材料导论碳纳米管综述
材料导论碳纳米管综述

姓名:欧阳一鸣学号:2013012532班级:高材1313潜在的碳纳米管场效应晶体管的模拟电路介绍在集成电路晶体管的指数增长摩尔定律所描述的内容持续了近一个半世纪里。
然而,2010年的国际半导体技术发展路线图预测增长将减缓到2013年底。
这主要是因为互补金属氧化物半导体(CMOS的比例正迅速接近其物理限制带来了许多障碍,如更高的亚阈值传导,栅氧化层和结泄漏增加,低输出电阻和跨导,增加热量生产。
这使得半导体行业探索不同的材料和设备更加超越摩尔定律(如通过创造ITRS)。
在这些材料和器件研究,碳纳米管场效应晶体管(CNFET)已经获得了,因为它们规模小,流动性高,近弹道输运,大电流密度和较低的固有电容。
自推出CNFETs该研究已主要重点对他们的数字电路使用。
甚至中等规模薄流明碳纳米管(CNT的集成电路已报告了灵活塑料基板。
然而,开/关比(也称为噪声余量)通常很小对于目前制造CNFETs因为存在金属碳纳米管[,因此需要更多的调查,他们用于数字电路。
与此相反,CNFETs具有更多潜在用于高性能模拟电路,其中所述晶体管不需要充分关闭。
此外,特性perform-ANCE 度量类似物或RF晶体管是更适合材料和碳纳米管的设备性能和制造tol-era nces ,也可以更轻松得的。
CNFETS础知识场效应管的结构和MOSFE样的CNFETs在传统的MOSFET源区和漏区是由两个重掺杂区中的硅衬底形成,并且栅极由多晶硅材料,其是绝缘的形成从基板由薄的二氧化硅层。
如果电压被施加到栅极端,下方的连续信道栅极形成用于电流流动的源极和漏极之间。
另一方面为CNFETs栅极,源极和漏极接触由像铬或钨金属与 4.5电子伏特的功函数。
H是金属接触的高度,L是长度。
值得一提的是,出两种类型CNFETs 即肖特基势垒和MOSFE等的,选择后者,因为它具有较高的离子/IOFF比率,过渡频率f 低的,更低的寄生电容,更好的AC性能和更高的制造可行性。
碳纳米管的特性及其高性能的复合材料综述

碳纳米管的特性及其高性能的复合材料综述摘要作为一种具有较强力学性能的材料,碳纳米管自诞生以来就受到了广泛关注,并且从以往的实践经验上来看,碳纳米管是非常理想的制备符合材料的形式。
在本文的研究当中,主要立足于这一领域进行分析,提出了碳纳米管本身所具备的特性,以及这种材料在实践过程当中的优越性,进而提出应用策略,希望能够在一定程度上起到借鉴作用。
关键词碳纳米管;复合材料;复合镀迄今为止,碳纳米管材料已经在诸多领域当中得以运用,并且取得了比较显著的成果,其中包括电极材料、符合材料、催化剂载体等诸多方面。
在应用过程当中,碳纳米管的优异性能能够使其在符合材料当中起到较强的作用。
本文研究的侧重点在于碳纳米管的制备和复合材料的应用方面,提出了碳纳米管的特性及其高性能的复合材料。
1 碳纳米管的结构及其性能从结构上来看,碳纳米管具有石墨层状的结构,其中包括单壁碳纳米管和多壁碳纳米管。
组成纳米碳管的C-C共价键是自然界当中具有稳定特征的化学键,无论在理论计算还是实践当中,都能够看出来,碳纳米管具有非常强的韧性。
在制备过程当中,碳纳米管主要涉及的电弧放电、催化热解和激光蒸发等。
具体来讲,在电弧放电当中,主要制备单壁碳纳米管,但是其中具有一定的弊端,比如产率非常低,但是成本却很高;而催化热解法当中所表现出来的是设备简单和生长速度较快等特点,一般在现代工程的批量化生产过程当中,会用到这种方法。
在当前应用领域,高强度的微米级碳纤维复合材料有着非常广阔的应用前景和较好的应用效果。
但是当前我国在这一领域所取得的进展依旧比较滞后,要想在强度上取得新的突破,必须要有效减少碳纤维的直径,提高纵横比。
碳纳米管是比较典型的纳米材料,纵横比非常可观。
更为重要的是,从长度上来讲,纳米管对于复合材料的加工性能并没有非常明显的不良影响,使用这一材料能够有效聚合复合材料,改变传统加工当中的一些问题,增强复合材料的导电性能。
再加上纳米管当中所具备的结构优势,使得聚合物电导率提升的同时也不容易被改变性能[1]。
新材料概论——碳纳米管

新材料概论——碳纳米管碳纳米管是一种由碳原子组成的纳米材料,具有特殊的结构和优异的性能,被认为是未来材料科学发展的重要方向之一、本文将从碳纳米管的定义、制备方法、结构特点和应用领域等方面进行阐述。
首先,碳纳米管是由碳原子按照特定的方式排列而成的管状结构。
它们的直径通常在纳米尺度范围内,但长度可达数微米至数厘米。
碳纳米管可以分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs)两种形式。
单壁碳纳米管具有单层碳原子构成的管状结构,而多壁碳纳米管由多个同心层组成,每层之间有适当的间隙。
制备碳纳米管的方法有很多种,包括化学气相沉积、物理气相沉积、电化学剥离等。
其中,化学气相沉积是最常用的方法之一、该方法在惰性气氛中将碳源分解并沉积在金属催化剂上,从而形成碳纳米管。
此外,还可以利用电弧放电、化学还原剥离等方法获得碳纳米管。
碳纳米管的结构特点使其具有许多独特的性能。
首先,碳纳米管具有优异的导电性能,其导电能力可媲美铜和银等传统导电材料。
其次,碳纳米管具有优异的机械性能,具有很高的抗拉强度和模量。
此外,碳纳米管还具有优异的光学性质和热导性能,具有良好的化学稳定性和抗辐射性能。
碳纳米管的应用领域非常广泛。
在电子器件方面,碳纳米管可以用于制备纳米晶体管和纳米电极,可用于高分辨率显示器、柔性电子器件和高性能电池等。
在能源领域,碳纳米管也可以用于制备锂离子电池和超级电容器,以提高能源存储和转换效率。
此外,碳纳米管还可以用于传感器、生物医药、纳米催化剂等领域。
总之,碳纳米管作为一种新型材料,具有独特的结构和优异的性能,在材料科学领域具有广阔的应用前景。
随着制备技术的不断改进和研究的深入,碳纳米管的应用范围将进一步扩大,为各个领域的科技发展和实际应用带来更多的可能性。
碳纳米管材料

