泵送混凝土对侧压力计算公式应用分析
混凝土侧压力的计算
K1621+193涵洞台身拉杆演算
1、墙身结构尺寸
墙身上口尺寸,下口尺寸为,墙高,墙身长单侧,每4m设置沉降缝;
2、浇筑过程中混凝土侧压力的计算取两式中较小值
F=γc t oβ1β2V1/2公式1
F=γc H公式2
式中:
F—新浇筑混凝土对模板的侧压力,kN/m2;
γc—混凝土的重力密度,24kN/m3;
t o—新浇混凝土的初凝时间h可按实测确定本段位4h;当缺乏试验资料时,可采用t o=200/T+15=计算T为混凝土的温度=28;
V—混凝土的浇筑速度m/h按泵车浇筑速度30m3/h进行控制,浇筑长度按37.3m控制,则混凝土浇筑速度为V=30/+/2=0.6m/h;
H—混凝土侧压力计算位置处至新浇混凝土顶面的总高度,H=4=2.4m;
β1—外加剂影响修正系数,不掺外加剂时取,掺具有缓凝作用的外加剂时取;本段掺外加剂,取
β2—混凝土坍落度影响修正系数,当坍落度小于30mm时,取;50~90mm时,取;110~150mm时,取;本段取
F=γc t oβ1β2V1/2=×24×4×××=m2
F=γc H=24×=m2
取两者较小值m2计算;
3、对拉螺杆受力验算及间距确定
各拉杆尺寸容许拉力表
初步拟定该涵洞墙身拉杆采用14拉杆因实际为全丝拉杆,可采用12拉杆容许拉力进行演算,对拉螺栓取横向800mm,竖向600mm,按最大侧压力计算,每根螺栓承受的拉力为:
N=m2×0.6m0.8m=
按拉杆直径为12,查表格得容许应力为≥,故拉杆直径及间距均能满足要求;。
混凝土侧压力的计算
K1621+193涵洞台身拉杆演算1、墙身结构尺寸墙身上口尺寸 1.05m,下口尺寸为 1.78m,墙高2.9m,墙身长37.3m (单侧),每4m设置沉降缝。
2、浇筑过程中混凝土侧压力的计算(取两式中较小值)F=0.22γc t oβ1β2V1/2(公式1)F=γc H(公式2)式中:F—新浇筑混凝土对模板的侧压力,kN/m2;γc—混凝土的重力密度,24kN/m3;t o—新浇混凝土的初凝时间(h)可按实测确定(本段位4h)。
当缺乏试验资料时,可采用t o=200/(T+15)=4.76计算(T为混凝土的温度=28);V—混凝土的浇筑速度m/h(按泵车浇筑速度30m3/h进行控制,浇筑长度按37.3m控制,则混凝土浇筑速度为V=30/(1.05+1.78)/2*37.3=0.6m/h;H—混凝土侧压力计算位置处至新浇混凝土顶面的总高度,H=0.6*4=2.4m;β1—外加剂影响修正系数,不掺外加剂时取 1.0,掺具有缓凝作用的外加剂时取 1.2;(本段掺外加剂,取 1.2)β2—混凝土坍落度影响修正系数,当坍落度小于30mm时,取0.85;50~90mm时,取1.0;110~150mm时,取1.15。
(本段取 1.15)F=0.22γc t oβ1β2V1/2=0.22×24×4×1.2×1.15×0.78=22.73kN/m2F=γc H=24×2.4=57.6kN/m2取两者较小值22.73kN/m2计算。
3、对拉螺杆受力验算及间距确定各拉杆尺寸容许拉力表螺栓直径(mm)螺纹内径(mm)净面积(mm2)质量(kg/m)容许拉力(N)12 9.85 75 0.89 1290014 11.55 105 1.21 1780016 13.55 144 1.58 2450018 14.93 174 2 2960020 16.93 225 2.46 3820022 18.93 282 2.98 47900初步拟定该涵洞墙身拉杆采用14拉杆(因实际为全丝拉杆,可采用12拉杆容许拉力进行演算),对拉螺栓取横向800mm,竖向600mm,按最大侧压力计算,每根螺栓承受的拉力为:N=22.73kN/m2×0.6m*0.8m=10.91kN按拉杆直径为12,查表格得容许应力为12.9KN≥10.91,故拉杆直径及间距均能满足要求。
混凝土浇筑时对模板的侧压力计算(完整资料).doc
【最新整理,下载后即可编辑】一 侧压力计算混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即位新浇筑混凝土的最大侧压力。
侧压力达到最大值的浇筑高度称为混凝土的有效压头。
