第五章 测量误差概述.
第五章 测量误差的基本知识
![第五章 测量误差的基本知识](https://img.taocdn.com/s3/m/5ff0b491bb68a98271fefaad.png)
在测量工作中,如某个误差超过了容许误差,则相应 观测值应舍去重测。
3.相对误差
绝对误差值与观测值之比,称为相对误差。在某 些测量工作中,有时用中误差还不能完全反映测量精度, 例如测量某两段距离,一段长200m,另一段长100m, 它们的测量中误差均为±0.2m,为此用观测值的中误差 与观测值之比,并将其分子化为1,即用1/K表示,称为 相对误差。
180°00ˊ00"
0
0
179°59ˊ57"
-3
9
180°00ˊ01"
+1
1
24
130
m2
2 3.6 10
两组观测值的误差绝对值相等 m1 < m2,第一组的观测成果的精度高于第二组观测成
果的精度
2.容许误差
容许误差又称极限误差。根据误差理论及实践证明, 在大量同精度观测的一组误差中,绝对值大于两倍中误差 的偶然误差,其出现的可能性约为5%;大于三倍中误差 的偶然误差,其出现的可能性仅有3‰,且认为是不大可 能出现的。因此一般取三倍中误差作为偶然误差的极限误 差。
全微分
dZ Kdx
得中误差式 mZ K 2mx2 Kmx
例:量得 1:1000 地形图上两点间长度l =168.5mm0.2mm,
计算该两点实地距离S及其中误差ms: 解:列函数式 S 1000 l
求全微分 dS 1000dl
mS 1000ml 1000 0.2 200mm 0.2m
测量误差=观测值-真值
观测误差来源于仪器误差、人的感官能力和外界环境 (如温度、湿度、风力、大折光等)的影响,这三方面的 客观条件统称观测条件。
第五章 测量误差的基本知识
![第五章 测量误差的基本知识](https://img.taocdn.com/s3/m/0bd99840336c1eb91a375da9.png)
2 ma
解:
α
D
+a
mS = ± 30 2 × 0.04 2 + 40 2 × 0.03 2
mS = ±1.7(m 2 )
1、求D 、 D=Lcos α = =165.50×cos15°30′ × ° =159.48m
2、求mD 、 (1)函数式 ) D=Lcosα (2)偏微分 )
中误差m ㎜,中误差 d=±0.2㎜,求实地距离 及其 ㎜ 求实地距离D及其 中误差。 中误差。 解: D=500d =
n-1 [ vv ] m=± n-1
例1:
l 1 2 3 4 5 85°42′49″ ° 85°42′40″ ° 85°42′42″ ° 85°42′46″ ° 85°42′48″ ° l0=85°42′40″ ° △l 9 0 2 6 8 25 v ﹣4 ﹢5 ﹢3 ﹣1 ﹣3 0 vv 16 25 9 1 9 60
V △l(㎜) (㎜) (㎜)
vv 4 25 256 441 9 121 856
m2 = n n
=
L = l0 +
[ vv ] 1 2 + m
∑∆ l 25" = 85°42' 40" + 5 5 =85°42′45″ °
二、求观测值的函数的中误差 S=ab (一)求偏微分 dS=b da+a db (二)以偶然误差代替微分元素
60 m=± 5 -1
m = ±3.9"
mD = 0.012 + 0.02 2 + 0.03 2
=±0.037(m) ± ( ) 六、线性函数的中误差 函数: 函数: z=k1x1+k2x2+…+knxn = + 偏微分: 偏微分: dz=k1 dx1+k2 dx2+…+kn dxn = + 中误差: 中误差:
第5章测量误差的基本知识
![第5章测量误差的基本知识](https://img.taocdn.com/s3/m/c2f4e420001ca300a6c30c22590102020640f25e.png)
2.全微分 dD (cos)dD (Dsin) d
3.化为中误差
[(cos15 ) 0.05]2 [(50 sin15 ) 30]2
mD 0.048(m)
六、应用误差传播定律的基本步骤
1. 列出观测值函数的表达式
Z f (x1, x2 ,xn )
2.对函数Z进行全微分
f
f
f
Z ( x1 ) x1 ( x2 ) x2 ( xn ) xn
消除方法 观测值偏离真值的程度称为观测值的准确度。系
统误差对观测值的准确度影响很大,但它们的符号和 大小有一定的规律。因此,系统误差可以采用适当的 措施消除或减弱其影响。
处理原则:找出规律,加以改正。 ◆ 测定系统误差的大小,对观测值加以改正。 如: 钢尺量距中进行尺长、温度、倾斜改正等。 ◆ 校正仪器,将系统误差限制在容许范围内。 ◆ 对称观测,水准测量中,使前后视距离相等 (中间法);角度观测时,采用盘左盘右取平均值。
n
n
为该量的最可靠的数值,称为“最或是值”。
证明:设某量的真值为X,各次观测值为l1,l2……ln,
相应的真误差为 1,2, ,n ,则 1 l1 X ...2 l2 X
n ln X
相加并除以n得 [] [l] X
nn
X [l] [] x x nn
式中: x 为算术平均值,即 x l1 l2 ln [l]
处理原则:多余观测,制定限差。 为了提高观测值的精度,通常对偶然误差采用如下 处理方法 ◆.提高仪器等级; ◆.进行多余观测; ◆.求平差值。 3.粗差(错误) 测错,记错,算错……。错误在测量成果中不允许 存在。处理原则:细心,多余观测。遵守操作规程、严 格检查制度,及时发现和纠正错误。
第5章 测量误差的基本知识
![第5章 测量误差的基本知识](https://img.taocdn.com/s3/m/4792c104763231126edb116d.png)
结论
在观测过程中,系统误差和偶然误差往往是同时存在 的。当观测值中有显著的系统误差时,偶然误差就居 于次要地位,观测误差呈现出系统误差的性质;反之, 呈现出偶然误差的性质。因此,对一组剔除了粗差的 观测值,首先应寻找、判断和排除系统误差,或将其 控制在允许的范围内,然后根据偶然误差的特性对该 组观测值进行数学处理,求出最接近未知量真值的估 值,称为最或是值;同时,评定观测结果质量的优劣, 即评定精度。这项工作在测量上称为测量平差,简称 平差。