碳纳米管材料碳纳米管材料是一种由碳原子排列成管状结构的纳米材料。
它的主要特点是具有极高的强度、优异的导电性和良好的导热性。
碳纳米管被广泛研究和应用于各个领域,如电子器件、能源储存、纳米传感器等。
首先,碳纳米管具有极高的强度和韧性。
由于碳原子的键结构,碳纳米管能够承受很高的应力。
研究表明,碳纳米管的抗拉强度可以达到几十倍于钢铁的强度。
这使得碳纳米管成为一种理想的结构材料,可以用于制造轻质、高强度的航空航天材料和复合材料。
其次,碳纳米管具有优异的导电性。
由于碳原子的p轨道与π结合,碳纳米管可以形成导电路径,使得电子在材料中能够快速传导。
碳纳米管的电导率可以达到金属的数倍。
这使得碳纳米管成为一种理想的电子器件材料,如场效应晶体管、电磁屏蔽材料等。
此外,碳纳米管还具有良好的导热性。
由于碳纳米管具有纳米尺度的空洞结构,使得热量能够在管状结构中快速传播。
研究表明,碳纳米管的导热性能可以达到金属的数倍,甚至具有超越钻石的导热性能。
这使得碳纳米管在热管理领域具有巨大的潜力,如高效散热材料、热界面材料等。
除此之外,碳纳米管还具有许多其他特殊的性质和应用。
例如,碳纳米管可以吸附和储存气体,用于气体分离和气体传感器。
碳纳米管还可以用于催化反应,由于其特殊的表面性质和活性位点,对于某些化学反应具有良好的催化效果。
此外,碳纳米管还可以用于生物传感器和纳米医药领域,用于检测和治疗疾病。
总之,碳纳米管作为一种新型纳米材料,具有极高的强度、优异的导电性和导热性,以及许多其他特殊的性质和应用。
随着对碳纳米管的深入研究和开发利用,相信它将在未来的科技领域有更广泛的应用。
纳米材料文献综述

北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OFCHEMICAL TECHNOLOGY碳纳米管的性质与应用姓名:**专业:应用化学班级: 0804学号: *********2011年05月文献综述前言本人论题为《碳纳米管的性质与应用》。
碳纳米管是一维碳基纳米材料,其径向尺寸为纳米级,轴向尺寸为微米量级,管子两端基本上都封口。
碳纳米管具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等力学,电磁学特点。
近年来,碳纳米管在力学、电磁学、医学等方面得到了广泛应用。
本文根据众多学者对碳纳米管的研究成果,借鉴他们的成功经验,就碳纳米管的性质及其功能等方面结合最新碳纳米管的应用做一些简要介绍。
本文主要查阅近几年关于碳纳米管相关研究的文献期刊。
碳纳米管(CNT)是碳的同素异形体之一,是由六元碳环构成的类石墨平面卷曲而成的纳米级中空管,其中每个碳原子通过SP2杂化与周围3个碳原子发生完全键合。
碳纳米管是由一层或多层石墨按照一定方式卷曲而成的具有管状结构的纳米材料。
由单层石墨平面卷曲形成单壁碳纳米管(SWNT),多层石墨平面卷曲形成多壁碳纳米管(MWNT)。
自从1991年日本科学家lijima发现碳纳米管以来,其以优异的力学、热学以及光电特性受到了化学、物理、生物、医学、材料等多个领域研究者的广关注。
一、碳纳米管的性质碳纳米管的分类研究碳纳米管的性质首先要对其进行分类。
(1)按照石墨层数分类,碳纳米管可分为单壁碳纳米管和多壁碳纳米管。
(2)按照手性分类,碳纳米管可分为手性管和非手性管。
其中非手性管又可分为扶手椅型管和锯齿型管。
(3)按照导电性能分类,碳纳米管可分为导体管和半导体管。
碳纳米管的力学性能碳纳米管无缝管状结构和管身良好的石墨化程度赋予了碳纳米管优异的力学性能。
其拉伸强度是钢的100倍,而质量只有钢的1/ 6,并且延伸率可达到20 %,其长度和直径之比可达100~1000,远远超出一般材料的长径比,因而被称为“超强纤维”。
碳纳米管材料的研究及其应用前景

碳纳米管材料的研究及其应用前景碳纳米管(Carbon nanotubes,CNTs)是由碳原子组成的一种空心管状结构材料,具有极高的强度、导电性和导热性。
由于它独特的物理和化学特性,自其发现以来,研究人员不断探索其广泛的应用前景。
本文将介绍碳纳米管材料的基本特性、制备方法以及其在电子、能源、生物医学和环境保护等领域的应用前景。
一、碳纳米管材料的基本特性碳纳米管具有以下几种基本特性:1.直径十分微小:CNTs的直径在1~100纳米之间。
这使得CNTs具有很高的比表面积,能够增加与其他材料的接触面积。
2.极高的强度:CNTs的强度是其他材料的1~10倍,而重量却非常轻。
3.优异的导电性:CNTs的电阻率约为铜的1/10,可作为电子器件的理想材料。
4.高导热性:CNTs的导热性是铜的1.5倍。
5.化学惰性:由于碳的化学惰性,CNTs对大多数化学物质的影响较小,有利于其应用。
二、碳纳米管制备方法CNTs的制备方法种类繁多。
下面我们介绍几种典型的制备方法。
1.化学气相沉积法(CVD法)CVD法是一种通过气相物质反应制备CNTs的方法。
其基本原理是将碳源物质在高温下分解,使碳原子与金属催化剂相互作用生成碳纳米管。
CVD法是制备CNTs最优秀、最经济、最可定向的方法之一。
2.电弧放电法电弧放电法是一种利用碳棒电弧在惰性气氛中蒸发和冷凝的方法。
利用惰性气氛,如氦、氩、氮和氩氮混合气体等,在自由场内放电形成高温、高压电弧,产生不同形态(单壁、多壁)的CNTs。
3.化学还原法化学还原法通常使用碳酸钠和其他金属盐作为原料。
其基本原理是将金属离子还原为纳米金属,并使金属与碳源分解并生成CNTs。
化学还原法通常需要很长的反应时间,往往需要在高温条件下完成。
三、碳纳米管的应用前景1.电子学领域CNTs的高导电性和微小的直径使之成为微处理器中理想的电路元件。
CNTs的高速传输和强度也为光电晶体管、电晕放电、场发射和纳米电子器件提供了非常好的材料基础。
碳纳米管是什么材料

