《数学建模与数学实验》考点

合集下载

《数学建模与数学实验》

《数学建模与数学实验》
2
建模实例分析
通过分析和学习一些优秀的数学建模实例或论文。使学生初步了解数学建模的一般流程,对使用数学知识解决实际问题有较直观的感受,在这个过程中激发学生想自己动手尝试的实践热情。
3
论文写作指导
指导学生正确的论文结构以及书写要求,使学生初步体验规范的学术研究过程。
●“科目实施”
1
教学组织形式
规模:一般15—20个人的规模开展教学活动
1.用数学语言描述实际现象的“翻译”能力。
2.综合应用已学过的数学知识,对问题进行分析处理的能力。
3.想象力和洞察力。进而提高学生的综合素质和创新能力。
4
活动总量
共有超过40个专题,可供高一高二的学生选择,以学期为单位,共4期。学生每学完1期,要求提交一片独立完整的数学建模小论文。
●“科目目标”
1
知识与技能
3.通过交流和讨论,培养学生互相尊重、团队协作的意识。
4.通过论文撰写和答辩,体会研究求实的学术精神。
4
教学目标
设计原则和要求
1.教学目标要注重结合基础教材内容。
2.教学目标要注重对规律的总结,授之以渔。
3.教学目标要注重多样性和开放性。
4.教学目标的设计要从学生的实际水平出发,对于高一高二的学生,所能够使用的数学模型多局限于初等数学模型,因此在制定面向大多数学生的实际情况教学目标时要注意这方面的考虑,选取适合学生的材料和内容。
4
实施要求和德育思考
1.通过多种建模方法的培训和大量实例的分析,提高学生学习数学的兴趣与热情。
2.体会应用数学的广泛应用,感悟学有所用的成就感。
3.通过交流和讨论,培养学生互相尊重、团队协作的意识。
4.通过论文撰写和答辩,体会研究求实的学术精神。

数学建模与数学实验:第八章 优化模型

数学建模与数学实验:第八章 优化模型

u sin
kuy)) sec2 d

k 0
u
k
1 0
(cos
sec
sec0
) sec2
d
u 2k
(sec0
tan 0
2 sec0
tan 1
sec1
tan
0
ln
sec1 sec0
tan tan
1 0
)


• 1200
1000
800
600


8.2 最短路问题
• 8.2.1 图的基本概念
• 图中不含自己到自己的边,我们就称图为 简单图
• 图的邻接矩阵表示

• 例( 调度问题)为了向本市居民提供更好 的服务,市政府决定修建一个小型体育馆。 通过竞标,一家建筑公司获得了此项工程, 并且希望尽快完成工程。表8.1列出了工程中 的主要任务,时间以周计算。
(v2 2 u 2 )T122 2v2 (500 x)T12 [(500 x)2 380 2 ] 0

对于问题(2)

x 500 380 (u cos1 v(200 ))

u sin1
x 200 v u cos dy
0 u sin

dy u sindt
dt dy u sec2 sin d sec2 d
• 16. 考虑下图所描述的最短路问题。 • (1)写出从位置1到位置9的最短路的数学
模型 。
• (2)给出从位置1经过位置5到位置9的最 短路。
• (3)给出从位置1到位置9的最短路。
• 需要解决的问题是:
• (1)最早能在什么时候完成此工程?
• (2)市政府希望能够提前完工,为此市 政府决定工期每缩短一周,则向公司支付3 万元奖励。为缩短工期,公司需要雇用更 多工人,并租用更多设备(表中额外支出 部分)。如果公司希望获利最大,那么应 该在何时完成该工程?

数学建模及数学实验

数学建模及数学实验

握相关学科的基本理论和知识,以便更好地进行数学建模和实验。
02 03
提高计算机技能
在现代数学建模和实验中,计算机技能尤为重要。建议学习者提高自己 的计算机编程、算法设计和数据分析能力,以便更高效地处理大规模数 据和复杂模型。
关注前沿动态
随着科学技术的发展,新的数学建模和实验方法不断涌现。建议学习者 关注前沿动态,了解最新的研究进展和应用案例,以便更好地把握学科 发展方向。
03
数学实验的基本方法
数值计算实验
数值计算实验是数学实验中的 一种重要方法,它通过数值计
算来求解数学问题。
数值计算实验通常使用数值计 算软件,如MATLAB、Python 等,进行数学公式的计算和模
拟。
数值计算实验可以用于解决各 种数学问题,如微积分、线性 代数、概率统计等。
数值计算实验的优点是能够快 速得到近似解,并且可以通过 调整参数来观察不同情况下的 结果。
人工智能与大数据分析
人工智能和大数据技术的发展将为数学建模和数学实验提 供更丰富的数据资源和更高效的技术手段,推动其进一步 发展。
复杂系统与多学科协同
面对复杂系统的挑战,需要多学科协同合作,共同开展数 学建模和数学实验研究,以解决实际问题。
05
结论
对数学建模和数学实验的总结
数学建模与数学实验的关系
数学建模和数学实验是相辅相成的。数学建模是利用数学方法解决实际问题的过程,而数学实验则是通过实验手段验 证数学理论或解决数学问题的方法。在实际应用中,数学建模和数学实验常常相互渗透,共同推动问题的解决。
应用领域
数学建模和数学实验在各个领域都有广泛的应用,如物理学、工程学、经济学、生物学等。通过建立数学模型和进行 数学实验,可以深入理解各种现象的本质,预测其发展趋势,为实际问题的解决提供有力支持。