2 相对误差
对于衡量精度来说,有时单靠中误差还不能完全表达观 测结果的质量。 例如,测得某两段距离,一段长200m,另一段长1000m, 观测值的中误差均为±0.2m 。从表面上看,似乎二者精 度相同,但就单位长度来说,二者的精度并不相同。这 时应采用另一种衡量精度的标准,即相对误差。 相对误差:是中误差与观测值之比,是个无量纲数,在 测量上通常将其分子化为1。即用K=1/N的形式来表示。 上例前者的相对中误差为0.2/200=1/1000,后者为 0.2/1000=1/5000。显然,相对中误差愈小(分母愈 大),说明观测结果的精度愈高,反之愈低。
解:水准测量每一站高差: hi ai bi (i 1,2....,n)
则每站高差中误差
m站 m读 m读 m读 2
2 2 2.8m m
观测n站所得总高差 h h1 h2 hn 则n站总高差h的总误差
2
2
m总 m站 n 2.8 nmm
2
第二组观测 观测值 l Δ 0 180°00ˊ00" +1 159°59ˊ59" -7 180°00ˊ07" -2 180°00ˊ02" -1 180°00ˊ01" 179°59ˊ59" 179°59ˊ52" 180°00ˊ00" 179°59ˊ57" 180°00ˊ01" +1 +8 0 +3 -1 24
第五章 测量误差及测量平差.
![第五章 测量误差及测量平差.](https://img.taocdn.com/s3/m/7e11327725c52cc58bd6be8e.png)
• §5.1 测量误差概述 • §5.2 衡量测量精度的指标 • §5.3 误差传播定律
• §5.4 等精度观测的直接平差
§5.1 测量误差概述
一、误差的现象及定义 二、误差来源 三、误差的分类
误差现象
A
距离多次丈量 三角形内角和
l1≠ l2≠ l3 , … ∠A+∠B+∠C≠180°
例如:分别丈量两段不同距离,一段为100m,
一段为200m,中误差都是0.02m。此时是否能认
为两段距离观测结果的精度相同?
• 为了更客观地反映实际测量精度,必须引入 相对误差的概念。
三、相对误差
相对误差K:中误差的绝对值 m 与相应观测值 D 之比,通常以分母为 1 的分式来表示,称其为相对 (中)误差。即:
lt l0 l (t t 0 )l0
思考: 水准仪—— i角
分析产生的主要原因:是仪器设备制造不完善。
水准仪:视准轴不平行于水准管轴(i角)
hAB
i ( S后 S前)
结论:i角误差与前后视距差成正比。
注意:系统误差具有积累性,对测量成果影响较大。
消除和削弱的方法: (1)用计算的方法加以改正;
K m D 1 D m
一般情况,角度、高差的误差用 m表示,量距误 差用K表示。 与相对误差相对应,真误差、中误 差、容许误差称为绝对误差。
[ 例 ] 已 知 : D1=100m,
m2=±0.01m,求: K1, K2
m1=±0.01m , D2=200m,
解:
K1 m1 D1 0.01 1 100 10000
2 y
mZ m m
2 x
第5章-测量误差的基本知识
![第5章-测量误差的基本知识](https://img.taocdn.com/s3/m/0c5e98fda1c7aa00b52acb51.png)
为了直观地表示偶然误差的正负和大小的分布情况,可 以按表中的数据作误差频率直方图。
k/n d
k / n(频率)
-24-21-18-16-12 -9 -6 –3 0 +3 +6 +9+12+15+18+21+24
x=△
误差频率直方图
误差分布曲线
f ()
1
2
e 2 2
2
f(△)
f(△)相等,故曲线对称于纵轴。
△越小, f(△)越大;△越大, f(△)越小。
当△= 0时, f(△)最大,其值为 1
当 ,f () 0
2
§5-2 评定精度的指标
一、中误差 定义
根据偶然误差概率分布规律,以标准差σ为标准衡量
在一定观测条件下观测结果的精度是比较合适的。 在测量中定义:按有限次观测的偶然误差求得的标准
177
0.495
合 个数 k
91 81 66 44 33 26 11 6 0
358
计 频率 k/n
0.245 0.227 0.184 0.123 0.092 0.072 0.031 0.017
0
1.000
从表中可以看出偶然误差有以下特性:
⑴ 在一定观测条件下的有限次观测中,偶然误差的绝对值不 会超过一定的限值;
中误差的计算
例题:用两台仪器对某一三角形各进行了10次观测,求得 每次观测所得的三角形闭合差分别为
第一台仪器的结果(单位:″) :
3,-2,-4,2,0,-4,3,2,-3,-1。
m1
32 22 42 22 02 42 32 22 32 12 2.7 10
第5章 误差基本知识
![第5章 误差基本知识](https://img.taocdn.com/s3/m/637c567e561252d380eb6eaf.png)
例如:
水准仪的视准轴与水准轴不平行,则测量结果中含有i 角 误差或交叉误差。
水准尺的分划不均匀,必然产生水准尺的分划误差。
3
2、人的原因
观测者感官鉴别能力有一定的局限性。观测者的习惯 因素、工作态度、技术熟练程度等也会给观测者成果带来 不同程度的影响。
3、外界条件
例如:外界环境如温度、湿度、风力、大气折光等因素 的变化,均使观测结果产生误差。 例如:温度变化使钢尺产生伸缩阳光曝晒使水准气泡偏 移,大气折光使望远镜的瞄准产生偏差,风力过大使仪器安置 不稳定等。 人、仪器和外界环境通常称为观测条件; 观测条件相同的各次观测称为等精度观测; 观测条件不相同的各次观测称为不等精度观测。
⑤ 随着 n 的增大,m 将趋近于σ 。
17
必须指出: 同精度观测值对应着同一个误差分布,即对应着同一个标 准差,而标准差的估计值即为中误差。 同精度观测值具有相同的中误差。 例3: 设对某个三角形用两种不同的精度分别对它进行了10次 观测,求得每次观测所得的三角形内角和的真误差为
第一组: +3″, -2″, -4″,+2″,0″,-4″,+3″, +2″, -3″, -1″; 第二组: 0″, -1″, -7″,+2″,+1″,+1″,- 8″, 0″, +3″, -1″.