通过理论和实践,可按下列二式计算,并取其最小值(原因见后面说明):2/121022.0V t F c ββγ=H F c γ=式中 F------新浇筑混凝土对模板的最大侧压力(KN/m 2)γc------混凝土的重力密度(kN/m 3)取25 kN/m 3t0------新浇混凝土的初凝时间(h ),可按实测确定。
当缺乏实验资料时,可采用t=200/(T+15)计算;一般取值5hV------混凝土的浇灌速度(m/h );取0.5m/hH------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m );取3mβ1------外加剂影响修正系数,不掺外加剂时取1;β2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50—90mm 时,取1;110—150mm 时,取1.15。
2/121022.0V t F c ββγ==0.22x25x5x1.0x1.15 x0.51/2=22.4kN/m 2H F c γ==25x3=75kN/ m2取二者中的较小值,F=22.4kN/ m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值4 kN/ m2,分别取荷载分项系数1.2和1.4,则作用于模板的总荷载设计值为:Q=22.4x1.2+4x1.4=32.48kN/ m2 有效压头高度:m F h c 3.12548.32===γ二、对拉螺栓计算:对拉螺栓采用D16螺杆;纵向最大间距为750mm ,横向最大间距为1200mm 。
对拉螺栓经验公式如下:f A N *≤N---对拉螺栓所承受的拉力的设计值。
一般为混凝土的侧压力A---对拉螺栓净截面面积(mm2)A=201mm2 f --对拉螺栓抗拉强度设计值单根D16螺杆所能承受最大拉力:Fmax=f A=335X201=67.3KNN=Lxlxq=1.2mx0.75mx22.4kN/m2 =20.16KN<67.3KN故满足要求为什么两者取最小值?新浇混凝土对模板侧面压力是入模的具有一定流动性的新浇混凝土在浇筑、振捣和自重的共同作用下,对限制其流动的侧模板所产生的压力。
混凝土侧压力
在JGJ162-2008《建筑施工模板安全技术规范》的第4.1.1条,给出了新浇混凝土对模板的侧压力计算公式:混凝土侧压力的计算(取两式中教小值):F=0.22γctoβ1β2V∧½F=γc H式中F——新浇筑混凝土对模板的侧压力,kN/m ;γc——混凝土的重力密度,kN/m ;to——新浇混凝土的初凝时间(h)可按实测确定。
当缺乏试验资料时,可采用to=200/(T+15)计算(T为混凝土的温度℃);V——混凝土地的浇筑速度,m/h;H——混凝土侧压力计算位置处至新浇混凝土顶面的总高度,m;β1——外加剂影响修正系数,不掺外加剂时取1.0,掺具有缓凝作用的外加剂时取1.2;β2——混凝土坍落度影响修正系数,当坍落度小于30mm时,取0.85;50~90mm时,取1.0;110~150mm时,取1.15。
混凝土侧压力的计算分布图形如图所示,h为有效压头高度,h=F/rc 。
新浇混凝土对模板侧面压力是入模的具有一定流动性的新浇混凝土在浇筑、振捣和自重的共同作用下,对限制其流动的侧模板所产生的压力。
我国有关部门在20世纪60 ~80年代初期对混凝土侧压力进行了大量的测试研究,发现对于不同的结构类型、尽管一次浇筑高度、浇筑速度不同,但混凝土侧压力分布曲线的走势基本相同:即从浇筑面向下至最大侧压力处,基本遵循流体静压力的分布规律;达到最大值后,侧压力就随即逐渐减小或维持一段稳压高度后逐渐减小,压力图形对浇筑高度轴呈山形或梯台形分布。
经试验获得的侧压力主要影响因素如下:(1)最大侧压力随混凝土浇筑速度提高而增大,与其呈幂函数关系。
(2)在一定的浇筑速度下,因混凝土的凝结时间随温度的降低而延长,从而增加其有效压头。
(3)机械振捣的混凝土侧压力比手工捣实增大约56%。
(4)侧压力随坍落度的增大而增大,当坍落度从7cm增大到12cm时,其最大侧压力约增加13%。
(5)掺加剂对混凝土的凝结速度和稠度有调整作用,从而影响到混凝土的侧压力。