数学建模与数学实验

数学建模与数学实验

四、近几年全国大学生数学建模竞赛题
1994 1995 1996 A B A B A B 逢山开路 锁具装箱 一个飞行管理问题 天车与冶炼炉的作业调度 节水洗衣机问题 最优捕鱼问题
1997 1998 1999 2000
A B A B A B A B
零件的参数设计 最优截断切割问题 投资的收益和风险 灾情巡视路线 自动化车床管理 钻井布局 DNA 序列分类 钢管订购和运输
怎样撰写数学建模的论文? 1、摘要:问题、模型、方法、结果 2、问题重述 3、模型假设 4、分析与建立模型 5、模型求解 6、模型检验 7、模型推广 8、参考文献 9、附录
实例
返回
谢 谢!
数学建模与数学实验
数学建模简介
数学建模简介
1.关于数学建模
2.数学建模实例
A.人口预报问题 B. 椅子能在不平的地面上放稳吗?
C.双层玻璃的功效
3.数学建模论文的撰写方法
一、名词解释
1、什么是数学模型?
数学模型是对于现实世界的一个特定对象,一个 特定目的,根据特有的内在规律,做出一些必要的假 设,运用适当的数学工具,得到一个数学结构。 简单地说:就是系统的某种特征的本质的数学表 达式(或是用数学术语对部分现实世界的描述),即 用数学式子(如函数、图形、代数方程、微分方程、 积分方程、差分方程等)来描述(表述、模拟)所研 究的客观对象或系统在某一方面的存在规律。
xk x0 1 r
k
预报正确的条件: 年增长率r保持不变。
人口模型
1、指数增长模型(马尔萨斯人口模型): 英国人口学家马尔萨斯(Malthus1766~1834) 于1798年提出。 2、阻滞增长模型(Logistic模型) 3、更复杂的人口模型 随机性模型、考虑人口年龄分布的模型等 可见数学模型总是在不断的修改、完善使之能 符合实际情况的变化。

数学实验与数学建模(校本教材)

数学实验与数学建模(校本教材)

x x x + + = 60
11
12
13
x x x + + = 80
21
22
23
②各销地运进的数量应等于其当地预测的销售量,即
x x + = 50
11
21
x x + = 50
12
22
x x + = 40
13
23
③从各产地运往各销地的数量不能为负值,即
x ≥ 0(i = 1,2; j = 1,2,3) ij
400
A2
400
700
300
问每个产地向每个销地各发货多少,才能使总的运费最少? 解 (1)在该问题中,所要确定的量是各产地运往各销地的香蕉数量,即决策变量是运输量。 设 Xij(i=1,2; j =1,2,3)分别表示由产地 Ai 运往销地 Bi 的数量。
(2)在解决问题的过程中,要受到如下条件限制,即约束条件: 1各产地运出的数量应等于其产量,即
a C x C x C x b ≤
+
+ ... +

n
1n 1
2n 2
mn n
n
x1 + x2 + ... + xm = 1
xi ≥ 0,(i = 1,..., m)
d x d x 并使目标函数 S =
+ ... +
最小。
11
mm
一、 线性规划问题数学模型的一般形式和标准形式
上面我们建立了经济领域中常见的实际问题的数学模型,尽管这些实际问题本身是多种多样的,
42
的精确在允许的范围内。
数学实验与数学建模(校本教材)

《数学建模与数学实验》电子课件-赵静、但琦 第12讲 数据的统计分析与描述

《数学建模与数学实验》电子课件-赵静、但琦 第12讲 数据的统计分析与描述

n
p( x1 , 1 , k ) p( x2 , 1 , , k ) p( xn , 1 , k )
p( xi ,1 , k )
i 1
使L(1,,k ) 达到最大,从而得到参i数 的估计ˆi 值 .此估计值叫极大似然估计值.函数
L(1,,k ) 称为似然函数.
求极大似然估计值的问题,就是求似然函数L(1,,k ) 的最大值的问题,则
统计的基本概念 参数估计 假设检验
3
一、统计量
1、表示位置的统计量—平均值和中位数
平均值(或均值,数学期望) :X1 n
ni1
Xi
中位数:将数据由小到大排序后位于中间位置的那个数值.
2、表示变异程度的统计量—标准差、方差和极差
标准差:s[n11i n1(Xi
1
X)2]2
它是各个数据与均值偏离程度的度量.
数学建模与数学实验
数据的统计描述和分析
2021/7/31
后勤工程学院数学教研室
1
实验目的
1、直观了解统计基本内容。 2、掌握用数学软件包求解统计问题。
实验内容
1、统计的基本理论。 2、用数学软件包求解统计问题。 3、Matlab数据统计 4、实验作业。
数 据 的 统 计 描 述 和 分 析
2021/7/31
若 X ~N ( 0, 1) , Y ~ 2( n) , 且 相 互
独 立 , 则 随 机 变 量
TX Y
n
服 从 自 由 度 为 n的 t分 布 , 记 为 T ~t( n) . t分 布 t( 20) 的 密 度 函 数 曲 线 和 N ( 0, 1) 的
曲 线 形 状 相 似 .理 论 上 n 时 , T ~t( n) N ( 0, 1) .

数学实验与数学建模(matlab在建模中的应用)

数学实验与数学建模(matlab在建模中的应用)

第六章数学实验与数学建模学习目标1.掌握利用Matlab软件进行了相关的数学运算的方法.2.以软件辅助来完成数学实验.3.了解数学建模思想方法,能够对一些简单问题建立数学模型求解分析.教学要求析、矩阵运算、信号处理、图形显示和建模仿真功能. Matlab是“Matrix Laboratory”的缩写,意思是“矩阵实验室”,其强大的数据处理能力和丰富的工具箱使它的编程极为简单,因此,它成为科学家和工程技术人员解决实际问题的首选计算工具软件。

本章的第一节主要介绍Matlab软件的简单使用方法,从第二节到第六节在讲解Matlab 用于解决高等数学和线性代数中的相关计算的函数基础上, 通过一些简单的数学实验例题,让学生体会如何用Matlab辅助解决数学问题. 最后,通过一些与线性代数相关的数学建模实例,让学生掌握数学建模的简单方法,学会利用Matlab软件辅助解决实际问题,以培养学生良好的数学意识和数学素质.6.1 Matlab环境及使用方法6.1.1 Matlab窗口管理Matlab启动后显示三个窗口,如图6.1所示。

