坐标系统和时间系统概述
坐标与时间系统
坐标与时间系统坐标与时间系统是维持现代社会运转的重要基础。
它们帮助我们在地球上找到特定的位置和确切的时间,为我们的日常生活提供了许多便利。
在这篇文章中,我们将讨论坐标与时间系统的重要性以及如何使用它们。
坐标系统是一种用来确定地球上特定位置的方法。
全球定位系统(GPS)是最常用的坐标系统之一,通过卫星和接收器,它可以确定我们所处的位置。
我们可以用经度和纬度来表示任何一个地点的坐标。
经度是一个地点相对于本初子午线的度量,范围从0°至180°。
纬度是一个地点相对于地球赤道的度量,范围从0°至90°。
通过这两个坐标,我们可以在地球上的任何地方找到一个特定的位置。
时间系统是一种用来测量时间的方法。
世界协调时间(UTC)是国际上通用的时间标准,它使用原子钟的精确度来确定时间。
我们使用小时、分钟和秒来表示时间。
此外,时区也是时间系统的重要组成部分。
地球上被划分为24个时区,每个时区覆盖约15°经度。
每个时区都对应着一个标准时间,并根据地理位置决定当地时间。
通过使用时区,我们可以在世界范围内同步并协调时间。
坐标和时间系统在现代社会中有着广泛的应用。
它们不仅仅用在导航领域,如汽车导航、航空导航等,还被广泛用于科学研究、地图制作、天文观测和数据收集等领域。
它们还在航运、铁路和物流等行业中起到关键作用,确保货物能够准时送达。
此外,坐标和时间系统也对我们日常生活产生了深远的影响。
我们可以使用手机或手表上的时间来安排日程,预约会议或计划旅行。
当我们在城市中迷路时,我们可以使用地图应用或GPS系统来找到正确的路线。
不仅如此,通过坐标和时间系统,我们能够准确地知道不同地区的时间,这对于国际商务和跨国合作非常重要。
综上所述,坐标和时间系统是现代社会不可或缺的一部分。
它们帮助我们准确地定位和测量地球上的位置和时间,为我们的日常生活提供了巨大的便利。
无论是科学研究、导航领域还是日常生活中,我们都离不开这些系统的帮助。
坐标系统和时间系统
旋转变换 (2-6)
站心赤道直角坐标系
平移变换 (2-5)
地心空间直角坐标系
(三)站心(左手)地平直角坐标系与地心空 间直角坐标系之间的转换
旋转矩阵
X -sinBcosL sinL cosBcosLx
Y
=sinBsinL
cosL
cosBsinLy
Z地心 cosB
0
sinB z地平 (2-7)
通过天球中黄心道,面且与垂赤直道于面黄的道夹面角的直线与 天球的交点
√8.春分点
地球公转的轨道面与天球相交的大圆。 当太阳即在当黄地道球上绕,太从阳天公球转南时半,球地向球北上半的球观测者
运行时,所黄见道到与的天,球太赤阳道在的天交球点上运动的轨迹
(二)天球坐标系的定义
假设地球为均质的球体,且没有其它天体摄动力 的影响;即假定地球的自转轴,在空间的方向是 固定的,春分点在天球上的位置保持不变。
t时刻的瞬 时极地球 坐标系
x
x
y
Rz ( G ) y
z et
z ct
对应格林尼治平子 午面的真春分点时
角
(2-10)
t时刻的瞬时 极天球坐标
系
三、天球坐标系与地球坐标系 之间的坐标转换
(二)协议天球坐标系与协议地球坐标系的坐标 转换
协议天球坐标系 瞬时极天球坐标系
(2-11) (2-12)
3、协议地球坐标系与瞬时极地球坐标系 的坐标转换
二者存在旋转关系:
x
x
y Ry xp Rx yp y
zem
zet
(2-13)
(xp , y p ) 为瞬时地极相对于CIO的坐标。
三、天球坐标系与地球坐标系 之间的坐标转换
GS定位坐标系统和时间系统
GS定位坐标系统和时间系统
4. 协议天球坐标系的定义和转换
由于岁差和章动的影响,瞬时天球坐标系的坐标 轴指向不断变化,在这种非惯性坐标系统中,不 能直接根据牛顿力学定律研究卫星的运动规律。 为建立一个与惯性坐标系相接近的坐标系,通常 选择某一时刻t0作为标准历元,并将此刻地球的瞬 时自转轴(指向北极)和地心至瞬时春分点的方 向,经过该瞬时岁差和章动改正后,作为z轴和x 轴,由此构成的空固坐标系称为所取标准历元的 平天球坐标系,或协议天球坐标系,也称协议惯 性坐标系(Conventional Inertial System—CIS)
天球子午面与天球子午圈:包含天轴并经过地球上 任一点的平面为天球子午面,该面与天球相交的大 圆为天球子午圈。GS定位坐标系统和时间系统
时圈:通过天轴的平面与天球相交的半个大圆。 黄道:地球公转的轨道面与天球相交的大圆,即当地
