高分子物理----高分子的力学性能汇总

合集下载

高分子物理高分子的力学性能

高分子物理高分子的力学性能

高分子物理高分子的力学性能引言高分子是由大量重复单元组成的长链聚合物,具有广泛的应用领域。

高分子材料的力学性能是评估其性能和应用范围的重要指标之一。

本文将重点介绍高分子物理高分子的力学性能,包括拉伸性能、弯曲性能和压缩性能。

拉伸性能拉伸性能是衡量高分子材料抵抗拉伸变形的能力。

引伸模量是评估高分子材料刚度的指标,反映了材料在受力下沿着拉伸方向的抗弯刚度。

拉伸模量越大,材料刚度越高,说明材料越难被拉伸变形。

另一个重要的指标是断裂伸长率,即材料在断裂前所能延伸的长度与原始长度之比。

断裂伸长率越大,材料的延展性越好,能够在受力下更好地承受高应变。

弯曲性能弯曲性能是评估高分子材料在受力下的弯曲变形能力。

弯曲模量是衡量材料刚度和弯曲抗弯能力的指标,它反映了材料在弯曲过程中所需的力和弯曲程度之间的关系。

弯曲模量越大,材料的刚度越好,弯曲变形能力越低。

另一个重要的指标是弯曲强度,即材料在抵抗内部应力下断裂弯曲的能力。

弯曲强度越高,材料越能够承受弯曲应力而不断裂。

压缩性能压缩性能是评估高分子材料在受力下的抗压能力。

压缩模量是衡量材料在受压过程中抗弯刚度的指标,它反映了材料在压缩过程中所需的力和压缩程度之间的关系。

压缩模量越大,材料的刚度越高,抗压变形能力越低。

另一个重要的指标是压缩强度,即材料在抵抗内部应力下断裂压缩的能力。

压缩强度越高,材料越能够承受压缩应力而不断裂。

影响高分子材料力学性能的因素高分子材料的力学性能受多种因素影响。

其中,聚合度是一个重要的因素,即聚合物链的长度。

聚合度越高,链段之间的力学相互作用越多,因此材料的力学性能越好。

另一个重要因素是材料的结晶度。

高结晶度的材料通常具有更好的力学性能,因为结晶区域可以提供更多的强度和刚度。

此外,材料的处理方式和加工工艺也会对力学性能产生影响。

高分子物理高分子的力学性能是评估其应用潜力和性能表现的关键指标。

拉伸性能、弯曲性能和压缩性能是评估高分子材料力学性能的重要指标。

高分子物理-第9章(1高分子的屈服和强度)

高分子物理-第9章(1高分子的屈服和强度)
变(响应)
• 力学性能是高聚物优异物理性能的基础 • 如:某高聚物摩擦、磨耗性能优良,但力学性能
不好,很脆——不能用它作减摩材料
• 如:作电线绝缘材料的高聚物,也要求它们有一
定的力学性能:强度和韧性。如果折叠几次就破 裂,那么这种材料的电绝缘性虽好,也不能用作 电线。
弹性 Elasticity
普弹性 高弹性 High elasticity
Strain softening 应变软化 B
B Y
Y
N
D
A A
plastic deformation
塑性形变
Strain hardening 应变硬化
E A A
O A
B
y
从曲线上可得评价聚合物性能的力学参数:
Y: yield point屈服点
y yield strength 屈服强度 yelongation at yield 屈服伸长率
产生强迫形变-“冷拉”
不同点:冷拉的温度范围:
非晶态Tb~Tg 结晶态Tg~Tm
对晶态聚合物拉伸过程,伴随着凝聚态结构的变化
2.3 取向聚合物的应力-应变曲线:
– 聚合物材料在取向方向上的强度随取向程度的 增加而很快增大,此时,分子量和结晶度的影响 较小,性能主要由取向状况所决定。高度取向时, 垂直于取向方向上材料的强度很小,容易开裂。
F
a
F
Fas =Fsina
横截面A0, 受到的应力 0=F/A0
斜截面Aa = A0 / cosa
法向应力
σαn
=
Fαn Aα
= σ0cos2α
剪切应力
σαs
=
Fαs Aα
=
1 2

高分子物理总结.doc

高分子物理总结.doc

高分子物理总结高分子物理期中总结材料的物理性能是其分子运动的宏观表现,分子运动与其结构有着密切的关系。

高分子物理主要研究内容是分子的结构分子的运动材料性能之间的关系,与小分子相比,高分子结构更为复杂,并有着自身的特点。

(1高分子是由若干结构单元组成的,在一个高分子链中结构单元可以是一种也可以是多种,它们以共价键连接,并呈现出不同的形状。

(2)高分子链结构存在不均一性,在同一反应中生成的高分子,其相对分子质量,分子结构,分子空间构型,支化度、交联度也不相同。

(3)高分子在凝聚态结构上存在多样性,同一高聚物在不同的条件下呈现出的晶态、非晶态、取向态、也可能同时存在一种高聚物中。

下面详细阐述(一)高分子链的近程结构l 化学结构(化学组成、间接方式与排列)l 立体结构(空间排列方式)(a 化学组成(组成决定性质) 1 碳链高分子大分子主链全部由碳原子构成,碳原子间以共价键连接。