2
n
lim
n
n
13
•
从5-3式可以看出正态分布具有前述的偶然误差特性。即:
1.f(△)是偶函数。即绝对值相等的正误差与负误差求得 的f(△)相等,所以曲线对称于纵轴。这就是偶然误差的第三 特性。 • 2.△愈小,f(△)愈大。当△=0时,f(△)有最大值; 反之, △愈大,f(△)愈小。当n→±∞时,f(△) →0,这就是偶然误 差的第一和第二特性。 • 3.如果求f(△)二阶导数并令其等于零,可以求得曲线拐 点横坐标: △拐=± • 如果求f(△)在区间± 的积分,则误差出现在区间内 的相对次数是某个定值 ,所以当 愈小时,曲线将愈陡峭, 即误差分布比较密集;当 愈大时,曲线将愈平缓,即误差 分布比较分散。由此可见,参数 的值表征了误差扩散的特 征。
第5章-测量误差的基本知识
![第5章-测量误差的基本知识](https://img.taocdn.com/s3/m/168f70226bd97f192279e9c5.png)
第五章测量误差的基本知识第一节测量误差概述一、测量误差的来源1.测量仪器和工具由于仪器和工具加工制造不完善或校正之后残余误差存在所引起的误差。
2.观测者由于观测者感觉器官鉴别能力的局限性所引起的误差。
3.外界条件的影响外界条件的变化所引起的误差。
人、仪器和外界条件,通常称为观测条件。
观测条件相同的各次观测,称为等精度观测;观测条件不相同的各次观测,称为非等精度观测。
在观测结果中,有时还会出现错误,称之为粗差。
粗差在观测结果中是不允许出现的,为了杜绝粗差,除认真仔细作业外,还必须采取必要的检核措施。
二、测量误差的分类系统误差偶然误差1.系统误差在相同观测条件下,对某量进行一系列观测,如果误差出现的符号和大小均相同,或按一定的规律变化,这种误差称为系统误差。
系统误差在测量成果中具有累积性,对测量成果影响较大,但它的符号和大小又具有一定的规律性,一般可采用下列方法消除或减弱其影响。
(1)进行计算改正(2)选择适当的观测方法2.偶然误差在相同的观测条件下,对某量进行一系列的观测,如果观测误差的符号和大小都不一致,表面上没有任何规律性,这种误差称为偶然误差。
三、偶然误差的特性偶然误差从表面上看没有任何规律性,但是随着对同一量观测次数的增加,大量的偶然误差就表现出一定的统计规律性,观测次数越多,这种规律性越明显。
例如,对三角形的三个内角进行测量,由于观测值含有偶然误差,三角形各内角之和l 不等于其真值180˚。
用X 表示真值,则l 与X 的差值Δ称为真误差(即偶然误差),即现在相同的观测条件下观测了217个三角形,计算出217个内角和观测值的真误差。
再按绝对值大小,分区间统计相应的误差个数,列入表中。
l X∆=-偶然误差的统计**误差区间正误差个数负误差个数总计0″~3″302959 3″~6″212041 6″~9″151833 9″~12″141630 12″~15″121022 15″~18″8816 18″~21″5611 21″~24″224 24″~27″101 27″以上000合计107110217(1)绝对值较小的误差比绝对值较大的误差个数多;(2)绝对值相等的正负误差的个数大致相等;(3)最大误差不超过27″。
第5章 测量误差理论的基础知识
![第5章 测量误差理论的基础知识](https://img.taocdn.com/s3/m/c7c848b6960590c69ec376f4.png)
5.1 测量误差概述 5.2 衡量精度的指标 5.3 误差传播定律及其应用 5.4 等精度直接观测平差 5.5 不等精度观测的最或然值及其中误差
§5.1 测量误差概述
大量实践表明,当对某一未知量进行多次 观测时,无论观测仪器多么精密,观测进行得
多么仔细,观测值之间总是存在着差异。例如,
2 2 2 2 mZ A12 m12 A2 m2 An mn
§5.3.2 误差传播定律的应用
例1 量得某圆形建筑物得直径 D=34.50m, 其中误差mD 0.01m,
求建筑物得圆周长及其中误差。
解:圆周长:
P D 3.1416 34.50 108.38 中误差:
将以上各式两边平方、取平均,可得
Z 2 x12 x22 xn 2 n f2 f 2 ... f 2 xi x j 1 fi f j k 1 2 n k k k k i, j
i j
因 x 的观测值 l 彼此独立,则 xi x j 在 i j 时亦为偶 i i 然误差。根据偶然误差第4特性,上式末项当 k 时趋近于 零,故:
测量某一平面三角形的三个内角,其观测值之
和常常不等于理论值180°。这说明测量结果
不可避免地存在误差。
§5.1.1 测量误差的来源
测量工作是在一定条件下进行的,外界环境、观 测者的技术水平和仪器本身构造的不完善等原因,都 可能导致测量误差的产生。通常把测量仪器、观测者 的技术水平和外界环境三个方面综合起来,称为观测 条件。观测条件不理想和不断变化,是产生测量误差 的根本原因。通常把观测条件相同的各次观测,称为 等精度观测;观测条件不同的各次观测,称为不等精 度观测。
第五章 测量误差
![第五章 测量误差](https://img.taocdn.com/s3/m/6d248cc676eeaeaad1f330eb.png)