球绕太阳公转时,地球上的观测者所见到的太阳在 天球上的运动轨迹。黄道面与赤道面的夹角称为黄 赤交角,约23.50。 黄极;通过天球中心,垂直于黄道面的直线与天球的 交点。靠近北天极的交点n称北黄极,靠近南天极 的交点s称南黄极。 春分点:当太阳在黄道上从天球南半球向北半球运行 时,黄道与天球赤道的交点。 在天文学和卫星大地测量学中,春分点和天球赤道面 是建立参考系的重要基准点和基准面。
GS定位坐标系统和时间系统
三种天球坐标系的定义及其转换
由协议天球坐标系向瞬时真天球坐标系的
转换
协议天球坐
瞬时平ห้องสมุดไป่ตู้球坐
瞬时真天球坐
标系坐标值 变换公式 标系坐标值 变换公式 标系坐标值
由岁差引起 坐标轴指向
不同
协议天球坐标系与瞬 时平天球坐标系的区
四种卫星定位导航系统的坐标系统与时间系统以及他们的转换关系
GLONASS
坐标系统名:PE-90 时间系统名:GLONASS时
-4-
定义
GLONASS坐标系统:采用的是基于Parameters of the Earth 1990框架的PE-90大地坐标系,其 几何定义为:原点位于地球质心,Z轴指向IERS 推荐的协议地球极(CTP)方向,即1900-1905年 的平均北极,X指向地球赤道与BH定义的零点子 午线交点,Y轴满足右手坐标系。 GLONASS时间系统:采用原子时AT1秒长作为 时间基准,是基于前苏联莫斯科的协调世界时 UTC(SU),采用的UTC时并含有跳秒改正。
GPS
坐标系统名:WGS-84 时间系统名:GPS时
-1-
定义
GPST规定它的起点在1980年1月6日UTC的0点, 它的秒长始终与主控站的原子钟同步,启动之后不 采用跳秒调整。根据对GPS时间系统起点的规定, 知道GPST与国际原子时有固定19秒的常数差,而 且在1980年之后与UTC另外还有随时间不断变化 的常数差。如1985年12月,常数差为4秒。 GPST=UTC十4秒 总结 原点:1980年1月6日UTC零时 秒长:原子时秒长 不跳秒
Galileo
坐标系统名:ITRS 时间系统名:伽利略系统时间
-6-
定义
伽利略地球参考框架(Galileo Terrestrial Reference Frame,GTRF)是实现伽利略所有产品和服务的基础, 它由伽利略大地测量服务原型(GGSP)负责定义、建立、 维持与精化。GTRF符合ITRS定义,并与ITRF对准,它 的维持主要基于GTRF周解。除GTRF外,GGSP还提供 地球自转参数、卫星轨道、卫星和测站钟差改正等产品。 GTRF的发展早在2011年10月首批Galileo卫星升空前, GTRF就完成了它的初始实现(2007年)。它采用了42 个位于伽利略跟踪站(GSS)附近的IGS站、33个其他 IGS站和13个伽利略实验站(GESS)从2006年11月至 2007年6月的GPS观测数据。后续的GTRF将由使用 GPS/Galileo数据逐步过渡到只使用Galileo数据。从2013 年4颗Galileo卫星组网并开始提供导航服务以来,GTRF 每年都会发布新的版本并进行2~3次更新。
第二章坐标系统和时间系统(2-3)
sin X sin Z cos X sinY cos Z
cosY sin Z cos X cos Z sin X sinY sin Z sin X cos Z cos X sinY sin Z
sinY
sin
X
cosY
cos X cosY
坐标转换公式为:
第三节 坐 标 系 统
一般εx ,εy ,εz为微小量,可取
第三节 坐 标 系 统
b.多点定位:在全国范围内观测许多点的天文经度λ,天文纬度φ ,天文方位角α(这样的点称为拉普拉斯点)。利用这些观测成果 和已有的椭球参数,按照广义弧度测量方程,根据使椭球面与当地 大地水准面最佳拟合条件ΣN2=min(或Σζ2=min),采用最小二乘 原理,求出椭球定位参数ΔX0,ΔY0,ΔZ0,旋转参数εX,εy, εZ,椭球几何参数的改正数Δa,Δα(a新=a旧+ Δa,α新=α旧
第三节 坐 标 系 统
第三节 坐 标 系 统
4)地心坐标系 ① 地心空间直角坐标系:原点与地球质心重合,Z轴指向地球北 极,X轴指向格林尼治平均子午面与地球赤道交点,Y轴垂直于 XOZ平面。 ② 地心大地坐标系:椭球中心与地球质心重合,椭球面与大地水 准面最为密合,短轴与地球自转轴重合.点的坐标为大地经度L ,大地纬度B,大地高H.