(2杂链高分子分子主链除碳原子以外,还有氧、氮、硫等其它原子,原子间均以共价键相连接。

3元素有机高分子主链由Si、B、P、Al、Ti、As、O等元素组成,不含C原子,侧基为有机取代基团。

4无机高分子主链和侧基都不含碳原子的高分子(5)梯型高分子和双螺旋高分子大分子主链不是一条单链,而具有“梯子”或“双螺线”结构(b结构单元的键接方式基本结构单元在高分子链中连接的序列结构。

(1)线性均聚物有规键接方式头头,头尾,尾尾。

由键接方式不同而产生的异构体称顺序异构体。

表征键接方式可用化学分析法、x-射线衍射法;核磁共振法测量。

键接方式对大分子物理性质有明显影响,最显著的影响是不同键接方式使分子链具有不同的结构规整性,从而影响其结晶能力,影响材料性能。

(2)支化高分子(a 与线型高分子的化学组成性质相同,但支化对材料的物理、力学性能影响很大,一般短链支化主要对材料熔点、屈服强度、刚性、透气性以及与分子链结晶性有关的物理性能影响较大,而长链支化则对粘弹性和熔体流动性能有较大影响。

高分子物理----高分子的力学性能

高分子物理----高分子的力学性能

一般刻痕试样的冲击强度小于这一数值为脆性断裂,大
于这一数值时为韧性断裂。但这一指标并不是绝对的,
例如玻璃纤维增强的聚酯塑料,甚至在脆性破坏时也有
很高的冲击强度。
7.1 玻璃态与结晶态聚合物的力学性质
2. 高聚物的理论强度 从分子结构的角度来看,高聚物的断裂要破坏分子 内的化学键,分子间的范德华力与氢键。
7.2 高弹态聚合物的力学性质
加入增塑剂虽然可以降低Tg,但有利条件,因此选
用增塑法来降低Tg必须考虑结晶速度增大和结晶形成的 可能性。
7.2 高弹态聚合物的力学性质
(2)共聚法
共聚法也能降低聚合物的Tg,如:PS的主链上带有体 积庞大的苯基,聚丙烯腈有强极性腈基存在,Tg都在室温 以上,只能作为塑料和纤维使用,如果用丁二烯分别与苯 乙烯和丙烯腈共聚可得丁苯橡胶和丁腈橡胶,使Tg下降。 例如:丁苯30,Tg=-53℃,丁腈26,Tg=-42℃。
7.1 玻璃态与结晶态聚合物的力学性质
(3)当温度升高到Tg以下几十度范围内,如曲线③,过
了屈服点后,应力先降后升,应变增大很多,直到C点断裂,
C点的应力称为断裂应力,对应的应变称为断裂伸长率ε 。
7.1 玻璃态与结晶态聚合物的力学性质
(4)当温度升至Tg以上,试样进入高弹态,在应力不大
时,就可发生高弹形变,如曲线④,无屈服点,而呈现一段
应力称为屈服应力或屈服强度。
7.1 玻璃态与结晶态聚合物的力学性质
屈服点之后,应力有所下降,在较小的负荷下即可产生形 变,称为应变软化。之后应力几乎不变的情况下应变有很大 程度的增加,最后应力又随应变迅速增加,直到材料断裂。
7.1 玻璃态与结晶态聚合物的力学性质
四、几类高聚物的拉伸行为 1. 玻璃态高聚物的拉伸

(完整版)高分子物理详细重点总结

(完整版)高分子物理详细重点总结

名词解释:1.时间依赖性:在一定的温度和外力作用下,高聚物分子从一种平衡态过渡到另一种平衡态需要一定的时间2.松弛时间τ:橡皮由ΔX(t)恢复到ΔX(0)的1/e时所需的时间3.松弛时间谱:松弛过程与高聚物的相对分子质量有关,而高聚物存在一定的分子量分布,因此其松弛时间不是一个定值,而呈现一定的分布。

