浙江省金华市东阳市东阳中学2019-2020学年八年级上学期期末数学试题(word无答案)
浙教版2019-2020学年八年级数学上学期期末测试题(含答案)
![浙教版2019-2020学年八年级数学上学期期末测试题(含答案)](https://img.taocdn.com/s3/m/2acbeda8e53a580217fcfe05.png)
2019-2020学年八年级数学上学期期末测试卷一、选择题(每题3分,共30分)1.下列各组数不可能是一个三角形的边长的是()A.1,2,3 B.4,4,4 C.6,6,8 D.7,8,92.满足﹣1<x≤2的数在数轴上表示为()A.B.C.D.3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD4.在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A.C,rB.C,π,r C.C,πD.C,2π,r5.一次函数y=3x+6的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限6.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A.y=2x B.y=﹣2x C.D.7.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2 C.1::D.1:4:18.如果不等式组的解集是x>7,则n的取值范围是()A.n=7 B.n<7 C.n≥7 D.n≤79.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x10.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为()米.A.2000米B.2100米C.2200米D.2400米二、填空题(本小题共8小题,每小题3分,共24分)11.请用不等式表示“x的2倍与3的和大于1”:.12.已知y是x的正比例函数,当x=﹣2时,y=4,当x=3时,y=.13.已知点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是.14.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).15.命题“等腰三角形的两个底角相等”的逆命题是.16.在平面直角坐标系中,若点A(m,2)向上平移3个单位,向左平移2个单位后得到点B(3,n),则m+n=.17.如图,△ABC中,∠ACB=90°,D在BC上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于°.18.如图,已知B1(1,y1),B2(2,y2)B3(3,y3)…在直线y=2x+3上,在x 轴上取点A1,使OA1=a(0<a<1);作等腰△A1B1A2面积为S1,等腰△A2B2A3面积为S2…;求S2017﹣S2016=.三、解答题(共46分)19.解不等式<1﹣,把它的解集在数轴上表示出来,并写出该不等式的自然数解.20.在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)21.如图,已知一次函数y=2x+a与y=﹣x+b的图象都经过点A(﹣2,0)且与y轴分别交于B,C两点.(1)分别求出这两个一次函数的解析式;(2)求△ABC的面积.22.某校八年级举行英语演讲比赛,购买A,B两种笔记本作为奖品.这两种笔记本的单价分别是12元和8元,根据比赛设奖情况需购买这两种笔记本共30本,并且所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.(1)请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;(2)请你帮助他们计算购买这两种笔记本各多少时,花费最少,此时的花费是多少元.23.在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求证:∠BDE=90°;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.24.如图,直线y=kx﹣3与x轴、y轴分别交于B、C两点,且OC=2OB(1)求点B坐标和k值.(2)若点A(x,y)是直线y=kx﹣3上在第一象限内的一个动点,当点A在运动过程轴,求△AOB的面积S与x的函数关系式(不要求写自变量范围);并进一步求出点A的坐标为多少时,△AOB的面积为;(3)在上述条件下,x轴正半轴上是否存在点P,使△ABP为等腰三角形?若存在请写出满足条件的所有P点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每题3分,共30分)1.下列各组数不可能是一个三角形的边长的是()A.1,2,3 B.4,4,4 C.6,6,8 D.7,8,9【考点】三角形三边关系.【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【解答】解:A、1+2=3,不能构成三角形;B、4+4>4,能构成三角形;C、6+6>8,能构成三角形;D、7+8>9,能构成三角形.故选A.2.满足﹣1<x≤2的数在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】﹣1<x≤2表示不等式x>﹣1与不等式x≤2的公共部分.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【解答】解:由于x>﹣1,所以表示﹣1的点应该是空心点,折线的方向应该是向右.由于x≤2,所以表示2的点应该是实心点,折线的方向应该是向左.所以数轴表示的解集为故选B.3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【考点】等腰三角形的性质.【分析】此题需对每一个选项进行验证从而求解.【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.4.在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A.C,rB.C,π,r C.C,πD.C,2π,r【考点】常量与变量.【分析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【解答】解:∵在圆的周长公式C=2πr中,C与r是改变的,π是不变的;∴变量是C,r,常量是2π.故选A.5.一次函数y=3x+6的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限【考点】一次函数图象与系数的关系;一次函数的性质.【分析】根据一次函数解析式中k=3>0、b=6>0,结合一次函数图象与系数的关系即可得出结论.【解答】解:∵在一次函数y=3x+6中:k=3>0,b=6>0,∴一次函数y=3x+6的图象经过第一、二、三象限.故选A.6.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A.y=2x B.y=﹣2x C.D.【考点】待定系数法求正比例函数解析式.【分析】利用待定系数法把(1,﹣2)代入正比例函数y=kx中计算出k即可得到解析式.【解答】解:∵正比例函数y=kx经过点(1,﹣2),∴﹣2=1•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x.故选B.7.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2 C.1::D.1:4:1【考点】勾股定理.【分析】根据给出的条件和三角形的内角和定理计算出三角形的角,再计算出它们的边的比.【解答】解:∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,∴c=2a,b=a,∴三条边的比是1::2.故选:B.8.如果不等式组的解集是x>7,则n的取值范围是()A.n=7 B.n<7 C.n≥7 D.n≤7【考点】解一元一次不等式组.【分析】先解两个不等式得到x>7和x>n,然后根据同大取大可确定n的范围.【解答】解:,解①得x>7,解②得x>n,而不等式组的解集是x>7,所以n≤7.故选D.9.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x【考点】作图—基本作图;坐标与图形性质.【分析】根据角平分线的性质以及第二象限点的坐标特点,进而得出答案.【解答】解:由题意可得出:P点在第二象限的角平分线上,∵点P的坐标为(2x,y+1),∴2x=﹣(y+1),∴y=﹣2x﹣1.故选:B.10.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为()米.A.2000米B.2100米C.2200米D.2400米【考点】一次函数的应用.【分析】设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.【解答】解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:.故这次越野跑的全程为:1600+300×2=2200米.故选C.二、填空题(本小题共8小题,每小题3分,共24分)11.请用不等式表示“x的2倍与3的和大于1”:2x+3>1.【考点】由实际问题抽象出一元一次不等式.【分析】x的2倍为2x,大于1即>1,据此列不等式.【解答】解:由题意得,2x+3>1.故答案为:2x+3>1.12.已知y是x的正比例函数,当x=﹣2时,y=4,当x=3时,y=﹣6.【考点】待定系数法求正比例函数解析式.【分析】设y与x之间的函数关系式是y=kx,把x=﹣2,y=4代入求出k的值,得出解析式,然后代入x=3,求得y即可.【解答】解:设y与x之间的函数关系式是y=kx,把x=﹣2,y=4代入得:4=﹣2k,解得:k=﹣2,所以,y=﹣2x,当x=3时,y=﹣2×3=﹣6,故答案为﹣6.13.已知点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).14.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=DE(只需写一个,不添加辅助线).【考点】全等三角形的判定.【分析】求出BC=EF,∠ABC=∠DEF,根据SAS推出两三角形全等即可.【解答】解:AB=DE,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AB∥DE,∴∠ABC=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=DE.15.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.16.在平面直角坐标系中,若点A(m,2)向上平移3个单位,向左平移2个单位后得到点B(3,n),则m+n=10.【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:∵点A(m,2)向上平移3个单位,向左平移2个单位后得到点B (3,n),∴m﹣2=3,2+3=n,∴m=5,n=5,∴m+n=10,故答案为:10.17.如图,△ABC中,∠ACB=90°,D在BC上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于60°.【考点】直角三角形斜边上的中线.【分析】由直角三角形的性质知,中线CE=AE=BE,所以∠EAC=∠ECA,∠B=∠BCE,由三角形内角和即可求得.【解答】解:由直角三角形性质知,∵E为AB之中点,∴CE=AE=BE,(直角三角形斜边上的中线等于斜边的一半)∴∠B=∠BCE=20°,∠EAC=∠ECA=70°,∴∠ACF=70°,又∵AD=DB,∴∠B=∠BAD=20°,∴∠FAC=50°,∴在△ACF中,∠AFC=180°﹣70°﹣50°=60°,∴∠DFE=∠AFC=60°.故答案为,6018.如图,已知B1(1,y1),B2(2,y2)B3(3,y3)…在直线y=2x+3上,在x 轴上取点A1,使OA1=a(0<a<1);作等腰△A1B1A2面积为S1,等腰△A2B2A3面积为S2…;求S2017﹣S2016=4037﹣8072a.【考点】一次函数图象上点的坐标特征;等腰三角形的性质.【分析】根据一次函数图象上点的坐标特征,求得点B1、B2、B3的纵坐标,然后由三角形的面积公式求得S1,S2…S n;由此得出规律,即可求得S2017﹣S2016的值.【解答】解:∵B1(1,y1)、B2(2,y2)、B3(3,y3),…,在直线y=2x+3上,∴y1=2×1+3=5,y2=2×2+3=7,y3=2×3+3=9,y4=2×4+3=11,…,y n=2n+3;又∵OA1=a(0<a<1),∴S1=×2×(1﹣a)×5=5(1﹣a);S2=×2×[2﹣a﹣2×(1﹣a)]×7=7a;S3=×2×{3﹣a﹣2×(1﹣a)﹣2×[2﹣a﹣2×(1﹣a)]}×9=9(1﹣a);S4=×2×[1﹣(1﹣a)]×11=11a;…∴S n=(2n+3)(1﹣a)(n是奇数);S n=(2n+3)a(n是偶数),∴S2017﹣S2016=(2×2017+3)(1﹣a)﹣(2×2016+3)a=4037﹣8072a.故答案是:4037﹣8072a.三、解答题(共46分)19.解不等式<1﹣,把它的解集在数轴上表示出来,并写出该不等式的自然数解.【考点】一元一次不等式的整数解;在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示解集,最后求出自然数解即可.【解答】解:去分母得:2x<4﹣x+3,2x+x<4+3,3x<7,x<,在数轴上表示为:,不等式的自然数解为0,1,2.20.在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)【考点】利用轴对称设计图案;坐标与图形性质.【分析】(1)根据A,B,O,C的位置,结合轴对称图形的性质进而画出对称轴即可;(2)利用轴对称图形的性质得出P点位置.【解答】解:(1)如图2所示,C点的位置为(﹣1,2),A,O,B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴;(2)如图1所示:P(0,﹣1),P′(﹣1,﹣1)都符合题意.21.如图,已知一次函数y=2x+a与y=﹣x+b的图象都经过点A(﹣2,0)且与y轴分别交于B,C两点.(1)分别求出这两个一次函数的解析式;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)把A点坐标分别代入两函数解析式,可求得a、b的值,可求得两函数的解析式;(2)由两函数解析式,可求得B、C两点的坐标,可求得△ABC的面积.【解答】解:(1)把A(﹣2,0)分别代入y=2x+a和y=﹣x+b得,a=4,b=﹣2,∴这两个函数分别为y=2x+4和y=﹣x﹣2;(2)在y=2x+4和y=﹣x﹣2中,令x=0,可分别求得y=4和y=﹣2,∴B(0,4),C(0,﹣2),又∵A(﹣2,0),∴OA=2,BC=6,=OA•BC=×2×6=6.∴S△ABC22.某校八年级举行英语演讲比赛,购买A,B两种笔记本作为奖品.这两种笔记本的单价分别是12元和8元,根据比赛设奖情况需购买这两种笔记本共30本,并且所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.(1)请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;(2)请你帮助他们计算购买这两种笔记本各多少时,花费最少,此时的花费是多少元.【考点】一次函数的应用.【分析】(1)根据题意可以求得w关于n的函数关系式,由所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,可以确定n 的取值范围;(2)根据(1)中的函数关系式可以求得w的最小值及此时购买的A和B种两种笔记本的数量.【解答】解:(1)由题意可得,w=12n+8(30﹣n)=4n+240,∵,解得,15<n≤20,即w(元)关于n(本)的函数关系式是w=4n+240(15<n≤20);(2)∵w=4n+240(15<n≤20),n为正整数,∴n=16时,w取得最小值,此时w=4×16+240=304,∴30﹣n=30﹣16=14,即购买A种笔记本16本、B种笔记本14本时,花费最少,此时的花费是304元.23.在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求证:∠BDE=90°;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.【考点】三角形综合题.【分析】(1)欲证明CD=AE,只要证明△ABE≌△DBC即可.(2)如图②中,取BE中点F,连接DF,证出△DBF是等边三角形,进一步得出∴∠FDE=∠FED=30°,即可证明△BDE是直角三角形.(3)如图③中,连接DC,先利用勾股定理的逆定理证明△DEC是直角三角形,得∠DEC=90°即可解决问题.【解答】(1)证明:∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴CD=AE.(2)证明:如图②中,取BE中点F,连接DF.∵BD=AB=1,BE=BC=2,∠ABD=∠EBC=60°,∴BF=EF=1=BD,∠DBF=60°,∴△DBF是等边三角形,∴DF=BF=EF,∠DFB=60°,∵∠BFD=∠FED+∠FDE,∴∠FDE=∠FED=30°∴∠EDB=180°﹣DEB∠DBE﹣∠DEB=90°.(3)解:如图③中,连接DC,∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC.∵DE2+BE2=AE2,BE=CE,∴DE2+CE2=CD2,∴∠DEC=90°,∵∠BEC=60°,∴∠DEB=∠DEC﹣∠BEC=30°.24.如图,直线y=kx﹣3与x轴、y轴分别交于B、C两点,且OC=2OB(1)求点B坐标和k值.(2)若点A(x,y)是直线y=kx﹣3上在第一象限内的一个动点,当点A在运动过程轴,求△AOB的面积S与x的函数关系式(不要求写自变量范围);并进一步求出点A的坐标为多少时,△AOB的面积为;(3)在上述条件下,x轴正半轴上是否存在点P,使△ABP为等腰三角形?若存在请写出满足条件的所有P点坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)首先求得直线y=kx﹣3与y轴的交点,则OC的长度即可求解,进而求得B的坐标,把B的坐标代入解析式即可求得k的值;(2)根据三角形的面积公式即可求解;再利用函数关系式即可得出结论;(3)分三种情况,利用等腰三角形的性质即可得出结论.【解答】解:(1)在y=kx﹣3中,令x=0,则y=﹣3,∴C的坐标是(0,﹣3),OC=3,∵OC=2OB,∴OB=OC=,则B的坐标是:(,0),把B的坐标代入y=kx﹣3,得:k﹣3=0,∴k=2;(2)OB=,则S=×(2x﹣3)=x﹣;∵△AOB的面积为;∴x﹣=,∴x=3,则A的坐标是(3,3);(3)设P(m,0),(m>0)由(1)(2)知,A(3,3),B(,0),∴AB2=(3﹣)2+9=,AP2=(m﹣3)2+9=m2﹣6m+18,BP2=(m﹣)2,∵△ABP为等腰三角形,①当AB=AP时,∴AB2=AP2,∴=m2﹣6m+18,∴m=﹣(舍)或m=,∴P (,0)②当AB=BP 时,∴AB 2=BP 2,∴=(m ﹣)2,∴m=(舍)或m=,∴P (,0) ③当AP=BP 时,AP 2=BP 2,∴m 2﹣6m +18=(m ﹣)2,∴m=,∴P (,0)满足条件的P 的坐标为P (,0)或(,0)或(,0).2017年2月28日。
(2019秋)浙教版八年级上册第一学期末考试数学试题(有答案)浙教版
![(2019秋)浙教版八年级上册第一学期末考试数学试题(有答案)浙教版](https://img.taocdn.com/s3/m/95e303baa1c7aa00b42acb17.png)
A2019-2020第一学期八年级数学期末试卷(满分100分,考试时间90分钟)一、选择题(每小题3分,共30分)1.在平面直角坐标系中,下列各点在第一象限的是( ▲ ) A.(1,2) B.(1,-2) C.(-1,-2) D.(-1,2)2.下列语句是命题的是( ▲ )A.延长线段ABB.过点A 作直线a 的垂线C.对顶角相等D.x 与y 相等吗? 3.下列不等式对任何实数x 都成立的是( ▲ ) A.x+1>0 B.x 2+1>0 C.x 2+1<0 D.∣x ∣+1<04.若一个三角形三边a,b,c 满足(a+b)2=c 2+2ab,则这个三角形是( ▲ ) A. 等边三角形 B.钝角三角形 C.等腰直角三角形 D. 直角三角形5.平面直角坐标系内有点A(-2,3), B(4,3), 则A,B 相距( ▲ )A.4个单位长度B.5个单位长度C.6个单位长度D.10个单位长度 6.下列条件中不能判定三角形全等的是( ▲ )A.两角和其中一角的对边对应相等B.三条边对应相等C.两边和它们的夹角对应相等D. 三个角对应相等 7.不等式-2x+6>0的正整数解有( ▲ ) A.无数个 B.0个 C.1个 D.2个8.如图,△ABC 中,AB=AC.将△ABC 沿AC 方向平移到△DEF 位置,点D 在AC 上,连结BF.若AD=4,BF=8,∠ABF=90°,则AB 的长是( ▲ ) A.5 B.6 C.7 D.89.平面直角坐标系中,将直线l 向右平移1个单位长度得到的直线解析式是y=2x+2,则原的直线解析式是( ▲ )A.y=3x+2B. y=2x+4C. y=2x+1D. y=2x+310.如图,△ABC 中,∠A=67.5°,BC=4,BE ⊥CA 于E,CF ⊥AB 于ACADF,D 是BC 的中点.以F 为原点,FD 所在直线为x 轴构造平面 直角坐标系,则点E 的横坐标是( ▲)A. 2-B.12二、填空题(每小题3分,共24分)11.函数,自变量x 的取值范围是___▲_____12.如图,△ABC 中,AB=AC,∠B=70°,则∠A=___▲___13.点A(2,3)关于x 轴的对称点是___▲___14.若4,5,x 是一个三角形的三边,则x 的值可能是___▲___ (填写一个即可)15.如图,△ABC 中,∠C=90°,点D 是BC 上一点,连结AD. 若CD=3, ∠B=40°,∠CAD=25°,则点D 到AB 的距离为___▲___16.若不等式组4{x x m <<的解集是x<4,则m 的取值范围是___▲___17.如图,直线y=-2x+2与x 轴交于A 点,与y 轴交于B 点. 过点B 作直线BP 与x 轴交于P 点,若△ABP 的面积是3, 则P 点的坐标是___▲___18.如图,△ABC 中, ∠A=15°,AB 是定长.点D,E 分别在AB,AC 上运动, 连结BE,ED.若BE+ED 的最小值是2, 则AB 的长是___▲___BCA三、解答题(共46分)19. (8分) 解下列不等式(组),并把解集在数轴上表示出.(1) 5122x x -≤ (2) 122(2)0{x x -+<-≤20. (8分) 平面直角坐标系中, △ABC 的三个顶点坐标分别为A(3,4), B(2,0), C(-1,2).(1)在图中画出△ABC;(2)将△ABC 向下平移4个单位得到△DEF(点A,B,C 分别对应点D,E,F),在图中画出△DEF, 并求EF 的长.21. (6分) 如图,已知在△ABC与△ADC中, AB=AD(1)若∠B=∠D=90°,求证△ABC≌△ADC;(2)若∠B=∠D≠90°,求证BC=DC.22. (6分)随着人民生活水平的提高,越越多的家庭采取分户式采暖,降低采暖用气价格的呼声强烈.某市物价局对市区居民管道天然气阶梯价格制度的规定作出了调整,调整后的付款金额y(单位元)与年用气量(单位m3)之间的函数关系如图所示21(1)宸宸家年用气量是270m3,求付款金额.(2)皓皓家去年的付款金额是1300元,求去年的用气量.23. (8分)自2009年起,每年的11月11日是Tmall一年一度全场大促销的日子.某服饰店对某商品推出促销活动双十一当天,买两件等值的商品可在每件原价减50元的基础上,再打八折;如果单买,则按原价购买.(1)妮妮看中两件原价都是300元的此类商品, 则在双十一当天,购买这两件商品总共需要多少钱?(2)熊熊购买了两件等值的此类商品后, 发现比两件一起按原价六折购买便宜. 若这两件等值商品的价格都是大于196的整数, 则原价可能是多少元?BB24. (10分)△ABC 和△ADE 都是等腰直角三角形, ∠BAC=∠DAE=90°.(1)如图1,点D,E 在AB,AC 上,则BD,CE 满足怎样的数量关系和位置关系?(直接写出答案)图1(2)如图2,点D 在△ABC 内部, 点E 在△ABC 外部,连结BD, CE, 则BD,CE 满足怎样的数量关系和位置关系?请说明理由.图2(3)如图3,点D,E 都在△ABC 外部,连结BD, CE,CD, EB,BD, 与CE 相交于H 点.①若求四边形BCDE 的面积; ②若AB=3,AD=2,设CD 2=x,EB 2=y,求y 与x 之间的函数关系式.图32019-2020第一学期八年级数学期末试卷参考答案一. 选择题(每小题3分,共30分)二.填空题(每小题3分,共24分)11. x ≥1 12. 40° 13. (2,-3) 14. (x 满足1<x<9即可) 15. 3 16. m ≥4 17. (4,0),(-2,0) 18. 4三.解答题(共46分)19(1) 5x-1≤4x -----------------1分x ≤1 -----------------1分 x ≤1 -----------------1分 -----------------1分(2) 由第一个不等式得 x>-1 -----------------1分由第二个不等式得 x ≤2 -----------------1分 不等式组的解集是 -1<x ≤2 -----------------1分 -----------------1分20.-----------------3分-----------------3分EF=分 21(1) ∵AB=AD∠B=∠D=90°AC=AC -----------------1分 ∴△ABC ≌△ADC(HL) -----------------1分(2) 连结BD. -----------------1分∵AB=AD∴∠ADB=∠ABD -----------------1分∵∠ABC=∠ADC∴∠CBD=∠CDB -----------------1分 ∴BC=DC -----------------1分22(1) 当0300x ≤≤时y=3x -----------------2分当x=270时,y=810 -----------------1分B(2) 当9002100y ≤≤时y=4x-300 -----------------2分当y=1300时,x=400 -----------------1分23(1) 2(300-50)×0.8=400 -----------------3分(2) 设原价为x 元. -----------------1分1960.8(2100)1.2{x x x>-< -----------------2分196<x<200 -----------------1分答原价可能是197,198,199元. -----------------1分24(1) BD=CE -----------------1分BD ⊥CE -----------------1分(2) ∵△ABC 和△ADE 都是等腰直角三角形, ∴AB=AC,AD=AE,∠BAC=∠DAE=90°∵∠BAD=∠BAC-∠DAC, ∠CAE=∠DAE-∠DAC∴∠BAD=∠-----------------1分∴△ABD ≌△ACE∴BD=CE -----------------1分延长BD,分别交AC,CE 于F,G. BD=CE -----------------1分∵△ABD ≌△ACE ∴∠ABD=∠ACE ∵∠AFB=∠GFC∴∠CGF=∠BAF=90°, BD ⊥CE ----------------1分(3) ∵△ABC 和△ADE 都是等腰直角三角形, ∴AB=AC,AD=AE,∠BAC=∠DAE=90°∵∠BAD=∠BAC+∠DAC, ∠CAE=∠DAE+∠DAC,∴∠BAD=∠CAE∴△ABD ≌△ACE∴BD=CE ∠ABD=∠ACE ∵∠1=∠2∴∠BHC=∠BAC=90° ∴S 四边形BCDE =S △BCE +S △DCE=1122CE BH CE DH ⨯+⨯= 12CE BD ⨯=192 -----------------2分 ∵∠BHC=90°∴CD 2+EB 2=CH 2+HD 2+EH 2+HB 2=CH 2+HB 2+EH 2+HD 2=BC 2+DE 2 =(2+(2=26∴y=26-x -----------------2分 -。
2019-2020学年度浙教版八年级数学上册期末考试题(有答案)
![2019-2020学年度浙教版八年级数学上册期末考试题(有答案)](https://img.taocdn.com/s3/m/a1ee0cc5c281e53a5902ff9d.png)
第1页共6页
A. 21 B . 15 C . 13 D. 11 9. 某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀 速流出.那么该倒置啤酒瓶内水面高度 h 随水流出的时间 t 变化的图象大致是( )
A.