+Δα.)以及η新,ξ新,N新。 再根据:
求出大地原点新的大地起算数据。
第三节 坐 标 系 统
这样利用新的大地原点数据和新的椭球参数进行新的定位和定 向,从面可建立新的参心大地坐标系。按这种方法进行椭球的定位 和定向,由于包含了许多拉普拉斯点,因此通常称为多点定位法。
参考椭球参数和大地起算数据是一个参心坐标系建成的标志,一 定的参考椭球和一定的大地起算数据确定了一定的坐标系。
第2-1章 坐标系统和时间系统
极 移
G P S 测 量 原 理 及 应 用
中 南 大 学
国际天文学联合会和大地测量学协会在1967建 建 国际天文学联合会和大地测量学协会在 G 采用国际上5个纬度服务站 个纬度服务站, 年的平 P 议,采用国际上 个纬度服务站,以1900-1905年的平 均纬度所确定的平均地极位置作为基准点, S 均纬度所确定的平均地极位置作为基准点 , 平极的 测 位置是相应上述期间地球自转轴的平均位置 , 通常 位置是相应上述期间地球自转轴的平均位置, 量 称 为 国 际 协 议 原 点 ( Conventional International 原 ) 理 Origin——CIO)。与之相应的地球赤道面称为平赤 道面或协议赤道面。 至今仍采用CIO作为协议地极 及 道面或协议赤道面 。 至今仍采用 CIO 作为协议地极 应 ( conventional Terrestrial Pole——CTP) , 以协议 ) 用 地 极 为 基 准 点 的 地 球 坐 标 系 称 为 协 议 地 球 坐 标系 ) 中 (Conventional Terrestrial System——CTS),而与 南 瞬时极相应的地球坐标系称为瞬时地球坐标系。 瞬时极相应的地球坐标系称为瞬时地球坐标系。
G P S 测 量 原 理 及 应 用
中 南 大 学
第二章 坐标系统和时间系统
2.1 天球坐标系和地球坐标系
G P S • 全球定位系统(GPS)的最基本任务是确定用户在空间的 测 位置。而所谓用户的位置,实际上是指该用户在特定坐标 量 系的位置坐标,位置是相对于参考坐标系而言的,为此, 原 首先要设立适当的坐标系。 理 • 为了描述卫星在其轨道上的运动规律,需要建立不随地球 及 自转的地心坐标系--空间固定坐标系(天球坐标系); 应 另一方面观测站是在地球表面,随地球自转而运动,因此 用 需要建立与地球固联的地心坐标系--地固坐标系(地球 坐标系)。 中 • 由上可看出在不同观测时间,其各自的坐标轴指向不同。
2、时间系统和坐标系统
格林尼治起始子午线处的平太阳时(地方时)
经极移改正:UTI=UT0+Δλ 1 X P sin YP cos tan 15 经地球自转季节性改正:UT2=UT1+ΔT
T 0.022s sin 2 t 0.012s cos 2 t 0.006s sin 4 t 0.007 s cos 4 t
4.授时和时间对比
5.时钟的主要技术指标
频率标准度、频率漂移率、频率稳定度
(1)频率标准度 与理论频率之差
(2)频率漂移率(频漂) 频率的变化率(老化率)
(3)频率稳定度 随机变化程度
(二)恒星时与太阳时
1.恒星时
以春分点为参考点
恒星时在数值上等于春分点相对于本地子午圈的时角 是地方时 真恒星时与平恒星时
(二)恒星时与太阳时
2.真太阳时和平太阳时
(1)真太阳时
以地球自转为基础,以太阳中心为参考点 太阳时=本地子午圈时角+12 太阳时长度不同,不具备时间系统条件
(2)平太阳时
以地球自转为基础,以平太阳中心为参考点
周年是运动轨迹位于赤道面,角速度恒定 太阳时=平太阳时角+12 由归算得到 是地方时
3. 区时和世界时
更多见教材P26
(3)阴阳历(农)
年以回归年为依据,而月则按朔望月为依据。 单月为30日,双月为29日,每月平均为29.5日; 以新月始见为月首,12个月为一年,总共354日。 每19年中有7年为闰年。闰年中增加一个月,称 为闰月。 更多见教材P26
2.儒略日JD
根据公历的年(Y)、月(M)、日(D)来计算对应的儒略日JD
坐标系统与时间系统
Page
11
二
时间系统
Page
12
1.时间系统——GPS
GPS时间系统采用原子时AT1秒长作时间基准,秒长定义 为铯原子CS133基态的两个超精细能级间跃迁幅射振荡192631170 周所持续的时间,时间起算的原点定义在1980年1月6日世界协调时 UTC0时,启动后不跳秒,保证时间的连续。以后随着时间积累, GPS时与UTC时的整秒差以及秒以下的差异通过时间服务部门定期 公布。 目前,GPS卫星广播星历采用WGS-84(G873)世界大地 坐标系,其起始时元为1996年9月29日,而它的坐标基准时元是 1997.0。【6】
Page
3
1.坐标系统——GPS
WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的 星历参数就是基于此坐标系统的。WGS-84坐标系统的全称是World Geodetic System(世界大地坐标系-84),它是一个地心地固坐标系统。 WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS 所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。 WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义 的协议地球极方向,X轴指向BIH984.0的起始子午面和赤道的交点,Y 轴与X轴和Z轴构成右手系。采用椭球参数为: a=6 378 137m f=1/298.257 223 563 【2】
Page
7
5.坐标系统转换
在GPS与GLONASS之间的坐标系转换,即为WGS—84 与PE—90间的转换。俄罗斯MCC(Russian Mision Control Center)的Mitrikas等 人经过长期实验与精确计算,所提出的且已经应用于GPS/GLONASS组合型接 收机中的转换参数, 被认为是目前最精确的坐标转换参数,其表达式为:
坐标系统与时间系统
坐标系统与时间系统在物理学和数学中,坐标系统和时间系统是两个基本概念。
坐标系统是一种方式来描述一个物体在空间中的位置,而时间系统则是一种方式来描述事件的顺序和时间。
在本文中,我们将探究什么是坐标系统与时间系统,它们的重要性以及它们如何相互关联。
什么是坐标系统?坐标系统是一个用于描述物体在空间中位置的方法。
它通常由一个数轴组成,数轴上的每个点都对应一个唯一的位置,这个点就是物体的坐标。
坐标系统通常使用x、y和z轴来描述三维空间中的位置。
在二维坐标系中,我们使用x、y轴来描述平面上的位置。
例如,图中所示的点(3,4)代表了在平面上x轴方向上距离原点3个单位,y轴方向上距离原点4个单位的位置。
此外,在三维坐标系中,我们需要使用z轴来描述物体在z轴方向上的位置。
二维坐标系示意图二维坐标系示意图图:二维坐标系示意图坐标系统不仅仅被用于描述物体在空间中的位置,还可以用来描述其他属性,例如温度,压力,颜色等等。
坐标系统在物理学,数学,计算机科学等领域都有广泛的应用。
什么是时间系统?时间系统是一种用于描述事件顺序和时间的系统。
尽管它看起来很简单,但其实是一个非常复杂的概念。
时间是一个连续的进程,它不能被随意停止或复制。
因此,每个时间点都是唯一的,它不能被重复。
时间系统通常由一组标准组成,这些标准被用来标记时间和时间间隔。
例如,在天文学中,我们使用“儒略日”来标记时间。
儒略日是指从公元前4713年1月1日中午12点到某个时刻之间的天数。
在其他领域,例如计算机科学和物理学中,我们通常使用时间戳来标记事件发生的时间。
时间戳是指从一个特定的时间点到事件发生时的时间间隔。
时间系统的设计是为了表达时间的准确性和可靠性。
因此,它在日常生活和科学研究中都有重要意义。
例如,在国际贸易和金融市场中,时间掌控着交易的进程,是有效监管和管理交易的重要工具,使得交易双方能够基于同一标准和时间计量单位。
坐标系统与时间系统的关系坐标系统和时间系统之间存在着密切的关系。
时间系统与坐标参照系
时间系统与坐标参照系时间系统和坐标参照系是当今科学和日常生活中不可或缺的两个概念。
时间系统是为了测量和描述事件发生的先后顺序以及事件之间的时间间隔而创建的一种系统。
坐标参照系则是为了描述和测量物体在空间中的位置和移动而建立的一种系统。
时间系统的起源可以追溯到古代。
人们最初是通过观察天空中的自然现象,如太阳的位置、月亮的相位等来判断时间的流逝。
随着时间的推移,人们开始根据不同地区的地理条件以及社会需求而发展出各种不同的时间系统。
例如,格林尼治标准时间(GMT)是根据英国伦敦的本初子午线而设立的时间系统,世界各地的时间都是相对于GMT来表示的。
随着科技的进步,时间系统也变得越来越精确。
现代的时间系统一般采用原子钟来测量时间,其中铯原子钟的误差仅约为每亿年一秒。
此外,国际原子时(TAI)和世界协调时(UTC)也是国际通用的时间系统,用于各种科学研究、航空航天以及国际交流等领域。
坐标参照系则用于描述物体在空间中的位置和运动。
人们通常使用直角坐标系,也称笛卡尔坐标系,来表示物体在三维空间中的坐标。
在直角坐标系中,我们可以使用三个互相垂直的坐标轴(通常是x、y和z轴)来描述一个物体的位置。
这样,我们可以利用这些坐标轴上的数值来计算物体之间的距离和方向。
除了直角坐标系,人们还经常使用极坐标、球坐标等其他坐标系来描述物体在不同情况下的位置。
例如,极坐标系适用于描述圆形和环形运动;球坐标系适用于描述物体在三维球体上的位置。
时间系统和坐标参照系在许多领域都起着关键作用。
例如,物理学中的力学、天文学中的星体运动、地理学中的地球表面描述等都离不开时间系统和坐标参照系的应用。