4.时温等效原理:升高温度或者延长观察时间(外力作用时间)对于聚合物的分子运动是等效的,对于观察同一个松弛过程也是等效的。

5.模量:材料受力时,应力与应变的比值6.玻璃化温度:为模量下降最大处的温度。

7.自由体积:任何分子的转变都需要有一个自由活动的空间,高分子链活动的空间8.自由体积分数(f):自由体积与总体积之比。

9.自由体积理论:当自由体积分数为2.5%时,它不能够再容纳链段的运动,链段运动的冻结导致玻璃化转变发生。

10.物理老化:聚合物的某些性质随时间而变化的现象11.化学老化:聚合物由于光、热等作用下发生的老化12.外增塑:添加某些低分子组分使聚合物T g下降的现象13.次级转变或多重转变:Tg以下,链段运动被冻结,存在需要能量小的小尺寸运动单元的运动14.结晶速率:物品结晶过程进行到一半所需要时间的倒数15.结晶成核剂:能促进结晶的杂质在结晶过程中起到晶核的作用16.熔融:物质从结晶态转变为液态的过程17.熔限:结晶聚合物的熔融过程,呈现一个较宽的熔融温度范围18.熔融熵 S m:熔融前后分子混乱程度的变化19.橡胶: 施加外力时发生大的形变,外力除去后可以恢复的弹性材料20.应变: 材料受到外力作用而所处的条件使其不能产生惯性移动时,它的几何形状和尺寸将发生变化21.附加应力:可以抵抗外力的力22.泊松比:拉伸实验中材料横向应变与纵向应变比值的负数23.热塑性弹性体:兼有橡胶和塑料两者的特性,在常温下显示高弹,高温下又能塑化成型24.力学松弛:聚合物的各种性能表现出对时间的依赖性25.蠕变:在一定的温度下和较小恒应力的持续作用下,材料应变随时间的增加而增大的现象26.应力松驰:在恒定温度和形变保持不变条件下,聚合物内部应力随时间的增加而逐渐衰减的现象27.滞后:聚合物在交变应力作用下形变落后于应力变化的现象28.力学损耗或者内耗:单位体积橡胶经过一个拉伸~回缩循环后所消耗的功29.储存模量E’:同相位的应力与应变的比值30.损耗模量E”:相差90度相位的应力振幅与应变振幅的比值31.Boltzmann叠加原理:聚合物的力学松弛行为是其整个历史上各松弛过程的线性加和32.应变软化:随应变增大,应力不再增加反而有所下降33.银纹屈服:聚合物受到张应力作用后,由于应力集中产生分子链局部取向和塑性变形,在材料表面或内部垂直于应力方向上形成的长100、宽10、厚为1微米左右的微细凹槽或裂纹的现象34. 裂纹:由于分子链断裂而在材料内部形成的空隙,不具有强度,也不能恢复。

高分子材料的结构、物理状态及性能PPT(30张)

高分子材料的结构、物理状态及性能PPT(30张)
高分子化合物由低分子化合物通过聚合反应获 得。组成高分子化合物的低分子化合物称作单体。
二、高分子化合物的组成
简单的低分子化合物叫单体。由一种或几种简单的低分子 化合物通过共价键重复连接而成的链称为分子链。大分子链 中的重复结构单元叫链节。链节的重复次数即链节数叫聚合 度。例如:聚氯乙烯分子是由n个氯乙烯分子打开双键,彼此 连接起来形成的大分子链。可用下式表示:
(1) 热塑性塑料:加热时软化并熔融,可塑造成形,冷却 后即成型并保持既得形状,而且该过程可反复进行。这类塑料 有聚乙烯、聚丙烯、聚苯乙烯、聚酰胺(尼龙)、聚甲醛、聚碳 酸脂、聚苯醚、聚砜等。这类塑料加工成形简便,具有较高的 机械性能,但耐热性和刚性比较差。
(2) 热固性塑料: 初加热时软化,可塑造成形,但固化后 再加热将不再软化,也不溶于溶剂。这类塑料有酚醛、环氧、氨 基、不饱和聚酯、呋喃和聚硅醚树脂等。它们具有耐热性高, 受压不易变形等优点,但机械性能不好。
不同键接方式对性能 影响很大,头尾键接 强度最高。
三、大分子链的形态
⑴伸直链(又称线型链) 由许多链节组成的长链,通常 是卷曲成线团状。这类结构高聚物的特点是弹性、塑性好, 硬度低,是热塑性材料的典型结构。
⑵带支链 支化型分子链,在主链上带有支链。这类结构 高聚物的性能和加工都接近线型分子链高聚物。
一、高聚物的三态
线型非晶态高聚物在不同温度下表现出三种物理状态: 玻璃态、高弹态和粘流态。在恒定应力下的变形-温度பைடு நூலகம் 线如图所示。Tb为脆化温度,Tg为玻璃化温度,Tf 为粘流 温度,Td为化学分解温度。
玻璃化温度Tg是高聚 物保持玻璃态的最高温度, 可认为是大分子链段开始 运动的最低温度。
一、高聚物的三态
(6)氯纶 难燃、保暖、耐晒、耐磨、弹性好,但是染色性 差,热收缩大,限制了它的应用。