B.
C.
D.
10. 下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是
D
.﹣ 5+a<﹣ 5+b
33
2. 若点 P 是第二象限内的点,且点 P 到 x 轴的距离是 4,到 y 轴的距离是 3,则点 P 的坐标
是( )
A.(﹣ 4,3) B .( 4,﹣ 3) C .(﹣ 3, 4) D .( 3,﹣ 4)
3. 某种出租车的收费标准:起步价 7 元(即行驶距离不超过 3 千米都需付 7 元车费),超
第4页共6页
22. 不等式组的所有整数解是 1、 2、 3. 23. ( 1) 900, 4 小时两车相遇.( 2)所以线段 BC所表示的 y 与 x 之间的函数关系式为: y=225x ﹣ 900( 4≤ x≤ 6)( 3)第二列快车比第一列快车晚出发 0.75 小时
24.(1) 、 2 13 ; (2) 、 8 ; (3) 、5.5 秒或 6 秒或 6.6 秒 3
2019—2020年最新浙教版八年级数学上学期期末考试达标测试题及答案解析.docx
![2019—2020年最新浙教版八年级数学上学期期末考试达标测试题及答案解析.docx](https://img.taocdn.com/s3/m/26d24463eff9aef8951e064f.png)
第一学期八年级数学期末考试卷一、选择题(每小题3分,共30分)在每小题给出的四个选项中,只有一项符合题目要求1、一次函数y=3x+6的图象经过( ▲ )A. 第1、2、3象限B. 第2、3、4象限C. 第1、2、4象限D. 第1、3、4象限2、在平面直角坐标系中.点P (1,-2)关于y 轴的对称点的坐标是( ▲ ) A .(1,2) B .(-1,-2) C .(-1,2) D .(-2,1)3、下列各式中,正确的是( ▲ ) A .3222-= B .842= C .()255-= D .2(5)-=-54、.把不等式组的解集表示在数轴上,下列选项正确的是( ▲ )A B C D 5、把方程x 2-4x -6=0配方,化为(x+m )2=n 的形式应为( ▲ ). A.(x -4)2=6 B.(x -2)2=4 C.(x -2)2=10 D.(x -2)2=06、如图所示,在下列条件中,不能证明△ABD ≌△ACD 的是 ( ▲ ) A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC7、不等式2+x <6的正整数解有( ▲ ) 第6题图A 、1个B 、2个C 、3 个D 、4个8、如图,在△ABC 中,∠ACB=90°, D 在BC 上,E 是AB 的中点,AD 、CE 相交于F ,且AD=DB. 若∠B=20°,则∠DFE 等于( ▲ ) A .30° B .40° C .50° D .60°第8题图9、若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( ▲ ) A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠10、一次长跑中,当小明跑了1600米时,小刚跑了1400米, 小明、小刚在此后所跑的路程y (米)与时间t (秒)之间 的函数关系如图,则这次长跑的全程为( ▲ )米. A 、2000米 B 、2100米 C 、2200米 D 、2400米 二、填空题(每小题3分,共24分)11、在Rt △ABC 中,∠C=Rt ∠,∠A=70°,则∠B=__▲ ___. 12、函数5y x =-中自变量x 的取值范围是__▲ _____. 13、边长为2的等边三角形的高为 ▲ .14、方程x 2-6x +8=0的两个根是等腰三角形的底和腰,则这个三角形的周长为____ ▲___.15、如图将一副三角尺如图所示叠放在一起,若AB=4cm ,则阴影部分的面积是__▲___cm 2.16、将正比例函数y=x 的图象向上平移2个单位,平移后,若y >0,则x 的取值范围是__▲___.第15题图第17题图17、如图,Rt ΔABC 中,AB=9,BC=6,∠B=900,将ΔABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为___▲______.18、已知过点()1,1的直线()y ax b a 0=+≠不经过第四象限.设2s a b =+,则s 的取值范围是___▲______ 三、解答题(6小题、共46分)19、(6分) 如图,已知在△ABC 中,∠A=120º,∠B=20º,∠C=40º,请在三角形的边上找一点P ,并过点P 和三角形的一个顶点画一条线段,将这个三角形分成两个等腰三角形.(要求两种不同的分法并写出每个等腰三角形的内角度数)CAB CAB20、(12分)(1) 解不等式: 3x -2(1+2x) ≥1 (2)计算:12)326242731(⋅-+(3) 解方程:2x 2﹣4x ﹣1=021、(5分)如图,已知1011A B -(,),(,),把线段AB 平移,使点B 移动到点D (3,4)处,这时点A 移动到点C 处. (1)写出点C 的坐标___▲____;(2)求经过C 、D 的直线与y 轴的交点坐标.22、(6分)如图,在ABC △中,2C B ∠=∠,D 是BC 上的一点,且AD AB ⊥,ACD EB点E 是BD 的中点,连结AE . (1)说明AEC C ∠=∠成立的理由;(2)若 6.5AC =,5AD =,那么ABE △的周长是多少?23、(8分)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:类 别 电视机洗衣机进价(元/台) 1800 1500 售价(元/台)20001600计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.(不考虑除进价之外的其它费用)(1) 如果商店将购进的电视机与洗衣机销售完毕后获得利润为y 元,购进电视机x 台,求y 与x 的函数关系式(利润=售价-进价) (2)请你帮助商店算一算有多少种进货方案?(3)哪种进货方案待商店将购进的电视机与洗衣机销售完毕后获得利润最多?并求出最多利润.24(9分)如图①所示,直线L :5y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点。
2019-2020学年浙教新版八年级(上)期末数学试卷 (解析版)
![2019-2020学年浙教新版八年级(上)期末数学试卷 (解析版)](https://img.taocdn.com/s3/m/fc4a3c7058f5f61fb636665d.png)
2019-2020学年浙教新版八年级(上)期末数学试卷一、选择题(共10小题).1.(3分)点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)函数y=中,自变量x的取值范围是()A.x≥B.x≥﹣C.x>D.x>﹣3.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.(3分)下列说法中错误的是()A.2x<6的解集是x<3B.﹣x<﹣4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个5.(3分)对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>36.(3分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7.(3分)三角形的边长都是整数,并且唯一的最长边是7,则这样的三角形共有()A.3个B.6个C.9个D.11个8.(3分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.49.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二、填空题(每小题4分,共24分)11.(4分)若点P(m﹣2,m+1)在第二象限,则m的取值范围是.12.(4分)根据数量关系“x的2倍与5的差是非负数”列出不等式是.13.(4分)直线y=x+1与直线y=﹣x+3的交点坐标是.14.(4分)如图,△ABC的BC边上有一小球P,将小球沿着与AB平行的方向击出,撞到点M后反弹,撞击到点N又反弹撞击到点D,若∠ADN=105°,则∠A=度.15.(4分)已知关于x的一元一次不等式x﹣1<a有3个正整数解,则a的取值范围是cm.16.(4分)如图,已知等边三角形ABC的边长为12cm,甲,乙两动点同时从顶点A出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米/秒的速度沿等边三角形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动.(1)第一次相遇时甲离顶点最近;(2)第四次相遇时甲与最近顶点的距离是厘米.三、解答题(共66分)17.(6分)解下列方程或不等式(组):(1)3(x﹣1)+4≥2x;(2)18.(6分)已知某一次函数,当x=3时,y=﹣2;当x=2时,y=﹣3,求这个一次函数的解析式.19.(6分)已知:如图,B,D,E,C在同一直线上,AB=AC,AD=AE.求证:BD=CE.20.(8分)如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB 上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.21.(8分)某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料原料维生素C及价格维生素C(单位/千克)600 400原料价格(元/千克)9 5现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?22.(10分)如图,在△ABC中,AB=AC=20,D是BC上一点,且AD⊥AC.(1)若∠B=30°,求证:BC=3BD;(2)若BC=32,求BD的长.23.甲,乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲,乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?(3)当甲的登山时间为t分钟时,甲乙之间的路程为20米,求满足条件的t值.24.(12分)如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴,y轴正半轴交于点M,N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC 边落在x轴的正半轴上,点A恰好落在线段MN上,如图3,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB,AC分别与线段MN交于点E,F,在△ABC 平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s).(1)如图1,求等边△ABC的边长;(2)如图2,当点B运动到(1,0)时,点Q是MN上一动点,求2BQ+QN的最小值;(3)如图3,点P沿折线B→A→C运动的过程中,是否存在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.参考答案一、选择题(每小题3分.共30分)1.(3分)点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限解:因为点P(﹣3,2)的横坐标为负,纵坐标为正,所以其在第二象限,故选B.2.(3分)函数y=中,自变量x的取值范围是()A.x≥B.x≥﹣C.x>D.x>﹣解:∵函数y=,∴2x+3≥0,∴x≥﹣,故选:B.3.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.解:为△ABC中BC边上的高的是A选项.故选:A.4.(3分)下列说法中错误的是()A.2x<6的解集是x<3B.﹣x<﹣4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个解:A、2x<6的解集是x<3,故此选项正确;B、﹣x<﹣4的解集是x>4,故此选项错误;C、x<3的整数解有无数个,故此选项正确;D、x<3的正整数解有1,2两个,故此选项正确;故选:B.5.(3分)对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>3解:根据一次函数的性质,对于y=(k﹣3)x+2,当k﹣3>0时,即k>3时,y随x的增大而增大.故选:D.6.(3分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.7.(3分)三角形的边长都是整数,并且唯一的最长边是7,则这样的三角形共有()A.3个B.6个C.9个D.11个解:当2边长分别为7,6时,1<第3边<7,可取2,3,4,5,6共5个数;当2边长为7,5时,2<第3边<7,可取3,4,5,6共4个数;当2边长为7,4时,3<第3边<7,可取4,5,6共3个数;当2边长为7,3时,4<第3边<7,可取5,6共2个数;当2边长为7,2时,5<第3边<7,可取6共1个数;去掉重合的7,6,5;7,6,4;7,6,3;7,6,2,4组,这样的三角形共有5+4+3+2+1﹣4=11(组).故选:D.8.(3分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.4解:设可买x支笔则有:3x+4×2≤21即3x+8≤213x≤13x≤所以x取最大的整数为4,她最多可买4支笔.故选:D.9.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选:C.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.二、填空题(每小题4分,共24分)11.(4分)若点P(m﹣2,m+1)在第二象限,则m的取值范围是﹣1<m<2.解:∵点P(m﹣2,m+1)在第二象限,∴,解得,﹣1<m<2,故答案为:﹣1<m<2.12.(4分)根据数量关系“x的2倍与5的差是非负数”列出不等式是2x﹣5≥0.解:根据题意,得2x﹣5≥0.故答案是:2x﹣5≥0.13.(4分)直线y=x+1与直线y=﹣x+3的交点坐标是(1,2).解:联立,解这个方程组得,所以,交点坐标为(1,2).故答案为:(1,2).14.(4分)如图,△ABC的BC边上有一小球P,将小球沿着与AB平行的方向击出,撞到点M后反弹,撞击到点N又反弹撞击到点D,若∠ADN=105°,则∠A=25度.解:由光的反射可知∠PMC=∠AMN,又PM∥AB,∴∠PMC=∠A,∴∠A=∠AMN,又∠BNM为△AMN的外角,且∠BNM=∠AND,∴∠BNM=∠A+∠AMN=2∠A,即∠AND=2∠A,在△ADN中,∠ADN=105°,则180°﹣∠ADN=∠A+∠AND=3∠A,即3∠A=75°,所以∠A=25°.故答案为:25°15.(4分)已知关于x的一元一次不等式x﹣1<a有3个正整数解,则a的取值范围是2<a≤3cm.解:∵关于x的一元一次不等式x﹣1<a有3个正整数解,∴关于x的一元一次不等式x﹣1<a的3个正整数解,只能是3、2、1,∴a的取值范围是:3<a+1≤4,即2<a≤3.故答案为:2<a≤3.16.(4分)如图,已知等边三角形ABC的边长为12cm,甲,乙两动点同时从顶点A出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米/秒的速度沿等边三角形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动.(1)第一次相遇时甲离顶点C最近;(2)第四次相遇时甲与最近顶点的距离是C厘米.解:(1)设出发x秒后甲乙第一次相遇,根据题意得:x+3x=12×3,解得x=9,所以第一次相遇时甲离顶点C最近;(2)第二次相遇的时间为:9+36÷(2+4)=16(秒),第三次相遇的时间为:16+36÷(3+5)=20.5(秒),第四次相遇的时间为:20.5+36÷(4+5)=24.5(秒),甲所走路程为:9+2×(16﹣9)+3×(20.5﹣16)+4×(24.5﹣20.5)=52.5(cm),52.5﹣12×4=4.5(cm),所以第四次相遇时甲离顶点C最近.故答案为:(1)C;(2)C.三、解答题(共66分)17.(6分)解下列方程或不等式(组):(1)3(x﹣1)+4≥2x;(2)解:(1)3(x﹣1)+4≥2x,去括号,得3x﹣3+4≥2x,移项及合并同类项,得x≥﹣1,故原不等式的解集是x≥﹣1;(2),由不等式①,得x<8,由不等式②,得x>,故原不等式组的解集是<x<8.18.(6分)已知某一次函数,当x=3时,y=﹣2;当x=2时,y=﹣3,求这个一次函数的解析式.解:设一次函数解析式为y=kx+b,将x=3,y=﹣2;x=2,y=﹣3代入得:,解得:k=1,b=﹣5,则一次函数解析式为y=x﹣5.19.(6分)已知:如图,B,D,E,C在同一直线上,AB=AC,AD=AE.求证:BD=CE.【解答】证明:作AF⊥BC于F,∵AB=AC(已知),∴BF=CF(三线合一),又∵AD=AE(已知),∴DF=EF(三线合一),∴BF﹣DF=CF﹣EF,即BD=CE(等式的性质).20.(8分)如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB 上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.解:(1)∵A(6,0),B(0,8),∴OA=6,OB=8,∴AB ===10,∵A B'=AB=10,∴O B'=10﹣6=4,∴B'的坐标为:(﹣4,0).(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中,m2+42=(8﹣m)2,解得:m=3,∴OM=3,BM=OB﹣OM=5,∴S△ABM =×BM×AO =×5×6=15.21.(8分)某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料原料维生素C及价格维生素C(单位/千克)600 400原料价格(元/千克)9 5现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?解:(1)依题意,得600x+400(20﹣x)≥480×20,解得x≥8.∴至少需要购买甲种原料8千克,答:至少需要购买甲种原料8千克.(2)根据题意得:y=9x+5(20﹣x),即y=4x+100,∵k=4>0,∴y随x的增大而增大,∵x≥8,∴当x=8时,y最小,y=4×8+100=132,∴购买甲种原料8千克时,总费用最少,是132元,答:购买甲种原料8千克时,总费用最少,是132元.22.(10分)如图,在△ABC中,AB=AC=20,D是BC上一点,且AD⊥AC.(1)若∠B=30°,求证:BC=3BD;(2)若BC=32,求BD的长.【解答】(1)证明:∵AB=AC,∴∠B=∠C=30°,∵AD⊥AC,∴∠DAC=90°,∴∠ADC=60°,∵∠ADC=∠B+∠BAD,∴∠B=∠BAD=30°,∴DB=DA,∵CD=2AD,∴BC=3BD.(2)解:过点A作AH⊥BC于H.∵AB=AC=20,AH⊥BC,∴BH=CH=16,∵cos∠C==,∴=,∴CD=25,∴BD=BC﹣CD=32﹣25=7.∴CD=BH﹣DH=16﹣9=7.23.甲,乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲,乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?(3)当甲的登山时间为t分钟时,甲乙之间的路程为20米,求满足条件的t值.解:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600),所以,,解得,所以,y=40x﹣200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲;(3)∵点A(8,120),点O(0,0),∴AB解析式为y=15x,当0<t≤8时,20t﹣15t=20,∴t=4,当8<t<10时,20t﹣(40t﹣200)=20,∴t=9,当10≤t<30时,40t﹣200﹣20t=20,∴t=11,综上所述:当t=4或9或11时,甲乙之间的路程为20米.24.(12分)如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴,y轴正半轴交于点M,N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC 边落在x轴的正半轴上,点A恰好落在线段MN上,如图3,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB,AC分别与线段MN交于点E,F,在△ABC 平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s).(1)如图1,求等边△ABC的边长;(2)如图2,当点B运动到(1,0)时,点Q是MN上一动点,求2BQ+QN的最小值;(3)如图3,点P沿折线B→A→C运动的过程中,是否存在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.解:(1)如图1中,∵直线MN分别与x轴正半轴、y轴正半轴交于点M、N,OM=6cm,∠OMN=30°,∴∠ONM=60°,∵△ABC为等边三角形∴∠AOC=60°,∠NOA=30°∴OA⊥MN,即△OAM为直角三角形,∴OA=OM=×6=3cm.(2)如图2中,作NT∥OB,过点Q作QR⊥NT于R,过点B作BH⊥NT于H.在Rt△MON中,∵∠OMN=30°,OM=6cm,∴ON=OM•tan30°=2(cm),∵∠NOB=∠ONH=∠BHN=90°,∴四边形OBHN是矩形,∴BH=ON=2(cm),∵NT∥OB,∴∠MNT=∠OMN=30°,∵QR⊥NT,∴QR=NQ,∴2BQ+NQ=2(BQ+NQ)=2(BQ+QR),∵BQ+QR≥BH,∴BQ+QR≥2,∴2BQ+NQ≥4,∴2BQ+NQ的最小值为4.(3)存在,有4种情况:如图3中,①当点P在线段AB上时,点P在AB上运动的时间为s,∵△PEF为等腰三角形,∠PEF=90°,∴PE=EF,∵∠A=60°,∠AFE=30°,∴EF=AE=(3﹣BE)=(3﹣)=t,∴=t或=t,解得t=或>(故舍去),②当点P在AF上时,若PE=PF时,点P为EF的垂直平分线与AC的交点,此时P为直角三角形PEF斜边AF的中点,∴PF=AP=2t﹣3,∵点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,∴0<t<3,在直角三角形中,cos30°=,∴=,解得:t=2,若FE=FP,AF===t,则t﹣(2t﹣3)=t,解得:t=12﹣6;③当PE=EF,P在AF上时无解,④当P点在CF上时,AP=2t﹣3,AF=t,则PF=AP﹣AF=t﹣3=EF,所以t﹣3=t,解得t=12+6>3,不合题意,舍去.综上,存在t值为或12﹣6或2时,△PEF为等腰三角形.。