此外,全球定位系统(GPS)也是基于时间系统和坐标参照系的工作原理来实现对地球上任意位置的准确定位。
总而言之,时间系统和坐标参照系是现代科技和文明中不可或缺的概念。
它们为人类提供了准确测量和描述时间和空间的工具,极大地推动了科学研究和社会发展。
时间系统和坐标参照系是当今科学和日常生活中不可或缺的两个概念。
全球定位系统概论之坐标系统和时间系统
– 定义:以大地基准为基础建立的坐标系被称为大地 坐标系,由于大地基准又是以参考椭球为基础,因 此,又被ቤተ መጻሕፍቲ ባይዱ为椭球坐标系。
– 大地坐标
• 大地纬度(B) • 大地经度(L) • 大地高/椭球高(H)
13
大地坐标系
• 大地坐标系 参考面长半轴为a,短半轴b为旋转轴的
椭球面;椭球面几何中心与直角坐标系原 点重合,短半轴与直角坐标系Z轴重合。
全球旋转; CGCS 2000大地坐标系是右手地固直角坐标系。原点在地
心; 轴为国际地球自转局(IERS)参考极(IRP)方向, 轴为IERS的参考子午面(IRM)与垂直于 轴的赤道面的 交线, 轴与 轴和 轴构成右手正交坐标系。
24
2000国家大地坐标系
• 经国务院批准,根据《中华人民共和国测绘法》, 中国自2008年7月1日起启用2000国家大地坐标系。 为此,国家测绘局6月18日发布公告。
32
时间基准的要求
• 运动应该是连续的周期的。
• 运动的周期应该由充分的稳定性。
• 运动的周期必须具有复现性。
• 对于GPS最重要的时间系统有三种:恒
25
2000国家大地坐标系(CGCS 2000 )
• 2000国家大地坐标系(CGCS 2000 )
– 椭球参数
• 长半轴:
a 6378137m
• 地球(包括大气)引力常数: GM 3.9860044181014 m3s2
• 地球动力形状因子:
J2 0.001082629832258
• 地球自转速度:
• 在空间固定的坐标系统:与地球自转无 关,对于描述卫星的运动位置和状态极 其方便
• 与地球体固联的坐标系统:对于表达地 面观测站的位置和处理GPS观测数据尤 为方便
GPS定位的坐标系统和时间系统精选全文
目前使用旳协议天球坐标系要求如下
1980年,国际大地测量学会(IGA)和国际天文学会(IAU)决定,自1984年1 月1后来启用新原则历元旳协议天球坐标系,以儒略日JD=2451545.0为原则历 元(记为JD2000.0,公历为2023年1月1日12hr00min00s),其坐标轴指向是以 原则历元旳赤道和春分点所定义
2.2 GPS使用旳坐标系统
2.2.1 协议天球坐标系 2.2.2 协议地球坐标系(CTS) 2.2.3 坐标转换 2.2.4 地图投影与高斯-克吕格平面直角坐标系
2.2.1 协议天球坐标系
•主要内容 1.天球旳基本概念 2.天球坐标系 3.岁差与章动 4.协议天球坐标系
1.天球及其基本概念
• 天球(Celestial Sphere):是一种半径巨大旳假想旳虚球, 是天文学上用来描述天体位置旳参照物 有日心天球、地心天球和站心天球
•自然地表形状起伏较大且极不规则, 不适合用来代表地球旳形状 •人们是利用大地水准面来替代地球 旳形状
大地水准面
•水准面:水处于静止时旳表面 •与水准面相切旳平面称为水平面 •大地水准面:假设在重力作用下,静止海水面无限延伸,穿 越大陆、岛屿、山川、平原而形成旳一种假想旳自行封闭曲面
大地水准面示意图
间系统可有不同旳时间原点。 • 时间单位尺度是由时钟来拟定旳,不同步钟有不同旳度量
时间方式 • 从本质上讲,时间系统间旳差别体目前时钟上。
时间度量旳精度对GPS定位非常主要
坐标系统与时间系统
坐标系统与时间系统坐标系统与时间系统坐标系统和时间系统是人类社会中不可或缺的重要概念,它们在我们的日常生活和科学研究中都扮演着关键角色。
坐标系统用于确定位置和距离,而时间系统用于测量和记录时间。
本文将分别探讨坐标系统和时间系统的原理、种类以及应用。
首先,让我们来了解坐标系统。
坐标系统是一种用于描述和定位点在空间中位置的数学和逻辑系统。
它由一组数值或符号组成,用于标识和表示各个点的位置。
坐标系统可以是一维、二维或三维的,分别用于描述一条直线、一个平面或一个立体。
常见的三维坐标系统是笛卡尔坐标系,它以直角坐标的形式描述点在三个互相垂直的轴上的位置坐标。
笛卡尔坐标系以坐标原点为基准,通过三个轴分别表示X、Y和Z轴。
点的位置由三个坐标值表示,分别对应X、Y和Z轴上的距离。
这种坐标系统非常常见,广泛应用于几何、物理和工程学中,用于定位和描述三维空间中的对象和位置。
除了笛卡尔坐标系,还有其他种类的坐标系统,如极坐标系、球坐标系和地理坐标系。
极坐标系使用半径和角度来描述点在平面上的位置,球坐标系使用半径、纬度和经度来描述点在球体上的位置,地理坐标系使用经度和纬度来定位地球上的地点。
不同的坐标系统适用于不同的应用领域,能够更准确地描述和定位物体和地点。
接下来,我们将关注时间系统。