混凝土侧压力的计算
K1621+193涵洞台身拉杆演算1、墙身结构尺寸墙身上口尺寸1.05m,下口尺寸为1.78m,墙高2.9m,墙身长37.3m (单侧),每4m设置沉降缝。
2、浇筑过程中混凝土侧压力的计算(取两式中较小值)F=0.22γc t oβ1β2V1/2(公式1)F=γc H(公式2)式中:F—新浇筑混凝土对模板的侧压力,kN/m2;γc—混凝土的重力密度,24kN/m3;t o—新浇混凝土的初凝时间(h)可按实测确定(本段位4h)。
当缺乏试验资料时,可采用t o=200/(T+15)=4.76计算(T为混凝土的温度=28);V—混凝土的浇筑速度m/h(按泵车浇筑速度30m3/h进行控制,浇筑长度按37.3m控制,则混凝土浇筑速度为V=30/(1.05+1.78)/2*37.3=0.6m/h;H—混凝土侧压力计算位置处至新浇混凝土顶面的总高度,H=0.6*4=2.4m;β1—外加剂影响修正系数,不掺外加剂时取1.0,掺具有缓凝作用的外加剂时取1.2;(本段掺外加剂,取1.2)β2—混凝土坍落度影响修正系数,当坍落度小于30mm时,取0.85;50~90mm时,取1.0;110~150mm时,取1.15。
(本段取1.15)F=0.22γc t oβ1β2V1/2=0.22×24×4×1.2×1.15×0.78=22.73kN/m2F=γc H=24×2.4=57.6kN/m2取两者较小值22.73kN/m2计算。
3、对拉螺杆受力验算及间距确定各拉杆尺寸容许拉力表初步拟定该涵洞墙身拉杆采用14拉杆(因实际为全丝拉杆,可采用12拉杆容许拉力进行演算),对拉螺栓取横向800mm,竖向600mm,按最大侧压力计算,每根螺栓承受的拉力为:N=22.73kN/m2×0.6m*0.8m=10.91kN按拉杆直径为12,查表格得容许应力为12.9KN≥10.91,故拉杆直径及间距均能满足要求。
混凝土浇筑时对模板的侧压力计算
混凝土浇筑时对模板的侧压力计算在混凝土浇筑过程中,混凝土会对模板产生侧压力。
这种压力会随着混凝土的浇筑高度而逐渐增加,直到达到临界点后不再增加。
此时的侧压力就是新浇筑混凝土的最大侧压力,同时也是混凝土的有效压头。
根据理论和实践,我们可以使用以下两种公式进行计算,并取二者中的最小值作为标准值。
其中,第一种公式为F=0.22γctβ1/β2V1/2,第二种公式为F=γcH/2.在这两个公式中,F代表新浇筑混凝土对模板的最大侧压力,γc代表混凝土的重力密度,t0代表新浇混凝土的初凝时间,V代表混凝土的浇灌速度,H代表混凝土侧压力计算位置处至新浇混凝土顶面的总高度,β1代表外加剂影响修正系数,β2代表混凝土塌落度影响系数。
计算出标准值后,我们还需要考虑倾倒混凝土产生的水平载荷标准值。
这个值为4 kN/m2,并分别取荷载分项系数1.2和1.4.根据这些计算,我们可以得到作用于模板的总荷载设计值为32.48kN/m2.同时,有效压头高度为1.3m。
接下来是对拉螺栓的计算。
我们采用D16螺杆,纵向最大间距为750mm,横向最大间距为1200mm。
对拉螺栓的设计值一般为混凝土的侧压力,而对拉螺栓净截面面积为201mm2.根据经验公式N≤Af,我们可以计算出单根D16螺杆所能承受的最大拉力为67.3KN。
在本案例中,我们需要计算出对拉螺栓所承受的拉力的设计值。
根据计算,这个值为20.16KN,小于最大拉力,因此满足要求。
最后,我们需要解释一下为什么要取两个公式中的最小值。
这是因为这两个公式分别考虑了混凝土的不同特性,而取最小值可以保证计算结果更加准确。
混凝土侧压力计算
1.1.1 新浇混凝土对模板侧面的压力计算
在进行侧模板及支承结构的力学计算和构造设计时,常需计算新浇混凝土对模板侧面的压力。
混凝土作用于模板的压力,一般随混凝土的浇筑高度而增加,当浇筑高度达到某一临界值时,侧压力就不再增加,此时的侧压力即为新浇混凝土的最大侧压力。
侧压力达到最大值的浇筑高度称为混凝土的有效压头。
采用内部振捣器,当混凝土浇筑速度在6.0m/小时以下时,新浇混凝土作用于模板的最大侧压力,可按以下二式计算,并取二式中的较小值。
P m=4+1500K S K w V1/3/(T+30)(3-1)