碳纳米管是什么材料碳纳米管是一种由碳原子构成的纳米材料。
它们具有独特的结构和特性,在材料科学和纳米技术领域引起了广泛的关注和研究。
碳纳米管可以是单壁碳纳米管(SWNT)或多壁碳纳米管(MWNT)。
在单壁碳纳米管中,碳原子以只有一个碳原子厚度的碳层形成管状结构,而在多壁碳纳米管中,形成了多层碳管。
碳纳米管具有许多独特的物理和化学性质,使其成为多个领域的研究热点。
首先,碳纳米管具有优异的力学性能。
由于碳原子之间的强共价键,碳纳米管具有很高的强度和刚度。
尽管碳纳米管的直径非常小,但它们可以以惊人的强度抵抗拉伸和压缩。
这使得碳纳米管成为可能的材料选择,用于构建轻型和高强度材料。
其次,碳纳米管具有优异的导电性能。
碳纳米管的导电性与其结构有关。
SWNT是从一个单一的碳层卷曲而成,因此具有较高的导电性,甚至可以比铜更好。
MWNT由多层碳管组成,导电性较差,但仍然较高。
这种优良的导电性使得碳纳米管成为纳米电子器件的重要组成部分,如场效应晶体管和纳米线。
此外,碳纳米管还具有出色的热导性。
由于碳纳米管的结构,热能可以在其结构的纵向方向上快速传导,而横向方向上的传导受到限制。
这使得碳纳米管成为制造高效热界面材料的理想选择,用于提高电子器件和热管理系统的散热性能。
碳纳米管还具有很强的化学稳定性和抗腐蚀性。
由于碳纳米管是由碳原子构成的,它们对大多数化学物质都具有良好的抗腐蚀性。
这种化学稳定性使得碳纳米管能够在极端的环境条件下使用,例如高温和酸碱溶液中。
由于碳纳米管具有独特的结构和性质,它们在许多领域都有着广泛的应用。
在材料领域,碳纳米管被用于制造复合材料、纳米增强材料和高性能纤维。
碳纳米管还被应用于电子领域,包括纳米电池、电子器件和传感器。
此外,碳纳米管还用于生物医学领域,如药物传递和生物传感器。
然而,尽管碳纳米管在许多领域都有着广泛的应用前景和潜力,但其大规模生产和应用仍然面临许多挑战。
首先,碳纳米管制备方法的成本较高,限制了其商业化应用。
碳纳米管材料的介绍

碳纳米管材料的介绍碳纳米管是一种由碳原子构成的纳米材料,具有许多独特的性质和应用潜力。
它的发现引起了科学界的广泛关注和研究。
碳纳米管具有极高的强度和刚度。
由于碳原子之间的键合非常强大,碳纳米管能够承受很大的拉伸力和压缩力,使其具有很强的抗弯曲性能。
这使得碳纳米管成为一种理想的材料,用于制造轻巧但坚固的结构,如飞机和汽车部件。
碳纳米管具有优异的导电性和导热性。
碳纳米管内部存在着一维的碳原子排列,使得电子在其内部能够自由传输,形成了高效的电子输运通道。
因此,碳纳米管被广泛应用于电子器件领域,如晶体管和纳米电线等。
同时,碳纳米管还具有良好的热导性能,使其成为制造高效散热器和热电材料的理想选择。
碳纳米管还具有丰富的表面化学活性和高比表面积。
碳纳米管的表面可以通过化学修饰来引入不同的功能团,从而赋予其特定的化学性质和应用功能。
例如,通过在碳纳米管表面引入亲水性团体,可以制备出具有优异吸附能力的纳米过滤器。
而碳纳米管的高比表面积则使其成为一种理想的催化剂载体,可用于提高化学反应的效率和选择性。
碳纳米管还具有良好的光学性能和生物相容性。
由于碳纳米管具有一维结构,使得它们能够吸收和发射可见光和红外光。
这使得碳纳米管在光学传感器和光电器件领域具有广泛的应用前景。
此外,碳纳米管还具有良好的生物相容性,可以用于生物医学领域,如药物传递和组织工程等。
碳纳米管具有多种优异的性质和应用潜力,使其在材料科学、电子学、化学和生物医学等领域具有广泛的应用前景。
随着对碳纳米管性质和制备方法的深入研究,相信碳纳米管将会在未来的科技发展中发挥更加重要的作用。
碳纳米管研究报告