时间系统是一种用于测量和记录时间的系统,用于确定事件发生的先后顺序和持续时间的长短。
时间系统可以是相对的或绝对的。
相对时间系统是以某个事件为基准,将其他事件与之进行比较和计算。
绝对时间系统则是以一个不变的基准来测量时间,如地球自转的周期。
最常见的时间系统是格林威治时间(GMT)和协调世界时(UTC)。
GMT是以伦敦格林威治天文台的时间为基准,被广泛应用于世界各地。
UTC是一种更精确的时间系统,使用原子钟来测量时间,并通过闰秒进行校正。
UTC作为国际标准时间,被广泛应用于科学、航空和通信领域。
除了GMT和UTC,还有其他种类的时间系统,如地方时、夏令时和万年历。
坐标系统和时间系统概述
坐标系统和时间系统概述坐标系统和时间系统是数学和物理学中重要的概念,用于描述和定位事件和物体在空间和时间上的位置。
这两个系统是相互独立的,同时也是相互关联的。
坐标系统是一种用于描述物体在空间中位置的工具。
它由一组数值构成,其中每个数值对应于一个维度。
最常见的坐标系统是笛卡尔坐标系,它由三个坐标轴x、y和z组成,分别代表空间中的长度、宽度和高度。
通过在这些轴上取特定的数值,可以确定一个点在空间中的位置。
其他常见的坐标系统包括极坐标系和球坐标系,它们在描述某些特定情况下更为方便。
时间系统是一种用于测量和描述时间的方法。
最常见的时间系统是格林威治标准时间(GMT)或协调世界时(UTC),它是以地球自转为基准的。
人们通过定义一天的长度、将一天分为不同的小时、分钟和秒来测量时间。
除了GMT/UTC,不同的国家和地区还可能使用自己的标准时间,例如中国使用的北京时间(CST)。
坐标系统和时间系统相互关联。
在物理学中,时间通常被视为第四个维度,与三维空间坐标相结合形成一种称为时空的四维坐标系统。
这种坐标系统被广泛应用于相对论和宇宙学等领域,以描述物体在空间和时间上的位置和运动。
此外,坐标系统和时间系统还被广泛应用于导航、地图制作、地理信息系统、航空航天等领域。
人们通过在地图上标记特定的坐标和使用时间系统来确定位置和计算行驶时间。
总之,坐标系统和时间系统是描述和定位事件和物体在空间和时间上位置的重要工具。
它们通过数值的组合来刻画和测量空间和时间的特征,对科学研究和实际应用起着关键的作用。
坐标系统和时间系统在现代科学和技术中发挥着巨大的作用。
它们不仅仅是用于描述和定位空间和时间的工具,还是解决各种实际问题的基础。
在地理学和地理信息系统中,坐标系统被用于描述和定位地球上的特定位置。
最常见的地理坐标系统是经纬度坐标系统,其中经度用于测量位置的东西方向,纬度用于测量位置的南北方向。
地理坐标系统能够准确地描述地球上的位置,是导航和地图制作的基础。
坐标系统与时间系统
坐标系统与时间系统坐标系统是现代科学与技术领域中常用的工具,用于确定和描述地球表面上的点的位置。
它是一种将地球表面划分为一系列网格或网格线,并用坐标值来标识位置的方法。
而时间系统则是用于测量和表示时间的系统。
在现代的全球范围内,人们通常使用的是经度、纬度和协调世界时(UTC)这两个系统。
下面将对坐标系统和时间系统进行详细介绍。
首先,坐标系统是用来确定地球上某一点的位置的系统。
经度和纬度是两个用来描述地理位置的重要概念。
经度是按照东西方向的角度或弧度来测量地球上某点的位置,其基准线是通过英国伦敦的本初子午线(0度经度),向东为正值,向西为负值。
纬度是按照南北方向的角度或弧度来测量地球上某点的位置,其基准线是赤道(0度纬度),向北为正值,向南为负值。
经纬度的组合可以准确地确定地球表面上任意一点的位置。
与此同时,时间系统也是现代社会中不可或缺的一部分。
协调世界时(UTC)是国际上通用的时间系统。
它以原子钟的标准时间为基准,以24小时制度计算时间,用于统一世界各地的时间标准。
UTC与格林威治标准时间(GMT)几乎是相同的,只有在几毫秒的范围内略有差异。
现在,人们一般使用GPS卫星系统来获得准确的时间和位置数据。
坐标系统和时间系统在现代科学研究中有着广泛的应用。
例如,在地理研究中,人们可以利用坐标系统准确地标识和定位地球上的地貌、河流、山脉等自然地理要素。
在气象和气候研究中,人们可以使用坐标系统来记录和分析天气数据,了解气候变化的规律。
此外,在导航和地理信息系统(GIS)领域,坐标系统也是至关重要的一部分,人们可以通过坐标系统来实现导航和地图制作的功能。
时间系统的应用也是多种多样的。
在天文学研究中,人们可以使用绝对时间来记录和标识天体的运动和变化。
在航空航天领域,时间的准确性和同步性对于飞行安全和导航至关重要。
此外,时间系统在金融交易、信息技术和交通运输等领域也有着重要的作用。
人们可以使用时间系统来确保金融交易的准确性和一致性,以及同步全球的信息和通信网络。
GPS测量的坐标系统与时间系统
GPS测量的坐标系统与时间系统全球定位系统(GPS)是一种由美国政府运营的卫星导航系统,可提供全球定位、导航和时间服务。