2019-2020年浙教版数学八年级上学期期末考试模拟试卷及答案解析-精编试题
![2019-2020年浙教版数学八年级上学期期末考试模拟试卷及答案解析-精编试题](https://img.taocdn.com/s3/m/c1b71776650e52ea54189865.png)
第一学期期末模拟测试八年级数学(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分)1.不等式的正整数解的个数是( )A.2B.3C.4D.52.在四边形ABCD 中,对角线AC 与BD 相交于点E ,若AC 平分∠DAB ,AB=AE ,AC=AD ,那么在下列四个结论中:(1)AC ⊥BD ;(2)BC=DE ;(3)∠DBC=21∠DAB ;(4)△ABE 是等边三角形,正确的是( ) A.(1)和(2) B .(2)和(3) C.(3)和(4)D .(1)和(4)3.已知三个正方形如图所示,则当SA S B=时,S C 的值为( )A.313B.144C.169D.254.已知点P的坐标为,且点P 到两坐标轴的距离相等,则点P 的坐标是( )A .(3,3)B .(3,-3)C .(6,-6)D .(3,3)或(6,-6) 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )第5题图ABC第3题图A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA6.若不等式组⎩⎨⎧>-<+-m x x x ,62的解集是4>x ,那么的取值范围是( )A.4≥mB.4≤mC.4<mD.4=m7.在平面直角坐标系中,O 是坐标原点,已知点P 的坐标是(2,2),请你在坐标轴上找出点Q ,使△PQO 是等腰三角形,则符合条件的点Q 共有( )A.6个B.7个C.8个D.9个 8.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC ≌△CED D .∠1=∠29.如图所示,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD 、CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ;②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( )A.①②③B.②③④C.①③⑤D.①③④ 10.如果,下列各式中不正确的是( )A.B.22ba -<-第8题图第9题图C. D.11.在平面直角坐标系中,点P (-2,3)关于轴的对称点在( ) A.第一象限 B.第二象限C.第三象限D.第四象限12.如图,在平面直角坐标系中,直线32与长方形ABCO 的边OC 、BC 分别交于点E 、F ,已知OA=3,OC=4,则△CEF 的面积是( ) A.6B.3C.12D.34二、填空题(每小题3分,共30分)13.如图,已知等边△ABC 的周长为6,BD 是AC 边上的中线,E 为BC 延长线上一点,且CD=CE ,则△BDE 的周长是__________.14.如图,在△ABC 中,∠ACB=90°,∠ABC=60°,BD 平分∠ABC ,P 点是BD 的中点,若AD=6,则CP 的长为_________.15.如图,在△ABC中,AB=8,AC=6,则BC边上的中第12题图线AD 的取值范围是 .16.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 17.将点A (2,6)先向下平移8个单位,再向右平移3个单位,则平移后的点的坐标是 .18.已知线段MN 平行于y 轴,且MN 的长度为3,若M (2,),那么点N 的坐标是 . 19.如图所示,已知等边△ABC 中,BD=CE ,AD 与BE 相交于点P ,则∠APE 是 度.20.如图所示,AB=AC ,AD=AE ,∠BAC=∠DAE ,∠1=25°,∠2=30°,则∠3= .21.在△中, cm , cm ,⊥于点,则_______.22.如图,一次函数的图象与轴的交点坐标为(2,0),则下列说法:①随的增大而减小;②b>0;③关于的方程的解为.其中说法正确的有_________(把你认为说法正确的序号都填上).三、解答题(共54分)23.(6分)如图所示,在△ABC 中,AB=AC ,BD ⊥AC 于点D,第22题图第15题图第19题图第20题图CE⊥AB于点E,BD、CE相交于点F.求证:AF平分∠BAC.24.(6分)学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数碟子的高度(单位:cm)1 22 2+1.53 2+34 2+4.5……当桌子上放有(个)碟子时,请写出此时碟子的高度(用含的式子表示).25.(6分)如图,在平面直角坐标系内,试写出△ABC各顶点的坐标,并求△ABC的面积.26.(6分)如图,△ABC中,AB=AC,过BC上一点D作BC的垂线,交BA的延长线于点P,交AC于点Q.试判断△APQ的形状,并说明理由.27.(7分)如图,折叠长方形,使点落在边上的点处, cm , cm ,求:(1)的长;(2)的长.28.(7分)求不等式03.002.003.0255.014.0xx x -≤---的非负整数解. 29.(8分)某校在一次课外活动中,把学生编为9组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,求预定的每组学生的人数.30.(8分)(2011•襄阳中考)为发展旅游经济,我市某景区对门票釆用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a 折售票,节假日按团队人数分段定价售票,即m 人以下(含m 人)的团队按原价售票;超过m 人的团队,其中m 人仍按原价售票,超过m 人部分的游客打b 折售票.设某旅游团人数为,非节假日购票款为(元),节假日购票款为(元).与之间的函数图象如图所示. (1)观察图象可知:a=_____;b=_____;m=______. (2)直接写出,与之间的函数关系式.(3)某旅行社导游王娜于5月1日带A 团,5月20日(非节假日)带B 团都到该景区旅游,共付门票款1 900元,A ,B 两个团队合计50人,求A ,B 两个团队各有多少人?第30题图期末测试题参考答案一、选择题1.C 解析:解不等式,得所以不等式的正整数解为1,2,3,4,共4个.2.B 解析:如图,∵ AB=AE ,∴ △ABE 是等腰三角形, ∴ ∠ABE=∠AEB ,∴ ∠AEB 不可能是90°, ∴ AC ⊥BD 不成立,故排除A 、D.若△ABE 是等边三角形,则∠ABE=∠BAE=60°. ∵ AC 平分∠DAB ,∴ ∠DAB=120°, ∴ ∠ABE+∠DAB=180°, 从而AD ∥BD ,矛盾,∴ (4)不正确,排除C.故选B. 3.A 解析:设三个正方形的边长依次为,由于三个正方形的三边组成一个直角三角形,所以,故S A + S B =S C ,即S C.4.D 解析:因为点P 到两坐标轴的距离相等,所以,所以a=-1或a=-4.当a=-1时,点P 的坐标为(3,3);当a=-4时,点P 的坐标为(6,-6). 5.D 解析:∵ △ABC 和△CDE 都是等边三角形, ∴ BC=AC ,CE=CD ,∠BCA=∠ECD=60°,∴ ∠BCA+∠ACD=∠ECD+∠ACD ,即∠BCD=∠ACE.第2题答图在△BCD 和△ACE 中,∵∴ △BCD ≌△ACE (SAS ),故A 成立. ∵ △BCD ≌△ACE ,∴ ∠DBC=∠CAE. ∵ ∠BCA=∠ECD=60°,∴ ∠ACD=60°.在△BGC 和△AFC 中,∵∴ △BGC ≌△AFC ,故B 成立.∵ △BCD ≌△ACE ,∴ ∠CDB=∠CEA.在△DCG 和△ECF 中,∵∴ △DCG ≌△ECF ,故C 成立. 6.B 解析:由,得.又当时解集是,所以4 m ,故选B .7.C 解析:∵ P (2,2),∴,∴ 当点Q 在y 轴上时,Q 点的坐标分别为(0,),(0,),(0,4),(0,2); 当点Q 在轴上时,Q 点的坐标分别为(,0),(,0),(4,0),(2,0),∴ 共有8个.8.D 解析:∵ AC ⊥CD ,∴ ∠1+∠2=90°. ∵ ∠B=90°,∴ ∠1+∠A=90°,∴ ∠A=∠2.在△ABC 和△CED 中,∴ △ABC ≌△CED ,故B 、C 选项正确.∵ ∠2+∠D=90°,∴ ∠A+∠D=90°,故A 选项正确.∠1与∠2不一定相等,故D 选项错误.故选D . 9.D 解析:∵ AB=AC ,∴ ∠ABC=∠ACB . ∵ BD 平分∠ABC ,CE 平分∠ACB , ∴ ∠ABD=∠CBD=∠ACE=∠BCE . 又∵ BC=CB,∴ ①△BCD ≌△CBE (ASA ).由①可得CE=BD, BE=CD ,∴ ③△BDA ≌△CEA (SAS ). 又∠EOB=∠DOC ,所以④△BOE ≌△COD (AAS ).故选D. 10.D 解析:由不等式的基本性质可得,故D 不正确.11.C 解析:根据轴对称的性质,得点P (2,3)关于轴对称的点的坐标为P ’(2,3),所以在第三象限,故选C . 12.B 解析:当时,3232,解得,∴ 点E 的坐标是(1,0),即OE=1.∵ OC=4,∴ 点F 的横坐标是4,且,∴ ,即CF=2,∴ △CEF 的面积,故选B . 二、填空题 13.3+2解析:∵ △ABC 的周长为6,∴ AB=BC=AC=2,DC=CE=1.又∵ ∠ACB=∠CDE+∠CED ,∴ ∠CED=30°,△BDE 为等腰三角形,DE=BD=.∴ BD+DE+BE=2+2+1=3+2.14.3 解析:∵ ∠ACB=90°,∠ABC=60°,∴ ∠A=30°.∵ BD 平分∠ABC ,∴ ∠CBD=∠DBA=30°,∴ BD=AD. ∵ AD=6,∴ BD=6.又∵ P 点是BD 的中点,∴ CP=21BD=3. 15.△BDE ≌△CDA.在△ABE 中,AB-AC <AE <AB+AC ,所以2<2AD <14,即1<AD <7.16.3 -4 解析:因为点(13)A m -,与点(21)B n +,关于x 轴对称,所以横坐标相等,纵坐标互为相反数,所以所以17.(5,) 解析:点(2,6)先向下平移8个单位,可得(2,),即(2,);再向右平移3个单位,可得到(2+3,),即(5,).18.(2,1)或(2,) 解析:∵ MN ∥y 轴,∴ 点M 与点N 的横坐标相同,∴ 点N 的横坐标是2. 设纵坐标是y ,由||=3,解得y=1或5,∴ 点N 的坐标是(2,1)或(2,).19.60 解析:∵ △ABC 是等边三角形, ∴ ∠ABD=∠C ,AB=BC.∵ BD=CE , ∴ △ABD ≌△BCE ,∴ ∠BAD=∠CBE.∵ ∠ABE+∠EBC=60°,∴ ∠ABE+∠BAD=60°, ∴ ∠APE=∠ABE+∠BAD=60°. 20.55° 解析:在△ABD 与△ACE 中,∵ ∠1+∠CAD=∠CAE +∠CAD ,∴ ∠1=∠CAE. 又∵ AB=AC ,AD=AE ,∴ △ABD ≌△ACE (SAS ).∴ ∠2=∠ABD.∵ ∠3=∠1+∠ABD=∠1+∠2,∠1=25°,∠2=30°, ∴ ∠3=55°.21.15 cm 解析:如图,∵ 等腰三角形底边上的高、中线以及顶角平分线三线合一,∴.∵cm ,∴ (cm ).∵ cm ,∴(cm ).22.①②③ 解析:①因为一次函数的图象经过第一、二、四象限,所以随的增大而减小,故正确;②因为一次函数的图象与轴的交点在正半轴上,所以b >0,故正确; ③因为一次函数的图象与轴的交点为(2,0),所以当时,,即关于的方程的解为,故正确.故答案为①②③.三、解答题23. 证明:∵ DB ⊥AC ,CE ⊥AB ,∴ ∠AEC=∠ADB=90°.在△ACE 与△ABD 中,∵∴ △ACE ≌△ABD (AAS ), ∴ AD=AE.在Rt △AEF 与Rt △ADF 中, ∵ ⎩⎨⎧==,,AF AF AD AE第21题答图∴Rt△AEF≌Rt△ADF(HL),∴∠EAF=∠DAF,∴AF平分∠BAC.24.解:由题意得.25.解:A(6,6),B(0,3),C(3,0).如图,26.解:△APQ为等腰三角形,理由如下:在△ABC中,AB=AC,∴∠B=∠C.∵P为BA的延长线上一点,PD⊥BD交AC于点Q,∴∠BDP=90°.∵∠C+∠DQC=90°,∠B+∠P=90°,∠B=∠C,∴∠P=∠DQC.又∠AQP=∠DQC,∴∠P=∠AQP,∴AP=AQ,∴△APQ为等腰三角形.27.分析:(1)由于△翻折得到△,所以,则在Rt △中,可求得BF的长,从而的长可求;(2)由于,可设的长为,在Rt △中,利用勾股定理求解直角三角形即可.解:(1)由题意可得cm,在Rt △中,∵,∴cm,∴(cm).(2)由题意可得,可设DE的长为,则. 在Rt △中,由勾股定理得,解得,即的长为5 cm.第25题答图28.解:原不等式可化为.323255104xx x -≤--- 去分母,得 去括号,得 移项,得合并同类项,得把系数化为1,得59165. 所以原不等式的非负整数解是:.29.解:设预定的每组学生有人.根据题意,得⎩⎨⎧<->+,,190)1(9200)1(9x x 解这个不等式组,得⎪⎪⎩⎪⎪⎨⎧<>,,91999191x x所以不等式组的解集为,91999191<<x 即.91229221<<x 其中符合题意的整数只有一个,即.答:预定的每组学生的人数为22人. 30.解:(1)a=6,b=8,m=10. (2);(3)设A 团队有人,则B 团队有()人. 当时,,解得,不符合题意,舍去; 当时,有,解得.故.答:A团队有30人,B团队有20人。
浙教版2019-2020学年八年级数学上学期期末考试试题(含答案)
![浙教版2019-2020学年八年级数学上学期期末考试试题(含答案)](https://img.taocdn.com/s3/m/4426011bb90d6c85ec3ac667.png)
2019-2020学年八年级数学上学期期末考试试卷一、精心选一选(每小题4分,共48分)1.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,3 C.1,2,2 D.1,2,42.若a>b,则下列各式中一定成立的是()A.ma>mb B.a2>b2C.1﹣a>1﹣b D.b﹣a<03.如图,笑脸盖住的点的坐标可能为()A.(5,2) B.(﹣2,3)C.(﹣4,﹣6)D.(3,﹣4)4.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°5.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°6.已知一个等腰三角形一底角的度数为80°.则这个等腰三角形顶角的度数为()A.20°B.70°C.80°D.100°7.直线y=﹣x﹣2不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.不等式x+2<6的正整数解有()A.1个 B.2个 C.3 个D.4个9.小明到离家900米的春晖超市买水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A.B.C.D.10.下列命题:①有一个角为60°的等腰三角形是等边三角形;②等腰直角三角形一定是轴对称图形;③有一条直角边对应相等的两个直角三角形全等;④到线段两端距离相等的点在这条线段的垂直平分线上.正确的个数有()A.4个 B.3个 C.2个 D.1个11.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣12.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.B.y=x+ C.D.二、细心填一填(每小题4分,共24分)13.函数y=中自变量x的取值范围是.14.在直角三角形中,一个锐角为57°,则另一个锐角为.15.一次函数y=(2k﹣5)x+2中,y随x的增大而减小,则k的取值范围是.16.如图,在△ABC中,AB=5,BC=12,AC=13,点D是AC的中点,则BD=.17.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2,AB=16cm,AC=14cm,则DE=.18.一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则扩充后等腰三角形绿地的面积为m2.三、认真解一解(8分+8分+8分+9分+9分+10分+12分+14分=78分)19.解不等式组,并把解表示在数轴上.20.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.21.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).22.已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式;(2)当x=﹣时,函数y的值;(3)当y<1时,自变量x取值范围.23.如图,AB∥CD,CE平分∠ACD交AB于E点.(1)求证:△ACE是等腰三角形;(2)若AC=13cm,CE=24cm,求△ACE的面积.24.随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?25.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.26.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)当t=3时,坐标平面内有一点M,使得以M、P、B为顶点的三角形和△ABP 全等,请直接写出点M的坐标;(3)设点A关于x轴的对称点为A',连接A'B,在点P运动的过程中,∠OA'B的度数是否会发生变化,若不变,请求出∠OA'B的度数,若改变,请说明理由.参考答案与试题解析一、精心选一选(每小题4分,共48分)1.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,3 C.1,2,2 D.1,2,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2=3,不能组成三角形,故B选项错误;C、1+2>2,能组成三角形,故C选项正确;D、1+2<4,能组成三角形,故D选项错误;故选:C.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.a2>b2C.1﹣a>1﹣b D.b﹣a<0【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、m≤0时,不等式不成立,故A错误;B、a<0时,不成立,故B错误;C、两边都乘以﹣1,不等号的方向改变,故C错误;D、两边都减a,不等号的方向不变,故D正确;故选:D.3.如图,笑脸盖住的点的坐标可能为()A.(5,2) B.(﹣2,3)C.(﹣4,﹣6)D.(3,﹣4)【考点】点的坐标.【分析】笑脸盖住的点在第二象限内,那么点的横坐标小于0,纵坐标大于0,比较选项即可.【解答】解:笑脸盖住的点在第二象限内,则其横坐标小于0,纵坐标大于0,那么结合选项笑脸盖住的点的坐标可能为(﹣2,3).故选B.4.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°【考点】命题与定理.【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.5.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°【考点】全等三角形的性质.【分析】要求∠F的大小,利用△ABC≌△DEF,得到对应角相等,然后在△DEF 中依据三角形内角和定理,求出∠F的大小.【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选B.6.已知一个等腰三角形一底角的度数为80°.则这个等腰三角形顶角的度数为()A.20°B.70°C.80°D.100°【考点】等腰三角形的性质.【分析】根据三角形内角和定理和等腰三角形的性质,可以求得其顶角的度数.【解答】解:∵等腰三角形的一个底角为80°,∴顶角=180°﹣80°×2=20°.故选A.7.直线y=﹣x﹣2不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】直接根据一次函数的性质进行判断即可.【解答】解:∵直线y=﹣x﹣2中,k=﹣1<0,b=﹣2<0,∴此函数的图象在二、三、四象限.故选A.8.不等式x+2<6的正整数解有()A.1个 B.2个 C.3 个D.4个【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<4,故不等式x+2<6的正整数解为1,2,3,共3个.故选C.9.小明到离家900米的春晖超市买水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A.B.C.D.【考点】函数的图象.【分析】由题意,0到20分钟,小明离家越来越远,在20分钟时,离家最远,为900米;在超市购物用了10分钟,即20到30分钟期间,离家距离没变,为900米;15分钟返回家中,即在30到45分钟期间,离家越来越近,在45分钟时,离家距离为0.过程清楚,问题解决.