(2)水准路线高差的中误差
如果在这段水准路线当中一共观测了n站,则总高 差为: 设每站的高差中误差均为m站 ,则 mh = 取3倍中误差为限差,则普通水准路线的容许误差为: m容= 3
2.水平角观测的误差分析
用DJ6经纬仪进行测回法观测水平角,那么用盘左 盘右观测同一方向的中误差为±6” ,即 =±6”。 假设盘左瞄准A点时读数为A左,盘右瞄准A时读数 为A右,那么瞄准A方向一个测回的平均读数应为
求真误差的方差: 由方差的性质可得:
中误差为标准差σ的估计值,而标准差的平方就等 于方差,故
二、线性函数
1、倍数函数 设有函数 Z=Kx 式中 x—直接观测值,其中误差为mx; K—常数 Z—观测值x的函数 若对x作n次同精度观测,其真误差列为 设对应的函数的真误差列为 。 观测值与函数间的真误差关系式为:
三、非线性函数 设有非线性函数 z=f(x1、x2、…、xn) 式中,x1、x2、…、xn为独立观测值,其相应的中
误差分别为m1、m2、…、mn,对其全微分得到
四、误差传播定律的应用 1.水准测量的误差分析
(1)一个测站的高差中误差 每站的高差为:h=a-b;a、b为水准仪在前后水准 尺上的读数,读数的中误差m读,m读≈±3mm,则 每个测站的高差中误差为
二、中误差(均方差)
1.测量工作中,用标准差来衡量观测的精度,我 们称之为中误差,用m表示。 设在相同的观测条件下,对未知量进行重复独立 观测,观测值为:l1,l2,…,ln,其真误差为Δ 1,
Δ 2,…,Δ n ,则真误差的方差
式中当n→∞,E(Δ ) = 0 ,根据数学期望的定义 E(Δ 2)就是Δ 2的算术平均值。
将上式平方,得 按上式求和,并除以n,得
测量(5测量误差的基本知识)
![测量(5测量误差的基本知识)](https://img.taocdn.com/s3/m/3930d96b48d7c1c708a14564.png)
数字的精度是取决于小数点后的位数,相同单位的两个数,小数点 后位数越多,表示精度越高。因此小数点后位数不可随意取舍。例 如,17.62m与17.621m,后者准确到 mm,前者只准确到cm。从这里 可知: 17.62m 与 17.620m ,这两个数并不相等, 17.620m 准确至毫米, 毫米位为0。因此,对一个数字既不能随意添加 0,也不能随意消去 0。
(上列数据单位均为秒)
试问哪一组观测值精度高?源自试解:计算甲乙两组的平均误差进行比较:
θ 甲 | | 30 20 40 20 0 40 30 20 30 10 24 n 10 | | 10 10 60 20 20 30 50 0 30 10 24
总 和
180
0.505
177
0.495
上表用较直观的直方图表示。横坐标表示偶然误差△ ,纵坐标 表示误差出现的相对个数 (又 称组距),即频率/ 组距,因此每个矩形的面积等于该区间误差出 k ki 现的频率 i 。 / d (频率/ 组距) n (频率/ 组距) n 本例组距: d△ =0.2″
第5章 测量误差的基本知识
一、测量误差概述 二、衡量测量精度的标准 三、误差传播定律 四、等精度直接观测平差 五、不等精度直接观测平差
5.1 测量误差概述
何谓误差?误差就是某未知量的观测值与其真值的差数。该差 数称为真误差。即
i Li X
式中△i为真误差;li为观测值;X表示真值。
一般情况下,某未知量的真值无法求得,此时计算误差时,用观 测值的最或然值代替真值。观测值与其最或然值之差,称为似真误 差。观测值的最或然值是接近于真值的最可靠值,将在本章最后一 节讨论。即
第五章测量误差的基本知识
![第五章测量误差的基本知识](https://img.taocdn.com/s3/m/ab09225dc950ad02de80d4d8d15abe23482f03ee.png)
第五章测量误差的基本知识§5.1 测量误差概述在测量工作中,当对某量进行多次重复观测后就会发现,各次观测值之间往往存在差异。
例如,对某段距离进行多次丈量,往往发现每次丈量的结果不一致;又如,平面三角形三内角之和理论上应等于180°,但经测量后的三个内角的观测值之和常常不等于180°而有差异。
这类在同一量的各观测值之间,或在观测值与其理论值之间存在差异的现象,在测量工作中是普遍存在的。
之所以会产生这类现象,是因为观测值中包含有观测误差的缘故。
一、产生误差的原因观测值中为什么会存在观测误差呢?概括起来,有下列三方面原因:1.观测者由于观测者感觉器官的鉴别能力的局限性,在仪器安置、目标照准、测微读数等工作中都会产生误差。
同时,观测者的技术水平及工作态度也会对观测结果产生影响。
2.测量仪器测量工作所使用的测量仪器都具有一定的精密度,从而使观测结果的精度受到限制。
另外,仪器本身构造上的缺陷,也会使观测结果产生误差。
3.外界条件观测时的外界条件,如温度、湿度、气压、大气折光、风力等因素都会对观测结果直接产生影响。
随着这些因素的变化,它们对观测结果产生的影响也随之变化,这就必然使观测结果带有误差。
观测者、测量仪器和观测时的外界条件是引起观测误差的主要因素,通常称为观测条件。
