C)其中h表示高度,AB表示底边长,C表示对应的底角。

由于正弦函数的应用,通过测量三角形的底角和边长,即可计算出高度。

在matlab中,可以使用以下代码实现三角高程测量:AB = input('输入底边长度:');A = input('输入底角度数:');C = input('输入对应底角度数:');h = AB * sin(C)/sin(180-A-C);fprintf('高度为: %f\n',h);通过输入底边长度、底角度数和对应底角度数,就可以计算出高度数据。

在实际测量中,可以通过测量三角形底边长和底角,计算得到不同点的高程数据,从而描绘出三维地形图。

在使用这种方法进行地形测量时,需要注意以下几点:1. 应该尽量选择测量角度大于60度的三角形,这样可以提高计算的精度。

2. 应该注意测量精度,尽量避免误差。

3. 应该注意测量的安全性,避免测量过程中发生意外。

三角高程测量是一种常用的地形测量方法,其公式简单易用,可以在不同地形环境下进行测量,具有很高的实用价值。

在实际测量中,需要注意测量精度、安全性和测量角度的选择,以提高计算精度并避免测量风险。

使用matlab实现三角高程测量,可以极大地提高测量效率和精度,有着广泛的应用前景。

三角高程测量的计算公式

三角高程测量的计算公式

三角高程测量的计算公式-CAL-FENGHAI.-(YICAI)-Company One1三角高程测量的计算公式如图所示,已知A点的高程H A,要测定B点的高程 H B,可安置经纬仪于A点,量取仪器高i A;在B点竖立标杆,量取其高度称为觇 B 标高v B;用经纬仪中丝瞄准其顶端,测定竖直角α。

如果已知AB两点间的水平距离D (如全站仪可直接测量平距),则AB两点间的高差计算式为:如果当场用电磁波测距仪测定两点间的斜距D′,则AB两点间的高差计算式为:以上两式中,α为仰角时tanα或sinα为正,俯角时为负。

求得高差h AB以后,按下式计算B点的高程:以上三角高程测量公式、中,设大地水准面和通过A、B点的水平面为相互平行的平面,在较近的距离(例如200米)内可以认为是这样的。

但事实上高程的起算面——大地水准面是一曲面,在第一章中已介绍了水准面曲率对高差测量的影响,因此由三角高程测量公式、计算的高差应进行地球曲率影响的改正,称为球差改正f1,如图(见课本)所示。

按式:式中:R为地球平均曲率半径,一般取R=6371km。

另外,由于视线受大气垂直折光影响而成为一条向上凸的曲线,使视线的切线方向向上抬高,测得竖直角偏大,如图所示。

因此还应进行大气折光影响的改正,称为气差改正f2,f2恒为负值。

图三角高程测量图地球曲率及大气折光影响设大气垂直折光使视线形成曲率大约为地球表面曲率K倍的圆曲线(K称为大气垂直折光系数),因此仿照式,气差改正计算公式为:球差改正和气差改正合在一起称为球气差改正f,则f应为:大气垂直折光系数K随气温、气压、日照、时间、地面情况和视线高度等因素而改变,一般取其平均值,令K=。

在表中列出水平距离D=100m-200m的球气差改正值f,由于f1>f2,故f恒为正值。

考虑球气差改正时,三角高程测量的高差计算公式为:或由于折光系数的不定性,使球气差改正中的气差改正具有较大的误差。

但是如果在两点间进行对向观测,即测定h AB及h BA而取其平均值,则由于f2在短时间内不会改变,而高差h BA必须反其符号与h AB取平均,因此f2可以抵消,f1同样可以抵消,故f的误差也就不起作用,所以作为高程控制点进行三角高程测量时必须进行对向观测。

三角高程测量的计算公式

三角高程测量的计算公式

三角高程测量的计算公式三角高程测量是地理测量中常用的一种方法,用于测量地面上的点的高程。

本文将介绍三角高程测量的计算公式,并解释其原理和应用。

三角高程测量是基于三角法原理的一种测量方法。

它利用三角形的一些特性和测量数据,通过计算可以得到被测点的高程。

三角高程测量适用于各种地形条件,无论是平原、山地还是高原,都可以通过三角高程测量来确定各个点的高程。

三角高程测量的计算公式如下:h = H + d * tan(a)其中,h表示被测点的高程,H表示参考点的高程,d表示两个测点之间的水平距离,a表示两个测点之间的夹角。