左上窗口为工作区间窗口,显示用户定义的变量及其属性类型及变量长度。

工作区间窗口也可显示为当前目录窗口,显示Matlab 所使用的当前目录及该目录下的全部文件名。

左下窗口为历史窗口,显示每个工作周期(指Matlab启动至退出的工作时间间隔)在命令窗口输入的全部命令,这些命令还可重新获取应用。

右侧窗口为Matlab命令窗口,可在里面输入相关运算命令,完成相应计算。

三个窗口中的记录除非通过Edit菜单下的清除操作,否则将一直保存。

Matlab运行期间(即程序退出之前),除非调用Clear函数,否则Matlab会在内存中保存全部变量值,包括命令输入的变量以及执行程序文件所引入的变量。

清除工作空间变量值也可以通过Edit下拉菜单中的Clear Workspace命令实现。

Clear函数可以清除内存中的所有变量。

数学建模与数学实验

数学建模与数学实验

数学建模与数学实验
数学建模与数学实验是当前数学教育和科学研究中的重要组成部分。

数学建模是将自然物理现象和复杂的现实问题建立数学模型,用数学
模型来描述、分析和分解实际问题。

数学实验是运用有关实验方法和
手段,从数字、图像、运算器等收集有关数据,反映实际物理现象,
分析发现规律并做出推断,从而检验和发展数学理论的研究体系。

一、数学建模
1、建模对象:将自然物理现象和复杂的现实问题建立为数学模型。

2、建模过程:确定问题范畴、确定建模目标与解决方案、建立计算模
型并解决、形成模型解、结论分析模型合理性。

3、建模应用:建模可以帮助人们更好地了解宇宙万物的规律,对把握
事件发展趋势,作出更精准的预测有重要意义,在社会发展、政策研
判等方面有着重要作用。

二、数学实验
1、实验方法:收集有关数据,反映实际物理现象,分析发现规律,并
作出推断,开展实用化的研究。

2、实验过程:选择恰当的实验方法,建立实验模型,进行实验的采集、处理和整理,分析实验数据,做验证性结论,实施实验报告记录。

3、实验应用:数学实验除了掌握数学理论外,还有助于理解数学建模
过程。

数学实验容易解释,可以运用到各种数学应用中,在社会经济发展、技术进步和新材料制备等各个领域中发挥重要的作用。

数学建模与实验-比例建模

数学建模与实验-比例建模

比例建模比例是最基本也是最常用的数学建模方法之一. 在实际应用领域和理论推导过程中, 比例关系往往发挥着至关重要的作用. 例如牛顿第二定律ma F =, 微分公式dx x f x df )()('=等等.一、比例的定义变量y 与x 成比例(x y ∝):)0(>=k kx y . 显然, 比例关系具有反身性, 对称性, 传递性:x x ∝,y x x y ∝⇔∝, z x z y y x ∝⇒∝∝,.比例关系还可推广, 如x e y x y x y ∝∝∝,ln ,α.一般地,)(x f y ∝.实际应用举例:导数: 函数的增量与自变量的增量之比的极限x x f x f ∆∆/)()(=', 当导数大于零时, 在自变量很小时可近似地认为函数的增量与自变量的增量成比例.间谍照片经翻拍, 成为胶片上芝麻大的一点, 剪下后便于隐藏. 其中图形的大小关系显然要利用比例来计算. (华盛顿特区间谍博物馆)生产队的分配比例: 拿1万斤粮食分配给社员家庭, 其中30%按人口比例分配, 70%按工分比例分配, 每家应得的粮食斤数.二、比例的几何表示y 与x 成比例, 即0,>=k kx y , y 的图形为xy 坐标系中过原点的直线. 若)(x f y ∝, 在坐标系中横轴表示f (x ), 纵轴表示y , 这时y 的图形也为直线. 下图为25.0x y =的图形: 注: 比例的图形为直线, 但图形为直线的量未必成比例. 例如42+=x y , y 与x 并不成比例. 但是, 4-y 与x 成比例.著名公式中的比例关系Hooke's law: F = kS (虎克定律: 弹力与形变成正比) Newton's law: F = ma Ohm's law: V = iRBoyle's law: V = k /p (玻尔定律: 常温下一定量的气体体积与压强成反比, 即与压强的倒数成正比)Einstein's theory of relativity: E = c 2MKepler's third law: T = cR 3/2, 开普勒第三定律:T 为行星绕太阳运行的周期, R 为行星到太阳的平均距离.例1 以著名的开普勒第三定律(Kepler's third law)为例进行讨论. 1601年, 德国天文学家Johannes Kepler 成为Prague 天文台的主任. Kepler 曾帮助Tycho Brahe 收集了13年的火星相对运动的资料. 到了1609年, Kepler 建立了他的前两个定律:1. 每个行星沿一个椭圆运动, 太阳位于此椭圆的一个焦点上.2. 对于每个行星, 太阳到此行星的直线在相同的时间里扫过相同的面积.Kepler 花费了许多年推导了这两个定律, 并进而得到了上述的第三定律, 此定律把行星的轨道运行周期和到太阳的平均距离联系了起来. 以下是1993年世界年鉴(World Almanac)给出的资料:表1 行星的轨道周期和到太阳的平均距离行星周期T (天) 平均距离R (百万哩) Mercury 水星 88.0 36 V enus 金星 224.7 67.25 Earth 地球 365.3 93 Mars 火星 687.0 141.75 Jupiter 木星 4331.8 483.80 Saturn 土星 10760.0 887.97 Uranus 天王星 30684.0 1764.50 Neptune 海王星 60188.3 2791.05 Pluto 冥王星90466.83653.90以2/3R 为横坐标, T 为纵坐标, 用Matlab 画出其图形(编制程序为period1.m)如下:可见各点基本上是在过原点的直线2/3cR T =上, 由于各点相对距离相差较大, 前四个点重叠在一起. 