观测条件相同的各次观测称为等精度观测。
观测条件不同的各次观测称为非等精度观测。
任何观测都不可避免地要产生误差。
为了获得观测值的正确结果,就必须对误差进行分析研究,以便采取适当的措施来消除或削弱其影响。
二、误差的分类观测误差按其性质,可分为系统误差和偶然误差。
1.系统误差在相同的观测条件下,对某量进行多次观测,如果观测误差的大小和符号呈现某种规律性的变化,或保持常数,这类误差称为系统误差。
例如,用名义长为30m,而实长为29.99m 的钢尺量距时,每量一尺段就有+0.01m的系统误差。
又如,经纬仪的竖盘指标差对竖直角测量的影响也属系统误差。
测量学 第五章 测量误差及测量平差
![测量学 第五章 测量误差及测量平差](https://img.taocdn.com/s3/m/5faa4ccf77232f60dccca167.png)
第五章 测量误差及测量平差§5.1 测量误差概述一、测量误差的概念某量的各测量值相互之间或观测值与理论值之间的往往存在着某些差异,说明观测中存在误差。
观测值与真值之差称为测量误差,也叫真误差。
X l i i -=∆ (i =1、2、……、n ) X 为真值。
二、研究测量误差的目的分析测量误差的产生原因、性质和积累规律;正确地处理测量成果,求出最可靠值;评定测量结果的精度;为选择合理的测量方法提供理论依据。
三、测量误差产生的原因1.测量仪器因素2.观测者的因素3.外界条件的因素测量观测条件——测量仪器、观测人员和外界条件这三方面的因素综合起来称为测量观测条件。
等精度观测——测量观测条件相同的各次观测称为等精度观测。
非等精度观测——测量观测条件不相同的各次观测称为非等精度观测。
四、测量误差的分类1.系统误差在相同的观测条件下对某量作一系列观测,如果误差的大小、符号表现出系统性,或按一定的规律变化,或保持不变,这种误差称为系统误差。
其特点:具有累积性,但可以采用适当的观测方法或加改正数来消除或减弱其影响。
2.偶然误差在相同的观测条件下对某量作一系列观测,如果误差的大小和符号不定,表面上没有规律性,但实际上服从于一定的统计规律性,这种误差称为偶然误差。
偶然误差单个的出现上没有规律性,不能采用适当的观测方法或加改正数来消除或减弱其影响。
因此,观测结果中偶然误差占据了主要地位,是偶然误差影响了观测结果的精确性。
五、减少测量误差的措施对系统误差,通常采用适当的观测方法或加改正数来消除或减弱其影响。
对偶然误差,通常采用多余观测来减少误差,提高观测成果的质量。
§5.2 偶然误差的特性一、精度的含义1.准确度准确度是指在对某一个量的多次观测中,观测值对该量真值的偏离程度。
2.精密度精密度是指在对某一个量的多次观测中,各观测值之间的离散程度。
3.精度精度也就是精确度,是评价观测成果优劣的准确度与精密度的总称,表示测量结果中系统误差与偶然误差的综合影响的程度。
第五章 测量误差基本知识
![第五章 测量误差基本知识](https://img.taocdn.com/s3/m/20c6387801f69e31433294ce.png)
5-2 、偶然误差的统计规律性
例如: 对同一量观测了n次
观测值为 l1,l2,l3,….ln
如何取值?
如何评价数据的精度?
例如: 对358个三角形在相同的 观测条件下观测了全部内 角,三角形内角和的误差
i为 i= i +i+ i-180
其结果如表5-1,图5-1, 分析三角形内角和的误 差I的规律。
Σ
181 0.505
177 0.495
358 1.000
误差分布特点:参见课本P100 (3点)
5-3 偶然误差的分布
k/d
频率直方图
-24 -21 -18-15-12-9 -6 -3 0 +3 +6 +9 +12+15+18+21+24 X=
偶然误差的特性
有限性:在有限次观测中,偶然误差应 小于限值。 渐降性:误差小的出现的概率大 对称性:绝对值相等的正负误差概率相 等
, 叫标准差
二、相对中误差(补充内容)
某些观测值的误差与其本身大小 有关 用观测值的中误差与观测值之比 的形式描述观测的质量,称为相 对误差(全称“相对中误差”)
例,用钢卷尺丈量200m和40m两段距 离,量距的中误差都是±2cm,但不 能认为两者的精度是相同的
前者的相对中误差为0.02/200 =1 /10000 而后者则为0.02/40=l/2000 前者的量距精度高于后者。
二、 测量误差产生的原因
1、观测者的因素
不等精度观测 观测条件 等精度观测
2、测量设备的因素
3、观测环境的因素
三、测量误差的分类
工程测量第五篇(测量误差的基本知识)课件
![工程测量第五篇(测量误差的基本知识)课件](https://img.taocdn.com/s3/m/0676918d6037ee06eff9aef8941ea76e58fa4a94.png)
系统误差在相同条件下多次测量时, 误差的大小和符号保持不变或按一定 的规律变化。
可预测性
系统误差可以通过一定的方法预测或 估计,并可进行修正。
稳定性
系统误差通常具有一定的稳定性,即 误差的大小和符号在一定时间内变化 较小。
规律性
系统误差通常具有一定的规律性,可 以通过数学模型或统计分析方法进行 描述和预测。