【解答】解:由题意,图形应有三个阶段,①从家到超市,时间为0﹣﹣20分钟;②在超市购物,20﹣﹣30分钟;③从超市到家,30﹣﹣45分钟.A、图显示20到45分钟时,距家都是900米,实际上45分钟时已经到家了,距离应为0;故错误.B、图显示20到45分钟时,离家越来越近,实际上,20到30分钟时一直在超市;故错误.C、图显示不出20到30分钟时,离家一直是900米来,故错误.D、图显示的符合三个阶段,是正确的.综上所述,故选D.10.下列命题:①有一个角为60°的等腰三角形是等边三角形;②等腰直角三角形一定是轴对称图形;③有一条直角边对应相等的两个直角三角形全等;④到线段两端距离相等的点在这条线段的垂直平分线上.正确的个数有()A.4个 B.3个 C.2个 D.1个【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①有一个角为60°的等腰三角形是等边三角形,故①正确;②等腰直角三角形一定是轴对称图形,故②正确;③有一条直角边对应相等的两个直角三角形全等,故③错误;④到线段两端距离相等的点在这条线段的垂直平分线上,故④正确;故选:B.11.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a 的取值范围即可.【解答】解:由(1)得x>8;由(2)得x<2﹣4a;其解集为8<x<2﹣4a,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a<﹣.故选B.12.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.B.y=x+ C.D.【考点】待定系数法求一次函数解析式;正方形的性质.【分析】直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P作PC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出点A的坐标,根据待定系数法即可得到该直线l的解析式.【解答】解:直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P 作PC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过P点的一条直线l将这八个正方形分成面积相等的两部分,∴三角形ABP面积是8÷2+1=5,∴BP•AB=5,∴AB=2.5,∴OA=3﹣2.5=0.5,由此可知直线l经过(0,0.5),(4,3)设直线方程为y=kx+b,则,解得.∴直线l解析式为y=x+.故选B.二、细心填一填(每小题4分,共24分)13.函数y=中自变量x的取值范围是x≠3.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式进行计算即可求解.【解答】解:根据题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.14.在直角三角形中,一个锐角为57°,则另一个锐角为33°.【考点】直角三角形的性质.【分析】利用直角三角形的两锐角互余可求得答案.【解答】解:∵直角三角形的两锐角互余,∴另一锐角=90°﹣57°=33°,故答案为:33°.15.一次函数y=(2k﹣5)x+2中,y随x的增大而减小,则k的取值范围是k <2.5.【考点】一次函数的性质.【分析】根据已知条件“一次函数y=(2k﹣5)x+2中y随x的增大而减小”知,2k ﹣5<0,然后解关于k的不等式即可.【解答】解:∵一次函数y=(2k﹣5)x+2中y随x的增大而减小,∴2k﹣5<0,解得,k<2.5;故答案是:k<2.516.如图,在△ABC中,AB=5,BC=12,AC=13,点D是AC的中点,则BD= 6.5.【考点】勾股定理的逆定理;直角三角形斜边上的中线.【分析】由△ABC的三边长,利用勾股定理的逆定理判断出三角形为直角三角形,且AC为斜边,再由D为斜边上的中点,得到BD为斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即可求出BD的长.【解答】解:∵AB=5,BC=12,AC=13,∴AB2+BC2=25+144=169,AC2=132=169,即AB2+BC2=AC2,∴△ABC为以AC为斜边的直角三角形,又∵D为AC的中点,即BD为斜边上的中线,∴BD=AC=6.5.故答案为:6.5.17.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2,AB=16cm,AC=14cm,则DE=3.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再利用△ABC的面积列方程求解即可.【解答】解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC面积是45cm2,∴×16•DE+×14•DF=45,解得DE=3cm.故答案为:3.18.一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则扩充后等腰三角形绿地的面积为8或10m2.【考点】勾股定理的应用;等腰三角形的性质.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AC=CD,②AD=AB,2种情况进行讨论.【解答】解:∵两直角边长为3m,4m,∴由勾股定理得到:AB==5m.①如图1:当AC=CD=8m时;∵AC⊥CB,此时等腰三角形绿地的面积:×4×4=8(m2);②如图2,延长AC到D使AD等于5m,此时AB=AD=5m,此时等腰三角形绿地的面积:×5×4=10(m2);综上所述,扩充后等腰三角形绿地的面积为8m2或10m2;故答案为:8或10三、认真解一解(8分+8分+8分+9分+9分+10分+12分+14分=78分)19.解不等式组,并把解表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两不不等式得到x≥﹣1和x<3,再利用数轴表示解集,然后写出不等式组的解集.【解答】解:解不等式(1)得x≥﹣1,解不等式(2)得x<3在数轴上表示为所以不等式组的解集为﹣1≤x<3.20.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.【考点】全等三角形的判定与性质.【分析】(1)运用HL定理直接证明△ABE≌△CBF,即可解决问题.(2)证明∠BAE=∠BCF=25°;求出∠ACB=45°,即可解决问题.【解答】解:(1)在Rt△ABE与Rt△CBF中,,∴△ABE≌△CBF(HL).(2)∵△ABE≌△CBF,∴∠BAE=∠BCF=20°;∵AB=BC,∠ABC=90°,∴∠ACB=45°,∴∠ACF=65°.21.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).【考点】作图—应用与设计作图.【分析】(1)利用网格结构,过点A的竖直线与过点B的水平线相交于点C,连接即可,或过点A的水平线与过点B的竖直线相交于点C,连接即可;(2)根据网格结构,作出BD=AB或AB=AD,连接即可得解.【解答】解:(1)如图1,①、②,画一个即可;(2)如图2,①、②,画一个即可.22.已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式;(2)当x=﹣时,函数y的值;(3)当y<1时,自变量x取值范围.【考点】待定系数法求一次函数解析式;一次函数的性质.【分析】(1)设这个一次函数的解析式为y=kx+b(k≠0),根据点的坐标利用待定系数法即可求出一次函数解析式;(2)将x=﹣代入一次函数解析式中求出y值即可;(3)由y<1可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:(1)设这个一次函数的解析式为y=kx+b(k≠0),把(﹣4,9)、(6,﹣1)代入y=kx+b中,,解得:,∴这个一次函数的解析式为y=﹣x+5.(2)当x=﹣时,y=﹣(﹣)+5=.(3)∵y=﹣x+5<1,∴x>4.23.如图,AB∥CD,CE平分∠ACD交AB于E点.(1)求证:△ACE是等腰三角形;(2)若AC=13cm,CE=24cm,求△ACE的面积.【考点】等腰三角形的判定与性质;平行线的性质.【分析】(1)如图,证明∠AEC=∠ACE,即可解决问题.(2)如图,作辅助线;求出AG的长度,运用三角形的面积公式,即可解决问题.【解答】(1)证明:如图,∵AB∥CD,∴∠AEC=∠DCE,又∵CE平分∠ACD,∴∠ACE=∠DCE,∴∠AEC=∠ACE,∴△ACE为等腰三角形.(2)过A作AG⊥CE,垂足为G;∵AC=AE,∴CG=EG=CE=12(cm);∵AC=13(cm),由勾股定理得,AG=5(cm);=×24×5=60(cm2).∴S△ACE24.随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?【考点】一次函数的应用.【分析】(1)设生产甲礼品x万件,乙礼品万件,根据收入=售价×产量列出函数关系式即可;(2)设生产甲礼品x万件,乙礼品万件,所获得的利润为y万元,根据成本不超过1380万元求出x的取值范围,然后根据利润=(售价﹣成本)×销量,列出函数关系式,求y的最大值;【解答】解:(1)设生产甲礼品x万件,乙礼品万件,由题意得:y=(22﹣15)x+(18﹣12)=x+600;(2)设生产甲礼品x万件,乙礼品万件,所获得的利润为y万元,由题意得:15x+12≤1380,∴x≤60,利润y=(22﹣15)x+(18﹣12)=x+600,∵y随x增大而增大,∴当x=60万件时,y有最大值660万元.这时应生产甲礼品60万件,乙礼品40万件.25.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.【考点】一次函数综合题.【分析】(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;②设点B的坐标为(0,y),根据|﹣﹣0|≥|0﹣y|,得出点A与点B的“非常距离”最小值为|﹣﹣0|,即可得出答案;(2)设点C的坐标为(x0,x0+3).根据材料“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”知,C、D两点的“非常距离”的最小值为﹣x0= x0+2,据此可以求得点C的坐标;【解答】解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠2,∴|0﹣y|=2,解得,y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);②设点B的坐标为(0,y).∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=;(2)如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”解答,此时|x1﹣x2|=|y1﹣y2|.即AC=AD,∵C是直线y=x+3上的一个动点,点D的坐标是(0,1),∴设点C的坐标为(x0,x0+3),∴﹣x0=x0+2,此时,x0=﹣,∴点C与点D的“非常距离”的最小值为:|x0|=,此时C(﹣,).26.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)当t=3时,坐标平面内有一点M,使得以M、P、B为顶点的三角形和△ABP 全等,请直接写出点M的坐标;(3)设点A关于x轴的对称点为A',连接A'B,在点P运动的过程中,∠OA'B的度数是否会发生变化,若不变,请求出∠OA'B的度数,若改变,请说明理由.【考点】三角形综合题.【分析】(1)由AB∥x轴,可找出四边形ABCO为长方形,再根据△APB为等腰三角形可得知∠OAP=45°,从而得出△AOP为等腰直角三角形,由此得出结论;(2)由全等三角形的性质和等腰三角形的性质可得出结论,注意分类讨论;(3)由等腰直角三角形的性质和全等三角形的性质即可得出结论.【解答】解:(1)过点B作BC⊥x轴于点C,如图1所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为长方形,∴AO=BC=4.∵△APB为等腰直角三角形,∴AP=BP,∠PAB=∠PBA=45°,∴∠OAP=90°﹣∠PAB=45°,∴△AOP为等腰直角三角形,∴OA=OP=4.t=4÷1=4(秒),故t的值为4.(2)点M的坐标为(4,7)或(6,﹣4)或(10,﹣1)或(0,4);(3)∠OA'B=45°,不发生变化;理由如下:∵△APB为等腰直角三角形,∴∠APO+∠BPC=180°﹣90°=90°.又∵∠PAO+∠APO=90°,∴∠PAO=∠BPC.在△PAO和△BPC中,,∴△PAO≌△BPC(AAS),∴AO=PC,BC=PO.∵点A(0,4),点P(t,0)∴PC=AO=4,BC=PO=t,CO=PC+PO=4+t∴点B(4+t,t);∴点B在直线y=x﹣4上又∵点A关于x轴的对称点为A'(0,﹣4)也在直线y=x﹣4上,∴∠OA'B=45°.2017年2月6日。
浙江省金华市2019-2020学年数学八上期末模拟考试试题(1)
![浙江省金华市2019-2020学年数学八上期末模拟考试试题(1)](https://img.taocdn.com/s3/m/fb0e3cf4e53a580216fcfe8c.png)
浙江省金华市2019-2020学年数学八上期末模拟考试试题(1)一、选择题1.人体中红细胞的直径约为0.0000077m .0.0000077用科学记数法表示是( )A .0.77×10﹣5B .0.77×10﹣6C .7.7×10﹣5D .7.7×10﹣62.某中学制作了108件艺术品,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装5件艺术品,单独使用B 型包装箱比单独使用A 型包装箱可少用2个.设B 型包装箱每个可以装x 件艺术品,根据题意列方程为( )A .10810825x x =+- B .10810825x x =-- C .10810825x x =-+ D .10810825x x =++ 3.如果30x y -=,那么代数式()2222x y x y x xy y +⋅--+的值为( ) A .27- B .27 C .72- D .72 4.下列因式分解正确的是( ) A .a 2+8ab+16b 2=(a+4b )2B .a 4﹣16=(a 2+4)(a 2﹣4) C .4a 2+2ab+b 2=(2a+b )2 D .a 2+2ab ﹣b 2=(a ﹣b )2 5.如图是小明的测试卷,则他的成绩为( )A.25B.50C.75D.1006.若多项式22m kmn n -+是一个完全平方式,则常数k 的值为( )A .1B .±1C .2D .2± 7.在ABC △中,A x ︒∠=,B y ︒∠=,60C ︒∠≠.若1802y x ︒=-,则下列结论正确的是( )A .AC AB =B .AB BC = C .AC BC =D .,,AB BC AC 中任意两边都不相等8.2019年4月28日,北京世界园艺博览会正式开幕。
在此之前,我国已经举办过七次不同类别的世界园艺博览会,下面是北京,西安,锦州,沈阳四个城市举办的世园会的标志,其中是轴对称图形的是( )A .B .C .D .9.下列说法中正确的是( )A .全等三角形的周长相等B .从直线外一点到这条直线的垂线段,叫做这点到直线的距离C .两条直线被第三条直线所截,同位角相等D .等腰三角形的对称轴是其底边上的高10.下列说法中,正确的是( )A .两腰对应相等的两个等腰三角形全等B .两锐角对应相等的两个直角三角形全等C .两角及其夹边对应相等的两个三角形全等D .面积相等的两个三角形全等11.如图,AB//DE,AC//DF,AC=DF,下列条件中不能判断△ABC ≌△DEF 的是( )A.AB=DEB.EF=BCC.∠B=∠ED.EF ∥BC12.如图,在△ABC 和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC ≌△A′B′C′,则补充的这个条件是( )A .BC=B′C′B .∠A=∠A′C .AC=A′C′D .∠C=∠C′13.如图,在△ABC 中,∠A =α,∠ABC 与∠ACD 的角平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的角平分线交于点A 2,得∠A 2;……;∠A 2017BC 与∠A 2017CD 的角平分线交于点A 2018,得∠A 2018,则∠A 2018=( )A .20172αB .20182αC .20192αD .20202α14.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A.4B.5C.6D.715.如图所示,∠1=∠2=150°,则∠3=( )A .30°B .150°C .120°D .60° 二、填空题16.若关于x 的方程25--x x +5m x -=0有增根,则m 的值是_____. 17.如图,∠C=90°,根据作图痕迹可知∠ADC=_______°.18.已知22(5)(6)0a b ab +-+-=,则22a b +=__________.【答案】1319.如图,△ABC 中,∠A=60°,∠B=50°,D 、E 分别是AB 、AC 上两点,连接DE 并延长,交BC 的延长线于点F ,此时,∠F=35°,则∠1的度数为______.20.已知等腰三角形的周长为18cm ,其中一边长为5cm ,那么这个等腰三角形的底边长为____.三、解答题21.在一个不透明的袋中装有3个绿球,5个红球和若干白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.(1)若袋内有4个白球,从中任意摸出一个球,是绿球的概率为 ,是红球的概率为 ,是白球的概率为 .(2)如果任意摸出一个球是绿球的概率是15,求袋中有几个白球? 22.化简:(1)523()(2)a a a -÷+;(2)2(21)2(12)+x x x --23.如图所示的正方形网格中,每个小正方形的边长均为1个单位, ABC ∆的三个顶点都在格点上.(1)在网格中画出ABC ∆向下平移3个单位得到的111A B C ∆;(2)在网格中画出ABC ∆关于直线m 对称的222A B C ∆;(3)在直线m 上画一点P ,使得2PA PC -的值最大.24.如图,点E ,F 在CD 上,AD CB ,DE CF =,A B ∠=∠,试判断AF 与BE 有怎样的数量和位置关系,并说明理由.25.将两个大小不同的含30°角的三角板的直角顶点O 重合在一起,保持△COD 不动,将△AOB 绕点O 旋转,设射线AB 与射线DC 交于点F .(1)如图①,若∠AOD=120°,①AB 与OD 的位置关系 .②∠AFC 的度数= .(2)如图②当∠AOD=130°,求∠AFC 的度数.(3)由上述结果,写出∠AOD 和∠AFC 的关系 .(4)如图③,作∠AFC 、∠AOD 的角平分线交于点P ,求∠P 的度数.【参考答案】***一、选择题16.317.∠ADC=70°18.无19.145°20.或三、解答题21.(1)14,512,13; (2)袋中有7个白球. 22.(1)37a ;(2)21x -+23.(1)如图,111A B C ∆.见解析;(2)如图,222A B C ∆.见解析;(3)如图,点P 即为所求.见解析.【解析】【分析】(1)将A 、B 、C 按平移条件找出它的对应点A 1、B 1、C 1,顺次连接A 1B 1、B 1C 1、C 1A 1,即得到平移后的图形;(2)利用轴对称性质,作出A 、B 、C 关于直线m 的对称点,A 2、B 2、C 2,顺次连接A 2B 2、B 2C 2、C 2A 2,即得到关于直线m 对称的△A 2B 2C 2;(3)过点A 2B 2作直线,此直线与直线m 的交点即为所求;(3)过点A 2C 2作直线,此直线与直线m 的交点P 即为所求.【详解】解:作图如下:(1)如图,111A B C ∆.(2)如图,222A B C ∆.(3)如图,点P 即为所求.【点睛】本题考查的是平移变换与轴对称变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.24.详见解析【解析】【分析】根据平行线的性质得到C D ∠=∠,由DE CF =得到CE DF =,推出AFD BEC ∆≅∆,根据全等三角形的性质得到AF BE =,AFD BEC ∠=∠,由平行线的判定即可得到结论.【详解】解:AF 与BE 平行且相等,理由:因为AD CB ,所以C D ∠=∠.因为DE CF =,所以CE DF =.又因为A B ∠=∠,所以AFD BEC ∆≅∆.所以AF BE =,AFD BEC ∠=∠.所以AF BE . 【点睛】本题考查平行线的判定与性质,全等三角形的判定与性质.熟练掌握性质定理和判定定理是解题的关键.注意数形结合思想的应用.25.(1)①AB ∥OD ;②30°;(2)40°;(3)∠AOD=∠AFC+90°;(4)15°.。
2019-2020学年度浙教版八年级数学上册期末考试题(有答案)
![2019-2020学年度浙教版八年级数学上册期末考试题(有答案)](https://img.taocdn.com/s3/m/c8569ea86f1aff00bed51ebd.png)