把上述方程两边同取对数, 改写为等价的形式R c T ln 23ln ln +=,其图形相当于上述图形中坐标刻度向原点压缩, 在画出上述图形的程序中把画图命令plot(R.^(3/2), T)改为loglog(R.^(3/2), T)即可. 图形如下. 各点仍基本在一条直线上, 体现了ln T 和ln R 间的线性关系, 但直线不过原点, 因为直线在ln P 轴上有截距ln c . c 可用最小二乘法求出为0.4095.若假设αcR T =, 对表1中给出的T 和R 的数据, 用最小二乘法可求出c = 0.4043, α = 1.5016. 这也验证了Kepler 第三定律的正确性.对给定的两组数据{x i }和{y i }, 如何建立它们间的比例关系呢?进行数学实验, 在坐标系中画出点{x i , y i }, 如不是直线或不过原点, 可通过试验, 寻找y 0和函数f (x ), 使{y i - y 0, f (x i )}基本在过原点的直线上, 则有)(0x f y y ∝-. 可供选择的函数类型有)ln(,,ax e x ax a等等.三、比例的应用之一: 几何相似定义: 两个物体称为是几何相似的, 如果在这两个物体的各点之间有一个一一对应, 使得两个物体上所有对应点对距离之比恒为常数.这个常数称为这两个几何相似物体间的比例因子. 若两个物体相似, 其比例因子为k , 则这两个物体的表面积之比为k 2, 体积之比为k 3. 对相似的几何体, 可选取一个所谓特征量纲, 例如, 对圆柱体, 可用其高h , 或底半径r , 直径d , 或底面积S d , 侧面积S c , 表面积S , 或体积V 作为特征量纲. 两个相似几何体的比例因子k 确定后, 不但它们的表面积之比, 体积之比也可得到, 而且所有(不限于两个, 甚至可以是无穷多个)相似几何体的表面积或体积与特征量纲的某次幂的比也为常数. 例如, 若取某个长度l 为特征量纲, 则222'','l l k S S k l l ===, 故有22''l S l S =.由传递性, 对所有相似的几何体, 有常数≡2lS, 2l S ∝.同理有常数≡3lV, 3l V ∝.于是, 如果要考查一个依赖于物体长度, 表面积和体积的函数, 比如),,(V S l f y =,则可通过选择特征量纲, 例如l , 把此函数表为),,(32l l l g y =.例2 从静止的云上落下的雨滴. 假设雨滴从具有足够高度的静止的云上落下, 雨滴在下落过程中受到两个力的作用: 竖直向下的重力F g 和竪直向上的空气阻力F d . 由流体力学的原理知, 可设空气阻力F d 与雨滴的表面积S 和下落速度v 的平方的乘积成正比; 而重力F g 与雨滴的质量m 成正比(假设在涉及的高度内重力加速度为常数), 因此也与其体积V 成正比. 雨滴下落过程中, 随着下落速度v 的增加, 阻力F d 也在增加, 但重力F g 保持不变. 因此下落一段时间后, 阻力F d 与重力F g 达到平衡, 雨滴受到的合力为零, 保持匀速下落. 这时,d g F F =. 再假设所有的雨滴都是几何相似的, 有23,l S l V ∝∝, 从而3/23/2m V S ∝∝. 由于m F ∝g ,23/22v m Sv F ∝∝d , 且d g F F =, 得23/2v m m ∝,化简得6/1m v ∝, 或6/1km v =,即雨滴最终保持匀速下落的速度与其质量的六次方根成正比. 又一解法:0,023/2=-=-==t d g v v km mg F F dtdv, .)2(,0)1(23/2v kmmg k ≥>其中分离变量解得vk m g v k m g m kg t -+=6/16/16/5ln 21, 上式左端趋于无穷大, 并由条件(1), (2)有)(06/1∞→+→-t v k m g ,即在极限状态下,6/1m v ∝.。

数学建模与数学实验考点

数学建模与数学实验考点


4.紧急调兵模型 不考 针对具体参数,能给出具体最优运兵方案
6.非线性方程求近似根 二分法、迭代法的算法与收敛性判断 牛顿迭代法、割线法的具体迭代格式 牛顿迭代法的收敛性 针对具体模型,会将问题转化为非线性方程求 近似根问题 选择合适算法
第三章 代数模型
1.量纲分析法 物理量的量纲表示 量纲齐次原则 根据量纲分析法化简物理问题,研究变量之间的 关系 根据量纲分析法思想减少数学问题中的参数个数
5.Hill密码体系(不考) Hill密钥的选择要求 模运算的性质 取模意义下逆元素与逆矩阵存在性及其解法 加密、解密、破译3个环典型题
第五章 数值分析法建模
1.拟合法 线性最小二乘拟合的标准解法:正规方程 能写出和求解正规方程 多项式拟合时最佳阶数的确定:差分表、差商表 曲线改直技术 2.插值法 插值法与拟合法的区别 常用插值方法 差分、差商的定义及其与导数之间的关系
第九章 随机数学模型
1.广告中的数学(不考) 理解数学期望在建模中的作用 2.定岗定编问题 等级分布基本方程的推导 等级结构稳定域的解法 等级结构、等级分布、内部人员总数的 发展趋势
1.实物交换模型 不考 无差别曲线的定义及性质 如何根据满意度曲线确定协议曲线 如何针对具体协议确定满意度曲线 不同支付方式优劣的比较 2.核竞争模型 不考 核武策略的变化对核平衡的影响
3.抢渡长江模型 能够游到终点的速度要求 正确理解偏角引理 变量为常数时,针对最优策略,分析 L, H , u, v, , T 几个变量之间的相互关系
《数学建模与数学实验》 考察知识点提要
2015.6
指导原则