碳纳米管研究报告碳纳米管是一种新兴的材料,它既具有高强度又有超强的耐腐蚀性,在未来将会发挥重要作用。
本文将结合碳纳米管的化学特性、力学性能、电学性能和生物医学应用,对它进行深入研究,旨在发掘它的潜力,未来能够更好地应用它。
一、碳纳米管的化学特性碳纳米管具有较高的碳氧化物结构,具有超强的耐腐蚀性。
其表面具有一定的电荷,这可以改变它的生物活性,增加其作为纳米材料的有效性。
此外,还有一些碳氧化物,如碳酸钙等,具有很好的附着力,对于不同的应用有着不同的功能。
二、碳纳米管的力学性能碳纳米管有着优异的力学性能,其弹性模量的大小可以根据其结构而定,它们有着非常高的抗弯强度,抗拉强度比钢材还要高,耐磨性也比钢材高。
同时,它们还具有很强的抗冲击能力,甚至在超高温下也能保持一定的强度。
三、碳纳米管的电学性能碳纳米管也具有优异的电学性能,其电阻率极低,可以大大提高电子材料的效率;其容量也极高,约为石墨烯4倍,能够有效地储存电能。
此外,它们还具有良好的导电性,可以抑制电路的失效,这在电子制造领域有重要作用。
四、碳纳米管的生物医学应用碳纳米管也可用于生物医学领域。
由于它们具有超强的耐腐蚀性及其高强度,可以用来制造医疗设备、改善人体组织修复治疗效果等。
另外,它们还可以用于基因治疗,具有增强免疫力的功效;用于抗癌药物的药物载体,以最大程度地抑制癌细胞的生长;在细胞快速传输信号的实验中,用于提高和优化实验效果等。
以上就是碳纳米管的一些特性和应用。
综上所述,碳纳米管有着较高的力学性能、超强的耐腐蚀性和良好的电学性能,以及众多生物医学应用,拥有着前所未有的潜力及应用前景。
未来需要加强对它的研究,进一步开发其功能,以及制定更好的应用方式,以期达到最佳效果。
新材料科学中的碳纳米管材料

新材料科学中的碳纳米管材料碳纳米管是一种由碳原子构成的管状结构,在新材料科学中具有重要的应用价值。
碳纳米管的特殊结构使得它具有许多独特的性质和优异的物理化学性能,有着广泛的应用范围和前景。
一、基本介绍碳纳米管是一种类似于石墨烯的碳材料,其结构是由碳原子构成的具有管状形态的微观结构。
碳纳米管的直径在纳米级别,一般为1纳米到50纳米之间。
它的长度可以是数十微米到数百微米,甚至可以达到数厘米以上。
碳纳米管具有很多独特的性质,比如强度高、导电性好、导热性好、化学稳定性强等等。
这些性质决定了碳纳米管可以广泛应用于电子、机械、光学、化学等领域。
二、应用领域1.电子领域在电子领域中,碳纳米管作为一种新型的半导体材料,具有很多优异的性质,如高电导率、高耐电压性、超短开关时间等。
这些特点使得碳纳米管可以广泛应用于晶体管、场效应晶体管、逆变器、传感器等电子器件中。
2.机械领域在机械领域中,碳纳米管有着很高的强度和韧性,可以被用于制作高强度的机械零部件。
例如,碳纳米管可以制成强度高、重量轻、耐磨损的轮胎、杆、桥梁等。
此外,碳纳米管还可以制成高性能的自行车、汽车、飞机等机械设备。
3.光学领域在光学领域中,碳纳米管可以制成具有高透明度和高导电性的薄膜,可以被应用于太阳能电池板、智能窗等光学器件中。
4.化学领域在化学领域中,碳纳米管可以被用作催化剂、吸附剂和分离材料。
例如,碳纳米管可以被用来催化氢气的产生和净化工业废气。
此外,碳纳米管还可以被用来制备高效的分离膜,用于饮用水的净化。
三、未来发展趋势由于碳纳米管具有独特的物理化学性质,有着广泛的应用前景,因此在近年来得到了广泛的关注。
未来,碳纳米管的发展将主要集中在以下几个方面:1.化学合成方法的改进当前,碳纳米管的主要制备方法是电弧放电法、激光热解法和化学气相沉积法。
然而这些方法存在制备成本高、质量不稳定、难于大规模制备等问题。
因此,未来的发展方向是改进或发展出更简单、更可控性强、更可扩展的制备方法,以适应未来碳纳米管的大规模制备需求。
归纳并总结碳纳米管的特性

归纳并总结碳纳米管的特性碳纳米管是一种由碳原子构成的纳米级管状结构材料,具有独特的物理、化学和电学特性。
它们在纳米科技领域具有广泛的应用前景。
本文将归纳并总结碳纳米管的特性,以便更好地理解和利用这一材料。
1. 结构特性碳纳米管的基本结构由碳原子以六角形排列形成,呈现出类似于由一个或多个碳层卷曲而成的管状形态。
碳纳米管可以分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs)两种类型。
单壁碳纳米管由单层碳原子构成,而多壁碳纳米管则包含多个同心管状结构。
2. 尺寸特性碳纳米管的直径通常在1纳米至100纳米之间,长度可以从几十纳米到数微米不等。
其长度和直径比例的不同决定了碳纳米管的形态,如长棒状、管状或扁平形状。
3. 机械特性碳纳米管具有出色的力学性能,其强度和刚度是其他材料无法比拟的。
研究表明,碳纳米管的弹性模量和拉伸强度分别可以达到1000 GPa和100 GPa以上。
此外,碳纳米管还具有极高的柔韧性和耐久性。
4. 热学特性碳纳米管的热导率非常高,比钻石和铜等传统材料还要高。
这是由于碳纳米管的晶格结构和电子结构的特殊性质所决定的。
同时,碳纳米管还表现出优异的热稳定性和低热膨胀系数,使其在微电子器件的散热和封装方面具有广泛的应用潜力。
5. 电学特性碳纳米管是一种半导体材料,具有优良的电学性能。
SWCNT的导电性可分为金属和半导体两种类型,而MWCNT通常是半导体性质。
此外,碳纳米管还表现出高载流子迁移率、低电子散射率等优异特性,这使得其在纳米电子学领域具有重要的应用前景。
6. 光学特性由于碳纳米管具有一维结构和特殊的色散关系,使得其显示出独特的光学性质。
碳纳米管对可见光和红外光有很强的吸收和发射能力,具有广泛的应用潜力,如太阳能电池、光电器件和传感器等。
7. 化学特性碳纳米管具有高度的化学稳定性,能耐受高温、强酸和强碱等条件。
这使得碳纳米管可以在各种工业和科学领域中得到应用,如催化剂、储氢材料、吸附剂和纳米复合材料等。
碳纳米管材料