2019-2020学年度浙教版八年级数学上册期末考试题(有答案) 学校:___________姓名:___________班级:___________考号:___________评卷人 得分一、选择题(题型注释)1.如果a >b ,下列各式中不正确的是( ) A .a ﹣4>b ﹣4 B .﹣3a <﹣3bC .﹣2a <﹣2bD .﹣5+a <﹣5+b 2.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A .(﹣4,3)B .(4,﹣3)C .(﹣3,4)D .(3,﹣4) 3.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米B .7千米C .8千米D .15千米4.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y=x+4与x 轴、y 轴分别交于点E ,F .将菱形ABCD 沿x 轴向左平移k 个单位,当点C 落在△EOF 的内部时(不包括三角形的边),k 的值可能是( )A .2B .3C .4D .5 5.到三角形三个顶点的距离相等的点是三角形( )的交点.A .三个内角平分线B .三边垂直平分线C .三条中线D .三条高 A .B .C .D .8.如图在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF=3,BC=8,则△EFM 的周长是( )A .21B .15C .13D .119.某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面高度h 随水流出的时间t 变化的图象大致是( )A .B .C .D .10.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A.1,2,6B.2,2,4C.1,2,3D.2,3,4 11.如图,已知AD 平分∠BAC ,AB=AC ,则此图中全等三角形有( )..3对 C .4对 D .5对评卷人 得分二、填空题(题型注释)12.已知实数x ,y 满足084=-+-y x ,则以x ,y 的值为两边长的等腰三角形的周长是 .13.请写出定理:“等腰三角形的两个底角相等”的逆定理_______________.14.如图点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE=3,则点P 到AB 的距离是 .15.在Rt △ABC 中,∠C=90°,∠B=30°,AB=16,则AC= .16.已知函数y=2x+b 经过点A (2,1),将其图象绕着A 点旋转一定角度,使得旋转后的函数图象经过点B (﹣2,7).则①b= ;②旋转后的直线解析式为 .17.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (3,0),B (0,4),则点B 100的坐标为 .18.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么,图中共有______对全等三角形.19.如图,△ABC 中,∠A=40°,∠B=70°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF= 度.20.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为 .21.不等式组211{213xx+>-+<的整数解是________.三、计算题(题型注释)22.解不等式组:并写出它的所有的整数解.23.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y,图中的折线表示y与x之间的函数关系.(1)甲、乙两地之间的距离为千米;图中点B的实际意义是;(2)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?24.如图,已知△ABC中,∠B=90°,AB=8cm, BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB第一次能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.四、解答题(题型注释)y=mx+2的图像经过点(-2,6).(1)求m 的值;(2)画出此函数的图像;26.解不等式组()3321318x x x x -⎧+≥⎪⎨⎪---⎩①②,并将解集在数轴上表示出来.27.如果一个三角形有一边上的中线与这边的长相等,那么称这个三角形为“和谐三角形”.(1)请用直尺和圆规在图1中画一个以线段AB 为一边的“和谐三角形”;(2)如图2,在△ABC 中,∠C=90°,AB=7,BC=3,请你判断△ABC 是否是“和谐三角形”?证明你的结论;(3)如图3,已知正方形ABCD 的边长为1,动点M ,N 从点A 同时出发,以相同速度分别沿折线AB ﹣BC 和AD ﹣DC 向终点C 运动,记点M 经过的路程为S ,当△AMN 为“和谐三角形”时,求S 的值.28.如图,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过点C 的切线,垂足为点D ,AB 的延长线交切线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长.答案1.D2.C3.C4.B5.B6.B7.A8.D9.A10.D11.C.12.20. 13.有两个角相等的三角形是等腰三角形.14.3.15.816.﹣3,y=﹣x+417.(600,4).18.319.7520.421.0,122.不等式组的所有整数解是1、2、3.23.(1)900,4小时两车相遇.(2)所以线段BC 所表示的y 与x 之间的函数关系式为:y=225x ﹣900(4≤x ≤6)(3)第二列快车比第一列快车晚出发0.75小时 24.(1)、213;(2)、38;(3)、5.5秒或6秒或6.6秒 25.(1) m=-2;(2)作图见解析. 【解析】25.试题分析:(1)把点(-2,6)代入函数解析式,利用方程来求m 的值;(2)由“两点确定一条直线”来作图;试题解析:(1)将x=-2,y=6代入y=mx+2,得 6=-2m+2, 解得m=-2;(2)由(1)知,该函数是一次函数:y=-2x+2, 令x=0,则y=2; 令y=0,则x=1,所以该直线经过点(0,2),(1,0).其图象如图所示: .考点:1.一次函数的图象;2.一次函数图象上点的坐标特征. 26.﹣2<x ≤3,作图详见解析. 【解析】26.试题分析:根据解不等式组的方法可以求得不等式组的解集,从而可以在数轴上表示不等式组的解集.试题解析:()3321318x x x x -⎧+≥⎪⎨⎪---⎩①②, 解不等式①,得x ≤3, 解不等式②,得x >﹣2,不等式①、②的解集在数轴表示如下图所示,故原不等式组的解集为:﹣2<x ≤3.考点:解一元一次不等式组;在数轴上表示不等式的解集. 27.(1)作图见解析;(2)△ABC 是“和谐三角形”,理由见解析; (3)当△AMN 为“和谐三角形”时,S 的值为43或5 【解析】27.解:(1)如图1, 作线段AB 的中点O ,②以点O 为圆心,AB 长为半径画圆,③在圆O 上取一点C (点E 、F 除外),连接AC 、BC .∴△ABC 是所求作的三角形.(2)如图2,∠C=90°,2AC=,CD=1,在Rt△BCD中,2BD==,∴中线BD=边AC,∴△ABC是“和谐三角形”;(3)易知,点M在AB上时,△AMN是等腰直角三角形,不可能是“和谐三角形”,当M在BC上时,连接AC交MN于点E,(Ⅰ)当底边MN的中线AE=MN时,如图,有题知(2-s),(2-S),())222s s-=-,S=43,(Ⅱ)当腰Am与它的中线NG相等,即AM=GN=AN时,作NH⊥AM于H,如图∵NG=NA, NH⊥AM, ∴GH=AH=12GN=14AM,在Rt△NHA中,NH AM ===在Rt△NHM中,tan∠HMN=434AMHNMH AM==在Rt△AME中, tan∠AME)22sAE sME s-===-;2SS=-5s=。
2019-2020学年浙教新版八年级上册期末数学试卷
![2019-2020学年浙教新版八年级上册期末数学试卷](https://img.taocdn.com/s3/m/7c33650528ea81c759f5788d.png)
2019-2020学年浙教新版八年级上册期末数学试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共10小题,共30.0分)1.平面直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3,4,则点P的坐标为()A. (−4,−3)B. (3,4)C. (−3,−4)D. (4,3)2.函数y=1√2x−1的自变量x的取值范围是()A. x≤12B. x≥12C. x<12D. x>123.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D.则△ABC中AC边上的高是()A. AEB. CDC. BFD. AF4.不等式1−x>2x−8的正整数解有()A. 1个B. 2个C. 3个D. 无数多个5.在一次函数y=(m−1)x+3的图象上,y随x的增大而减小,则m的取值范围是()A. m>1B. m>0C. m≥1D. m<16.要说明命题“若a>b,则|a|>|b|”是假命题,能举的一个反例是()A. a=3,b=2B. a=4,b=−1C. a=1,b=0D. a=1,b=−27.若三角形三边长为整数,周长为11,且有一边长为4,则此三角形中最长的边是()A. 7B. 6C. 5D. 48.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为()A. 14B. 13C. 12D. 119.取一张正方形纸片,将它按如图所示方法对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图案是()A. B.C. D.10.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行。
他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示。
下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480。
金华市八年级(上)期末数学试卷含答案
![金华市八年级(上)期末数学试卷含答案](https://img.taocdn.com/s3/m/ba57105dbd64783e08122b6c.png)
八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列计算正确的是()A. =2B. =±2C. =2D. =±22.若m>n,下列不等式不一定成立的是()A. m+2>n+2B. 2m>2nC. >D. m2>n23.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A. ∠A=25°,∠B=65°B. ∠A:∠B:∠C=2:3:5C. a:b:c=::D. a=6,b=10,c=124.已知:将直线y=x-1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A. 经过第一、二、四象限B. 与x轴交于(1,0)C. 与y轴交于(0,1)D. y随x的增大而减小5.估计的值应在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间6.如图,经过点B(-2,0)的直线y=kx+b与直线y=4x+2相交于点A(-1,-2),则不等式4x+2>kx+b的解集为()A. x<-2B. x>-1C. x<-1D. x>-27.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=5,BF=3,EF=2,则AD的长为()A. 4B. 5C. 6D. 78.如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A. 2个B. 3个C. 4个D. 5个9.不等式-4x-k≤0的负整数解是-1,-2,那么k的取值范围是()A. 8≤k<12B. 8<k≤12C. 2≤k<3D. 2<k≤310.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)-CD2.其中正确的是()A. ①②③④B. ②④C. ①②③D. ①③④二、填空题(本大题共6小题,共24.0分)11.不等式2x-5>4x-1的最大整数解是______.12.若式子在实数范围内有意义,则x的取值范围是______.13.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=____.14.对于正实数a,b作新定义:a⊙b=2-,若25⊙x2=4,则x的值为______.15.在计算机编程中有这样一个数字程序:对于二个数a,b,用min{a,b}表示这两个数中较小的数.例如:min{-1,2}=-1,则min{x+1,-2x+2}的最大值为______.16.在边长为6的正方形ABCD中,点E是射线BC上的动点(不与B,C重合),连结AE,将△ABE沿AE向右翻折得△AFE,连结CF和DF,若△DFC为等腰三角形,则BE的长为______.三、计算题(本大题共3小题,共24.0分)17.解下列不等式组,并把解集在数轴上表示出来:18.如图1,在△ABC中,AB=2,AC=,AD是△ABC的高,且BD=1.(1)求BC的长;(2)E是边AC上的一点,作射线BE,分别过点A,C作AF⊥BE于点F,CG⊥BE 于点G,如图2,若BE=,求AF与CG的和.19.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?四、解答题(本大题共5小题,共42.0分)20.如图,点E、A、C在同一直线上,AB∥CD,∠B=∠E,AC=CD求证:(1)∠BAC=∠ECD;(2)BC=ED.21.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(-3,-1)(1)将△ABC关于y轴对称得到△A1B1C1,画出△A1B1C1,并写出点B1的坐标;(2)把△A1B1C1平移,使点B1平移到B2(3,1),请作出△A1B1C1平移后的△A2B2C2,并写出A2的坐标;(3)已知△ABC中有一点D(a,b),求△A2B2C2中的对应点D2的坐标.22.如图,直角坐标系xOy中,一次函数y=-x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC-S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.23.在平面直角坐标系xOy中,A(0,2),B(4,2),C(4,0).P为长方形ABCO内(不包括边界)一点,过点P分别作x轴和y轴的平行线,这两条平行线分长方形ABCO为四个小长方形,若这四个小长方形中有一个长方形的周长等于OA,则称P为长方形ABCD的长宽点,例如:如图中的P(,)为长方形ABCO的个长宽点.(1)在点D(,),E(2,1),F(,)中,长方形ABCO的长宽点是______;(2)若G(a,)为长方形ABCO的长宽点,求a的值;(3)若一次函数y=k(x-2)-2(k≠0)的图象上存在长方形ABCO的长宽点,求k 的取值范围.24.如图,直线l:y=kx+3与x轴、y轴分别交于A、B两点,=,OM⊥AB,垂足为点M,点P为直线l上的一个动点(不与A、B重合).(1)求直线y=kx+3的解析式;(2)当点P运动到什么位置时△BOP的面积是6;(3)在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与△OMP全等,若存在,请求出所有符合条件的点P的坐标,若不存在,请说明理由.答案和解析1.【答案】A【解析】解:A、=2,故原题计算正确;B、=2,故原题计算错误;C、=4,故原题计算错误;D、=4,故原题计算错误;故选:A.根据=|a|进行计算即可.此题主要考查了算术平方根,关键是掌握一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.【答案】D【解析】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.根据不等式的性质1,可判断A;根据不等式的性质2,可判断B、C;根据不等式的性质3,可判断D.本题考查了不等式的性质,.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变3.【答案】D【解析】解:A、∵∠A=25°,∠B=65°,∴∠C=180°-∠A-∠C=90°,∴△ABC是直角三角形,故A选项正确;B、∵∠A:∠B:∠C=2:3:5,∴∠C=180°×=90°,∴△ABC是直角三角形;故B选项正确;C、∵a:b:c=::,∴设a=k,b=k,c=k,∴a2+b2=5k2=c2,∴△ABC是直角三角形;故C选项正确;D、∵62+102≠122,∴△ABC不是直角三角形,故D选项错误.故选:D.根据三角形的内角和和勾股定理的逆定理判定即可.本题考查了勾股定理的逆定理,三角形的内角和,熟练掌握勾股定理的逆定理是解题的关键.4.【答案】C【解析】解:将直线y=x-1向上平移2个单位长度后得到直线y=x-1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于(-1,0),错误;C、直线y=x+1与y轴交于(0,1),正确;D、直线y=x+1,y随x的增大而增大,错误;故选:C.利用一次函数图象的平移规律,左加右减,上加下减,得出即可.此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.5.【答案】B【解析】解:∵<<,∴6<<7,∴的值应在6和7之间.故选:B.直接利用二次根式的性质进而得出答案.此题主要考查了估算无理数的大小,正确得出无理数接近的有理数是解题关键.6.【答案】B【解析】解:观察函数图象可知:当x>-1时,直线y=4x+2在直线y=kx+b的上方,∴不等式4x+2>kx+b的解集为x>-1.故选:B.根据两函数图象的上下位置关系即可找出不等式的解集,此题得解.本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.7.【答案】C【解析】证明:∵AB⊥CD,CE⊥AD,∴∠C+∠D=90°,∠A+∠D=90°,∴∠A=∠C,且AB=CD,∠AFB=∠CED,∴△ABF≌△CDE(AAS)∴BF=DE=3,CE=AF=5,∵AE=AF-EF=5-2∴AE=3∴AD=AE+DE=6故选:C.由题意可证△ABF≌△CDF,可得BF=DE=3,CE=AF=5,可求AD的长.本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.8.【答案】B【解析】【分析】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选B.9.【答案】A【解析】解:∵-4x-k≤0,∴x≥-,∵不等式的负整数解是-1,-2,∴-3<-≤-2,解得:8≤k<12,故选:A.解不等式得出x≥-,根据不等式的负整数解是-1,-2,知-3<-≤-2,解之可得.本题主要考查解一元一次不等式的能力,根据一元一次不等式的整数解确定k的取值范围是解题的关键.10.【答案】A【解析】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2-EC2=2AB2-(CD2-DE2)=2AB2-CD2+2AD2=2(AD2+AB2)-CD2.故④正确,故选:A.只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.11.【答案】-3【解析】解:2x-5>4x-1则-2x>4,解得:x<-2,故不等式2x-5>4x-1的最大整数解是:-3.故答案为:-3.直接利用一元一次不等式的解法解不等式进而得出最大正整数.此题主要考查了一元一次不等式的解法,正确解不等式是解题关键.12.【答案】x≥2【解析】解:由题意,得x-2≥0,解得x≥2,故答案为:x≥2.根据被开方数是非负数,可得答案.此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13.【答案】-1【解析】【分析】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案为-1.14.【答案】±6【解析】解:由题意可得:2-=4,则10-|x|=4,解得:x=±6.故答案为:±6.直接利用已知得出关于x的方程,进而得出答案.此题主要考查了实数运算,正确理解题意是解题关键.15.【答案】【解析】解:如图:由图象,得min{x+1,-2x+2}=,当时x=,min{x+1,-2x+2}的最大值为,故答案为分类讨论:x≤,x>,根据min{a,b}表示这两个数最小的数,可得函数解析式,根据自变量的值,可得函数值;本题考查了二次函数的综合题,利用min{a,b}表示这两个数最小的数出得函数解析式是解题关键.16.【答案】2或12+6或12-6【解析】解:如图,①点F在以A为圆心AB为半径的圆上,满足条件的点F在线段CD的垂直平分线KF上.作FH⊥AD于H.在Rt△AFH中,∵AF=2FH,∴∠FAH=30°,∵∠BAD=90°,∴∠BAF=60°,∴∠EAB=∠EAF=30°,在Rt△ABE中,BE=AB•tan30°=2,②当DF′=DC时,在BE′上取一点G,使得AG=GE′.∵AF′=AD=DF′,∴△ADF′是等边三角形,∴∠DAF′=60°,∴∠BAF′=150°,∴∠BE′F′=30°,∴∠BE′A=15°,∵GA=GE′,∴∠GAE′=∠GE′A=15°,∴∠AGB=30°,∴AG=GE′=2AB=12,BG=6,∴BE′=12+6若以点D为圆心,DC长为半径作圆与以点A为圆心,AB长为半径的圆在正方形的内的交点为F同理可得BE=12-6综上所述,BE的长为2或12+6或12-6分三种情形画出图形分别求解即可.本题考查翻折变换、正方形的性质、直角三角形30度角的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找点F的位置,学会推分类讨论的思想思考问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考填空题中的压轴题.17.【答案】解:解不等式x-3<0,得:x<3,解不等式-1≥0,得:x≥1,则不等式组的解集为1≤x<3,将不等式组的解集表示如下:【解析】求出每个不等式的解集,再求出不等式组的解集即可.本题考查的是解一元一次不等式组,熟知解一元一次不等式的基本步骤是解答此题的关键.18.【答案】解:(1)在Rt△ABD中,∠ADB=90°,由勾股定理得AD==,在Rt△ACD中,∠ADC=90°,由勾股定理得CD==∴BC=BD+CD=1+;(2)(1+)×÷2×2÷=(+)××2×.=1+答:AF与CG的和是1+.【解析】(1)根据勾股定理可求AD,再根据勾股定理可求CD,根据BC=BD+CD可求即可;(2)根据三角形面积公式可求AF与CG的和.