真实值
被测量的客观存在的值, 但实际上无法准确获得。
误差的表示方法
绝对误差、相对误差和引 用误差。
测量误差的来源差
人为误差
测量设备的精度限制、 老化、磨损等引起的误差。
温度、湿度、气压、风 速等环境因素对测量结
果的影响。
由于测量方法的局限性、 不完善或实施不当引起 的误差。
PART 02
随机误差
随机误差的特点
01
02
03
04
随机性
随机误差的产生无法预测,每 次测量结果都可能不同。
独立性
随机误差之间相互独立,一个 误差的出现不影响其他误差。
分布规律性
随机误差通常服从正态分布, 即大多数误差接近平均值,极
值误差较少。
大小性
随机误差的大小通常与测量精 度有关,测量精度越高,随机
2023 WORK SUMMARY
工程测量第五篇(测量 误差的基本知识)课件
REPORTING
CATALOGUE
• 测量误差概述 • 随机误差 • 系统误差 • 粗大误差
PART 01
测量误差概述
测量误差的定义
01
02
03
测量误差
在测量过程中,由于各种 因素的影响,使得测量结 果与被测量的真实值之间 存在一定的差异。
测量误差基本知识
![测量误差基本知识](https://img.taocdn.com/s3/m/9863a17bf242336c1eb95e51.png)
第五章测量误差基本知识5-1 测量误差概述一、测量误差产生的原因对某一个量进行多次重复观测,例如重复观测某一水平角或往返丈量某段距离等,其多次测量的结果总存在着差异,这说明观测值中含有测量误差。
产生测量误差的原因很多,概括起来有下列三个方面:1.仪器的原因测量工作是采用经纬仪、水准仪等测量仪器完成的,测量仪器的构造不可能十分完善,从而使测量结果受到一定影响。
例如,经纬仪的视准轴与横轴不垂直、度盘刻划不均匀,都会使所测角度产生误差;水准仪的视准轴不平行于水准管轴、望远镜十字丝不水平,都会使高差产生误差。
2.观测者的原因由于观测者感觉器官的鉴别能力存在局限性,所以对仪器的各项操作,如经纬仪对中、整平、瞄准、读数等方面都会产生误差。
此外,观测者的技术熟练程度和工作态度也会对观测成果带来不同程度的影响。
3.外界环境的影响测量所处的外界环境(包括温度、风力、日光、大气折光等)时刻在变化,使测量结果产生误差。
例如,温度变化会使钢尺产生伸缩,风吹和日光照射会使仪器的安置不稳定,大气折光会使瞄准产生偏差等。
人、仪器和外界环境是测量工作的观测条件,由于受到这些条件的影响,测量中的误差是不可避免的。
观测条件相同的各次观测称为等精度观测;观测条件不相同的各次观测称为不等精度观测。
二、测量误差的分类测量误差按其对观测结果影响性质的不同分为系统误差和偶然误差两类。
1.系统误差在相同的观测条件下对某一量进行一系列观测,若误差的出现在符号和数值上均相同,或按一定的规律变化,这种误差称为系统误差。
例如,用名义长度为30.000m,而实际鉴定后长度为30.006m的钢卷尺量距,每量一尺段就有0.006m的误差,其量距误差的影响符号不变,且与所量距离的长度成正比。
所以,系统误差具有积累性,对测量结果的影响较大;另一方面,系统误差对观测值的影响具有一定的规律性,且这种规律性总能想办法找到,因此系统误差对观测值的影响可用计算公式加以改正,或采用一定的测量措施加以消除或削弱。
《测量学》第五章测量误差基本知识
![《测量学》第五章测量误差基本知识](https://img.taocdn.com/s3/m/e82b267f82c4bb4cf7ec4afe04a1b0717fd5b383.png)
系统误差的来源与消除方法
总结词
系统误差的来源主要包括测量设备误差、环境因素误差和测量方法误差。消除系统误差的方法包括校准设备、改 进测量方法和采用适当的修正公式。
详细描述
系统误差的来源多种多样,其中最常见的是测量设备误差,如仪器的刻度不准确、零点漂移等。此外,环境因素 如温度、湿度和气压的变化也可能导致系统误差。为了消除这些误差,可以采用定期校准设备、选择适当的测量 方法和采用修正公式等方法。
相对测量法
通过比较被测量与标准量之间 的差异来得到被测量的值,并 评估误差。
组合测量法
将被测量与其他已知量进行组 合,通过测量组合量来得到被
测量的值,并评估误差。
测量结果的表示与处理
测量结果的表示
测量结果应包括被测量的值、单位、 测量不确定度以及置信区间等。
异常值的处理
在数据处理过程中,如果发现异常值, 应进行识别、判断和处理,以确保测 量结果的准确性和可靠性。
测量学第五章 测量误差 基本知识
contents
目录
• 测量误差概述 • 系统误差 • 随机误差 • 粗大误差 • 测量误差的估计与处理
测量误差概述
01
测量误差的定义
测量误差
在测量过程中,由于受到测量仪器、 环境条件、操作者技能等因素的影响 ,使得测量结果与被测量的真实值之 间存在一定的差异。
不确定度的评定方法
不确定度的传递
不确定度的评定方法包括A类评定和B类评 定,其中A类评定基于统计分析,B类评定 基于经验和信息。
在多个量之间存在函数关系时,需要将各 个量的不确定度传递到最终的测量结果中 ,以确保最终结果的准确性和可靠性。
THANKS.