碳纳米管材料
碳纳米管是一种由碳原子构成的纳米材料,具有许多独特的物理和化学性质,
因此在材料科学领域具有广泛的应用前景。
碳纳米管的发现和研究,对于纳米技术的发展和材料科学的进步具有重要意义。
首先,碳纳米管具有极高的强度和刚度,同时又非常轻巧。
这使得碳纳米管成
为一种理想的增强材料,可以用于制备高性能的复合材料。
例如,将碳纳米管添加到聚合物基体中,可以显著提高复合材料的力学性能,使其具有更高的强度和刚度。
此外,碳纳米管还可以用于制备高性能的纳米材料,如碳纳米管纤维和薄膜,具有优异的导电性和导热性能,可用于制备柔性电子器件和热管理材料。
其次,碳纳米管具有优异的电学性能。
由于碳纳米管是一维纳米材料,具有特
殊的电子结构,表现出金属或半导体的电导特性。
这使得碳纳米管成为一种理想的电子器件材料,如场效应晶体管、场发射显示器等。
此外,碳纳米管还可以用于制备高性能的电池和超级电容器,具有高能量密度和高功率密度,可用于储能和电力传输领域。
再次,碳纳米管还具有优异的化学稳定性和生物相容性。
这使得碳纳米管可以
应用于生物医学领域,如药物传输载体、生物传感器等。
同时,碳纳米管还可以用于制备生物材料,如人工骨骼和人工血管,具有良好的生物相容性和生物活性,可用于组织工程和医疗器械领域。
总之,碳纳米管是一种具有广泛应用前景的纳米材料,具有独特的物理和化学
性质,可以应用于材料科学、电子器件、能源储存、生物医学等领域。
随着对碳纳米管的深入研究和应用,相信碳纳米管将会在未来发挥重要作用,推动科技和产业的发展。
碳纳米管论文5则范文

碳纳米管论文5则范文第一篇:碳纳米管论文碳纳米管前言:碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。
近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。
摘要:碳纳米管是纳米材料中开发价值最高的纳米材料之一。
碳纳米管的导电性能优于铜,仅次于超导体,导热性能优于金刚石,并是已知的弹性模量和抗拉强度最高的材料。
自从1991年发现以来,经过各国科学家近10年的研究,在基础研究和应用领域都取得了重要进展。
可以预见,随着研究领域新的发现,碳纳米管的应用领域将会越来越广,其蕴藏的潜在的巨大经济价值将随着人们对它的认识的不断加深而充分体现出来。
关键词:碳纳米管性能应用前景制备Abstract: carbon nanotubes nanomaterial is the highest value of development of nanometer materials.Carbon nanotube conductive performance is better than copper, second only to the superconductor, thermal performance is superior to diamond, and is known as the elastic modulus and the tensile strength of the materials of the highest.Since discovered in 1991, after scientists for nearly 10 years of research, in basic and applied research fields have made important progress.Can foreknow, with the research of new discoveries, the applications of carbon nanotubes field will be more and more widely, it contained the potential economic value will be with the people's understanding to it constantly and fully embodied.Key words: carbon nanotubes preparation properties application一.碳纳米管的性能力学性能由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。
碳纳米管一维狄拉克材料-概述说明以及解释

碳纳米管一维狄拉克材料-概述说明以及解释1.引言1.1 概述概述碳纳米管(Carbon Nanotubes,简称CNTs)是一种具有特殊结构和优异性能的纳米材料,被广泛认为是材料科学领域的研究热点之一。
碳纳米管由碳原子以一定的方式排列而成,形成了空心的管状结构。
其独特的一维结构使其具有许多特殊的物理性质和潜在的应用价值。
在过去几十年中,碳纳米管引起了广泛的关注和研究。
由于其高强度、高导电性和高导热性等优异性能,碳纳米管在材料科学、纳米科技、电子学等领域具有广泛的应用前景。
同时,碳纳米管还具有独特的光学性质和化学反应活性,使其在光电子学和催化剂等领域显示出巨大的潜力。
本文将重点介绍碳纳米管作为一维狄拉克材料的相关内容。
所谓狄拉克材料指的是具有狄拉克费米子(Dirac Fermions)特性的材料。
狄拉克费米子是一种具有质量零点能态的粒子,其行为类似于相对论中的狄拉克粒子。
碳纳米管的特殊结构和电子结构使其具备了类似狄拉克费米子的行为,因此被认为是一维狄拉克材料的代表。
文章的内容将包括碳纳米管的基本概念、制备方法和物理性质等方面。
同时,还将探讨碳纳米管作为一维狄拉克材料的意义,以及在科学研究和应用领域的前景。
此外,本文还将涉及碳纳米管研究所面临的挑战以及未来的发展方向。
通过对碳纳米管一维狄拉克材料的深入研究,我们可以更好地理解其独特的电子行为和物理性质,并且为其在纳米电子学、能源存储、生物传感等领域的应用提供基础。
同时,对于研究者而言,也能够促进对一维狄拉克材料的认识和理解,为材料科学的发展做出贡献。
尽管碳纳米管研究面临一些挑战和困难,但相信在不久的将来,通过持续的努力和研究,碳纳米管作为一维狄拉克材料的应用前景将会得到进一步的拓展和发展。
1.2 文章结构文章结构部分的内容:本文按照以下结构进行撰写和组织。
第一部分为引言,旨在介绍碳纳米管一维狄拉克材料的研究背景、意义和目的。
引言分为三个小节,分别是概述、文章结构和目的。
碳纳米管材料的性质与制备