它是许多现代技术和应用的基础,例如车辆导航、飞行导航、航海、地图绘制等。
GPS测量提供了一种在地球上确定位置的精确方法,但是它的坐标系统和时间系统需要特定的标准和约定来确保精度。
本文将介绍GPS测量中使用的坐标系统和时间系统,并讨论它们与其他GPS应用和技术的关系。
坐标系统GPS测量使用经纬度和高度来确定位置,这是因为它可以提供全球范围内的定位。
经度是一个位置相对于本初子午线的度数,可以从0度到360度,东经为正,西经为负。
纬度是一个位置相对于赤道的度数,可以从-90度到90度,北纬为正,南纬为负。
高度是一个位置相对于海平面的高度。
GPS测量使用的坐标系统是WGS 84(World Geodetic System 1984),这是一种由美国国防部和国家海洋和大气管理局发展的全球定位系统坐标系统。
WGS 84使用地球模型作为椭球体,将地球视为一个近似椭球体。
这个椭球体的参数被称为参考椭球体,在WGS 84中,参考椭球体的参数为a=6378137.0 m,f=1/298.257223563。
WGS 84是GPS定位用的最通用的地理坐标系,在大多数现代地图上都采用了WGS 84坐标。
此外,许多其他地理信息系统(GIS)和工程应用也使用WGS 84坐标系来表示地球上的位置。
时间系统在GPS测量中,时间系统也是至关重要的。
GPS测量使用一个基于原子钟的时间系统来测量信号的传播时间,并计算出接收器的位置。
原子钟比基于机械振荡器的钟表更为精确,可以维持极高的准确性。
GPS测量使用的时间系统是GPS时间,它是由GPS卫星提供的21个原子钟的平均值。
GPS时间以UTC(协调世界时)为基础,但它使用了其他一些修正来保持与UTC同步。
UTC是一个国际标准时间系统,它基于原子钟的时间,但考虑了地球自转的变化。
坐标系统及时间系统
数GP字S技摄术影Байду номын сангаас测应量用
辽石宁家工庄程铁技路术职大业学技
影坐像标>系采统样与时间系统>坐标系统
测测绘绘学工院程
§2.1 坐标系统 系
坐标系统
地球坐标系统
地心坐标系 参心坐标系
WGS84坐标系 北京54坐标系 西安80坐标系
天球坐标系统
数GP字S技摄术影与测应量用
辽石宁家工庄程铁技路术职大业学技
参心大地坐标系的应用十分广泛,它是经典大地测量的一种通 用坐标系。根据地图投影理论,参心大地坐标系可以通过高斯投 影计算转化为平面直角坐标系,为地形测量和工程测量提供控制 基础。由于不同时期采用的地球椭球不同或其定位与定向不同, 我国历史上出现的参心大地坐标系,主要有BJZ54(原)、 GDZ80和BJZ54等三种。
二、1954年北京坐标系(BJZ54(原))
解放初期,我国大地坐标系是采用河北石家庄市的柳新庄一等天 文点作为原点的独立坐标系统,采用该点的天文坐标作为其大地坐 标,以海福特椭球进行定位。
数GP字S技摄术影与测应量用
辽石宁家工庄程铁技路术职大业学技
影坐像标>系采统样与时间系统>坐标系统
测测绘绘学工院程
(1)因1954年原北京坐标系采用了克拉索夫斯基椭球,与现在的精 确椭球参数相比,长半轴约长109m。
(2)参考椭球面与我国所在地区的大地水准面不能达到最佳拟合, 在我国东部地区大地水准面差距自西向东增加最大达+68m。
一、 概述
在经典大地测量中,为了处理观测成果和传算地面控制网的坐 标,通常须选取一参考椭球面作为基本参考面,选一参考点作为 大地测量的起算点(大地原点),利用大地原点的天文观测量来 确定参考椭球在地球内部的位置和方向。参心坐标系中的“参心” 二字意指参考椭球的中心,所以参心坐标系和参考椭球密切相关。 由于参考椭球中心无法与地球质心重合,故又称其为非地心坐标 系。参心坐标系按其应用又分为参心大地坐标系和参心空间直角 坐标系两种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
或赤纬δ= 900-θ ➢第三参数:赤经α
※球面坐标和空间直角坐标 之间的坐标转换
图2-1
3 大地坐关标于系坐标系的几种表达形式
常用于地球坐标系
➢ 大地坐标
大地经度L 大地纬度B 大地高H
➢ 大地坐标与空间直 角坐标之间的坐标 转换
图2-2
“球面坐标和空间直角坐标之间的坐标转换”
➢ 瞬时平北天极(简岁称差平北天极)
按照岁差的变化规律在天球上运动的北天极
➢ 瞬时天球平赤道和瞬时平春分点
与平北天极相应的天球赤道和春分点
➢ 瞬时北天极(或真北天极)
观测时的北天极
➢ 瞬时天球赤道和瞬时春分点(或称真天球 赤道和真春分点)
与瞬时北天极相应的天球赤道和春分点
章动
在日月引力等因素 的影响下,瞬时北 天极绕瞬时平北天 极产生旋转,大致 成椭圆形轨迹,其 长半径约为9.2秒, 周期约为18.6年。 这种现象称为章动
2、瞬时地球自转轴
“观测瞬间地球自转轴的位置”
天球坐标系” 原点位于地球质心 z轴指向瞬时地球自转轴(瞬时北天极) x轴指向瞬时春分点 y轴按构成右手坐标系取向