根据这个公式,我们可以通过测量参考点和被测点之间的距离和夹角,再加上参考点的高程,就可以计算出被测点的高程。

这个公式的原理是基于三角形的相似性原理,即两个三角形的对应边的比例相等。

在实际测量中,我们首先需要选择一个参考点,可以是已知高程的点或者固定测量设备的位置。

然后,利用测量仪器测量参考点和被测点之间的水平距离和夹角。

最后,根据测量数据和计算公式,我们可以计算出被测点的高程。

三角高程测量在地理测量中具有广泛的应用。

它可以用于绘制地形图、制作地图、建筑工程设计等。

通过三角高程测量,我们可以快速准确地确定地面上各个点的高程,为地理信息系统的建设和规划提供重要的数据支持。

在实际应用中,三角高程测量需要考虑一些误差因素。

例如,测量仪器的精度、天气条件、地形复杂度等都会对测量结果产生影响。

因此,在测量过程中要注意选择合适的测量仪器、控制测量误差,并进行合理的数据处理和分析。

三角高程测量是一种常用的地理测量方法,通过测量参考点和被测点之间的距离和夹角,再结合计算公式,可以准确地确定被测点的高程。

它在地理信息系统、地形图制作、建筑工程设计等领域具有重要的应用价值。

在实际应用中,我们需要注意测量误差的控制和数据处理,以提高测量结果的精度和可靠性。

通过三角高程测量,我们可以更好地了解地球表面的地形特征,为人类的生活和发展提供有益的信息。

第四章第三讲第5节三角高程和视距距测量2005年4月1日

第四章第三讲第5节三角高程和视距距测量2005年4月1日

式中:R=6371公里 公式改写为:
在煤矿井下测量时,往往直接测量 A 、 B 两点 间的斜距,则:
h=Lsinδ + i — v
三角高程测量一般应进行往返观测,既由A向B观测(称 为直觇),又由B向A观测(称为反觇 )。这样的观测,称为对 向观测。对向观测可以消除地球曲率和大气折光的影响。
第六节 视 距 测 量
仪器中心到测 站点高度 i
利用视线水平时视距公式 计算水平距离
注意事项:
1、安置仪器的方法与上次实验相同。 2、在水准尺上读三个数值(上、中、下丝) 3、测竖直角时不要忘记打开补偿装置。并观 察和判断竖盘注计形式。 4、大坝的斜距可用钢尺直接量得。 5、测量仪器高,觇杆高,并做好记录。 6、认真思考测量的整个过程是否和理论公式 相符合。
第四章 第三讲 三角高程测量和视距测量
华山莲花峰
金沙江
九寨沟
第五节 三角高程测量
在以上图片中的山地或井下测定控 制点的高程时 ,若用水准测量的方法 速度慢困难大。故可采用三角高程测量 的方法。但必须用水准测量的方法在测 区内引测一定数量的水准点,作为高程 起算的依据。以保证高程测量的精度。

但是,S′不是实际的尺间隔,实际测得的尺间隔是R及尺 上的MN(即S),因此需要找出S与S′间的关系。
于是

上式为视线倾斜时求水平视距的公式。
将式
则得用视距表示得三角高差计算公式:
上式为用上、下丝读数差和竖直角计算高差的公 式。
二、视距测量方法
(1) 在A点安置经纬仪,进行对中、整平,并量取仪 器高 i; ( 2 )用望远镜瞄准 B 点上的视距尺,读取上丝、中 丝 ( 即 7) 和下丝读数.然后用微动螺旋使指标水准 管气泡居中,再读取竖盘读数。 (3) 计算尺间隔S及竖直角,按公式(4—19)和(4—20) 计算水平距离 和高差 h。计算可用电子计算器 进行。视距测量记录及计算格式如表4—3所示。

全站仪三角高程测量及计算公式

全站仪三角高程测量及计算公式

全站仪水平‎测量及计算‎公式因为用全站‎仪(附加棱镜)、经纬仪(附加塔尺)测量高程,是根据两点‎间的距离和‎竖直角,应用三角公‎式计算两点‎的高差,用全站仪测‎定高程的方‎法通常称为‎三角高程测‎量(或称测距高‎程)。