碳纳米管材料的性质与制备碳纳米管,是由纯碳原子构成的中空圆柱形微纳结构材料,具有独特的物理、化学和力学性质,因此在许多领域具有广泛的应用前景。
本文将重点介绍碳纳米管的性质与制备方法。
一、碳纳米管的性质1. 结构性质碳纳米管的结构可以分为单壁碳纳米管和多壁碳纳米管两种。
单壁碳纳米管是由一个或多个层状的石墨烯卷曲而成,多壁碳纳米管则是由许多个单壁碳纳米管套在一起形成的。
单壁碳纳米管具有较小的直径和较大的比表面积,多壁碳纳米管则具有较大的内径和较大的机械强度。
2. 电学性质碳纳米管具有良好的导电性和半导体性质,可以根据电极材料和掺杂方式调节导电性能。
其导电性能优于铜和铝,同时还具有良好的电子输运性能和电流密度承载能力。
3. 力学性质由于碳纳米管的中空结构和碳原子之间的共价键连接,使其具有优异的强度和刚性。
碳纳米管的力学性质可用于增强复合材料、制备高强度纤维等领域。
4. 热学性质碳纳米管具有出色的热导率,可高达3000-6000W/mK,在导热材料和热管理器件中具有广泛的应用潜力。
二、碳纳米管的制备方法1. 弧放电法弧放电法是碳纳米管最常用的制备方法之一。
该方法通过在高温环境下,将碳电极和反应气体(如氩气、氢气和甲烷等)放电,使碳电极表面生成碳原子团簇,进而形成碳纳米管。
2. 化学气相沉积法化学气相沉积法是另一种常用的碳纳米管制备方法。
该方法是将碳源气体(如甲烷、丙烷和乙炔等)和催化剂(如铁、镍、钼等)一起通入高温的炉管中,通过催化剂的作用,使碳源气体分解生成碳纳米管。
3. 水热合成法水热合成法是制备碳纳米管的一种简单、环保的方法。
该方法通常在高压、高温的水溶液中加入碳源和催化剂前驱体,通过水热反应,在催化剂的作用下生成碳纳米管。
4. 化学还原法化学还原法是利用化学反应还原碳源,生成碳纳米管的方法。
常见的化学还原法包括使用硼氢化钠、氨水、硝酸盐等还原剂,将碳源还原成碳纳米管。
结论碳纳米管是一种重要的纳米材料,具有独特的物理、化学和力学性质。
碳纳米管介绍

此法特点:操作简单, 工艺参数更易控制,生长温度相对较低,成本低,产量大,可规模化生产。但由于其制备的碳纳米管含有许多杂质,且碳纳米管缠绕成微米级大团,需要进一步纯化和分散处理。
二.碳纳米管材料的性能
热学性能
碳纳米管具有良好的传热性能,由于是一维材料,其在径向上的导热性能优越,我们甚至可以在复合材料中掺杂微量的碳纳米管 ,使得复合材料的热导率得到很大的改善。
碳纳米管材料的性能
储氢性能
碳纳米管具有比较大的表面积,且具有大量的微孔,其储氢量远远大于传统材料的储氢量,因此被认为是良好的存储材料。
激光蒸发法是一种简单有效的制备碳纳米管的新方法。与电弧法相比,前者用电弧放电的方式产生高温,后者则用激光蒸发产生高温。得到的碳纳米管的形态与电弧法得到的相似,但碳纳米管质量更高,并无无定形碳出现。这种方法易于连续生产,但制备出的碳纳米管的纯度低,易缠结,且需要昂贵的激光器,耗费大。
3.化学气相沉积法(CVD)
碳纳米管对红外和电磁波有隐身作用:一方面由于纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这种波的透过率比常规材料要强得多,大大减少波的反射率;另一方面,纳米微粒材料的比表面积比常规粗粉大3-4 个数量级,对红外光和电磁波的吸收率也比常规材料大得多,也使得红外探测器及雷达得到的反射信号强度大大降低,起到了隐身作用。可用于隐形材料、电磁屏蔽材料或暗室吸波材料。
在一长条石英管中间放置一根金属催化剂/石墨混合的石墨靶,该管则置于一加热炉内。当炉温升至一定温度时,将惰性气体充入管内,并将一束激光聚焦于石墨靶上。在激光照射下生成气态碳,这些气态碳和催化剂粒子被气流从高温区带向低温区时,在催化剂的作用下生长成碳纳米管。
碳纳米管(CNTs)及其制备技术综述

碳纳⽶管(CNTs)及其制备技术综述碳纳⽶管(CNTs)及其制备技术1.概述1991年,Iijima在⽯墨电弧放电产物中发现了碳纳⽶管(CNTs),从此碳纳⽶管成为碳家族的⼀个新成员。
CNTs是纳⽶科学的⼀颗耀眼明珠,其独特的结构、优良的物理和化学性能、巨⼤的应⽤前景吸引了⼤批的物理学家、化学家和材料学家的兴趣,成为科学领域的研究热点。
尤其是单壁碳纳⽶管的发现和研究被科学界权威杂志《Science》评为1997年世界⼗⼤科技成果之⼀。
2.碳纳⽶管的结构和性能2.1碳纳⽶管的结构碳纳⽶管是由多个碳原⼦六⽅点阵的同轴圆柱⾯套构⽽成的空⼼⼩管,相临的同轴圆柱⾯之间的距离与⽯墨的层间距相当,约为0.34nm,管壁由六边形排列的碳原⼦组成,每个碳与周围的三个碳原⼦相邻,碳/碳间通过sp2杂化键结合。
管的直径为零点⼏纳⽶到⼏⼗纳⽶,管的长度为微⽶级。
管的直径和长度随不同的制备⽅法及条件的变化⽽不同。
管的端部由五边形排列的碳原⼦封顶。
碳纳⽶管绝⼤多数两端是封闭的,并且这种封闭与碳纳⽶管圆管平滑连接,较⼩直径的碳纳⽶管的封闭形式⼀般呈半圆状,这对应于半个富勒烯(Fullerence)笼。
依据组成碳纳⽶管的⽯墨⽚层数的不同,碳纳⽶管可分为单壁碳纳⽶管即含⼀层⽯墨⽚的碳纳⽶管以及由⼀层以上⽯墨⽚组成的多壁碳纳⽶管。
碳纳⽶管结构⽰意图如图1所⽰。
图1 碳纳⽶管结构⽰意图(a)四层碳纳⽶管结构(b)单层碳纳⽶管结构2.2碳纳⽶管的性能碳纳⽶管具有独特的电⼦结构和物理化学性质,可以在许多⽅⾯得到⼴泛的应⽤。
碳纳⽶管的直径-长度⽐很⼤,⼀般情况下,长度都是直径的⼏千倍,远远⼤于普通的纤维材料;它的强度⽐钢⾼约100倍,⽽重量仅仅为钢材料的六分之⼀,有可能成为⼀种新型的⾼强度碳纤维材料。
这种“超级碳纤维”材料既具有碳素材料的固有本性,⼜具有⾦属材料的导电性、导热性,陶瓷材料的耐热和耐腐蚀性,纺织纤维的可编织性以及⾼分⼦材料的轻质、易于加⼯性,因⽽具有极⼤的应⽤潜⼒。
碳纳米管文献综述