考查了勾股定理,三角形面积,关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.19.【答案】解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:,解得:,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×=3辆、至少享有B型车2000×=2辆.【解析】(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.本题主要考查二元一次方程组的应用和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程组.20.【答案】证明:(1)∵AB∥CD,∴∠BAC=∠ECD,(2)在△BAC和△ECD中,,∴△BAC≌△ECD(AAS),∴BC=DE.【解析】(1)利用平行线的性质即可证明.(2)证明△BAC≌△ECD(AAS)即可解决问题.本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【答案】解:(1)如图所示,△A1B1C1即为所求,点B1的坐标为(2,-4);(2)如图所示,△A2B2C2即为所求,点A2的坐标为(4,4).(3)点D(a,b)关于y轴的对称点为(-a,b),平移后的对应点D2的坐标为(-a+1,b+5).【解析】(1)根据轴对称变换的定义作出平移后的对应点,再首尾顺次连接即可得;(2)根据点B及其对应点B1坐标知需先向右平移1个单位,再向上平移5个单位,据此作图即可得;(3)根据轴对称变换和平移变换中点的坐标的变换规律可得.本题主要考查作图-平移变换与轴对称变换,解题的关键是掌握平移变换与轴对称变换的定义与性质,并据此得出变换后的对应点.22.【答案】解:(1)把C(m,4)代入一次函数y=-x+5,可得4=-m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=-x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC-S△BOC=×10×4-×5×2=20-5=15;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=-;故k的值为或2或-.【解析】(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B(0,5),可得AO=10,BO=5,进而得出S△AOC-S△BOC的值;(3)分三种情况:当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=-;故k的值为或2或-.本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.23.【答案】D和F【解析】解:(1)∵+=1,∴点D是长方形ABCO的长宽点;∵(4-)+(2-)=1,∴点F是长方形ABCO的长宽点,故答案为:D和F;(2)∵G(a,)为矩形ABCO的长宽点,∴a+=OA或(4-a)+=OA,解得a=或.(3)如图1中由题意可知,矩形ABCO的长宽点只能在线段RM,QE,DE,MK上(不包括端点),其中M(0,1),R(1,2),Q(3,2),E(4,1),D(3,0),K(1,0).∵一次函数y=k(x-2)-2(k≠0)的图象经过定点F(2,-2),观察图象可知当直线与线段MR,EQ有交点时,直线一次函数y=k(x-2)-2(k≠0)的图象上存在长宽点,当一次函数y=k(x-2)-2(k≠0)的图象经过点M时,k=-,当一次函数y=k(x-2)-2(k≠0)的图象经过点R时,k=-4,当一次函数y=k(x-2)-2(k≠0)的图象经过点Q时,k=4,当一次函数y=k(x-2)-2(k≠0)的图象经过点E时,k=,综上所述,满足条件的k的值为-4<k<-或<k<4.(1)根据长宽点的定义即可判断;(2)根据长宽点的定义构建方程即可解决问题;(3)如图1中由题意可知,矩形ABCO的长宽点只能在线段RM,QE,DE,MK上(不包括端点),其中M(0,1),R(1,2),Q(3,2),E(4,1),D(3,0),K (1,0).分别求出直线经过M、R、Q、E时的k的值即可解决问题;本题是一次函数综合题,主要考查矩形的性质、矩宽点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,属于中考压轴题.24.【答案】解:(1)∵直线l:y=kx+3与y轴交于点B∴B(0,3),OB=3∵=,∴OA=4,即A(4,0)∵点A在直线l上,∴4k+3=0 解得:k=-∴直线l的解析式为y=-x+3(2)过P作PC⊥y轴于C,如图1,∴S△BOP=OB•PC=6∴PC=4∴点P的横坐标为4或-4∵点P为直线l上的一个动点且不与A、B重合∴横坐标不为4,纵坐标为:-×(-4)+3=6∴点P坐标为(-4,6)时,△BOP的面积是6;(3)存在满足条件的P、Q∵OM⊥AB,AB=∴∠OMP=90°OM==∴以O,P,Q为顶点的三角形与△OMP全等时,斜边OP为对应边,∠OQP=90°,①△OMP≌△PQO∴PQ=OM=,即P点横坐标为-或,如图2和图3,-×(-)+3=,-×+3=∴点P(-,)或(,②△OMP≌△OQP∴OQ=OM=,即点P、点Q纵坐标为-或,如图4和图5,-x+3=-解得:x=-x+3=解得:x=∴点P(,-)或(,)综上所述,符合条件的点P的坐标为(-,),(,),(,-),(,)【解析】(1)通过=求出点A坐标,用待定系数法即求出解析式(2)先画图,确定△BOP面积可以BO为底,P到y轴距离为高求得,作出辅助线帮助思考.求出P到y轴距离后,要注意分类讨论.(3)题目问法说明两三角形三边对应关系不确定,故需要分类讨论.观察△OMP,得到∠OMP=90°即OP为斜边.所以△OPQ也是直角三角形且OP为对应斜边,因此只能∠OQP=90°,两直角边对应关系不确定,分两类△OMP≌△PQO与△OMP≌△OQP.具体每类再分析时,发现长度求出后对应坐标值可正可负,结合图象分析再分类讨论.本题以一次函数为背景考查了三角形及全等三角形判定,体现了数形结合思想和分类讨论思想.解题关键是通过画图进行分析,解题时应注意在坐标系里线段长度对应坐标的绝对值,所以坐标可正可负要分类讨论.全等三角形存在性问题要通过画图分析,找到确定对应的边角,再根据不确定对应的边角分类讨论.。
2020-2021学年浙江省金华市东阳市八年级(上)期末数学试卷(附答案详解)
![2020-2021学年浙江省金华市东阳市八年级(上)期末数学试卷(附答案详解)](https://img.taocdn.com/s3/m/f2293a2bad51f01dc381f147.png)
2020-2021学年浙江省金华市东阳市八年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.下列长度的三条线段能组成三角形的是()A. 1,2.5,3.5B. 4,6,10C. 20,11,8D. 5,8,122.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A. B. C. D.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A. A(4,30°)B. B(1,90°)C. D( 4,240°)D. E(3,60°)4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A. 是边AB的中点B. 在边AB的垂直平分线上C. 在边AB的高线上D. 在边AB的中线上5.若a>b,则下列不等式变形正确的是()A. 3a<3bB. ac2>bc2C. a−c>b−cD. −ac<−bc6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A. a=−1,b=−2B. a=2,b=一1C. a=2,b=1D. a=−1,b=07.下列函数中,自变量x的取值范围为x<1的是()A. y=11−x B. y=1−1xC. y=√1−xD. y=1√1−x8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A. x>−3B. x<−3C. x≤−3D. x≥−39.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A. a=15B. 小明的速度是150米/分钟C. 爸爸从家到商店的速度为200米/分钟D. 爸爸出发7分钟追上小明10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A. 2552B. 5112C. 256D. 5132二、填空题(本大题共6小题,共24.0分)11.写出一个正比例函数,使其图象经过第二、四象限:______ .12.以A(−2,7),B(−2,−2)为端点的线段上任意一点的坐标可表示为(−2,y)(−2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为______.13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF//AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=______cm.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为a mg,则a的取值的范围为______.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A=______.16.已知直线y=13x+2与函数y={x+1x≥−1−x−1x<−1图象交于A,B两点(点A在点B的左边).(1)点A的坐标是______;(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=______时,|OA′−OB′|取最大值.三、解答题(本大题共8小题,共66.0分)17. 解不等式组{3x −2≤x 2x−15<x+12.18. 如图,在平面直角坐标系xOy 中,△ABO 的三个顶点坐标分别为A(0,−3),B(2,0),O(0,0).(1)将△OAB 关于x 轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB 先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.19.已知一次函数y=kx+b的图象经过点A(−4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:______;结论:______.(均填写序号)证明:21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=______.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC= S△ABP+S△ACP,求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x=−3时,可以消去k,求出y=1,则定点A的坐标为______.(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(−4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k−1)x+3k−2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,52)且平行于x轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=58x+52上时,求m的值.答案和解析1.【答案】D【解析】解:A、1+2.5=3.5,不能够组成三角形;B、4+6=10,不能组成三角形;C、11+8<20,不能组成三角形;D、5+8>12,能组成三角形.故选:D.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.2.【答案】A【解析】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.【答案】C【解析】解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A选项错误;B(2,90°),故B选项错误;D(4,240°),故C选项正确;E(3,300°),故D选项错误.故选:C.按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.本题考查了学生的阅读理解能力,由已知条件正确确定坐标轴的位置是解决本题的关键.4.【答案】B【解析】解:∵PA=PB,∴P点在在边AB的垂直平分线上,故选:B.根据线段垂直平分线的判定定理解答.本题考查的是线段垂直平分线的判定,掌握到线段两端点距离相等的点在线段垂直平分线上是解题的关键.5.【答案】C【解析】解:A.因为a>b,所以3a>3b,故本选项不合题意;B.不妨设c=0,则ac2=bc2,故本选项不合题意;C.因为a>b,所以a−c>b−c,故本选项符合题意;D.不妨设c=0,则−ac=−bc,故本选项不合题意;故选:C.根据不等式的性质逐一进行判断即可.不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.本题考查了不等式的性质,解决本题的关键是掌握不等式的性质.6.【答案】A【解析】解:当a=−1,b=−2时,a>b,而a2<b2,∴“若a>b,则a2>b2”是假命题,故选:A.根据有理数的大小比较法则、有理数的乘方法则计算,判断即可.本题考查的命题和定理,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.【答案】D【解析】【分析】根据函数自变量的取值逐项判断得到x<1的取值的选项即可.考查函数自变量取值范围的应用;解题的关键是了解知识点:分式有意义,分母不为0;被开方数是非负数.【解答】解:A.自变量的取值为x≠1,不符合题意;B.自变量的取值为x≠0,不符合题意;C.自变量的取值为x≤1,不符合题意;D.自变量的取值为x<1,符合题意.故选D.8.【答案】C【解析】解:∵直线y1=k1x+b与直线y2=k2x的交点的横坐标为−3,∴当x≤−3时,y2≥y1,∴关于x的不等式k1x+b≤k2x的解集为x≤−3.故选:C.结合函数图象,写出直线y2=k2x在直线y1=k1x+b上方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y=kx+ b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9.【答案】D【解析】解:线段BC是爸爸买水果的时间5分钟,a=10+5=15,故A不符合题意;由图象可得小明的速度是3300÷(20+2)=150(米/分钟),故B不符合题意;设爸爸从家到商店的速度是x米/分钟,则从商店到学校的速度是(x+60)米/分钟,依题意得,10x+(20−15)(x+60)=3300,解得x=200,所以爸爸从家到商店的速度是200米/分钟,故C不符合题意;爸爸追上小明得时间是150×2÷(200−150)=6(分钟),故D符合题意.故选:D.由图象可得a的值;根据小明的路程和时间可得速度;设爸爸从家到商店的速度是x米/分钟,列一元一次方程可求解;根据追及问题中相距路程÷速度差=时间可得答案.本题考查了一次函数的实际应用和行程问题的数量关系,列一元一次方程解实际问题的运用,解答时合理运用行程问题的数量关系求解是关键.10.【答案】B【解析】解:∵△OA1B1是等边三角形,OA1=1,∴B1的横坐标为12,OA1=OB1,设B1(12,y),则(12)2+y2=12,解答y=√32或y=−√32(舍),∴B1(12,√32),∴OB1所在的直线的解析式为y=√3x,∵OA1=1,∠OA1C=30°,△OA1B1是等边三角形,∴∠B1A1C=90°,∵∠O1BA1=∠B1B2A2=60°,∴B1A1//B2A2,∴∠B1A1C=∠B2A2A1=90°,∴∠B1A2A1=30°,∴B1A2=2A1B1=2,∴B2的横坐标为32,∴y=√3x=3√32,∴B2(32,3√32),同理:B3(72,7√32),B4(152,15√32),总结规律:B1的横坐标为12,B2的横坐标为12+1=32,B3的横坐标为12+1+2=72,B4的横坐标为12+1+2+4=152,...,∴点B9的横坐标是12+1+2+4+8+16+32+64=5112.故选:B.根据题意求出点B1,B2,B3的坐标,然后找出B点坐标的变化规律,把B n的坐标用含n 的式子表示出来,取n=9,即可求出B9的横坐标.本题考查了点的坐标规律,等边三角形的性质,解决本题的关键是根据等边三角形的性质得到点B2的横坐标为32.11.【答案】y=−x(答案不唯一)【解析】解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=−x(答案不唯一).故答案为:y=−x(答案不唯一).先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k<0时函数的图象经过二、四象限.12.【答案】(5,y)(−2≤y≤7)【解析】解:现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(−2≤y≤7),故答案为:(5,y)(−2≤y≤7).根据平移时,点的坐标变化规律“左减右加”进行计算即可.本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.【答案】5【解析】解:∵CF//AB,∴∠AED=∠F,∠FCD=∠A.∵点D为AC的中点,∴AD=CD.在△ADE和△CDF中,{∠A=∠DCF ∠AED=∠F AD=CD,∴△ADE≌△CDF(AAS).∴AE=CF,∵AB=15cm,CF=10cm,∴BE=AB−AE=AB−CF=15−10=5(cm).故答案为5.根据CF//AB就可以得出∠A=∠DCF,∠AED=∠F,证明△ADE≌△CDF(AAS),由全等三角形的性质得出AE=CF,则可得出答案.本题考查了平行线的性质,全等三角形的判定及性质,证明△ADE≌△CDF是解题的关键.14.【答案】30≤a≤60=30mg;【解析】解:由题意,当每日用量90mg,分3次服用时,一次服用的剂量最小为903=60mg;当每日用量120mg,分2次服用时,一次服用的剂量最大为1202故一次服用这种药品的剂量范围是30mg~60mg.故答案为:30≤a≤60.,故可求出服用剂量的最大值和最小值,而一次服用的剂量一次服用剂量a=每日用里每日服用次数应介于两者之间,依题意列出不等式即可.本题考查了有理数的除法.由实际问题中的不等关系列出不等式,通过解不等式可以得到实际问题的答案.15.【答案】42°或24°【解析】解:由折叠可得,AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,∴D是AB的中点AB=AD=BD,∴CD=12∴∠ACD=∠A,∠DCB=∠B,当∠CPD=48°时,∠B=48°,∴∠A=90°−∠B=42°;当∠PCD=48°时,∠DCB=∠B=48°,∴∠A=42°;当∠PDC=48°时,∵∠PCD=DCB=48°,∠BDC=∠A+∠ACD,∠BDC=24°;∴∠A=12故答案为:42°或24°.由折叠的性质得出AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,由AB=AD=BD,由等腰三角形的性质得出直角三角形斜边上的中线性质得出CD=12∠ACD=∠A,∠DCB=∠B,中分三种情况讨论即可.本题考查了翻折变换的性质、直角三角形的性质、等腰三角形的性质、直角三角形斜边上的中线性质;熟练掌握翻折变换的性质和等腰三角形的性质是解题的关键.16.【答案】(−94,54) 6【解析】解:(1)联立方程{y =13x +2y =−x −1, 解得{x =−94y =54, ∴A(−94,54), 故答案为:(−94,54).(2)联立方程{y =13x +2y =x +1, 解得{x =32y =52, ∴点B 坐标为(32,52),将A ,B 向右平移m 个单位得A′(−94+m,54),B′(32+m,52),∴OA′=√(−94+m)2+(54)2,OB′=√(32+m)2+(52)2,∵三角形中两边之差小于第三边,∴O ,A ,B 三点共线时,|OA′−OB′|取最大值,最大值为AB 长度,设O ,A ,B 所在直线正比例函数为y =kx ,将A′,B′坐标代入可得:{54=(−94+m)k 52=(32+m)k , 解得m =6.故答案为:6.(1)因为点A 在点B 左边,联立方程y =13x +2与y =−x −1求解.(2)O ,A′,B′共线时满足题意,用含m 代数式分别表示A′,B′坐标,然后代入正比例函数解析式求出m 即可.本题考查一次函数的综合应用,解题关键是掌握一次函数的性质及求线段和差最值的方法.17.【答案】解:解不等式3x −2≤x ,得:x ≤1,解不等式2x−15<x+12,得:x >−7,∴不等式组的解集为−7<x≤1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【答案】解:(1)如图1所示:△CBO即为所求;(2)如图2所示:△A′B′O′即为所求.【解析】(1)直接利用轴对称图形的性质得出对应点位置得出答案;(2)直接利用平移的性质得出对应点位置,进而得出答案.此题主要考查了利用轴对称设计图案以及平移变换,正确得出对应点位置是解题关键.19.【答案】解:(1)∵一次函数y=kx+b的图象经过两点A(−4,0)、B(2,6),∴{−4k+b=0 2k+b=6,解得{k=1b=4,∴函数解析式为:y=x+4;(2)函数图象如图;(3)一次函数y=x+4与y轴的交点为C(0,4),∴△AOC的面积=4×4÷2=8.【解析】本题考查待定系数法求函数解析式及三角形的面积的知识,难度不大,关键是正确得出函数解析式及坐标与线段长度的转化.