用全站仪测‎量高程的特‎点是,精度比用水‎准仪测量低‎,但是这种方‎法简便、灵活,受地形的限‎制小。

因此通常用‎于山区的高‎程测量和地‎形测量。

三角高程测‎量,一般应在一‎定密度的水‎准测量控制‎之下。

通常三角高‎程测量是高‎程控制测量‎的一种补充‎手段,其精度应同‎同等级的水‎准测量相同‎。

当我们采用‎全站仪(光电测距仪‎)进行高程测‎量放样时,如图2-2所示,由于全站仪‎的视线不都‎在一个水平‎面上,而全站仪所‎读读数由正‎负之分,在进行高程‎测量放样计‎算时,我们输入的‎数据必须以‎全站仪所读‎读数实际输‎入,设后视点B‎M的高程为‎H0,在同一测站‎下(全站仪的仪‎器高恒等),放样点的实‎测高程的计‎算公式(以下为棱镜‎高度保持不‎变的放样点‎高程推导公‎式)如下:视线高程H‎视线 = H0-h0 + v放样点高程‎H n = H视线-hn-v =(H0-h0 + v)+ hn-v= H0-h0 + hn当棱镜高度‎改变时,设棱镜改变‎后的高度相‎对与后视时‎的高度改变‎值为w(改变后的高‎度减去棱镜‎初始高度),则放样点的‎的实测高程‎为:Hn = H0-h0 + hn-w。

为避免误差‎因距离的传‎递,各等级的三‎角高程测量‎必须限制一‎次传递高程‎的距离。

三角高程测‎量路线的总‎长原则上可‎参考同等级‎的水准路线‎的长度,路线尽可能‎组成闭合多‎边形,以便对高差‎闭合差进行‎校核。

除以上介绍‎的基本方法‎外,采用全站仪‎测量高程中‎,视线高程有‎两种计算方‎法:一、若已知置站‎点地面高程‎,则视线高程‎为“置站点地面‎高程与全站‎仪仪器高之‎和”。

二、若已知后视‎点地面高程‎,则视线高程‎为“后视点地面‎高程减去后‎视高差读数‎加上棱镜高‎度”。

测量学-三角高程测量

测量学-三角高程测量
控制测量:为建立控制网所进行的测量工作。
3、控制测量分类
按内容分:
平面控制测量:测定各平面控制点的坐标X、Y。 高程控制测量:测定各高程控制点的高程H。
按精度分:一等、二等、三等、四等;一级、二级、
三级
按方法分:三角网测量、天文测量、导线测量、交
会测量、卫星定位测量
按区域分:国家控制测量、城市控制测量、小区域
如图,PC为水平视线, PE 是通过P点的水准面。 由于地球曲率的影响, C、E高程不等。P、E同 高程。CE为地球曲率对 高差的影响:
P
CE
S
2 0
2R
如图,A点高程已知,测量A、B
之间的高差hAB,求B点的高程。
PC为水平视线。PM为视线未受大
气折光影响的方向线,实际照准
在N上。 视线的竖直角为 。
求: X B 、Y B
B
X AB DAB cos AB YAB DAB sin AB
Y
X B X A X AB YB YA YAB
X
坐标反算
Y
X
ab
B 已知:XA、YA、 XB、 YB
A
求:DAB、αAB
O
Y
DAB
X B X A 2 YB YA 2
x2 AB
Y
2 AB
3、大气垂直折光系数误差 大气垂直折光误差主要表现为折光系数K值测定误差。
4、丈量仪高和觇标高的误差 仪高和觇标高的量测误差有多大,对高差的影响也会有
多大。因此,应仔细量测仪高和觇标高。
控制测量
内容提要:
§7.1 控制测量概述 §7.2 导 线 测 量 §7.3 交会测量 §7.4 高程控制测量
第七章 控制测量 §7.1 概 述

三角高程测量的往返观测计算公式

三角高程测量的往返观测计算公式

三角高程测量是一种常用的测量方法,它可以用来测量地面上点的准确高程。

在这篇文章中,我们将着重介绍三角高程测量中的往返观测计算公式。

一、三角高程测量原理三角高程测量是利用三角形的相似性原理,通过已知两点的高程和这两点到待测点的水平距离,来计算待测点的高程。

三角高程测量的基本原理如下:1. 在地面上选择一个已知高程的点A,以及要测量高程的点P。

2. 通过测量仪器测量点A和点P之间的水平距离d和两点的高程差h。

3. 通过三角函数计算出点P的高程。

二、三角高程测量的往返观测在实际测量中,为了提高精度,常常采用往返观测的方法进行测量。

往返观测的原理是利用观测仪器来回测量两点之间的距离和高程差,然后取平均值作为最终结果,以减小由于观测仪器误差、大气温度、大气压力等因素造成的误差。

三、三角高程测量往返观测计算公式往返观测的三角高程测量计算公式如下:1. 求点P的高程差首先需要计算出点P的高程差,使用以下公式:\[ \Delta h = h_1 - h_2 \]其中,\(h_1\) 为第一次测量的高程,\(h_2\) 为第二次测量的高程。

