第十章 博弈论初步 微观经济学微观课后答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 博弈论初步
1.什么是纳什均衡?纳什均衡一定是最优的吗?
解答:(1)所谓纳什均衡,是参与人的一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处。
(2)不一定。如果纳什均衡存在,纳什均衡可能是最优的,也可能不是最优的。例如,在存在多个纳什均衡的情况下,其中有一些纳什均衡就不是最优的;即使在纳什均衡是唯一时,它也可能不是最优的——因为与它相对应的支付组合可能会小于与其他策略组合相对应的支付组合。如:囚徒困境。
2.在只有两个参与人且每个参与人都只有两个策略可供选择的情况下,纯策略的纳什均衡最多可有几个?为什么?
解答:在只有两个参与人(如A 和B)且每个参与人都只有两个策略可供选择的情况下,纯策略的纳什均衡最多可有四个。例如,当A 与B 的支付矩阵可分别表示如下时,总的支付矩阵中所有四个单元格的两个数字均有下划线,从而,总共有四个纳什均衡。
A 的支付矩阵=⎥⎦⎤⎢⎣⎡22211211
a a a a B 的支付矩阵=⎥⎦
⎤⎢⎣⎡22211211b b b b
3.在只有两个参与人且每个参与人都只有两个策略可供选择的情况下,纯策略的纳什均衡可能有三个。试举一例说明。
解答:在只有两个参与人且每个参与人都只有两个策略可供选择的情况下,纯策略的纳什均衡可能有4个、3个、2个、1个和0个,五种情况,所以可能有3个。例如,当参与人A 与B 的支付矩阵可分别表示如下时,总的支付矩阵中恰好有三个单元格的两个数字均有下划线,从而,总共有三个纳什均衡。
A 的支付矩阵= ⎥⎦⎤⎢⎣⎡22211211a a a a
B 的支付矩阵=11122122b b b b ⎡⎤⎢⎥⎢⎥⎣⎦
4.在只有两个参与人且每个参与人都只有两个策略可供选择的情况下,如何找到所有的纯策略纳什均衡?
解答:可使用条件策略下划线法。具体步骤如下:首先,把整个博弈的支付矩阵分解为两个参与人的支付矩阵;其次,在第一个(即位于整个博弈矩阵左方的)参与人的支付矩阵中,找出每一列的最大
者,并在其下画线;再次,在第二个(在位于整个博弈矩阵上方的)参与人的支付矩阵中,找出每一行的最大者,并在其下画线;再再次,将已经画好线的两个参与人的支付矩阵再合并起来,得到带有下划线的整个博弈的支付矩阵;最后,在带有下划线的整个的支付矩阵中,找到两个数字之下均画有线的支付组合。由该支付组合代表的策略组合就是博弈的纳什均衡。
5.设有A、B两个参与人。对于参与人A的每一个策略,参与人B的条件策略有无可能不止一个。试举一例说明。
解答:例如,在如下的二人同时博弈中,当参与人A选择上策略时,参与人B既可以选择左策略,也可以选择右策略,因为他此时选择这两个策略的支付是完全一样的。因此,对于参与人A的上策略,参与人B的条件策略有两个,即左策略和右策略。
6.如果无论其他人选择什么策略,某个参与人都只选择某个策略,则该策略就是该参与人的绝对优势策略(简称优势策略)。试举一例说明某个参与人具有某个优势策略的情况。
解答:例如,在如下的二人同时博弈中,无论参与人A是选择上策略还是选择下策略,参与人B总是选择左策略,因为他此时选择左策略的支付总是大于选择右策略。因此,在这一博弈中,左策略就是参与人B的绝对优势策略。同时上策略是A的绝对优势策略。
7.混合策略博弈与纯策略博弈有什么不同?
解答:在纯策略博弈中,所有参与人对策略的选择都是“确定”的,即总是以100%的可能性来选择某个策略,而在混合策略博弈中,参与人则是以一定的可能性来选择某个策略,又以另外的可能性选择另外一些策略。在这种情况下,参与人选择的就不再是原来的100%的确定策略(如上策略或下策略),而是一个概率向量(如以某个概率选择上策略,以另外一个概率选择下策略)。
8.条件混合策略与条件策略有什么不同?
解答:例如,在一个只包括参与人A与参与人B的二人同时博弈中,参与人A的条件策略是A在B选择某个既定策略时所选择的可以使其支付达到最大的策略。相应地,参与人A的条件混合策略是A在B选择某个既定的混合策略时所选择的可以使其期望支付达到最大的混合策略。
9.混合策略纳什均衡与纯策略纳什均衡有什么不同?
解答:在纯策略博弈中,纳什均衡是参与人的一种策略组合,在该策略组合上,任何参与人单独改变其策略都不会得到好处;
在混合策略博弈中,纳什均衡是参与人的一种概率向量组合,在该概率向量组合上,任何参与人单独改变其概率向量都不会得到好处。
10.设某个纯策略博弈的纳什均衡不存在。试问:相应的混合策略博弈的纳什均衡会存在吗?试举一例说明。
解答:在同时博弈中,纯策略的纳什均衡可能存在,也可能不存在,但相应的混合策略纳什均衡总是存在的。例如,在下面的二人同时博弈中,根据条件策略下划线法可知,由于没有一个单元格中两个数字之下均有下划线,故纯策略的纳什均衡不存在,但是,相应的混合策略纳什均衡却是存在的。
首先,分别计算A与B的条件混合策略。
E A=3p1q1+9p1(1-q1)+7(1-p1)q1+2(1-p1)(1-q1)
=3p 1q 1+9p 1-9p 1q 1+7q 1-7p 1q 1+2-2q 1-2p 1+2p 1q 1
=7p 1-11p 1q 1+5q 1+2
=p 1(7-11q 1)+5q 1+2
E B =6p 1q 1+2p 1(1-q 1)+3(1-p 1)q 1+8(1-p 1)(1-q 1)
=6p 1q 1+2p 1-2p 1q 1+3q 1-3p 1q 1+8-8q 1-8p 1+8p 1q 1
=9p 1q 1+8-5q 1-6p 1
=q 1(9p 1-5)-6p 1+8
其次,分别计算A 和B 的条件混合策略。
p 1= []⎪⎪⎩
⎪⎪⎨⎧>=<11/70
11/71,011/71111q q q q 1= []⎪⎪⎩⎪⎪⎨⎧>=<9
/51
9/51,09/50111p p p 最后,混合策略纳什均衡参见图10—1中的点e 。
图10—1
11.设某个纯策略博弈的纳什均衡是有限的。试问:相应的混合策略博弈的纳什均衡会是无限的吗?试举一例说明。
解答:当纯策略博弈的纳什均衡为有限时,相应的混合策略博弈的纳什均衡既可能是有限的,也可能是无限的。例如,在只包括A 与B 的二人同时博弈中,混合策略纳什均衡的“集合”可以是单位平