在岁差和章动的影响下,瞬时天球坐标系的坐标 轴指向,在不断地变化,为非惯性坐标系统。
2、协议天球坐标系
历元平天球坐标系: 选择某一历元时刻t,以此瞬间的地球自转轴 和春分点方向分别扣除此瞬间的章动值作为z 轴和x轴的指向,y轴按构成右手坐标系取向, 坐标系原点仍取地球质心。
三、天球坐标系与地球坐标系之间的坐 标转换
四、站心地平坐标系 重点 五、坐标系的两种定义方式
1 空关间于直坐角坐标标系系的几种表达形式
• 位置矢量在3个坐标轴上的投影(X,Y,Z) • 定义
①坐标原点的位置 ②3个坐标轴的指向 ③长度单位 • 优点 便于进行坐标转换
关于坐标系的几种表达形式
2 球面坐标系
x cos •cos
y
rsin
•
cos
(2-1)
z sin
r x2 y2 z2
arctan(y / x)
(2-2)
arctan(z / x2 y 2 )
一、天球坐标系
(一)基本概念
(二)天球坐标系的定义
(三)岁差和章动(了解) (四)瞬时极天球坐标系和协议天球坐标系
(了解)
第二章 坐本标章系主统要和内时容间系统
§2.1 天球坐标系与地球坐标系 难点 §2.2 WGS-84坐标系和我国大地坐标系 §2.3 坐标系统之间的转换 重点 §2.4 时间系统 复习思考题
§※2.关1于天坐标球系坐的几标种系表与达形地式球坐标难系点
本节主要内容: 一、天球坐标系 二、地球坐标系
岁差和章动的影响
实际上,在岁差和章 动的共同影响下, 瞬时北天极绕北黄 极旋转的轨迹:顺 时针、波浪式地旋转。
(四)瞬时极天球坐标系和 协议天球坐标系
1、瞬时极天球坐标系(真天球坐标系 )
2、协议天球坐标系
3、瞬时极天球坐标系和协议天球坐标系 的坐标转换
1、“以瞬瞬时时极北天天球极坐和标瞬时系春(分真点天为球基坐准标点系建立)的
通过天球中黄心道,面且与垂赤直道于面黄的道夹面角的直线与 天球的交点
√v 春分点
地球公转的轨道面与天球相交的大圆。 当太阳即在当黄地道球上绕,太从阳天公球转南时半,球地向球北上半的阳道在的天交球点上运动的轨迹
假设(地球二为)均质天的球球体坐,且标没系有其的它定天体义摄动力
x轴和z轴构成右手坐标
Y
系统
X
点的坐标表示
(X,Y,Z)
2. 天球球面坐标系
系统定义
➢坐标原点位于地 球质心
➢向径长度r ➢赤经α ➢赤纬δ
点的坐标表示
(r,α,δ)
实际上(地球三自)转轴岁在差空和间的章方动向是变化的,
由此导致:
➢北天极在天球上绕北黄极依顺时针方向旋转 ➢春分点在黄道上产生缓慢的西移
√v 天球
(一)基本概念 是指以地球质心M为中心,半径r为任意长度
的一个假象的球体
√v 天轴与天极 地球自转轴的延伸直线为天轴;天轴与天球
√v 天球赤道
的交点Pn和Ps称为天极
(面)
√v 天球子午面
通过地球质心M与天轴垂直的平面
(圈)
包含天轴并通过地球上任一点的平面
√v 黄道 √v 黄赤交角 √v 黄极
系的坐标转换
(二)地极移动(了解)
(三)瞬时极地球坐标系和协议地球坐标系 (了解)
坐1.标原地点心位空于地间球直质心角坐标系
Z轴 X轴 Y轴
2. 地心大地坐标系
大地经度L 大地纬度B 大地高H
(二)地极移动
1、概念
地球自转轴相对地球体的位置是变化的,从 而地极点在地球表面上的位置,也是随时间 而变化的。
的影响;即假定地球的自转轴,在空间的方向是 固定的,春分点在天球上的位置保持不变。
❖ 天球空间直角坐标系 ❖ 天球球面坐标系 ❖ 天球空间直角坐标系和天球球面坐标
系之间的坐标转换
公式(2-1)(2-2)
系统1定. 义天球空间直角坐标系
➢坐标原点位于地球质心 M
➢Z轴指向天球北极
Z
➢x轴指向春分点
➢y轴垂直于xMz平面,与
北天极在天球上的这种复杂运动,通常分 解为两种规律的运动:
➢岁差 ➢章动
岁差和章动的影响
岁差
假设月球的引力及其运 行轨道是固定不变的, 同时忽略其它天体引力 的微小影响。则在日月 引力的影响下,使北天 极绕北黄极以顺时针的 方向缓慢地旋转,在天 球上北天极的运动轨迹, 近似地构成一个以北黄 极为中心,以黄赤交角 为半径的小圆,这种现 象称为岁差。
第二章 坐标系统和时间系统
时间系统
❖ 恒星时ST(Sidereal Time) ❖ 平太阳时MT(Mean Solar Time) ❖ 世界时UT(Universal Time) ❖ 原子时AT(Atomic Time) ❖ 谐调世界时UTC(Coordinated Universal
Time) ❖ GPS时间系统 GPST
协议天球坐标系:以标准历元t0(J2000.0)所 定义的平天球坐标系。
3、瞬时极天球坐标系和 协议天球坐标系的坐标转换
可通过岁差和章动旋转变换来实现 参考教材P15公式(2-11)、(2-12)
二、地球坐标系
(一)定义
地心空间直角坐标系 地心大地坐标系 地心空间直角坐标系和地心大地坐标