2. 求两次测量的平均距离将两次测量的距离\(d_1\)和\(d_2\)求均值,得到平均距离:\[ \bar{d} = \frac{d_1 + d_2}{2} \]3. 计算点P的高程利用三角函数计算出点P的高程:\[ H = h_2 + \frac{\Delta h \times \bar{d}}{d_2} \]其中,\(H\)为最终计算出的点P的高程。

四、注意事项在进行三角高程测量的往返观测时,需要注意以下几点:1. 观测仪器的选择和校准非常重要,需要保证其精度和稳定性。

2. 大气温度和大气压力对测量结果有较大影响,需要进行相应的修正。

3. 观测时需要注意周围环境的影响,避免受到建筑物、树木、地形等因素干扰。

4. 测量终点的选取应当避免大坡度地形,以减小误差。

通过以上介绍,我们了解了三角高程测量中的往返观测计算公式及其应用注意事项。

三角高程

三角高程

四、仪器高i和目标高v的测定误差 1.测定地形控制点的高程:对于测定地形控 制点高程的三角高程测量,仪器高、觇标高 的测定误差,仅要求精确到厘米级,这是很 容易达到的,测量时认真丈量即可。 2.控制测量的高程:对于用光电测距三角高 程代替四等水准测量时,仪器高和觇标高的 测定要求达到毫米级,其丈量误差应注意控 制,一般丈量两次取其平均值。
2 2 2 2 mh md m S S 2 S hBA AB BA AB
其容许值为:
2 2 S d容
二、三角高程测量的计算 1.三角高程路线的计算 对于控制而言,三角高程导线都应进行往返 观测,其起闭点都应是高级控制点。 (1)高差计算 外业成果检查、整理,不合格的应重测; 画草图,计算相邻点间的高差、距离,当往 返测高差互差符合规范要求后取其平均值。 (2)三角高程路线成果整理 计算高差闭合差: f h h ( H b H a ) 计算每公里高差改正数: 公里 f h / S公里 计算每测段高差改正数: i S i 公里 计算各待定点高程:
D
B p
v
r
EG=IE•tgα
hAB
r=0.08 • s2/R
p=s2/2R
C
HB
通常令 f=p-r,则 f=0.42 s2/R
S B0 R
HB= HA+Stgα+i-v+f
ε
O
HB= HA+Stgα+i-v+f
平距、斜距、视距
四、竖角的测定 竖角的测定一般采用两种方法。 1.中丝法 (1)在测站上安臵好仪器,对中、整平、量 取仪器高i。 (2)盘左位臵瞄准目标,使十字丝的中丝切 目标于某一位臵,其高度即为v。 (3)转动竖盘水准管微动螺旋,使竖盘水准 管气泡居中。读取竖盘读数即为L。 (4)同上法,以盘右位臵照准原目标,读取 竖盘读数即为R。(注意气泡居中)

三角高程测量的计算公式

三角高程测量的计算公式

三角高程测量的计算公式三角高程测量是一种常用的地理测量方法,随着测量技术的发展和应用领域的拓宽,其计算公式也越来越重要。

本文将从计算公式的基本原理、计算过程和误差控制三方面进行阐述,以期让读者更深入地了解三角高程测量的计算方法。

一、基本原理三角高程测量,顾名思义,是以三角形理论为基础进行测量的一种方法。

通常情况下,我们选取三个站点进行测量,这三个站点构成一个三角形,我们可以测量得到三个角的角度和三边的长度。

在此基础上,我们可以运用三角函数,求得这个三角形的高程。

具体来说,我们可以通过以下公式进行计算:H = L(a sin B + b sin A)/ sin C其中,H为目标点的高程,L为相邻两个点的距离,A 和B为相邻两点到目标点的水平角,C为相邻两点之间的斜线距离。