高分子的力学性能

高分子的力学性能
LDPE拉伸强度比HDPE低
• 适度的交联大的形变,强度增高。能提高分子链 间的联系,使分子链不易滑动。交联度增加,不 易发生
PE交联后,拉伸强度提高1倍,冲击强度提高3-4倍
• 分子量低,拉伸强度和冲击强度低;分子量增加, 拉伸强度和冲击强度增高;分子量超过一定程度, 拉伸强度变化不大,但冲击强度继续增加
-23-
种类:
1)极性增塑剂——改变极性基团间的作用,使次价交联点数 目下降,柔性提高。效率与其摩尔分数成正比。 水对淀粉塑料的增塑(稳定性较差----挥发)、甘油对大豆蛋 白等生物质塑料的增塑料等----断裂升长率增加,杨氏模量、 拉伸强度、玻璃化温度等下降。
2)非极性增塑剂——隔离非极性高聚物分子链间的作用,使 次价下降,柔性提高,效率与其体积分数成正比。 如邻苯二甲酸二丁(辛)酯等对聚苯乙烯、聚氯乙烯等包装 塑料的增塑。
由于高聚物结构复杂多变,想从结构上完整地、全面的 认识其性质,并非易事,目前还是利用实测的方法认识其 性质。
-3-
3.1 玻璃状态的力学性能
——强度与破坏
力学性能是指物体受外力作用后产生的形变及 抵抗破坏的能力
◆静态力学性能:以一定速度缓慢作用时的力 学特性(拉伸、压缩、弯曲、直接剪切)
◆动态力学性能:静态力学之外的力学特性 (冲击、摩擦、磨耗)
-24-
◆选择条件:1.互溶性;2.有效性;3.耐久性;
4.环保性——白色垃圾——降解性塑料
A.光降解塑料(60-600天降解):
1.共聚型(与CO、乙烯基酮共聚,引入羰基等“发色基” 或“弱键”)。
2.添加型(加入少量廉价引发剂或光敏剂如长链烷基二 茂铁衍生物、胺烷基二茂铁衍生物等)。
B. 生物降解(50-70天降解):

高分子材料的力学特性分析

高分子材料的力学特性分析

高分子材料的力学特性分析高分子材料是一种很特殊的材料,它具有很高的分子量和相对分子质量,分子之间连接着共价键或者氢键,因此它具有很特殊的力学特性。

高分子材料在很多领域得到广泛应用,比如医学、食品、化学工程、电子、建筑、纺织等。

本文将对高分子材料的力学特性进行分析,帮助读者更好地了解这种材料,并且更好地应用它。

1. 高分子材料的物理结构高分子材料是由分子体系组成的宏观体系。

在这个宏观体系中,高分子材料的物理结构非常重要。

高分子材料的物理结构由分子之间的键和链构成。

分子间的键可以分为两种:共价键和氢键。

共价键是通过原子之间的原子轨道重叠形成的键,它们通常是非极性的,但是有些共价键还包含极性成分。

氢键是通过氢原子与另外一个原子之间形成的键,它们通常是极性的。

高分子材料的物理结构还包括它的分子链结构。

分子链的结构决定了高分子材料的形态和性能。

分子链结构主要分为线性、支化、交联等几种类型。

线性结构的高分子材料是由一个单独的长链构成。

支化结构是由以一主链为中心,同时连接着若干支链的高分子材料。

交联结构是由大量的分子链相交织形成的高分子材料。

2. 高分子材料的力学性能高分子材料的力学性能主要包括弹性、塑性、黏弹性和粘性等方面。

弹性是指高分子材料在外部受力下产生的形变,一旦外力消失,高分子材料可以恢复原有形状和大小的能力。

塑性是指高分子材料在外部受力后发生的形变,外力撤离后无法恢复原有形状和大小的性质。

黏弹性是指高分子材料在外部受力下,受力速度不同时形变的特性不同。

在低速下,高分子材料是弹性体;在高速下,高分子材料表现出粘性特性。

粘性是指高分子材料在外部受到剪切力时会发生形变,形变速度逐渐增加,形状和大小逐渐稳定的性质。

3. 高分子材料的测试方法高分子材料的力学特性是通过测试来获取的。

有许多不同的测试方法可以用来测试高分子材料的力学特性。

其中最常用的测试方法有拉伸测试、弯曲测试和压缩测试。

拉伸测试用来测试高分子材料的弹性和塑性特性,可以通过测定高分子材料在拉伸状态下产生的应力和应变来测定高分子材料的弹性模量。

高分子物理知识点总结

高分子物理知识点总结

构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列。

柔性:高分子链中单键内旋的能力;高分子链改变构象的能力;高分子链中链段的运动能力;高分子链自由状态下的卷曲程度。

链段:两个可旋转单键之间的一段链,称为链段影响柔性因素:1支链长,柔性降低;交联度增加,柔顺性减低。

2一般分子链越长,构象数越多,链的柔顺性越好。

3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。

分子链的规整性好,结晶,从而分子链表现不出柔性。

控制球晶大小的方法:1控制形成速度;2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶;3外加成核剂,可获得小甚至微小的球晶。