(1)将两点代入,运用待定系数法求解;(2)两点法即可确定函数的图象.(3)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.20.【答案】可以为①②③④【解析】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,{AB=DE ∠B=∠E BC=EF,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵{∠B=∠E ∠1=∠2 AB=DE,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC−FC=EF−FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,{∠B=∠E BC=EF ∠1=∠2,∴△ABC≌△DEF(ASA),∴AB=DE.此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.此题主要考查了全等三角形的判定与性质,此题为开放性题目,需要同学们有较强的综合能力,熟练应用全等三角形的全等判定才能正确解答.21.【答案】7【解析】解:(1)由题意,得500+(600−500)×a10=570,解得x=7,故答案为:7;(2)由题意,得y甲={x(0<x≤300)300+0.8(x−300)(x>300);(3)由题意,得y乙=0.7x+150(x>500),0.8x+60=0.7x+150,解得x=900,0.8x+60>0.7x+150,解得x>900,0.8x+60<0.7x+150,解得x<900,当800<x<900时,到甲商店更合算;当x=900时,两家商店任选一个;当x>900时,到乙商店更合算.(1)由“当金额是600元时,实际只需支付了570”可得方程300+(600−300)×a10= 570,再解即可;(2)根据甲商店优惠方案即可求出y甲与奖品金额x元之间的函数表达式;(3)根据题意求出y乙与奖品金额x元之间的函数表达式,再结合(2)的结论列方程和不等式解答即可.此题主要考查了一元一次不等式和一次函数的应用,关键是正确理解题意,找出题目中的不等关系和等量关系,列出方程和不等式.22.【答案】解:(1)如图1中,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=√32+42=5,∵CD⊥AB,∴S△ABC=12⋅AC⋅BC=12⋅AB⋅CD,∴CD=3×45=125.(2)如图2中,过点A作AH⊥BC于H.∵AB=AC=13,BC=10,∴BH=CH=5,∴AH=√AB2−BH2=√132−52=12,∵S△ABC=12⋅BC⋅AH=12⋅AB⋅PM+12⋅AC⋅PN,∴12×13×PM+12×13×PN=12×10×12,∴PM+PN=12013.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.∵∠ACD=∠ECD,DM⊥AC,DN⊥CE,∴DM=DN,∵S△ACD+s△BCD=S△ACB,∴12×4×DM+12×6×DN=12×4×6,∴DM=DN=125,∴S△A′CD=12⋅CA′⋅DN=12×4×125=245.【解析】(1)利用勾股定理求出AB,再利用面积法求出CD即可.(2)如图2中,过点A作AH⊥BC于H.利用勾股定理求出AH,再利用面积法求出PM+PN 即可.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.利用角平分线的性质定理证明PM=PN,再利用面积法求出PM,可得结论.本题属于几何变换综合题,考查了三角形的面积,勾股定理,角平分线的性质定理等知识,解题的关键是学会利用面积法解决问题,属于中考常考题型.23.【答案】(−3,1)【解析】解:(1)∵x=−3时,y的值与k无关,都为1,∴定点A(−3,1),故答案为:(−3,1);(2)∵A(−3,1),B(0,1),C(−4,1),D(0,4),∴AB=3,BC=4,BD=3,∵∠CDB=90°,∴CD=√BC2+BD2=√42+32=5,∴△BCD的周长为BD+CD+BC=12,∵直线l将△BCD的周长分成7:17两部分,∴两部分的长分别为:12×77+17=72,12×177+17=172,①若AB+BN=72,如图:∴3+BN=72,∴BN=12,∴N(0,12),将N(0,12)代入y=kx+3k+1得:1 2=3k+1,解得k=−16,②若AC+CM=72,如图:∴1+CM=72,∴CM=52,∴CM=12CD,∴M 为CD 中点,∴M(−2,52), 把M(−2,52)代入y =kx +3k +1得:52=−2k +3k +1,解得:k =32, 综上所述,k 的值为−16或32;(3)由{y =kx +3k +1y =(k −1)x +3k −2得{x =−3y =1, ∴E(−3,1),∴E 与A 重合,∵点F 是EQ 的中点,∴x F =−32, 而由y =kx +3k +1、y =(k −1)x +3k −2可得P(0,3k +1)、Q(0,3k −2), ∴PQ =3,∵点P 从(0,5)沿y 轴正方向运动到(0,10),∴Q 从(0,2)运动到(0,7),∴F 从(−32,32)运动到(−32,4),∴F 运动的路程为:4−32=52.(1)x =−3时,y 的值与k 无关,都为1,即得定点A(−3,1),(2)由A(−3,1),B(0,1),C(−4,1),D(0,4),得AB =3,BC =4,BD =3,CD =5,直线l 将△BCD 的周长分成7:17两部分,则两部分的长分别为:12×77+17=72,12×177+17=172,①若AB +BN =72,得N(0,12),将N(0,12)代入y =kx +3k +1,即解得k =−16,②若AC +CM =72,可得M(−2,52),把M(−2,52)代入y =kx +3k +1,解得:k =32;(3)由{y =kx +3k +1y =(k −1)x +3k −2求得E(−3,1),故E 与A 重合,而点F 是EQ 的中点,得x F =−32,根据y =kx +3k +1、y =(k −1)x +3k −2可得P(0,3k +1)、Q(0,3k −2),故PQ =3,可知点P 从(0,5)沿y 轴正方向运动到(0,10),则Q 从(0,2)运动到(0,7),F 从(−32,32)运动到(−32,4),即可得F 运动的路程为52. 本题考查一次函数的综合应用,涉及一次函数图象上点坐标的特征、三角形周长、动点等问题,解题的关键是理解F 的运动路径是从(−32,32)运动到(−32,4).24.【答案】解:(1)作CN ⊥轴于N ,BM ⊥轴于M ,∵∠BAC =90°,∴∠NAC +∠NCA =∠NAC +∠MAB =90°,∴∠NCA =∠MAB ,∵CA =AB ,∴Rt △NCA Rt △MAB ,∴NC =MA ,NA =MB ,∵点B 的横坐标为,∴点B 的坐标为(9,52),∴NC =MA =MO −OA =9−4=5,NA =MB =52,ON =OA −NA =32, ∴点C 的坐标为(32,5 ),设直线BC 的解析式为y =kx +b ,将(9,52),(32,5 )代入,得:{9k +b =5232k +b =5, 解得:{k =−13b =112, ∴直线BC 的解析式为y =−13x +112;(2)过B 作直线EF ⊥轴于F ,过D 1作D 1E ⊥EF 交直线EF 于E ,过D 2作D 2E ⊥EF 交直线EF 于M ,同理可证Rt△FAB≌Rt△EBD1≌Rt△MBD2,∴AF=BE=MB,FB=D1E=D2M,∵点B的横坐标为m,∴AF=BE=MB=m−4,FB=D1E=D2M=52,点D1的坐标为(m−52,m−4+52),即D1的坐标为(m−52,m−32),点D2的坐标为(m+52,52−m+4),即D2的坐标为(m+52,132−m),∵S△OAD1=12OA⋅|y D|,D点位于直线AB左侧时,当0<m<1.5时,S=12×4×(32−m)=3−2m;当m≥1.5时,S=12×4×(m−32)=2m−3;D点位于直线AB右侧时,当0<m<6.5时,S=12×4×(132−m)=13−2m;当m≥6.5时,S=12×4×(m−132)=2m−13;(3)①当∠ABP=90°时,由(2)可知D与P重合,∴点P的坐标为(m−52,m−32),当点P落在直线y=58x+52上时,m−32=58(m−52)+52,解得:m=132,②当∠BAP=90°时,同理可证明Rt △HAP≌Rt △GBA ,∵点B 的坐标为(m,52),∴PH =AG =m −4,AH =BG =52,∴点P 的坐标为(4−52,m −4),即(32,m −4 ),当点P 落在直线y =58x +52上时,m −4=58×32+52,解得:m =11916,综上,m 的值为132或11916.【解析】(1)作CN ⊥轴于N ,BM ⊥轴于M ,易证Rt △NCA Rt △MAB ,可求得点C 的坐标为(32,5 ),再利用待定系数法即可求解;(2)过B 作直线EF ⊥轴于F ,过D 作DE ⊥EF 交直线EF 于E ,易证Rt △FAB≌Rt △EBD ,可求得点D 的坐标为(m −52,m −32)或(m +52,132−m),再利用三角形面积公式即可求解;(3)题中只给定了AB 为直角边,所以分∠ABP =90°或∠BAP =90°两种情况讨论,即可求解.本题考查了全等三角形的判定与性质,坐标与图形性质,等腰直角三角形的性质,以及待定系数法求一次函数解析式,掌握相关性质定理,利用分类讨论思想解题是关键.。
2020-2021学年金华市东阳市八年级上学期期末数学试卷(含解析)
![2020-2021学年金华市东阳市八年级上学期期末数学试卷(含解析)](https://img.taocdn.com/s3/m/4ce54208f90f76c660371a29.png)
2020-2021学年金华市东阳市八年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.某个三角形的三边长有可能是()A. 20,16,2016B. 2,2,4C. 2,2,2D. 1,2,42.下列交通标志中既是中心对称图形,又是轴对称图形的是()A. B. C. D.3.如图是天安门广场周围的景点分布示意图的一部分,若表示“王府井”的点的坐标为(4,1),表示“人民大会堂”的点的坐标为(0,−1),则表示“天安门”的点的坐标为()A. (0,0)B. (−1,0)C. (1,0)D. (1,1)4.如图,△ABC中,∠ACB=90°,∠B=30°,DE垂直平分AB,若DE=1.5cm,则BC的长是()A. 3cmB. 4.5cmC. 6cmD. 7.5cm5.不等式−m+2<−1的解集为()A. m<1B. m>1C. m<3D. m>36.下列命题中,是真命题的是()A. 内错角相等B. 对顶角相等C. 若x2=4,则x=2D. 若a>b,则a2>b27.函数y=√x+1的自变量x的取值范围是()x2−4A. x≥−1B. x≥−1且x≠2C. x≠±2D. x>−1且x≠28.二次函数y=ax2+bx−c与一次函数y=ax+c在同一直角坐标系中图象大致是()A. B.C. D.9.如图所示的是“滴滴顺风车”与“滴滴快车”的行驶里程x(千米)与计费y(元)之间的函数关系图象.有下列说法①“快车”行驶里程不超过5千米计费8元;②“顺风车“行驶里程超过2千米的部分,每千米计费1.2元;③点A的坐标是(6.5,10.4)④甲、乙两地之间的路程是15千米,则“顺风车”要比“快车”少用3.4元其中,正确的个数为()A. 1B. 2C. 3D. 410.如图,等边△ABC中,AE=CD,EF⊥BD,若FG=√3,则EF等于()A. 2√3B. 3√3C. 3D. 4二、填空题(本大题共6小题,共24.0分)x 11.如图,在平面直角坐标系xOy中,点A1(2,2)在直线y=x上,过点A1作A1B1//y轴,交直线y=12于点B1,以A1为直角顶点,A1B1为直角边,在A1B1的右侧作等腰直角三角形A1B1C1;再过点C1x于A2,B2两点,以A2为直角顶点,A2B2为直角边,在作A2B2//y轴,分别交直线y=x和y=12A2B2的右侧作等腰直角三角形A2B2C2…,按此规律进行下去,点C2的横坐标为______ ,点C n的横坐标为______ .(用含n的式子表示,n为正整数)12. 将点P(−2,3)向左平移3个单位长度,再向下平移5个单位长度,所得的点的坐标为______13. 如图,在△PAB 中,PA =PB ,D 、E 、F 分别是边PA ,PB ,AB 上的点,且AD =BF ,BE =AF ,若∠DFE =40°,则∠P =______°.14. 根据数量关系:x 的5倍加上1是正数,可列出不等式:______.15. 如图所示,AD ,AE 是三角形ABC 的高和角平分线,∠B =36°,∠C =76°,则∠DAE 的度数为______.16. 设关于x 的一次函数y =a 1x +b 1与y =a 2x +b 2,则称函数y =m(a 1x +b 1)+n(a 2x +b 2)(其中m +n =1,mn ≠0)为此两个函数的生成函数.写出一个y =x +1和y =2x 的生成函数:______.三、解答题(本大题共8小题,共66.0分)17. 解不等式组{3(x −1)<5x +1x+12≥2x −4,并在数轴上表示它的解集.18. 图1、图2是两种形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出以AB 为腰的等腰三角形ABC ,使点C 在格点上,且tan∠BAC =43;(2)在图1中将△ABC分割2次,分割出3块图形,使这3块图形拼成一个既是轴对称图形又是中心对称图形,拼接后的图形无重叠无空隙(和△ABC的面积相等).要求:在图1中用线段画出分割线,在图2中画出拼接后的图形,此图形的顶点均在格点上,保留拼接痕迹,画出一种即可.19.某经销商销售台湾的水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:设当单价从38元/kg下调了x元时,销售量为y kg.(1)写出y与x间的函数关系式.(2)如果凤梨的进价是20元/kg,某天的销售价定为30元/kg,问这天的销售利润是多少?(3)目前两岸还未直接通航,运输要绕行,需耗时一周(7天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/kg,问一次进货最多只能是多少千克?20.如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,求证:AD=CE.(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论:(提示:过点D作DF//BC,交AB于点F.)(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,给予证明;如果不成立,请说明理由.21.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50分才乘上缆车,缆车的平均速度为180米/分.设小亮出发x分后行走的路程为y米.图中的折线表示小亮在整个行走过程中y随x的变化关系.(1)小亮行走的总路程是______米,他途中休息了______分.(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度.(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?22.(13分)已知直线//,点C是直线上一点,点D是直线上一点,CD与直线、不垂直,点P为线段CD的中点.(1)操作发现:直线⊥,分别交、于点A、B,当点B与点D重合时(如图1),连结PA,请直接写出线段PA与PB的数量关系:.(2)猜想证明:在图1的情况下,把直线向右平移到如图2的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)延伸探究:在图2的情况下,把直线绕点A旋转,使得∠APB=90°(如图3),若两平行线、之间的距离为,求证:PA⋅PB=⋅AB.23. 在直角坐标平面内,O为原点,点A的坐标为,点C的坐标为,直线CM//x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,联结OD.(1)求b的值和点D的坐标;(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.24. 如图,已知点A,B分别在x轴和y轴上,且OA=OB=3√2,点C的坐标是C(72√2,72√2),AB与OC相交于点G.点P从O出发以每秒1个单位的速度从O运动到C,过P作直线EF//AB分别交线段OA,OB(或线段CA,CB)于E,F.解答下列问题:(1)直接写出点G的坐标和直线AB的解析式.(2)若点P运动的时间为t,直线EF在四边形OACB内扫过的面积为s,请求出s与t的函数关系式;并求出当t为何值时,直线EF平分四边形OACB的面积.(3)设线段OC的中点为Q,P运动的时间为t,求当t为何值时,△EFQ为直角三角形.参考答案及解析1.答案:C解析:解:A、20,16,2016不符合三角形三边关系,故不能组成三角形;B、2,2,4不符合三角形三边关系,故不能组成三角形;C、2,2,2符合三角形三边关系,故能组成三角形;D、1,2,4不符合三角形三边关系,故不能组成三角形;故选:C.判定三条线段能否构成三角形时,两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.本题主要考查了三角形三边关系,解决问题的关键是掌握:三角形两边之和大于第三边.2.答案:C解析:解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选:C.结合选项根据轴对称图形与中心对称图形的概念求解即可.本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.3.答案:C解析:直接利用已知点坐标得出原点位置进而得出答案.此题主要考查了坐标确定位置,正确得出原点位置是解题关键.解:根据题意按如图所示建立坐标轴:则“天安门”的点的坐标为:(1,0).故选:C.4.答案:B解析:解:∵DE垂直平分AB,∴AD=BD,∠DEB=90°,∴∠DAE=∠B=30°,∵∠B=30°,DE=1.5cm,∴AD=BD=2DE=3cm,∵∠C=90°,∠B=30°,∴∠CAB=60°,∴∠CAD=60°−30°=30°,AD=1.5cm,∴DC=12∴BC=BD+DC=3cm+1.5cm=4.5cm,故选B.根据线段垂直平分线求出AD=BD,根据含30°角的直角三角形性质求出AD=BD=2DE=3cm,根据含30°角的直角三角形性质求出DC,即可得出答案.本题考查了线段垂直平分线性质,含30°角的直角三角形性质的应用,能运用性质定理求出AD=BD,AD是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.BD=2DE和DC=125.答案:D解析:解:−m+2<−1,移项得:−m<−1−2,合并同类项得:−m<−3,不等式的两边都除以−1得:m>3,故选:D.移项,合并同类项,系数化成1即可.本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.6.答案:B解析:解:A、两直线平行,内错角相等,原命题是假命题;B、对顶角相等,是真命题;C 、若x 2=4,则x =±2,原命题是假命题;D 、若a >0>b ,a =1,b =−2,则a 2<b 2,原命题是假命题;故选:B .根据平行线的性质、对顶角和不等式以及平方根判断即可.本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.7.答案:B解析:解:根据题意得:{x +1≥0x 2−4≠0, 解得x ≥−1且x ≠2.故选:B .根据二次根式有意义的条件是:被开方数是非负数,以及分母不等于0,据此即可求解. 本题考查了二次根式有意义的条件,及分式有意义的条件.8.答案:A解析:解:A 、由抛物线知,a >0,c >0;由直线知a >0,c >0,故本选项正确;B 、由抛物线知,a <0,c <0;由直线知a <0,c >0,c 的值矛盾,故本选项错误;C 、由抛物线知,a <0,c <0;由直线知a >0,c <0,a 的值矛盾,故本选项错误;D 、由抛物线知,a >0,c <0;由直线知a <0,c >0,a ,c 的值矛盾,故本选项错误. 故选A .分别根据抛物线与直线所经过的象限判断出a 、c 的符号,进而可得出结论.本题考查的是二次函数的图象,熟知二次函数的图象与系数的关系是解答此题的关键. 9.答案:D解析:解:①根据“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象可知: 行驶里程不超过5公里计费8元,即①正确;②“滴滴顺风车”行驶里程超过2公里的部分,每公里计费为(14.6−5)÷(10−2)=1.2(元),故②正确;③设x ≥5时,“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系式为y 1=k 1x +b 1, 将点(5,8)、(10,16)代入函数解析式得:{8=5k 1+b 116=10k 1+b 1,解得:{k 1=1.6b 1=0. ∴“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系式为y 1=1.6x ;当x ≥2时,设“滴滴顺风车”的行驶里程x(公里)与计费y(元)之间的函数关系式为y 2=k 2x +b 2, 将点(2,5)、(10,14.6)代入函数解析式得:{5=2k 2+b 214.6=10k 2+b 2, 解得:{k 2=1.2b 2=2.6. ∴“滴滴顺风车”的行驶里程x(公里)与计费y(元)之间的函数关系式为y 2=1.2x +2.6.联立y 1、y 2得:{y =1.6x y =1.2x +2.6, 解得:{x =6.5y =10.4. ∴A 点的坐标为(6.5,10.4),故③正确;④令x =15,y 1=1.6×15=24;令x =15,y 2=1.2×15+2.6=20.6.∴y 1−y 2=24−20.6=3.4(元).即甲、乙两地之间的里程是15公里,则“顺风车”要比“快车”少用3.4元,故④正确.