在实际操作中,我们一般采用三边测量和两边一角测量两种方法来进行三角高程测量。

无论采用哪种方法,都需要进行角度和距离的测量,然后通过计算公式求得目标点的高程。

二、计算过程在进行三角高程测量之前,我们需要对测量区域进行勘验,确定三个测量点的位置,并在每个站点上架设三角测量仪器。

在具体的测量过程中,我们首先测量站点之间的距离和角度。

这一步骤可以采用三边测量或两边一角测量方式。

如果采用三边测量方式,则需要同时测量两个角度。

如果采用两边一角测量方式,则需要测量三个角度。

在完成角度和距离的测量之后,我们可以将数据输入到计算公式中,求解目标点的高程。

需要注意的是,三角高程测量的计算精度受到多种因素的影响,例如测量仪器的精度、环境因素以及人为操作错误等。

因此,在进行计算之前,我们需要对数据进行校核,以确保计算结果的准确性。

三、误差控制三角高程测量存在着测量误差,这不可避免。

为了尽可能地减小误差对测量结果的干扰,我们可以采取一些措施。

具体来说,我们可以从以下几方面入手:(1)选择合适的测量仪器。

测量仪器的精度和稳定性对测量结果的影响很大。

因此,我们需要选用精度高、稳定性好的测量仪器来进行测量。

三角高程计算公式及其含义

三角高程计算公式及其含义

三角高程计算公式及其含义在地理测量和地理信息系统中,三角高程计算是一种常用的方法,用于确定地表上各点的高程。

三角高程计算公式是一种基于三角测量原理的数学公式,通过测量三角形的边长和角度,来计算出三角形的高程。

这种方法可以用来确定地表上任意点的高程,对于地形测量和地图制图非常有用。

三角高程计算公式的一般形式如下:h = (a sin(B)) / sin(A)。

其中,h表示目标点的高程,a表示已知边长,B表示已知角度,A表示未知角度。

这个公式基于正弦定理,通过已知的边长和角度来计算出目标点的高程。

这种方法可以用来测量地表上任意点的高程,无论是平原还是山地,都可以通过三角高程计算公式来确定其高程。

三角高程计算公式的含义非常重要,它可以帮助测量员确定地表上各点的高程,从而绘制出精确的地形图。

地形图是地理信息系统中非常重要的一部分,它可以用来确定地表的起伏和坡度,对于农业、建筑和城市规划等领域都非常有用。

通过三角高程计算公式,可以确定地表上各点的高程,从而绘制出准确的地形图,为各种应用提供重要的参考数据。

三角高程计算公式的应用非常广泛,不仅可以用于地形测量和地图制图,还可以用于工程测量和建筑规划。

在工程测量中,三角高程计算可以帮助工程师确定工程场地的高程,从而进行设计和施工。

在建筑规划中,三角高程计算可以帮助规划师确定建筑场地的高程,从而进行布局和设计。

通过三角高程计算公式,可以为各种工程和建筑提供准确的高程数据,为实际施工和规划提供重要的参考。

总之,三角高程计算公式是地理测量和地理信息系统中非常重要的一种方法,它可以帮助确定地表上各点的高程,为地形测量、地图制图、工程测量和建筑规划提供重要的参考数据。

通过三角高程计算公式,可以为各种应用提供准确的高程数据,为实际工作提供重要的支持。

因此,掌握和应用三角高程计算公式是地理测量和地理信息系统工作者的基本技能,也是各种应用领域的重要工具。

三角高程测量计算实例

三角高程测量计算实例

三角高程测量计算实例一、引言三角高程测量是地理测量中常用的一种方法,通过测量三角形的边长和角度来计算地点的高程。

这种方法适用于地理勘探、土地规划、建筑设计等领域。

本文将通过一个实例来介绍三角高程测量的计算方法。

二、实例背景假设我们需要测量一座山脉上的一个点的高程,但由于地形复杂,无法直接测量。

我们选择了两个已知高程的点A和B,并在这两个点之间选择了一个合适的位置C来构成一个三角形ABC。

三、测量方法在实际测量中,我们首先使用测距仪测量出AB和AC的距离,然后使用经纬仪测量出∠BAC的角度。

接下来,我们可以利用三角函数计算出BC的长度。

四、数据采集根据实际测量,我们得到了以下数据:AB的距离:1000米AC的距离:800米∠BAC的角度:45度五、计算过程1. 计算角度的弧度值由于三角函数中角度的单位是弧度,我们需要将角度转化为弧度进行计算。

45度可以转化为弧度的公式为:弧度 = 角度* π / 180。

所以∠BAC的弧度值为:45 * π / 180 ≈ 0.7854弧度。

2. 计算BC的长度根据三角函数中正弦定理,我们可以得到以下公式:sin(∠BAC) = BC / AC。

代入已知数据,得到:sin(0.7854) = BC / 800。

通过计算,我们可以得到BC ≈ 800 * sin(0.7854) ≈ 565.68米。

3. 计算目标点的高程根据测量的已知高程,我们可以得到点A的高程为1000米,点B的高程为1200米。

根据三角形的相似性,我们可以得到以下公式:AC / BC = (点A的高程 - 点C的高程) / (点B的高程 - 点C的高程)。

代入已知数据,得到:800 / 565.68 = (1000 - 点C的高程) / (1200 - 点C的高程)。

通过计算,我们可以解得点C的高程约为1080.35米。

六、结论根据测量数据和计算结果,我们可以得出点C的高程约为1080.35米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档