P m=25H(3-2)式中:P m——新浇混凝土的最大侧压力(KN/m2);
T——混凝土的入模温度(ºC);
H——混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);
K S——混凝土坍落度影响修正系数。
当坍落度为50~90mm时取1.0,为110~150mm时取1.15;
K W——外加剂影响修正系数。
不掺外加剂时取1.0,掺有缓凝作用的外加剂时取1.2;
V——混凝土的浇筑速度(m/h)。
已知混凝土墙高为3.5m,采用坍落度为120mm的普通混凝土,浇筑速度为2.5m/h,浇注入模温度为30ºC,则作用于模板的最大侧压力及有效压头高度为:
查表得:K S =1.15,K W =1.2
由公式(3-1),P m=4+1500×1.15×(1.2)1/3/(30+30)=34.6 KN/m2
由公式(3-2),P m=25×3.5=87.5KN/m2
取较小值,故最大侧压力为34.6 KN/m2。
有效压头高度为:h=34.6/25=1.4m。
混凝土浇筑时对模板的侧压力计算
一 For personal use only in study and research; not for commercial use二三 侧压力计算混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即位新浇筑混凝土的最大侧压力。
侧压力达到最大值的浇筑高度称为混凝土的有效压头。
通过理论和实践,可按下列二式计算,并取其最小值(原因见后面说明):2/121022.0V t F c ββγ=H F c γ=式中 F------新浇筑混凝土对模板的最大侧压力(KN/m 2)γc------混凝土的重力密度(kN/m 3)取25 kN/m 3t0------新浇混凝土的初凝时间(h ),可按实测确定。
当缺乏实验资料时,可采用t=200/(T+15)计算;一般取值5hV------混凝土的浇灌速度(m/h );取0.5m/hH------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m );取3mβ1------外加剂影响修正系数,不掺外加剂时取1;β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—90mm 时,取1;110—150mm 时,取1.15。
2/121022.0V t F c ββγ==0.22x25x5x1.0x1.15 x0.51/2=22.4kN/m 2H F c γ==25x3=75kN/ m2取二者中的较小值,F=22.4kN/ m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值 4 kN/ m2,分别取荷载分项系数1.2和1.4,则作用于模板的总荷载设计值为:Q=22.4x1.2+4x1.4=32.48kN/ m2 有效压头高度:m F h c 3.12548.32===γ二、对拉螺栓计算:对拉螺栓采用D16螺杆;纵向最大间距为750mm ,横向最大间距为1200mm 。
泵送混凝土对模板侧压力计算公式应用分析
泵送混凝土对模板侧压力计算公式应用分析摘要:泵送混凝土侧压力受混凝土初凝时间和浇筑速度影响,在实际施工中往往是使用既有模板及支撑,所以,与其说是模板设计,不如说是荷载设计。
决定荷载大小有模板、钢楞、拉筋、扣件四个环节。
控制混凝土的侧压力是保证高支模作业安全的最有效措施。
1 新浇混凝土侧压力的影响因素刚浇筑入模的混凝土, 在振动作用下, 具有很大的流动性, 类似液体, 因此这时混凝土对模板的侧压力分布规律亦类似静水压力。
但由于混凝土具有触变性, 只要振动一停止, 混凝土在振动时所获得的流动性将会丧失, 而且随着水泥的水化作用不断进行, 混凝土的极限剪切应力逐渐增大, 因而实际作用在模板上的侧压力要比按静水压力计算公式求得的小,从而影响混凝土模板侧压力的因素也要复杂的多,影响混凝土侧压力的因素有: 水泥的品种, 外加剂的种类,集料的种类及其级配, 混凝土的配合比及其稠度(又称坍落度) , 周围环境温度及混凝土的温度, 捣实混凝土的方法, 模板的刚度及表面的粗糙程度, 结构构件的配筋情况及断面尺寸等。