综上可知,正确的结论个数为4个.故选:D .①根据“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象的拐点为(5,8),即可得知结论成立;②根据“单价=超出费用÷超出距离”即可算出)“顺风车”行驶里程超过2公里的部分,每公里计费价格,从而得知结论成立;③设出“滴滴顺风车”与“滴滴快车”超出部分的函数解析式,利用待定系数法求出两个函数解析式,再联立成方程组,解方程组即可得出A 点的坐标,从而得知结论成立;④将x =15分别带入y 1、y 2中,求出费用即可判定结论成立.本题考查了一次函数的应用、待定系数法求函数解析式以及解二元一次方程组,解题的关键是:结合图象找出点的坐标,结合点的坐标利用待定系数法求出函数解析式.10.答案:C解析:证明:∵△ABC 为等边三角形,∴AC =BC ,∠A =∠ACB =60°,在△AEC 和△CDB 中,{AE =CD ∠A =∠ACB AC =CB,∴△AEC≌△CDB(SAS),∴∠ACE =∠CBD ,∵∠ACE +∠ECB =60°,∴∠CBD +∠ECB =60°,∵∠EGB 为△GBC 的外角,∴∠EGB =60°,∴在Rt △EFG 中,∠GEF =30°,则EF =√3FG =3, 故选C . 只要证明△AEC≌△CDB(SAS),推出∠EGB =60°即可解决问题.本题考查等边三角形的性质、全等三角形的判定与性质、直角三角形30度角性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键.11.答案:94 2×(32)n解析:解:∵点A 1(2,2),A 1B 1//y 轴交直线y =12x 于点B 1,∴B 1(2,1)∴A 1B 1=2−1=1,即A 1C 1=1,∵A 1C 1=A 1B 1=1,∴点C 1的横坐标为3=2×(32),∴A 2(3,3),又∵A 2B 2//y 轴,交直线y =12x 于点B 2,∴B 2(3,32), ∴A 2B 2=3−32=32, ∴A 2C 2=32,∴点C 2的横坐标为,92=2×(32)2;以此类推,A 3B 3=94,即A 3C 3=94,∴点C 3的横坐标为274=2×(32)3,A 4B 4=278,即A 4C 4=278;点C 4的横坐标为818=2×(32)4…∴A n B n =(32)n−1,即A n C n =(32)n−1. ∴点C n 的横坐标为2×(32)n ,故答案为:92,2×(32)n .先根据点A 1的坐标以及A 1B 1//y 轴,得到A 1B 1的长以及点C 1的横坐标,再根据A 2的坐标以及A 2B 2//y 轴,得到A 2B 2的长以及点C 2的横坐标为,最后根据根据变换规律,求得A n B n 的长,进而得出点C n 的横坐标.本题主要考查了一次函数图象上点的坐标特征以及等腰直角三角形的性质,解决问题的关键是通过计算找出变换规律. 12.答案:(−5,−2)解析:解:将点P(−2,3)向左平移3个单位长度,再向下平移5个单位长度,所得的点的坐标为(−5,−2), 故答案为:(−5,−2).根据平移规律:向下平移纵坐标减,向左平移横坐标减求解.本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.答案:100解析:解:∵PA =PB ,∴∠A =∠B ,在△ADF 和△BFE 中,{AD =BF ∠A =∠B AF =BE,∴△ADF≌△BFE(SAS),∴∠ADF =∠BFE ,∵∠DFB =∠DFE +∠EFB =∠A +∠ADF ,∴∠A =∠DFE =40°,∴∠P =180°−∠A −∠B =100°,故答案为100.根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=42°,根据三角形内角和定理计算即可.本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.14.答案:5x+1>0解析:解:依题意得:5x+1>0.故答案是:5x+1>0.表示出x的5倍为5x,然后求和,最后利用不等符号与零连接即可.考查了由实际问题抽象出一元一次不等式,关键是理解“大于”用数学符号表示应为“>”.15.答案:20°解析:解:∵∠B=36°,∠C=76°,∴∠BAC=180°−∠B−∠C=68°,∵AE是角平分线,∴∠EAC=12∠BAC=34°.∵AD是高,∠C=76°,∴∠DAC=90°−∠C=14°,∴∠DAE=∠EAC−∠DAC=34°−14°=20°.故答案为:20°.由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC=12∠BAC,故∠DAE=∠EAC−∠DAC.本题主要考查了三角形内角和定理、角的平分线的定义,解决问题的关键是掌握三角形内角和是180°.16.答案:y=12(x+1)+12×(2x)(答案不唯一)解析:解:由题意可得,y=x+1和y=2x的生成函数是y=12(x+1)+12×(2x),故答案为:y=12(x+1)+12×(2x)(答案不唯一).根据题意可以写出一个符合要求的生成函数,本题得以解决,本题答案不唯一.本题考查一次函数的性质,解答本题的关键是明确题意,写出符合题意的函数,注意本题答案不唯一,这是一道开放性题目.17.答案:解:{3(x −1)<5x +1①x+12≥2x −4②, 解不等式①得:x >−2,解不等式②得:x ≤3,则不等式组的解集为−2<x ≤3,将不等式组的解集表示在数轴上如下:解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.答案:解:(1)如图1所示:△ABC 即为所求;(2)如图2所示:矩形即为所求.解析:(1)利用等腰三角形的性质结合tan∠BAC =43,得出C 点位置;(2)利用矩形的性质得出符合题意的答案.此题主要考查了利用旋转设计图案以及等腰三角形的性质,正确分割三角形是解题关键. 19.答案:解:(1)设y 与x 间的函数关系式为y =kx +b ,由题意,得{50=38k +b 52=37k +b, 解得:{k =−2b =126故y =−2x +126;(2)由题意,得当x =30时,y =66故利润=66×(30−20)=660元;(3)由题意可得,售价越低,销量越大,即能最多的进货,设一次进货最多m 千克,则m66≤30−7,解得:m ≤1518,故一次进货最多只能是1518千克.解析:(1)设y与x间的函数关系式为y=kx+b,运用待定系数法求出其解即可;(2)当x=30时,代入解析式求出销量,根据利润=售价−进价就可以求出结论;(3)根据凤梨的保存时间和运输路线的影响,凤梨的销售时间最多是23天.要想使售价不低于30元/千克,就必须在最多23天内卖完,当售价为30元/千克时,销售量已经由(2)求出,因此可以根据最多进货的量÷30元/千克时的销售量≤23天,由此来列不等式,求出最多的进货量.20.答案:(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC=BC,∵D为AC中点,∴∠DBC=30°,AD=DC,∵BD=DE,∴∠E=∠DBC=30°∵∠ACB=∠E+∠CDE,∴∠CDE=30°=∠E,∴CD=CE,∵AD=DC,∴AD=CE;(2)成立,如图2,过D作DF//BC,交AB于F,则∠ADF=∠ACB=60°,∵∠A=60°,∴△AFD是等边三角形,∴AD=DF=AF,∠AFD=60°,∴∠BFD=∠DCE=180°−60°=120°,∵DF//BC,∴∠FDB=∠DBE=∠E,在△BFD 和△DCE 中{∠FDB =∠E ∠BFD =∠DCE BD =DE∴△BFD≌△DCE ,∴CE =DF =AD ,即AD =CE .(3)(2)中的结论仍成立,如图3,过点D 作DP//BC ,交AB 的延长线于点P ,∵△ABC 是等边三角形,∴△APD 也是等边三角形,∴AP =PD =AD ,∠APD =∠ABC =∠ACB =∠PDC =60°,∵DB =DE ,∴∠DBC =∠DEC ,∵DP//BC ,∴∠PDB =∠CBD ,∴∠PDB =∠DEC ,在△BPD 和△DCE 中,{∠PDB =∠DEC ∠P =∠DCE =60°DB =DE∴△BPD≌△DCE ,∴PD =CE ,∴AD =CE .解析:(1)求出∠E =∠CDE ,推出CD =CE ,根据等腰三角形性质求出AD =DC ,即可得出答案;(2)过D 作DF//BC ,交AB 于F ,证△BFD≌△DCE ,推出DF =CE ,证△ADF 是等边三角形,推出AD =DF ,即可得出答案.(3)(2)中的结论仍成立,如图3,过点D作DP//BC,交AB的延长线于点P,证明△BPD≌△DCE,得到PD=CE,即可得到AD=CE.本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,解决本题的关键是作出辅助线,构建全等三角形.21.答案:360020解析:解:(1)根据图象知:小亮行走的总路程是3600米,他途中休息了20分钟.故答案为3600,20;…(2分)=65(米/分)…(4分)(2)小亮休息前的速度为:195030=55(米/分)…(6分)小亮休息后的速度为:3600−195080−50(3)小颖所用时间:36002=10(分)…(8分)180小亮比小颖迟到80−50−10=20(分)…(9分)∴小颖到达终点时,小亮离缆车终点的路程为:20×55=1100(米)…(10分)根据图象获取信息:(1)小亮到达山顶用时80分钟,中途休息了20分钟,行程为3600米;(2)休息前30分钟行走1950米,休息后30分钟行走(3600−1950)米.(3)求小颖到达缆车终点的时间,计算小亮行走路程,求离缆车终点的路程.此题考查一次函数及其图象的应用,从图象中获取相关信息是关键.此题第3问难度较大.22.答案:解:(1)PA=PB.(2)PA=PB成立.如图2,延长AP交直线于点E.∵//,∴∠ACP=∠PDE,∠CAP=∠PED,又∵PC=PD,∴△PAC≌△PED(A.A.S.).∴PA=PE,即点P是AE的中点,又∵∠ABE=90°,∴PA=PB(直角三角形斜边上的中线等于斜边的一半).(3)如图3,延长AP交直线于点E,作AF⊥直线于点F.由(2)得PA=PE,又∵∠APB=90°,∴BP是线段AE的垂直平分,∴AB=BE.∵∠AFE=∠BPE=90°,∠AEF=∠BEP,∴△AEF∽△BEP.∴,∴,∵AF=2k,AE=2PA,BE=AB,∴2PA·PB=2k·AB,∴PA⋅PB=k⋅AB.解析:本题考查直角三角形的性质:斜边的中线等于斜边的一半,线段垂直平分线的性质,相似三角形的判定与性质.(1)由直角三角形的性质:斜边的中线等于斜边的一半,可得结论.(2)延长AP交直线于点E,用AAS证△PAC≌△PED,可得结论成立.(3)延长AP交直线于点E,作AF⊥直线于点F,证△AEF∽△BEP,可得出结论.23.答案:(1)因为点B与点A关于原点对称,点A的坐标为(1,0),所以点B坐标为(−1,0).因为直线y=x+b(b为常数)经过点B,所以0=−1+b,解得:b=1.所以直线为y=x+1.因为点C的坐标为(0,4),直线CM//x轴,所以点D纵坐标为4.因为直线y=x+1与直线CM相交于点D,当y=4时,4=x+1,解得:x=3,所以点D的坐标为(3,4).(2)因为O为原点,点D的坐标为(3,4),点C的坐标为(0,4),所以OC=4,CD=3,所以OD=5.因为点P在x轴的正半轴上,若△POD是等腰三角形,则分三种情况:第一种:当PD=PO时,有,因为cos∠DOP=cos∠CDO,所以,解得:,所以点P的坐标为(,0).第二种:当PD=OD时,PO=2CD=6,所以点P的坐标为(6,0).第三种:当OD=PO时,PO=5,所以点P的坐标为(5,0).(3)当点P的坐标为(,0),PD=PO=,又以PD为半径的圆P与圆O外切,所以圆O的半径PO−PD=0.当点P的坐标为(6,0),PD=DO=5,又以PD为半径的圆P与圆O外切,所以圆O的半径PO−PD=6−5=1.当点P的坐标为(5,0),,又以PD为半径的圆P与圆O外切,所以圆O的半径PO−PD=.解析:略24.答案:解:(1)G点的坐标是(32√2,32√2),y=−x+3√2;(2)∵C的坐标是C(72√2,72√2),∴OC是∠AOB的角平分线.OC=√(72√2)2+(72√2)2=7,又∵OA=OB=3√2,∴AB=√(3√2)2+(3√2)2=6,∴∠BAO=∠ABO=∠BOG=∠AOG=45°,∴∠AGO=90°,即AB⊥OC,∴OG=3,①当0<t≤3时,OP=t,∵EF//AB,∴EF⊥OC,∴EF=2OP=2t,∴S=S△OEF=12⋅EF⋅OP=12⋅2t⋅t=t2,②当3<t<7时,OP=t,CP=7−t,CG=7−OG=7−3=4,∵EF//AB,∴△CEF∽△CBA,∴EFBA =CPCG,即EF6=7−t4,∴EF=32(7−t),∴S=S四边形OACB −S△CEF=12⋅AB⋅CO−12EF⋅CP,=12×6×7−12×32(7−t)(7−t),=−34t2+212t−634,∴s与t的函数关系式是:S={t2(0<t≤3)−34t2+212t−634(3<t<7),当直线EF平分四边形OABC的面积时有:−34t2+212t−634=12×12×6×7,整理得:t2−14t+35=0,解得:x1=7+√14>7(不符合题意舍去);x2=7−√14∴当t=7−√14时,直线EF平分四边形OABC的面积.(3)①如图1,当P在线段OQ上,且∠EQF=90°时,∵EF//AB,∴∠OEF=∠OAB=∠OBA=∠OFE=45°,∴OE=OF,又∵∠FOG=∠EOG=45°,OQ=OQ,∴△OEQ≌△OFQ,∴∠FQO=∠EQO=45°,∴∠OFQ=∠FOE=∠FQE=90°,∴四边形OEQF是正方形,∴OP=12OQ=12×72=74,即t=74时,△EFQ为直角三角形,②如图2,当P在线段CQ上,且∠EQF=90°时,同理可证:△CQF≌△CQE,∴△QEF是等腰直角三角形,∴EF =2PQ =2(t −72),∵EF//AB ,∴△CEF∽△CBA ,∴EF BA =CP CG ,即2(t−72)6=7−t 4,解得:t =5,∴当t =74或t =5时,△EFQ 为直角三角形.解析:此题主要考查了一次函数的综合应用以及相似三角形的性质与判定,利用相似三角形的性质得出对应边之间关系得出t 的值是解题关键.(1)根据AB 与OC 相交于点G ,以及C 点横纵坐标相等得出G 点坐标为AB 中点,即可得出答案,再利用A ,B 两点坐标得出解析式即可;(2)分别根据当0<t ≤3时,当3<t <7时,利用相似三角形的性质得出s 与t 的关系时即可.(3)利用①当P 在线段OQ 上,且∠EQF =90°时,以及②当P 在线段CQ 上,且∠EQF =90°时,利用相似三角形的性质得出即可.解:(1)∵OA =OB =3√2,点C 的坐标是C(72√2,72√2)∴OC 平分∠AOB ,∴G 是AB 的中点,故G 的坐标为(32√2,32√2);∵OA =OB =3√2,得出A ,B 两点坐标,分别为:(3√2,0),(0,3√2),代入y =kx +b ,{0=3√2k +b b =3√2, 解得:{k =−1b =3√2, 即可得出直线AB 的解析式为:y =−x +3√2;(2)见答案;(3)见答案.。
2023-2024学年浙江省金华市东阳市八年级(上)期末数学试卷+答案解析
![2023-2024学年浙江省金华市东阳市八年级(上)期末数学试卷+答案解析](https://img.taocdn.com/s3/m/5d968d590812a21614791711cc7931b764ce7b0b.png)
2023-2024学年浙江省金华市东阳市八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列大学的校徽图案是轴对称图形的是()A. B. C. D.2.在下列条件中不能判定为直角三角形的是A. B.C.D.3.若m 表示正整数,且,则m 的值可以是A. B.8C.D.34.如果点在x 轴上,那么点的坐标为A. B.C.D.5.在中,用无刻度的直尺和圆规任内部作一个角,下列作法中不等于的是A. B.C. D.6.下列选项中,可以用来验证命题“若,则”是假命题的反例是A.B.C.D.7.如图,已知医院与图书馆、教学楼在同一直线上,则以下哪个数对规定列号在前,行号在后可能是医院的位置()A. B. C. D.8.下表为某一次函数的若干对自变量与函数的对应值,其中某一函数值数据抄写错误,则错误的数据可能为()x 01yA. B. C. D.9.如图,已知线段AB ,CD 相交与点O ,,添加下列条件能判断≌的是A. B.C.D.以上条件均不能判定两个三角形全等10.如图①,一动点P 从的A 点出发,在三角形的内部含边上沿直线运动3次,第一次到点,第二次到点,第三次到点,设点P 运动路程为x ,,y 与x 的函数图像如图②所示,若,则a的值为A.1B.C.D.二、填空题:本题共6小题,每小题3分,共18分。
11.一个三角形的两边长分别是7和5,则第三边长可以是只填一个即可12.在平面直角坐标系中,点与点B关于y轴对称,则点B的坐标是.13.如图,在正方形网格中,每个小正方形的边长都是1个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD交于点F,若,则.14.如图,已知直线与直线的交点的横坐标为,则不等式的解集为.15.如图,已知为等腰直角三角形,,点D 为边AB 上一点,点E 为AC 的中点,连结DE ,将沿DE 折叠得到,若的延长线恰好经过点B ,则.16.定义:若满足,为常数,则称点为“好点”.若是“好点”,则.在的范围内,若直线上存在“好点”,则c 的取值范围为.三、解答题:本题共8小题,共64分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省金华市东阳市东阳中学2019-2020学年八年级上学期期末数
学试题(word无答案)
一、单选题
(★) 1 . 下面四个垃圾分类的图标中的图案,是轴对称图形的是()
A.B.C.D.
(★) 2 . 若 x> y,则下列式子错误的是()
A.x﹣1>y﹣1B.﹣3x>﹣3y C.x+1>y+1D.>
(★) 3 . 如图,在中,为上的一个动点(不与顶点重合),则的度数可能是( )
A.B.C.D.
(★) 4 . 在平面直角坐标系中,点到x轴的距离为
A.3B.C.D.2
(★★) 5 . 已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是( )
A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形
(★) 6 . 如图所示的两个三角形全等,则的度数是( )
A.B.C.D.
(★) 7 . 若正比例函数的图象经过点和点,当时,,则的取值范围是()
A.B.C.D.
(★★) 8 . 若关于 x的不等式组的解集为 x> a,则 a的取值范围是( )
A.a<2B.a≤2C.a>2D.a≥2
(★) 9 . 在平面直角坐标系中,将一张透明纸片覆盖在直线上,并在纸片上描出直线上
一点,现将纸片沿轴正方向平移个单位,要使点重新落在直线上,则可将纸片( ) A.沿轴正方向平移个单位B.沿轴负方向平移了个单位
C.沿轴正方向平移个单位D.沿轴负方向平移了个单位
(★) 10 . 已知点为某个封闭图形边界上一定点,动点从点出发,沿其边界顺时针匀速
运动一周,设点的运动时间为,线段的长度为,表示与的函数图象大致如图
所示,则该封闭图形可能是( )
A.B.C.D.
二、填空题
(★) 11 . 在平面直角坐标系中,点在第________象限.
(★) 12 . 命题“同位角相等,两直线平行”的逆命题是: _____ .
(★★) 13 . 如图,已知是等腰三角形,点 D在 AC边上,将绕点 A逆时针旋转45°得到,且点D′、 D、 B三点在同一条直线上,则的
度数是_____.
(★) 14 . 如图,将一根长度为、自然伸直的弹性皮筋两端固定在水平的桌面上,然后把中点竖直向上拉升至点,则此时该弹性皮筋被拉长了______ .
(★) 15 . 一次函数与的图像如图,则不等式组的解为
_____ .
(★★) 16 . 在平面直角坐标系中,一副含和角的三角板和如图摆放,边
与重合,.当点从点出发沿方向滑动时,点同时从点出发沿轴正方向滑动.
设点关于的函数表达式为________.
连接.当点从点滑动到点时,的面积最大值为_______.
三、解答题
(★) 17 . 解下列不等式(组)
(★) 18 . 如图,中,是上任意一点(不与重合),以
为一直角边向右侧作等腰.
求证: .
连接,判断与的位置关系,并说明理由.
(★) 19 . 已知一次函数的图象过点,且与正比例函数的图象交于点.求:求一次函数表达式.
这两个函数图象与轴所围成的三角形面积.
(★) 20 . 如图,在11×11的网格纸中,横、纵坐标均为整数的点叫做格点.例如的顶点
和点都是格点要求在下列问题中仅用无刻度的直尺作图.
若将平移,使点恰好落在平移后得到的的内部或边上,请在方格纸中画出两个符合要求的三角形,
画出格点连(或延长)交边于,使,写出点的坐标为 _______.
(★) 21 . 某书店最近有两本散文集比较畅销,近两周的销售情况是:第一周销售数量是本,销售数量是本,销售总价是元;第二周销售数量是本,销售数量是本,销售总价是元.
求散文集的销售单价,
若某班准备用不超过元钱购买散文集共本,求最多能买多少本散文集?
(★★) 22 . 古代名著《算学启蒙》中有一题:“良马日行二百四十里.驽马日行一百五十里.驽马先行十二日,问良马几日追及之”,如图是两马行走的路程关于时间的函数图像.
(1)的函数解析式为 _______.
(2)求点的坐标.
(3)若两匹马先在甲站,再从甲站出发行往乙站,并停留在乙站,且甲、乙两站之间的路程为里,请问为何值时,驽马与良马相距里?
(★★) 23 . 如图,在等腰中,.点从点出发沿射线方向运动,同时点从出发,以相同的速度沿射线方向运动,连,交直线于点
当点运动到中点时,求的长.
求证: .
过点作,交直线于,请探究之间的数量关系,并直接写
出结论.
(★★★★) 24 . 如图1,已知直线交轴、轴分别于两点,平行于轴的直线从点开始以每秒个单位的速度向轴的负方向运动,直线交轴于点,交直线于点,设直线的运动时间为秒.
求线段的长.
若为直线上一动点,将沿着翻折,当点的对应点落在直线上时,求直线的解析式.
若为的中点,当是等腰三角形时,求的值.。