聚合物的结晶形态:1单晶:稀溶液,慢降温,螺旋生长2球晶:浓溶液或熔体冷却3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出;4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列;5串晶:溶液低温,边结晶边搅拌;6柱晶:熔体在应力作用下冷却结晶;7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。

结晶的必要条件:1内因:化学结构及几何结构的规整性;2外因:一定的温度、时间。

结晶速度的影响因素:1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长;2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶;3分子量:M 小结晶速度块,M 大结晶速度慢;熔融热焓∆H m :与分子间作用力强弱有关。

作用力强,∆H m 高熔融熵∆S m :与分子间链柔顺性有关。

分子链越刚,∆S m 小聚合物的熔点和熔限和结晶形成的温度T c 有一定的关系:结晶温度Tc 低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低; 结晶温度Tc 高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。

取向:在外力作用下,分子链沿外力方向平行排列。

聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。

高分子材料的力学性能

高分子材料的力学性能

分子量是对高分子材料力学 性能(包括强度、弹性、韧性) 起决定性作用的结构参数。 不同聚合物,要求的最小聚 合度不同。 超过最小聚合度,随分子量 增大,材料强度逐步增大。但 当分子量相当大,材料强度主 要取决于化学键能的大小,不 再依赖分子量而变的存在将使材料受力时内部压力分布不平均, 缺陷附近范围内的应力急剧地增加,远远超过压力平均 值,这种现象称为应力集中,缺陷就是应力集中物,包 括裂缝、空隙、缺口、银纹和杂质等,缺陷成为材料的 薄弱环节,材料的破坏就从这些缺陷处开始而扩展到 整个体系,严重降低材料的强度。 缺陷形状不同,应力集中系数也不同,锐口缺陷的 应力集中系数比钝口的大,也更易开始发生破坏。 制品设计时尽量避免有尖锐的转角,将制品的转弯 处做成圆弧形,制品成型时进行退火处理,保证制品厚 度尽可能均匀等措施均能确保制品的强度。
高分子材料的力学性能
玻璃纤维是将玻璃材料通过拉丝形成的纤维状的玻璃, 没有固定的熔点。是一种综合性能优异的无机非金属材料, 通常作为复合材料增强基材、电绝缘材料、耐热绝热材料、 光导材料、耐蚀材料和过滤材料等,广泛应用于国民经济各 个领域。
玻璃纤维
高分子材料的力学性能
玻璃纤维对高聚物的增强:
短玻璃纤维可以提高热塑性塑料的强度,还可以用玻璃纤维与其 他织物复合而制成玻璃钢。 玻璃钢的性能优越,其强度高于钢,是以玻璃纤维制成玻璃布, 以不同的角度排列,以环氧树脂、酚醛树脂、呋喃树脂的顺序形成涂 层,经加热、层压、固化而成。
高分子材料的力学性能
5、填料:
在高聚物中加入固体填料可得到多相复合材料
根据其在复合材料中的使用目的分类: 惰性填料:起填充稀释以降低制品的成本的作用, 材料的强度随之降低 固体填料 活性填料:有效提高材料的强度

高分子科学基础-高分子材料力学性能

高分子科学基础-高分子材料力学性能
3
② 本体压缩/ 膨胀:体积改变、形状不变
围压力 P 压缩应变 = V / V0 本体模量 B = P V0 / V 可压缩度 :V / PV0
4
③简单拉伸/压缩:纵向伸长、横向收缩
拉伸应力 拉伸应变 杨氏模量 拉伸柔量
小形变
σ= F / A0
ε=L /L0 E = σ/ε D =ε/σ
真实形变
内耗: 顺丁 < 丁苯、丁腈 < 丁基橡胶 22
•内耗与温度的关系 T<<Tg or Tg <<T<Tf , 内耗都很小 T≈Tg , 内耗出现极大值
•内耗与外力作用频率的关系
低频or高频时,内耗小
中等频率时,
内耗出现极大值
23
讨论动态粘弹性,应力、应变均为时间函数,弹性模量=?
由于粘弹性材料在交变力作用下,材料的应变变化总落后于应
意义:利用加力时间和温度的对应关系,可将不同温度或不同频率 测定的力学性能进行比较和换算,从而获得某些无法用实验 得到的数据。
时温等效性可借助转换因子αT实现: logαT = –17.44(T–Tg) /(51.6+T–Tg)
27
13
么么么么方面
• Sds绝对是假的
2.橡胶弹性的热力学分析
长度lo的试样,等温时受外力 f 拉伸,伸长 dl dU = dQ-dW
拉伸中体积变化所做的功 PdV
dW
PdV-fdl
拉伸中形状变化所做的功-fdl
又 dQ=TdS, ∴ dU = TdS + fdl -PdV
橡胶在拉伸中体积不变, dV=0; ∴ dU = TdS + fdl
1.形变类型和描述力学行为的基本物理量