泵送混凝土的坍落度,可按国家现行标准《混凝土结构工程施工及验收规范》的规定选用。
对不同泵送高度,入泵时混凝土的坍落度,可按下表选用。
注:掺粉煤灰与其他外加剂时,坍落度经时损失值可根据施工经验确定。
无施工经验时,应通过试验确定。
2 泵送混凝土侧压力2.1 泵送混凝土的特点泵送混凝土由于其效率高、浇筑速度快、机械化程度高、技术措施费用低、现场施工文明、其优越性十分显著, 这是实现现浇混凝土工业化生产的重要途径, 也是混凝土施工工艺的一大飞跃。
这种施工方法所使用的混凝土因可泵性要求, 一般都是坍落度较大、流动性较好、粘聚性较大;其材料组成、配合比、坍落度等变化小, 浇筑过程比较连续均衡同时加入适量外加剂。
所有这些特点, 使得泵送混凝土对模板的侧压力影响比较突出。
2.2 泵送混凝土侧压力的影响因素分析2.2.1 混凝土浇注速度混凝土的浇注速度仍就是影响泵送混凝土对模板侧压力的一个重要影响因素,随着混凝土浇注速度的增加, 混凝土侧压力也增大,大多数研究者认为, 混凝土的最大侧压力F 与浇注速度V 的关系式为幂函数(即F = kV n )。
混凝土侧压力的计算
混凝土侧压力的计算(取两式中教小值)梁模板的背部支撑由两层龙骨(木楞或钢楞)组成,直接支撑模板的龙骨为次龙骨,即内龙骨;用以支撑内层龙骨为外龙骨,即外龙骨组装成梁侧模板时,通过穿梁螺栓将梁体两侧模板拉结,每个穿梁螺栓成为外龙骨的支点。
模板面板厚度h=18mm,弹性模量E=6000N/mm2,抗弯强度[f]=15N/mm2。
内楞采用方木,截面50×100mm,每道内楞1根方木,间距300mm。
外楞采用圆钢管48×3.5,每道外楞2根钢楞,间距600mm。
穿梁螺栓水平距离600mm,穿梁螺栓竖向距离300mm,直径12mm。
F=0.22γc t oβ1β2V1/2(公式1)F=γc H(公式2)式中:F—新浇筑混凝土对模板的侧压力,kN/m2;γc—混凝土的重力密度,24kN/m3;t o—新浇混凝土的初凝时间(h)可按实测确定。
当缺乏试验资料时,可采用t o=200/(T+15)=4.76计算(T为混凝土的温度=28);V—混凝土的浇筑速度m/h;2H—混凝土侧压力计算位置处至新浇混凝土顶面的总高度,1.6m;β1—外加剂影响修正系数,不掺外加剂时取1.0,掺具有缓凝作用的外加剂时取1.2;β2—混凝土坍落度影响修正系数,当坍落度小于30mm时,取0.85;50~90mm时,取1.0;110~150mm时,取1.15。
F=0.22γc t oβ1β2V1/2=0.22×24×4.76×1.2×0.85×1.4=35.89kN/m2F=γc H=1.6×24=38.4kN/m2取两者较小值35.89kN/m2计算。
(2)强度验算。
立档间距300mm,设模板按四跨连续梁计算。
梁承受倾倒混凝土时产生的水平荷载4N/m2和新浇筑混凝土对模板的侧压力。
以1m宽侧模板进行计算,设计荷载为:Q=(35.89×1.2+4×1.4)×1=(43.07+5.6)×1=48.67kN/m弯矩最大值:M max=K m ql2=-0.1×48.67×0.32=-0.438kN·m选用侧模截面尺寸为1000×18mm,截面抵抗矩:W = 1000×182/6=54000mm2σ= M max/w=0.438×106/5.4×104=8.1N/mm2<f=13N/mm2满足要求挠度验算挠度验算不考虑振动荷载,其标准荷载为:Q=35.89kN/m2×1m=35.89kN/mδ=K W ql4/100EI=0.967×35.89kN/m×3004/(100×9.5×103×1/12×1000×183)=0.608mm<300/400=0.75mm符合要求对拉螺杆验算对拉螺栓取横向600mm,竖向450mm,按最大侧压力计算,每根螺栓承受的拉力为:N=35.89kN/m2×0.45m=16.15kN采用直径Φ16mm对拉螺栓,净截面积A=144.1mm2,每根螺栓可承受拉力为:S=144.1×215=30982N=30.982kN>16.15kN满足要求。
混凝土侧压力的计算
混凝土侧压力的计算混凝土的侧压力计算是指在混凝土结构中,由于自重或外部荷载作用而产生的对结构侧面的压力。