文献综述纳米碳管作为一种碳素新材料,具有优异的力学、电学、储氢等物理性质,在纳米材料、纳米生物学、纳米化学等方面具有潜在的应用价值,成为近年来人们的研究热点。
大批量、低成本合成纳米碳管是拓展纳米碳管应用研究的基础,因此对纳米碳管的合成研究也最多,并取得了一定的进展。
纳米碳管的机械强度高,比表面积大,界面效应强,容易吸附金属催化剂,而被认为在催化剂载体领域里有很好的应用前景。
一碳纳米管简史研究碳纳米管的历史,可以追溯到1889年,一项专利阐明了如何制备一维碳纳米材料,产物中可能有碳纳米管。
1970年,法国奥林大学(University of Orleans)的En-do 用气相生长技术制成了直径为7nm 的碳纤维,由于他没有对这些碳纤维的结构进行细致的评估和表征,所以并没有引起人们的注意。
后来科学家在研究C60,C70的基础上认识到产生无数种近石墨结构成为可能。
1991年1月,日本筑波NEC 实验室的饭岛澄男首先用高分辨率电镜观察到了他认为是一种螺旋状的微管,也就是碳纳米管,文章发表在《自然》(Nature)杂志上。
从而饭岛成为公认的碳纳米管发现者。
1993年,等和DS。
Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。
1997年,等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。
二碳纳米管的分类按照石墨烯片的层数,可分为:单壁碳纳米管(Single-walled nanotubes, SWNT s):由一层石墨烯片组成。
单壁管典型的直径和长度分别为~3nm和1~50μm。
又称富勒管(Fullerenes tubes);多壁碳纳米管(Multi-walled nanotubes, MWNTs):含有多层石墨烯片。
形状象个同轴电缆。
其层数从2~50不等,层间距为±,与石墨层间距相当。
多壁管的典型直径和长度分别为2~30nm和~50μm。
碳纳米管综述