高分子材料力学性能

高分子材料力学性能
全剪切应力下的流变曲线
曲线3:宾汉流体
D、触变性流体:t延长,粘度迅速下降; (例:重防腐涂料中的应用)
震凝性流体:反之
一、高聚物的流动性
§5.1 力学性能
1、第一牛顿区 2、第二牛顿区
一、高聚物的流动性
§5.1 力学性能
2、与结构的关系 (η、 Tf 、非牛顿性 )
解缠能力
1)分子量:
分子量越大,粘度越大, Tf 越高, 非牛顿性越大
4)粘弹模型 : 建立模型--模拟曲线--得到参数
理想粘壶+理想弹簧
分子运 动
并联
串联
Kelvin 模型 描述蠕变
Maxwell模型 描述应力松弛
三、粘弹性
§5.1 力学性能
三、粘弹性
§5.1 力学性能
2、动态粘弹性 (滞后)
• 滞后:一定温度下,受交变的应力,形变随时
间的变化跟不上力随时间的变化
银纹化过程
裂缝
4)分子间作用力: 越大: 四 屈服、强度与断裂
一Tf 越定高,的粘度温越高度, 、一定的拉伸速度下,观察应力随应
变的变化曲线 5
ΔV= 0
柔性越大,Tf 越低, 非牛顿性越大(粘度对剪切的敏感性大)
相比较而言
2、力学强度 不同力学要求如何选材?
3、强度与结构的关系 明显的松弛过程--时间依赖性
弯曲形变较小时的载荷与挠度
• 抗冲击强度 (韧性) σi=W/bd (kJ/m2)
2、力学强度
§5.1 力学性能
四屈服、强度与断裂
2) 理论强度》 实际强度,σ实=(1/100~1/1000 )σ理 而模量接近 原因:缺陷(裂缝、结构的不均一性)
3)强度理论: • 应力集中: • Griffith表面能理论 (脆性材料)

高分子材料的力学性能分析

高分子材料的力学性能分析

高分子材料的力学性能分析高分子材料是一类广泛应用于各个行业的材料,具有重要的地位和作用。

高分子材料的力学性能对于其应用的稳定性和可靠性具有至关重要的影响。

因此,对高分子材料的力学性能进行分析和评估是非常重要的工作。

首先,我们来了解高分子材料的力学性能包括哪些方面。

高分子材料的力学性能主要包括强度、韧性和刚性等方面。

强度是指高分子材料在受力作用下抵抗断裂的能力,通常用抗拉强度来表示。

韧性是指高分子材料能够在受力作用下发生可逆性变形的能力,通常用断裂伸长率和冲击韧性来表示。

刚性是指高分子材料在受力作用下不发生可逆性变形的能力,通常用弹性模量来表示。

这些力学性能指标可以通过一系列测试方法得到。

其次,我们来探讨高分子材料力学性能分析的方法和工具。

力学性能分析需要使用一些专业的测试设备和仪器,例如拉伸试验机、冲击试验机、扭转试验机等。

这些设备可以通过施加不同方向和大小的外力来评估高分子材料的不同力学性能。

通过这些测试方法,我们可以得到高分子材料的力学性能曲线,从而分析和评估其力学性能特点。

在力学性能分析中,我们还需要考虑高分子材料的成分和结构对力学性能的影响。

高分子材料通常是由分子链组成的,分子链的结构和排列方式对力学性能具有重要影响。

例如,聚合度高的高分子材料有较高的强度,分子链的交联程度高的高分子材料有较高的韧性。

此外,添加剂和填充物的使用也可以改善高分子材料的力学性能。

例如,加入增强纤维可以提高高分子材料的强度和刚性。

在实际应用中,高分子材料的力学性能要符合特定的要求。

不同行业和领域对于高分子材料的力学性能要求各不相同。

例如,在汽车工业中,要求高分子材料具有较高的刚性和耐热性,以保证车身的稳定性和安全性。

在医疗行业中,要求高分子材料具有较高的耐腐蚀性和生物相容性,以确保医疗器械的安全和有效性。

因此,在力学性能分析中,我们需要将高分子材料的特定要求考虑进去,以便更好地满足实际应用的需求。

最后,力学性能分析的结果对于改进高分子材料的性能和设计优化具有重要意义。

高分子物理_力学性能

高分子物理_力学性能

聚合物蠕变反映了材料的尺寸稳定性 以及长期负荷能力
二ቤተ መጻሕፍቲ ባይዱ蠕变 ( creep )
(2)蠕变过程 普弹形变(初始)→高弹形变(随时间延长)→粘性形变(最终可能)
总 普弹 高弹 粘性