考察数学建模为主,兼顾数学实验 强调知识点的理解与应用 强调经典模型的标准形式与相关结论的正确理解 题型每学期都应有所变化

数学建模与数学实验的比较

数学建模与数学实验的比较
观点:“所谓高科技就是一种数学技术”
数学建模其实并不是什么新东西,可以说有了 数学并需要用数学去解决实际问题,就一定要用数学 的语言、方法去近似地刻划该实际问题,这种刻划的 数学表述的就是一个数学模型,其过程就是数学建模 的过程。数学模型一经提出,就要用一定的技术手段 (计算、证明等)来求解并验证,其中大量的计算往 往是必不可少的,高性能的计算机的出现使数学建模 这一方法如虎添翼似的得到了飞速的发展,掀起一个 高潮。
建模过程示意图
三、数学模型及其分类
模型
具体模型
直观模型 物理模型 思维模型
抽象模型
符号模型
数学模型的分类:
数学模型
数式模型 图形模型
◆ 按研究方法和对象的数学特征分:初等模型、几何模型
、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模
型、扩散模型等。
◆ 按研究对象的实际领域(或所属学科)分人口模型、
交通模型、环境模型、生态模型、生理模型、城镇规划模型、
水资源模型、污染模型、经济模型、社会模型等。
数学建模实例
1、如何预报人口? 要预报未来若干年(如2005)的人口数,
最重要的影响因素是今年的人口数和今后这 些年的增长率(即人口出身率减死亡率), 根据这两个数据进行人口预报是很容易的。 记今年人口为 ,k年后人口为 xk ,年增长 率为r,则预报公式为:
数学建模 VS
数学实验
什么是数学建模?
数学建模简介
1.关于数学建模
2.数学建模实例
A.人口预报问题 B. 椅子能在不平的地面上放稳吗? C.双层玻璃的功效
3.数学建模论文的撰写方法
一、名词解释
1、什么是数学模型?
数学模型是对于现实世界的一个特定对象,一个 特定目的,根据特有的内在规律,做出一些必要的假 设,运用适当的数学工具,得到一个数学结构。

数学建模与数学实验 回归分析

数学建模与数学实验 回归分析

2、多项式回归
设变量 x、Y 的回归模型为 Y 0 1x 2 x2 ... p x p
其中 p 是已知的,i (i 1,2,, p) 是未知参数, 服从正态分布 N (0, 2 ) .
Y 0 1x 2 x2 ... k xk
腿长
88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102
以身高x为横坐标,以腿长y为纵坐标将这些数据点(xI,yi) 在平面直角坐标系上标出.
解答
102
100
98
y 0 1x
96
949290 Nhomakorabea88
86
84
140
145
150
155
160
165
2019/7/8
17
二、模型参数估计
1、对 i 和 2 作估计
用最小二乘法求0 ,..., k 的估计量:作离差平方和
n
Q yi 0 1xi1 ... k xik 2 i 1
选择 0 ,..., k 使 Q 达到最小。
解得估计值 ˆ
进行检验.
假设 H 0 : 1 0 被拒绝,则回归显著,认为 y 与 x 存在线性关 系,所求的线性回归方程有意义;否则回归不显著,y 与 x 的关系 不能用一元线性回归模型来描述,所得的回归方程也无意义.
2019/7/8
8
(Ⅰ)F检验法
当 H 0 成立时,
F
U
~F(1,n-2)
Qe /(n 2)
变量的值 x1* ,..., xk ,用 yˆ * ˆ0 ˆ1 x1* ... ˆk xk * 来预测

《数学建模与数学实验》期末考查试卷

《数学建模与数学实验》期末考查试卷

《数学建模与数学实验》考查方案教学部门及专业数学学院11级数学与应用数学专业课程名称数学建模与数学实验教学班级2011级数学与应用数学1、2班考查时间第 19 周考核方式试卷□ 过程评价□ 作业或调查□ 作品 项目任务□ □√一、必做题:(60分)1、简答题:(20分)(1)通过《数学建模与数学实验》课程的学习,请谈谈对数学建模和数学实验的认识,学习《数学建模与数学实验》课程的收获。

(不少于500字)(15分)(2)简要说明数学建模的一般过程或步骤。

(5分)2、(40分) 一阶常微分方程模型——人口模型与预测下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(),0=t 万人。

1016540=N 年198219831984198519861987198819891990人口(万)101654103008104357105851107507109300111026112704114333年19911992199319941995199619971998人口(万)115823117171118517119850121121122389123626124810要求:(1)建立中国人口的指数增长模型,用数据拟合求相应的参数,并用该模型进行预测,与实际人口数据进行比较。

(2)建立中国人口的Logistic 模型,用数据拟合求相应的参数,并用该模型进行预测,与实际人口数据进行比较。

(3)利用MATLAB 图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。

(4)利用MATLAB 图形,画出两种预测模型的误差比较图,并分别标出其误差。

(5)用两个模型估计2015年中国人口。

二、选作题:(40分)(在如下问题中任选一题做建模解答)第1题 送货模型某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C 从某港口(编号⑨)分别运往各个公司。

路线是唯一的双向道路(如图1)。

数学建模与数学实验选修

数学建模与数学实验选修

p1 2 x 3 x 2 3 例: p2 2 x 1 p1 p2 2 x 3 x 2 2 x 4
[2, 1, 0, 3] [ 0, 0, 2, 1] [ [2, 1, 2, 4]
多项式乘法运算: k = conv(p,q)
例:计算多项式 2 x 3 x 2 3 和 2 x 1 的乘积 >> p=[2,-1,0,3]; >> q=[2,1]; >> k=conv(p,q);
数学建模的一般步骤
1.了解问题的实际背景,明确建模目的,收集掌握 必要的数据资料。 2.在明确建模目的,掌握必要资料的基础上,通过 对资料的分析计 算, 找出起主要作用的素,经必 要的精炼、简化,提出若干符合客观实际的假设。
3.在所作假设的基础上,利用适当的数学工具去刻 划各变量之间的关系,建立相应的数学模型。
若将[x,y]=改用X= ,则仅将返回一个解的结构。
例 求解方程组:
5 x1 4 x3 2 x 4 3 x x 2x x 1 1 2 3 4 4 x1 x 2 2 x3 1 x1 x 2 x3 x 4 0
命令: >> clear;A=[5,0,4,2;1,-1,2,1;4,1,2,0;1,1,1,1];
数学模型基本 概 念
数学模型与数学建模
数学模型:
是用数学符号、数学式子、程序、图形等对实 际课题,本质属性的抽象而又简洁的刻划,它 或能解释某些客观现象,或能预测未来的发展 规律,或能为控制某一现象的发展提供某种意 义下的最优策略或较好策略。
数学建模:
应用知识从实际课题中抽象、提炼出数学模型 的过程。
0 x j 1, j 1,2,...,6