数据修约
根据测量不确定度对数据进行修约, 以确保数据的完整性和一致性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章测量误差的基本知识第一节概述一、测量误差测量工作的实践表明,在任何测量工作中,无论是测角、测高差或量距,当对同一量进行多次观测时,不论测量仪器多么精密,观测进行得多么仔细,测量结果总是存在着差异,彼此不相等。
例如,反复观测某一角度,每次观测结果都不会一致,这是测量工作中普遍存在的现象,其实质是每次测量所得的观测值与该量客观存在的真值之间的差值,这种差值称为测量误差。
即测量误差=观测值-真值用∆表示测量误差,X表示真值,l表示观测值,则测量误差可用下式(5-1)表示:∆=l-X(5-1)二、测量误差的来源产生测量误差的因素是多方面的,概括起来有以下三个因素:1、仪器精度的有限性,测量中使用的仪器和工具不可能十分完善,致使测量结果产生误差。
例如:用普通水准尺进行水准测量时,最小分划为5mm,就难以保证毫米数的完全正确性。
经纬仪、水准仪检校不完善产生的残余误差影响,例如:水准仪视准轴部平行于水准管轴,水准尺的分划误差等。
这些都会使观测结果含有误差。
2、观测者感觉器官鉴别能力的局限性;会对测量结果产生一定的影响,例如对中误差、观测者估读小数误差、瞄准目标误差等。
3、观测过程中,外界条件的不定性,如温度、阳光、风等时刻都在变化,必将对观测结果产生影响,例如:温度变化使钢尺产生伸缩,阳光照射会使仪器发生微小变化,较阴的天气会使目标不清楚等。
通常把以上三种因素综合起来称为观测条件,可想而知观测条件好,观测中产生的误差就会小,反之,观测条件差,观测中产生的误差就会大。
但是不管观测条件如何,受上述因素的影响,测量中存在误差是不可避免的。
应该指出,误差与粗差是不同的,粗差是指观测结果中出现的错误,如测错、读错、记错等,不允许存在,为杜绝粗差,除了加强作业人员的责任心,提高操作技术外,还应采取必要的检校措施。
二、测量误差的分类测量误差按其性质不同可分为系统误差和偶然误差。
1、系统误差在相同的观测条件下,对某量进行一系列观测,若出现的误差在数值大小或符号上保持不变或按一定的规律变化,这种误差称为系统误差。
例如用名义长度为30米,而实际长度为30.004米的钢尺量距,每量一尺就有0.004米的系统误差,它就是一个常数。
又如水准测量中,视准轴与水准管轴不能严格平行,存在一个微小夹角i ,i 角一定时在尺上的读数随视线长度成比例变化,但大小和符号总是保持一致性。
系统误差具有累计性,对测量结果影响甚大,但它的大小和符号有一定的规律,可通过计算或观测方法加以消除,或者最大限度地减小其影响,如尺长误差可通过尺长改正加以消除,水准测量中的i 角误差,可以通过前后视线等长,消除其对高差的影响。
2、偶然误差在相同的观测条件下,对某量进行一系列观测,如出现的误差在数值大小和符号上均不一致,且从表面看没有任何规律性,这种误差称为偶然误差。
如水准标尺上毫米数的估读,有时偏大,有时偏小。
由于大气的能见度和人眼的分辨能力等因素使照准目标有时偏左,有时偏右。
偶然误差亦称随机误差,其符号和大小在表面上无规律可循,找不到予以完全消除的方法,因此须对其进行研究。
因为在表面上是偶然性在起作用,实际上却始终是受其内部隐蔽着的规律所支配,问题是如何把这种隐蔽的规律揭示出来.第二节 偶然误差的特性大量的实践证明,在相同的观测条件下对某量进行一系列观测所出现的偶然误差呈现出一定的规律性。
观测次数愈多,这种规律愈明显。
例如,在相同的观测条件下,观测了96个三角形的内角,因观测存在误差,每一个三角形内角之和i l 都不等于真值180°,其差值∆称为三角形内角和的真误差.即:︒-=180i i l △ (5-2),将96个三角形内角和的真误差的大小和正负按一定的区间统计误差个数,列表于5-1中。
由表5-1可以看出: (1)小误差的个数比大误差个数多;(2)绝对值相等的正负误差的个数大致相等;(3)最大误差不超过3.0″。
人们反复实践和认识,总结出偶然误差具有如下的特性:1、有限性:在一定的观测条件下,偶然误差的绝对值不会超过一定的限值;2、集中性:绝对值小的误差比绝对值大的误差出现的机会多;3、对称性:绝对值相等的正误差与负误差出现的机会相等;4、抵偿性:偶然误差的算术平均值,随着观测次数的无限增加而趋向于零,即:[]0=∞→nlimn ∆ (5-3)式中: n 为观测次数;[]321+△△△△+=………n △。
以上四个特性中,第一个特性说明误差的范围;第二个特性说明误差绝对值大小的规律;第三个特性说明误差符号出现的规律;第四个特性说明了偶然误差具有互相抵消的性能,因此采用增加观测次数,取其算术平均值,可以大大减弱偶然误差的影响。
这四个特性是误差理论的基础。
由于偶然误差本身的特性,不能用改变观测方法或计算改正的办法加以消除,只能根据偶然误差的理论加以处理,以减小它对测量成果的影响,求出最可靠的结果。
第三节 评定精度的标准一、评定精度的标准为了对测量成果的精确程度作出评定,有必要建立一种评定精度的标准,通常用中误差,相对误差和容许误差来表示。
(一) 中误差设在相同观测条件下,对真值为X 的一个未知量l 进行n 次观测,观测值结果为n l l l 、、21,每个观测值相应的真误差(真值与观测值之差)为△1、△2、……,△n 。