(3) 蠕变机理
聚合物在外力长时间作用下, 逐渐发生了构象改变或位移变 化的结果。而这种构象改变或 位移,因内摩擦力的阻碍,不 能瞬间完成而需要经过一定的 时间,故表现出形变随时间而 变化,即蠕变。
1、定义
通过分子链间(包括链段间)的次价力来实现分子间交联的方式。
2、物理交联的特点 只有分子间力作用;
交联是微区域,而不是交联点。微区中聚集着许多同种高分子 链段; 在使用温度下,交联微区域中的链段不能运动(硬相); 超过某一温度,交联微区域中的分子链段产生相对滑移,使材 料具有流动性,进入黏流态。冷却后,又恢复物理交联微区域(即 具有热塑性)。
3、强度(strength) 定义:在一定条件下,材料所能承受的最大应力。 超过此应力,材料即被破坏。 拉伸强度(tensile strength) :在拉伸试验中,试样直至断裂 时所受的最大拉伸应力。
Fmax A
通常按下式计算:
(Pa, KPa, MPa)
式中:Fmax为最大拉伸力(拉力,N), A为受力面积(横截面积,m2)
第四节高聚物的力学强度一力学强度的主要指标1常用五个弹性模量拉伸强度断裂伸长率屈服应力屈服强度冲击强度2从应力应变曲线看主要指标1应力应变曲线的一般形式2从曲线看主要指标弹性模量e从直线oa上任取一点冲击强度拉伸强度断裂伸长率屈服强度3应力应变曲线的类型此外也应注意同一种高聚物在不同条件下应力应变曲线也有很大差别
二、高聚物的松弛特性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.1 玻璃态与结晶态聚合物的力学性质
(1)当T<<Tg是,应力与应变成正比,最后应变
不到10%就发生断裂的(曲线①),称为脆性断裂。
7.1 玻璃态与结晶态聚合物的力学性质
(2)当温度稍升高些,但仍在Tg以下,曲线②上出现了一
个屈服点B,过了B点,应力反而下降,试样应变增大,继续拉
伸,试样将发生断裂,总的应变不超过20%,称为韧性断裂。
高分子的力学性能
Polymer Mechanical Properties
引 言
高聚物作为材料使用时,总是要求高聚物具有必 要的力学性能,可以说,对于其大部分应用而言,力 学性能比高聚物的其他物理性能显得更为重要。
引 言
随着高分子材料的大量应用,人们迫切需要了解 和掌握聚合物的力学性质的一般规律和特点及其与结 构之间的关系,以恰当选择所需要的高分子材料,正 确地控制加工的条件以获得所需的力学性能,并合理
应力称为屈服应力或屈服强度。
7.1 玻璃态与结晶态聚合物的力学性质
屈服点之后,应力有所下降,在较小的负荷下即可产生形 变,称为应变软化。之后应力几乎不变的情况下应变有很大 程度的增加,最后应力又随应变迅速增加,直到材料断裂。
7.1 玻璃态与结晶态聚合物的力学性质
四、几类高聚物的拉伸行为 1. 玻璃态高聚物的拉伸
7.1 玻璃态与结晶态聚合物的力学性质
(3)当温度升高到Tg以下几十度范围内,如曲线③,过
了屈服点后,应力先降后升,应变增大很多,直到C点断裂,
C点的应力称为断裂应力,对应的应变称为断裂伸长率ε 。
7.1 玻璃态与结晶态聚合物的力学性质
(4)当温度升至Tg以上,试样进入高弹态,在应力不大
时,就可发生高弹形变,如曲线④,无屈服点,而呈现一段
7.1 玻璃态与结晶态聚合物的力学性质
(2) 不相同点: ① 冷拉温度范围不同 a. 玻璃态高聚物拉伸温度区间是:Tb-Tg
b. 结晶态高聚物拉伸温度区间是:Tg-Tm
7.1 玻璃态与结晶态聚合物的力学性质