数学建模与数学实验1沙鱼讲1.2 视频的ppt

数学建模与数学实验1沙鱼讲1.2 视频的ppt

数学建模与数学实验微分方程模型问题 :地中海鲨鱼问题年代 1914 1915 1916 1917 1918 百分比 11.9 21.4 22.1 21.2 36.4 年代 1919 1920 1921 1922 1923 百分比 27.3 16.0 15.9 14.8 19.7第一次世界大战期间,从地中海各港口捕获的几种鱼类捕获量百分比的资料中,发现鲨鱼等的比例有明显增加(见上表),而供其捕食的食用鱼的百分比却明显下降.显然战争应该是捕鱼量下降,食用鱼增加,鲨鱼等也随之增加,但为何出现上述情况呢?符号表示意大利生物学家Ancona发现了这个问题, 但是他无法解释这个现象,于是求助于著 名的意大利数学家V.Volterra,希望建立一 个食饵—捕食系统的数学模型,定量地回 答这个问题.返回1.符号说明:x1(t) ——食饵在t时刻的数量; x2(t) ——捕食者在t时刻的数量; r1 ——食饵独立生存时的增长率; r2 ——捕食者独自存在时的死亡率;  1 ——捕食者掠取食饵的能力;2 ——食饵对捕食者的供养能力.e ——捕获能力系数解释2.基本假设:(1)食饵由于捕食者的存在使增长率降 低,假设降低的程度与捕食者数量成 正比;(2)捕食者由于食饵为它提供食物的作用 使其死亡率降低或使之增长,假定增 的程度与食饵数量成正比。

3.模型建立与求解模型(一) 不考虑人工捕获 dx1 dtx1 (r1 1x2 ) dx2  dtx2 (r2 2 x1)该模型反映了在没有人工捕获的自然境 中食饵与捕食者之间的制约关系,没有考虑食 饵和捕食者自身的阻滞作用, Volterra提出的最 简单的模型.4.模型求解 针对一组具体的数据用Matlab软件进行计 算. 设食饵和捕食者的初始数量分别为,x1 (0)  x10 x2 (0)  x20 r1  1, 1  0.1, r2  0.5, 2  0.02, x10  25, x20  2t的终值经试验后确定为15,求解结果如下图:x1(t)为实线,x2 (t)为“*”线.10090807060可以猜测:504030x1(t) 与x2(t)2010 0都是周期函数。

数学建模与数学实验 复习范围

数学建模与数学实验   复习范围

数学建模与数学实验复习范围: 题型为:简答题、建模计算题和编写程序。

1. 数学建模的步骤和模型按照表现特性的分类。

(1)数学建模步骤:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用、(2)模型按照表现特性分类:确定性模型和随机性模型、静态模型和动态模型、线性模型和非线性模型、离散模型和连续模型2. 人口模型:要求(1)指数增长模型的建立及求解(2)阻滞增长模型的建立.(1)指数增长模型的建立及求解:设t 时刻的人口为)(t x ,经过一段短的时间t ∆后,在t t ∆+时刻,人口数量变化为)(t t x ∆+。

由基本假设,在这段短的时间t ∆内,人口数量的增加量应与当时的人口)(t x 成比例,不妨设比例系数为0r ,即t ∆内人口的增量可写为t t x r t x t t x ∆=-∆+)()()(0等式两边同除以t ∆,当0→∆t 时)()()(lim00t x r t t x t t x t =∆-∆+→∆ 等号的左边即是导数t x d d ,已知初始时刻人口数量为0x ,则⎪⎪⎩⎪⎪⎨⎧==00)0()(d d x x t x r t x (2.2) 就是描述人口随时间变化的带初始条件的微分方程。

用分离变量法求解,得t r x t x 0e )(0=(2)阻滞增长模型的建立:由于自然资源的约束,人口存在一个最大容量m x 。

增长率不是常数,随人口增加而减少。

它具有以下性质:当人口数量)(t x 很小且远小于m x 时,人口以固定增长率0r 增加;当)(t x 接近m x 时,增长率为零。

0r 和m x 可由统计数据确定。

满足上述性质的增长率可以写作)1()(0mx x r x r -= (2.4)这样Malthus 模型公式(2.2)变为⎪⎪⎩⎪⎪⎨⎧=-=00)0()1(d d x x x x x r t x m (2.5) 称为阻滞增长模型或Logistic 模型。

数学建模与数学实验ppt课件

数学建模与数学实验ppt课件

02
通过数学实验,可以发现和解决数学理论中的问题,推动数学
理论的发展和完善。
数学实验在科学、工程、经济等领域有广泛应用,为解决实际
03
问题提供有效的工具和方法。
数学实验的常用工具
MATLAB
一种常用的数学计算软件,具有强大的数值 计算、矩阵运算和图形绘制等功能。
Python
一种通用编程语言,广泛用于科学计算、数 据分析和机器学习等领域。
02
03
相互促进
两者都是为了解决实际问题或探 究数学问题而进行的方法和工具。
数学建模为数学实验提供理论指 导,而数学实验可以验证数学建 模的正确性和有效性。
区别
目的
数学建模的主要目的是建立数学模型,描述实际问题中变 量之间的关系;而数学实验则是通过实验手段来探究数学 规律或验证数学结论。
应用领域
数学建模广泛应用于各个领域,如物理、工程、经济等; 而数学实验则更多应用于数学教育和研究领域。
简化模型
在保证模型精度的基础上,对模型进行必要 的简化。
求解模型
求解方法选择
根据模型的特点选择合适的数值计算方法或解 析解法。
编程实现
利用编程语言实现模型的求解过程。
误差分析和收敛性判断
对求解过程进行误差分析,判断求解方法的收敛性和稳定性。
模型验证与优化
数据拟合与检验
将模型结果与实际数据进行对比,检验模型的准确性和适用性。
问题分析
明确问题定义
对问题进行深入理解,明确问题的目标、约束条件和 相关参数。
收集数据和信息
收集与问题相关的数据和背景信息,为建立模型提供 依据。
确定主要影响因素
分析问题中起决定性作用的关键因素,忽略次要因素。