碳纳米管综述摘要:本文主要介绍碳纳米管的发现及发展过程,并说明碳纳米管的制备方法及其制备技术。
同时也叙述碳纳米管的各种性能与应用。
引言:在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。
正文:碳纳米管的制备:碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD,以及在各种合成技术基础上产生的定向控制生长法等。
电弧法利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。
研究者在优化电弧放电法制取碳纳米管方面做了大量的工作。
T. W. Ebbeseo[2]在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。
为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert[3]将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。
C. Journet[4]等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。
研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs 合成。
近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。
综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。
电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备成本偏高其工业化规模生产还需探索。
催化裂解法或催化化学气相沉积法(CCVD)催化裂解法是目前应用较为广泛的一种制备碳纳米管的方法。
该方法主要采用过渡金属作催化剂,适于碳纳米管的大规模制备,产物中的碳纳米管含量较高,但碳纳米管的缺陷较多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级:高材1313 姓名:欧阳一鸣学号:2013012532潜在的碳纳米管场效应晶体管的模拟电路介绍在集成电路晶体管的指数增长摩尔定律所描述的内容持续了近一个半世纪里。
然而,2010年的国际半导体技术发展路线图预测增长将减缓到2013年底。
这主要是因为互补金属氧化物半导体(CMOS)的比例正迅速接近其物理限制带来了许多障碍,如更高的亚阈值传导,栅氧化层和结泄漏增加,低输出电阻和跨导,增加热量生产。
这使得半导体行业探索不同的材料和设备更加超越摩尔定律(如通过创造ITRS)。
在这些材料和器件研究,碳纳米管场效应晶体管(CNFETs)已经获得了,因为它们规模小,流动性高,近弹道输运,大电流密度和较低的固有电容。
自推出CNFETs,该研究已主要重点对他们的数字电路使用。
甚至中等规模薄流明碳纳米管(CNT)的集成电路已报告了灵活塑料基板。
然而,开/关比(也称为噪声余量)通常很小对于目前制造CNFETs,因为存在金属碳纳米管[,因此需要更多的调查,他们用于数字电路。
与此相反,CNFETs具有更多潜在用于高性能模拟电路,其中所述晶体管不需要充分关闭。
此外,特性perform-ANCE 度量类似物或RF晶体管是更适合材料和碳纳米管的设备性能和制造tol-erances,也可以更轻松得的。
CNFET基础知识场效应管的结构和MOSFET样的CNFETs在传统的MOSFET,源区和漏区是由两个重掺杂区中的硅衬底形成,并且栅极由多晶硅材料,其是绝缘的形成从基板由薄的二氧化硅层。
如果电压被施加到栅极端,下方的连续信道栅极形成用于电流流动的源极和漏极之间。
另一方面为CNFETs,栅极,源极和漏极接触由像铬或钨金属与4.5电子伏特的功函数。
H是金属接触的高度,L是长度。
值得一提的是,出两种类型CNFETs 即肖特基势垒和MOSFET等的,选择后者,因为它具有较高的离子/IOFF比率,过渡频率f低的,更低的寄生电容,更好的AC性能和更高的制造可行性。
在MOSTFET样的CNFET之间的电流源和漏接触使用碳纳米管。
根据贝壳的数量形成管状结构这些碳纳米管可以作为折叠见石墨烯成管状结构,可以单壁和多壁。
单壁碳纳米管通常的特点是它的手性决定了它的属性和直径。
手性是由一对指数(N1,N2)的表示被称为手性矢量,它是用于选择在此工作的CNFET模型。
栅极下的管子是未掺杂的,而连接所述栅极到源极和漏极的管被重掺杂,从而掺杂管被称为源-漏延伸区,栅极,以及源极-漏极扩展区不包括源极和漏极金属接触,被认为是CNFET的内在结构。
源的引进和漏极金属触点增加了寄生或外部电容,因此,完成CNFET的设备型号。
两个相邻的管的中心之间的距离称为音调。
栅极氧化物为氧化铬的介电常数具有大致4纳米的高度。
这些管坐在一个厚的氧化硅(10微米)与硅衬底的底部上。
晶体管直流特性描述漏极电流对音高,碳纳米管和晶体管宽度被首先观察到沥青上CNFETs的漏极电流的影响。
1伏的供给电压被连接到漏极端子和栅极端子,而源极和衬底的终端被接地。
漏极电流是独立的音调,除非管很近。
但是,当间距为<20纳米,间CNT电容变得更加突出,漏电流降低,因为屏蔽效应。
屏蔽效应被去定义为在静电视场的变化以及由于其他原因在其附近的存在的带电粒子的库仑势。
因此,因为管之间的静电斥力的低球,电子排斥管的中心,导致电流的减少。
CNFET漏极电流和管子的数量为两个不同的音调而晶体管宽度不是固定的。
很明显,目前与管子的数量线性增加;然而,随着筛查效果更突出5 nm。
自从问直径是固定的晶体管宽度的CNFETs 数量的碳纳米管的产物和沥青。
随着管密度是通过选择控制,因此增加的宽度增加碳纳米管。
选择两个音高值20和5纳米。
因为我们比较漏极电流在一定宽度和两个值的音高,管子的数量不再是相同的。
此外,它是有趣地注意到,虽然与20纳米节距相比每管中的电流小于在5纳米的间距,所有的漏电流增加在5纳米节距射频描述跨导,g:跨导(g米漏极电流的变化)是一种测量晶体管的栅极电压的变化。
这是一个重要的基准测试参数尤其是模拟放大器等电路,因为它代表了增益和场效应晶体管的放大。
过渡或统一电流增益截止频fT :过渡频率或统一电流增益截止频率(fT),是一个晶体管的固有速度的测量,通常用作基准参数之间不同的晶体管。
更多的射频:F马克斯最大可用增益(MAG),最大稳定增益和k这个小节介绍了其他知名的射频分布。
这些包括梅森的单边功率增益(U黑川纪章)、杂志、稳定因子(k)和最大振荡频率(f马克斯)。
这些射频参数导出了两口的线性网络分析使用y参数。
决定了系统的稳定性k(称为Rollet的因素)和Δ。
评估两个活动设备的功率增益,比较他们的U感兴趣的值在整个频率是必需的。
然而,它更方便单个数字基准。
这样一个实用的FOM的功率增益f马克斯频率的大小U成为零分贝。
这是上面的频率,功率增益不能获得一个活跃的设备在f马克斯的大小和杂志也变成了0分贝。
射频电路的比较1 逆变器延迟:逆变器是许多集成电路。
例如,一个环形振荡器工作在射频频率由几级联逆变器阶段和在一起延迟相结合的系列逆变器决定了环形振荡器的振荡频率。
这个小节比较卸载逆变器延迟和CNFETs之间。
为了一致性,选择通道宽度为1 p-FETs和n-FETs。
自从CNFETs寄生参数较低与场效应管,设备要快得多。
此外,当管密度增加,减少,当前也在不断增加,因为增加的有效宽度的晶体管。
2 环形振荡器:环形振荡器是锁相环(pll)的一个组成部分在高频收发器。
在这小节,它是用作水准电路MOSFET和CNFETs之间,特别是比较振荡频率和功耗三级环形振荡器。
晶体管的漏极电压和宽度分别1 V和1µm。
以来,单个逆变器的延迟较小CNFETs,环形振荡器的基础上 CNFETs振荡频率要高得多。
然而,之间有一个权衡的振荡频率和功耗CNFET-based三级戒指振荡器。
3 LC振荡器:一个典型的LC振荡器由一个电感器和电容器形成振荡回路g细胞,补偿损失的实现持续振荡。
LC-based振荡器、特殊电压控制振荡器广泛用于毫米波射频锁相环电路产生本地振荡器信号。
4 振荡频率:主要取决于总电路中电感和电容的值。
后者不仅包括贡献从从场效应晶体管的寄生参数。
结论CNFETs的性能进行了比较与典型MOSFET的RF电路所得到的结果表明其巨大的潜力。
然而,当管密度是通过减少螺距增加到5nm,CNFETs展示当前能力的两倍场效应。
因此,平版印刷技术的改进是至关重要的打入CNFETs的全部潜力,场效应管的射频参数的和CNFETs比较揭示了后者的性能。
越g米,f T和f马克斯分别为2.7、2.6和4.5倍。
CNFET基于逆变器是高达10倍的速度,环形振荡器具有三倍更高的振荡频率和CNFET型LC振荡电路提供了比它的MOSFET对应两次较小的寄生电容。
参考[1] Chen Z., Appenzeller J., Lin Y., et al. An integrated logic circuit assembled on a single carbonnanotube[J]. Science.2006, 11(3):17-35.[2] Frank D., Dennard R., Nowak E., et al.Device scaling limits of Si MOSFETs and their application dependencies[J]. Proc. IEEE, 2001, 9(8):259–288.[3] Durkop T., Getty S.A., Cobas E.,et al. Extraordinary mobility in semiconducting carbon nanotubes[J]. Nano Lett, 2004, 4(3): 35–39.[4] Zhou X., Park J.Y., Huang S., Liu J.,et al. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors[J].Phys. Rev. Lett, 2005, 9(5):1–3.[5] Javey A., Guo J., Wang Q., Lundstrom M., et al. Ballistic carbon nanotube field-effect transistors[J].Nature, 2003,42(4):654–657.[6] Javey A., Guo J., Farmer D., et al.Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays[J].Nano Lett, 2004,4(3):1319–1322.[7] Bachtold A., Hadley P., Nakanishi T.,et al.Logic circuits with carbon nanotubetransistors[J].Science, 2011, 29(4):1317–1320.[8] Derycke V., Martel R., Appenzeller J.,et al.Carbon nanotube inter- and intra-molecular logic gates[J]. Nano Lett, 2001, 10(3):453–456.[9] Liu X., Lee C., Han J., et al.Carbon nanotube field-effect inverters[J]. Appl. Phys. Lett, 2001, 9(7):3329–3331.[10] Javey A., Wang Q., Ural A.,et al.Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators[J].Nano Lett, 2002, 2(1):929–932.。