混凝土结构的侧压力计算对于结构设计、施工和安全评估具有重要意义。
下面将从混凝土的侧压力产生机制、计算方法以及相关考虑因素等方面进行详细介绍。
一、混凝土侧压力产生机制垂直荷载是指施加在结构上的重力和其他的垂直荷载,例如建筑自身的重量、设备负荷、人员荷载等。
侧压力可以通过垂直荷载乘以反弯矩引起的转动半径的倒数来计算。
水平荷载是指风荷载、地震荷载、弯曲力产生的惯性荷载等。
侧压力可以通过水平荷载乘以水平方向的转动半径的倒数来计算。
二、混凝土侧压力计算方法自重侧压力的计算可以根据混凝土的密度和截面形状进行估算。
将混凝土的体积乘以密度就可以得到自重侧压力。
需要注意的是,在实际计算中需要考虑结构的不同部位的密度不均匀性以及预压混凝土的侧压力。
垂直荷载侧压力的计算通过乘以转动半径的倒数可以得到。
转动半径又称为相对中性轴到结构侧面的距离,可以通过结构的几何形状和材料的力学性质进行计算。
对于不规则形状的结构,可以采用近似计算方法。
水平荷载侧压力的计算也需要乘以转动半径的倒数。
转动半径可以通过结构的刚度分析和静力分析进行计算。
对于受抗震设计要求的结构,需要考虑地震荷载产生的侧压力。
三、混凝土侧压力计算的相关考虑因素1.结构的几何形状和尺寸:结构的截面类型、高度、宽度等参数对侧压力的产生有重要影响。
2.材料的力学性质:混凝土的密度、强度、抗震性能等参数对侧压力的计算有重要影响。
3.荷载的类型和大小:垂直荷载和水平荷载的类型和大小对侧压力产生有明显影响。
4.结构的支撑条件:结构的支撑条件对侧压力的传递和分布也有一定影响。
5.设计规范和标准:混凝土结构设计需要遵守相关的国家或地区的设计规范和标准进行计算。
总结:混凝土的侧压力计算是混凝土结构设计和施工的重要内容之一、通过深入了解混凝土侧压力的计算原理、方法和相关考虑因素,可以为结构设计和施工过程中的侧压力计算提供科学依据,并保证结构的安全性和可靠性。
新浇混凝土对的最大侧压力计算
附页:外墙单面支模模板计算书1、由于采用大钢模板,现只对其的支撑体系进行验算;单面模板高3m,以单排支撑点为验算单位,计算宽度为1m;2、新浇混凝土对模板的最大侧压力计算:计算参数:γc=24KN/m3混凝土的重力密度to=5小时新浇混凝土的初凝时间要求搅拌站保证β1=外加剂影响系数β2=坍落度影响系数v=1m/小时混凝土浇筑速度,3m高的墙要求在>3小时浇完H=3m混凝土侧压力计算位置处到新浇顶面的总高度由公式F=γc toβ1β2v=×24×5×××1=m2由公式F=γcH=24×3=72KN/m2按取最小值,故最大侧压力为m23、荷载设计值F6及有效压头高度hF 6=γcF=×= KN/m2有效压头高度h= F6/γc=24=倾倒荷载产生的压头x= F7/γc=24=叠加后的有效高头h=、倾倒混凝土时产生的荷载F=2KN/m2F 7=γ7F=2×=m2剪力图通过计算,模板对钢管排架的力分别为对受力简化分析:计算简图sina= cosa=由NBcosa=F 得N B =acosFTA=sinaNB由此得:采用密布型钢管行架进行支撑增加锚拉,采用分析计算的方法进行计算:φ48×钢管的力学性能抗拉、抗压强度设计值:f=205N/mm2抗剪强度设计值:τ=120 N/mm2单个杆件的抗力验算单个受拉构件:TAmax/489=15740/489=mm2<205 N/mm2满足要求总的拉力ΣTAi=++++=57830/489= N/mm2<205 N/mm2满足要求受压构件:NB max= KN;LB=1166mm采用十字扣件,计算长度系数为,所以实际计算长度为1749mmλ=L/r=1749/=111;查表得Ψ=δ=N/ΨA=30590/×489=mm2<205 N/mm2满足要求5、地锚钢筋抗剪整体ΣF/fv=++++×1000/489×125=根所以至少需2排钢管埋地抗剪,实际安排5排,满足要求;6、扣件抗滑以每个抗滑能力为7 KN验算水平方向,支点的最大水平力为,每根水平受力杆通过5道行架有10个扣件锁定不可能位移;通过以上计算,该支撑体系满足要求;。
混凝土浇筑时对的侧压力计算