《数学建模与数学实验》实验教学大纲

《数学建模与数学实验》实验教学大纲

标题:深度探讨《数学建模与数学实验》实验教学大纲一、引言数学建模与数学实验作为重要的实验教学内容,在数学教育中扮演着重要的角色。

本文将以《数学建模与数学实验》实验教学大纲为主题,探讨其深度和广度,帮助读者更好地理解这一内容。

二、评估《数学建模与数学实验》实验教学大纲1. 简介与定义《数学建模与数学实验》实验教学大纲是一份对于实验教学的指导性文件,其中包括了数学建模与数学实验的基本概念和方法,旨在培养学生综合运用数学知识解决实际问题的能力。

2. 深度和广度考量(1)深度:实验教学大纲应当深入探讨数学建模与数学实验的理论基础,以及在实际教学中如何引导学生进行实践操作和解决问题的能力。

还应当包括对数学建模思维和实验能力的培养,以及对数学知识的综合运用和创新能力的培养。

(2)广度:实验教学大纲应当涵盖多个领域的数学知识,包括但不限于微积分、概率论、统计学等,以便学生能够全面理解数学建模与数学实验的应用范围和方法。

3. 主题文字的多次提及在《数学建模与数学实验》实验教学大纲中,数学建模与数学实验是重要的主题。

该教学大纲应当在多个部分多次提及这两个主题文字,以便学生能够深入理解和应用。

三、文章内容共享和总结根据对《数学建模与数学实验》实验教学大纲的评估,本文认为实验教学大纲应当在深度和广度上进行全面考量,以培养学生的数学建模思维和实验能力。

在实际撰写教学大纲时,应当多次提及主题文字,以期学生全面、深刻地理解主题。

本文强调了对数学知识的综合运用和创新能力的培养,这在实践中应当得到充分的重视。

四、个人观点和理解作为一名教学工作者,我深知实验教学大纲的重要性。

在实际教学中,我将更加注重引导学生进行数学建模与数学实验的训练,以期培养他们的创新思维和实践能力。

我也会结合教学大纲中的内容,进行灵活的教学设计,帮助学生更好地理解和掌握数学建模与数学实验的要点。

通过本文的探讨,相信读者能够更全面地了解《数学建模与数学实验》实验教学大纲的重要性和要求,同时也明白在实践中应当如何具体操作。

数学建模与数学实验

数学建模与数学实验

数学建模与数学实验机械工程学院机械设计制造及其自动化1106班刘鹏1105040617实验目的:1,了解数学建模与数学实验的区别:数学建模与数学实验都要用到计算机,但数学建模课是让学生学会利用数学知识和计算机来解决实际问题,而数学实验课侧重于在计算机的帮助下学习数学知识。

一个用数学,一个学数学,两者目标不同。

从内容选材上两者都是从实际出发,而不是从概念出发,但数学建模强调问题的实用,而不是强调普遍性,解决问题本身就是目的,数学实验可以从理论问题出发,也可以由实际问题出发,也可以由实际问题引入,但这个问题一般是比较经典,有较普遍意义。

2,了解数学实验的含义:数学实验是计算机技术和数学软件引用教学后出现的新兴事物,是数学教学体系,内容和方法改革的一项创造性尝试,在国家教育部关于“高等教育面向21世纪教学内容和课程体系改革”计划中,已把数学实验列为高校非数学类专业的数学基础课之一。

数学实验概括的讲包括两部分内容,即“数学的实验”“数学实验应用”。

数学的实验实用计算机及有关的工作软件解决数学问题,数学的实验应用实用计算机及有关的工作软件及数学知识和方法求解其他科学领域的实际问题3,了解数学实验的意义:数学实验是将数学知识,数学建模知识和计算机应用能力三者融为一体,他可以使我们深入的了解数学的基本概念,数字常用数学软件,培养我们应用知识建立数学模型和计算机解决实际问题的能力,使我们对数学软件进行初步的了解,使我们对sin、Cos、tan、cot、sec、csc、fix、ceil、exp、log、conj、imag、real、limit、diff、int、desolve、ezplotfminban 等一些键功能的了解。