本质差别
a. 玻璃态高聚物只发生分子链的取向,不发生相变
b. 结晶态高聚物发生结晶的破坏,取向,再结晶。
7.1 玻璃态与结晶态聚合物的力学性质
五、高聚物的强度与破坏 1. 脆性断裂与韧性断裂
(1) 应力-应变曲线:如果材料只发生普弹形变,在
屈服之前就发生断裂,则这种断裂为脆性断裂;如果材
细颈部长不断扩展,直到整个试样完全细变为止,在这个
阶段,应力变化不大,而应变增加幅度很大。
7.1 玻璃态与结晶态聚合物的力学性质
(3)变为细颈的试样重新被均匀拉伸,直到出现断裂 。
7.1 玻璃态与结晶态聚合物的力学性质
比较玻璃态高聚物的拉伸与结晶态高聚物的拉伸相同点与区别
( 1) 相同点:两种拉伸过程都经历弹性变形,屈 服(“成颈”),发展大形变,应变硬化。断裂前的大 形变在室温时都不能自发恢复,加热后才能恢复原状态。
7.1 玻璃态与结晶态聚合物的力学性质
7.1 玻璃态与结晶态聚合物的力学性质
2. 弯曲强度(挠曲强度) 弯曲强度是在规定试验条件下,对标准试样施力。 静弯曲力矩直到试样折断为止 。
7.1 玻璃态与结晶态聚合物的力学性质
3. 冲击强度 冲击强度是衡量材料韧性的一种强度指标,表征 材料抵抗冲击载荷破坏的能力。通常定义为试样受冲 击载荷而折断时单位载面积所吸收的能量。
7.1 玻璃态与结晶态聚合物的力学性质
7.1 玻璃态与结晶态聚合物的力学性质
4. 硬度
硬度是衡量材料表面抵抗机械压力的能力的一种
指标。常见的硬度有布氏、洛氏、和邵氏等名称,通 常布氏硬度最为常见。
7.1 玻璃态与结晶态聚合物的力学性质
三、 屈服现象
1. 应力与应变曲线
图7-9
玻璃态和结晶态高聚物的应力-应变曲线
较长的平台,直到试样断裂前,曲线又出现急剧的上升。
7.1 玻璃态与结晶态聚合物的力学性质
2. 结晶态高聚物的拉伸
7.1 玻璃态与结晶态聚合物的力学性质
(1)应力随应变线性增加,试样被均匀的拉长, 伸长率可达百分之几到十几。
7.1 玻璃态与结晶态聚合物的力学性质
(2)到B点后,被拉伸的试样出现一个或几个“细颈”,
3. 聚合物的力学松弛-粘弹性
7.1 玻璃态与结晶态聚合物的力学性质
一、 描述力学性质的基本物理量
1. 应力与应变
(1)应力:单位面积上的附加内力,其值与单位面 积上所受的外力相等。 (2)应变:当材料受到外力时,其几何形状和尺寸 将发生变化,这种变化称为应变。
7.1 玻璃态与结晶态聚合物的力学性质
根据材料受力的方式,将各向同性材料分为三类:
a. 拉伸应力和拉伸应变
b. 剪切应力和剪切应变 c. 围压力和压缩应变
7.1 玻璃态与结晶态聚合物的力学性质
2. 弹性模量
对于理想的弹性固体,应力与应变关系服从虎克定
律:弹性模量=应力/应变 上述三种类型的弹性模量相应地为: (1)杨氏模量:E=σ/ε (2)剪切模量:G=σs/γ (3)体积模量:B=P×V0/ΔV
使用。
引 言
高分子材料具有所有已知材料中可变性范围最宽 的力学性质,包括从液体、软橡胶态到刚性固体。然 而,与金属材料相比,高分子材料对温度和时间的依 赖型要强烈得多,表现为高分子材料的粘弹性。高分 子材料的这种力学行为显得复杂而有趣,为不同的应 用提供了广阔的选择余地。
内容提要
1. 玻璃态和结晶态聚合物的力学性质 2. 高弹态聚合物的力学性质
7.1 玻璃态与结晶态聚合物的力学性质
3. 机械强度 机械强度是材料力学性能的重要指标,它是指材 料抵抗外力破坏的能力。机械强度的测试是参照国际 标准和本国标准进行。
7.1 玻璃态与结晶态聚合物的力学性质
二、 几种常用力学性能的指标 1. 拉伸强度 拉伸强度是在规定的试验温度、湿度和试验速度 下,在标准试样上沿轴向施加拉伸载荷,直到试样被 拉断为止。
7.1 玻璃态与结晶态聚合物的力学性质
(1) B点以前是弹性部分,应力与应变成正比,去 除应力,材料可恢复原样,不产生永久形变,由直线 的斜率可求出材料的弹性模量。
7.1 玻璃态与结晶态聚合物的力源自性质(2) B点以后,材料呈现塑性行为,去除应力,材
料无法复原,留有永久形变。 B 点为屈服点,对应的
相关文档
最新文档