则以各个真误差之平方和的平均数的平方根作为精度评定的标准,用m 表示,称为观测值中误差。
[]nm △△=(5-4)式中: -n 观测次数m —称为观测值中误差(又称均方误差)[]n n ∆∆∆∆∆∆∆∆+++= 2211为各个真误差△的平方的总和。
上式表明了中误差与真误差的关系,中误差并不等于每个观测值的真误差,中误差仅是一组真误差的代表值,当一组观测值的测量误差愈大,中误差也就愈大,其精度就愈低;测量误差愈小,中误差也就愈小,其精度就愈高。
【例题5-1】甲、乙两个小组,各自在相同的观测条件下,对某三角形内角和分别进行了7次观测,求得每次三角形内角和的真误差分别为:甲组: +2〞、-2〞、+3〞、+5〞、-5〞、-8〞、+9〞 乙组: -3〞、+4〞、0〞、-9〞、-4〞、+1〞、+13〞 则甲、乙两组观测值中误差为:"±=+-+-+++-+±=5.579)8()5(53)2(22222222甲m"±=++-+-++-±=3.67131)4()9(4)3(222222乙m由此可知,乙组观测精度低于甲组,这是因为乙组的观测值中有较大误差出现,因中误差能明显反映出较大误差对测量成果可靠程度的影响,所以成为被广泛采用的一种评定精度的标准。
(二)相对误差测量工作中对于精度的评定,在很多情况下用中误差这个标准是不能完全描述对某量观测的精确度的。
例如,用钢卷尺丈量了100m 和1000m 两段距离,其观测值中误差均为±0.1m ,若以中误差来评定精度,显然就要得出错误结论,因为量距误差与其长度有关,为此需要采取另一种评定精度的标准,即相对误差。
相对误差是指绝对误差的绝对值与相应观测值之比,通常以分子为1,分母为整数形式表示。
T1==观测值误差的绝对值相对误差 (5-5)绝对误差指中误差、真误差、容许误差、闭合差和较差等,它们具有与观测值相同的单位。
上例前者相对中误差为1000110010=.,后者为10000110001.0=很明显,后者的精度高于前者。
相对误差常用于距离丈量的精度评定,而不能用于角度测量和水准测量的精度评定,这时因为后两者的误差大小与观测量角度、高差的大小无关。
(三) 极限误差由偶然误差第一个特性可知,在一定的观测条件下,偶然误差的绝对值不会超过一定的限值。
根据误差理论和大量的实践证明,大于两倍中误差的偶然误差,出现的机会仅有5℅,大于三倍中误差偶然误差的出现机会仅为3‰。
即大约在300次观测中,才可能出现一个大于三倍中误差的偶然误差,因此,在观测次数不多的情况下,可认为大于三倍中误差的偶然误差实际上是不可能出现的。
故常以三倍中误差作为偶然误差的极限值,称为极限误差,用限△表示:m 3=限△ (5-6)在实际工作中,一般常以两倍中误差作为极限值。
m 2=限△ (5-7)如观测值中出现了超过2m 的误差,可以认为该观测值不可靠,应舍去不用.第二节 算术平均值一、算术平均值在相同的观测条件下,对某一量进行n 次观测,通常取其算术平均值作为未知量最可靠值。
例如,对某段距离丈量了6次,观测值分别为654321l l l l l l 、、、、、,则算术平均值x 为:6654321l l l l l l x +++++=(5-8)若观测 n 次,则[]n l x /=。
下面简要论证为什么算术平均值是最可靠值。
设某未知量的真值为X ,观测值为)321(n i l i 、、=其真误差为i △则一组观测值的真误差为:X l -=11△Xl -=22△X l n n -=△以上各式左右取和并除n 得:[][]X nl n-=∆将式(5-8)代入上式并移项得:[]X nx +=∆式中:[]n /△为n 各观测值真误差的平均值。
根据偶然误差的第四特性,当∞→n 时,[]n /△趋于0,则有:X x n =∞→lim由上式可看出,当观测次数n 趋于无限多时,观测值的算术平均值就是该未知量的真值。
但实际工作中,通常观测次数总是有限的,因而有限次观测情况下,算术平均值与各个观测值比较,最接近于真值,故称为该量的最可靠值或最或然值。
当然,其可靠程度不是绝对的,它随着观测值的精度和观测次数而变化。
二、观测值的改正数设某量在相同的观测条件下,观测值为n l l l 、、21,观测值的算术平均值为x ,则算术平均值与观测值之差称为观测值改正数,用ν表示,则有:11l x v -=22l x v -=n n l x v -= (5-9)将等式两端分别取和得:[][]l nx -=ν将[]nl x =代入上式得:[]0=ν (5-10)式5-10 说明在相同观测条件下,一组观测值改正数之和恒等于零,此式可以作为计算工作的校核。
三、用改正数求观测值的中误差前述中误差的定义式是在已知真误差的条件下,计算观测值的中误差,而实际工作中观测值的真值往往是不知道的,故真误差也无法求得,例如未知量高差,距离等。
因此可用算术平均值代替真值,用观测值的改正数求观测值中误差,即:[]1-±=n vv m (5-11)式中: []n n v v v v v v vv 2211+=n —观测次数m —观测值中误差(代表每一次观测值的精度)观测值的最可靠值是算术平均值,算术平均值的中误差用“M ”表示,按下式计算:[])1(-±==n n nm M νν (5-12)式(5-12)表明算术平均值的中误差等于观测值中误差的n1倍,所以增加观测次数可以提高算术平均值的精度。