实验能容2 编写函数M文件SQRT.M;函数在x=567.889与0.0368处的近似值(保留有效数四位)在指令窗口输入指令edit,打开空白的M文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2x1=567.889;x2=0.368;s1=sqrt(x1);s2=sqrt(x2);zhi1=vpa(s1,4)zhi2=vpa(s2,4)然后保存并命名为SQRT.M即可6 用matlab计算函数在x=-2.1处的值.>> 2-3^x*log(abs(x))ans =1.92618 用紫色.叉号.实连线绘制函数在上步长为0.2的图像.>>syms x y>> x=-20:0.2:-15;y=log(abs(x+10));>>plot(x,y,'mx-')9 用红色.加号连线虚线绘制函数在[-10,10]上步长为0.2的图像.>>syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2);>>plot(x,y,'r+--')12 在同一坐标系中绘制函数这三条曲线的图标,并要求用两种方法加各种标注.>>syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线的3维图像>>syms x y t z>> t=0:1/50:2*pi;>> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)15 求极限>>syms x y>> y=sin(2^0.5*x)/sqrt(1-cos(x));>> limit(y,x,0,'right')ans =22 求函数y=的导数>>syms x y>> y=(2*x-1)^5+atan(x);>>diff(y)ans =28在区间()内求函数的最值. >> f='-3*x^4+4*x^3-1';>> [x,y]=fminbnd(f,-inf,inf)x =NaN30 求不定积分>>syms x y>> y=log(3*x)-2*sin(x);>>int(y)ans =2*cos(x) - x + x*log(3) + x*log(x)31求不定积分>>syms x y>> y=exp(x)*sin(x)^2;>>int(y)ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分>>syms x y>> y=x*atan(x)/(1+x)^0.5;>>int(y)Warning: Explicit integral could not be found.ans =int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分>>syms x y>> y=1/exp(x^2)*(2*x-cos(x));>>int(y)Warning: Explicit integral could not be found. ans =int(exp(-x^2)*(2*x - cos(x)), x)34.计算定积分>>syms x y>> y=exp(-x)*(3*x+2);>>int(y,0,1)ans =5 - 8*exp(-1)35.计算定积分>>syms y x>> y=(x^2+1)*acos(x);>>int(y,0,1)ans =11/936.计算定积分>>syms x y>> y=(cos(x)*log(x+1));>>int(y,0,1)Warning: Explicit integral could not be found. ans =int(log(x + 1)*cos(x), x == 0..1)37计算广义积分;>>syms y x>> y=(1/(x^2+2*x+2));>>int(y,-inf,inf)ans =pi38.计算广义积分;>>syms x y>> y=x^2*exp(-x);>>int(y,0,+inf)ans =y =NaN>> f='3*x^4-4*x^3+1'>> [x,y]=fminbnd(f,-inf,inf)x = NaNy =NaN>>syms x>> x=-2.1;数学实验学院:机械工程学院专业班级:机设1106姓名:刘鹏学号:1105040617日期:2013年1月6日星期日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
林管理模型 ILP标准形式模型 LP松弛问题的标准形式 正确认识ILP与LP松弛问题之间的关系 关于最优策略的相关结论
4.层次分析法 正确理解"1~9尺度" 判断矩阵,正互反矩阵,一致矩阵的定义,性 质与相互关系 会对判断矩阵进行一致性检验 判断矩阵模最大特征值的解法(保证精度) 权向量的确定
第九章 随机数学模型
1.广告中的数学 理解数学期望在建模中的作用 2.定岗定编问题 等级分布基本方程的推导 等级结构稳定域的解法 等级结构,等级分布,内部人员总数的 发展趋势

第六章 常微分方程模型
Malthus,Logistic模型解的表达式及解的性质 Logistic模型拐点的判断及其意义 药物动力学模型建模的思想 SIS,SIR传染病模型的建模思想及解的性态 Volterra模型解法,解的性态与Volterra原理 了解几种常用ODE数值解法的精度
第七章 差分方程模型
θ
4.紧急调兵模型 针对具体参数,能给出具体最优运兵方案
6.非线性方程求近似根 二分法,迭代法的算法与收敛性判断 牛顿迭代法,割线法的具体迭代格式 牛顿迭代法的收敛性 针对具体模型,会将问题转化为非线性方程求 近似根问题 选择合适算法
第三章 代数模型
1.量纲分析法 物理量的量纲表示 量纲齐次原则 根据量纲分析法化简物理问题,研究变量之间的 关系 根据量纲分析法思想减少数学模型中的参数个数
第八章 优化模型
泛函优化问题 泛函优化问题与函数优化问题之间的联系 泛函极值的必要条件 等周问题的欧拉方程 函数优化问题 LP(ILP)问题的标准形式 一般优化问题的标准形式
图论优化问题 图论相关知识:度,路径等等 常用算法的特点与比较 会将特殊图论优化问题转化为函数优化问题, 特别是LP或ILP问题
数学建模与数学实验的含义与相互关系 数学建模的主要环节 数学模型的分类
第二章 初等模型
1.实物交换模型 无差别曲线的定义及性质 如何根据满意度曲线确定协议曲线 如何针对具体协议确定满意度曲线 不同支付方式优劣的比较 2.核竞争模型 核武策略的变化对核平衡的影响
3.抢渡长江模型 能够游到终点的速度要求 正确理解偏角引理 变量为常数时,针对最优策略,分析 L, H , u, v, , T 几个变量之间的相互关系
5.Hill密码体系 Hill密钥的选择要求 模运算的性质 取模意义下逆元素与逆矩阵存在性及其解法 加密,解密,破译3个环节典型题
第五章 数值分析法建模
1.拟合法 线性最小二乘拟合的标准解法:正规方程 能写出和求解正规方程 多项式拟合时最佳阶数的确定:差分表,差商表 曲线改直技术 2.插值法 插值法与拟合法的区别 常用插值方法 差分,差商的定义及其与导数之间的关系
一阶线性差分方程平衡点的稳定性的判定(谱 半径方法) 一阶非线性差分方程平衡点的稳定性的判定 谱半径,主特征值,模最大特征值,正特征值 几个概念之间的区别与联系 Markov Chain模型与Leslie模型的特殊性质
容易出现错误的内容
高阶差分方程与一阶差分方程性质类似吗? 一阶差分方程一定有稳定分布吗?什么时候有? 谱半径,正特征值,主特征值等价吗?唯一吗? 主特征值等于1的一阶线性齐次差分方程一定是Markov Chain模型吗? Leslie模型主特征值等价于正特征值吗? 如何保证矩阵(Leslie矩阵)主特征值唯一? 什么是稳定的年龄结构? Leslie模型中如何讨论种群发展趋势?(数量,年龄结 构,增长率)
《数学建模与数学实验》 数学建模与数学实验》 考试知识点提要
成绩构成
期末考试(闭卷,允许带计算器)80% 平时成绩(作业,出勤,实验报告)20%
指导原则
考察数学建模为主,兼顾数学实验 强调知识点的理解与应用 强调经典模型的标准形式与相关结论的正确理解 题型每学期都应有所变化
第一章 数学建模概述
相关文档
最新文档