侧压力计算混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即位新浇筑混凝土的最大侧压力。
侧压力达到最大值的浇筑高度称为混凝土的有效压头。
通过理论和实践,可按下列二式计算,并取其最小值(原因见后面说明):式中 F------新浇筑混凝土对模板的最大侧压力(KN/m 2)γc------混凝土的重力密度(kN/m 3)取25 kN/m 3t0------新浇混凝土的初凝时间(h ),可按实测确定。
当缺乏实验资料时,可采用t=200/(T+15)计算;一般取值5hV------混凝土的浇灌速度(m/h );取0.5m/hH------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m );取3mβ1------外加剂影响修正系数,不掺外加剂时取1;β2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50—90mm 时,取1;110—150mm 时,取1.15。
1/2=22.4kN/m 2=25x3=75kN/ m2取二者中的较小值,F=22.4kN/ m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值4 kN/ m2,分别取荷载分项系数1.2和1.4,则作用于模板的总荷载设计值为: 有效压头高度:m F h c 3.12548.32===γ二、对拉螺栓计算:对拉螺栓采用D16螺杆;纵向最大间距为750mm ,横向最大间距为1200mm 。
对拉螺栓经验公式如下:f A N *≤N---对拉螺栓所承受的拉力的设计值。
一般为混凝土的侧压力A---对拉螺栓净截面面积(mm2)A=201mm2f--对拉螺栓抗拉强度设计值单根D16螺杆所能承受最大拉力:Fmax=f A=335X201=67.3KN故满足要求为什么两者取最小值?新浇混凝土对模板侧面压力是入模的具有一定流动性的新浇混凝土在浇筑、振捣和自重的共同作用下,对限制其流动的侧模板所产生的压力。
混凝土侧压力的计算
K1621+193涵洞台身拉杆演算1、墙身结构尺寸墙身上口尺寸1.05m,下口尺寸为1.78m,墙高2.9m,墙身长37.3m (单侧),每4m设置沉降缝。
2、浇筑过程中混凝土侧压力的计算(取两式中较小值)F=0.22γc t oβ1β2V1/2(公式1)F=γc H(公式2)式中:F—新浇筑混凝土对模板的侧压力,kN/m2;γc—混凝土的重力密度,24kN/m3;t o—新浇混凝土的初凝时间(h)可按实测确定(本段位4h)。
当缺乏试验资料时,可采用t o=200/(T+15)=4.76计算(T为混凝土的温度=28);V—混凝土的浇筑速度m/h(按泵车浇筑速度30m3/h进行控制,浇筑长度按37.3m控制,则混凝土浇筑速度为V=30/(1.05+1.78)/2*37.3=0.6m/h;H—混凝土侧压力计算位置处至新浇混凝土顶面的总高度,H=0.6*4=2.4m;β1—外加剂影响修正系数,不掺外加剂时取1.0,掺具有缓凝作用的外加剂时取1.2;(本段掺外加剂,取1.2)β2—混凝土坍落度影响修正系数,当坍落度小于30mm时,取0.85;50~90mm时,取1.0;110~150mm时,取1.15。
(本段取1.15)F=0.22γc t oβ1β2V1/2=0.22×24×4×1.2×1.15×0.78=22.73kN/m2F=γc H=24×2.4=57.6kN/m2取两者较小值22.73kN/m2计算。
3、对拉螺杆受力验算及间距确定各拉杆尺寸容许拉力表螺栓直径(mm)螺纹内径(mm)净面积(mm2)质量(kg/m)容许拉力(N)12 9.85 75 0.89 1290014 11.55 105 1.21 1780016 13.55 144 1.58 2450018 14.93 174 2 2960020 16.93 225 2.46 3820022 18.93 282 2.98 47900初步拟定该涵洞墙身拉杆采用14拉杆(因实际为全丝拉杆,可采用12拉杆容许拉力进行演算),对拉螺栓取横向800mm,竖向600mm,按最大侧压力计算,每根螺栓承受的拉力为:N=22.73kN/m2×0.6m*0.8m=10.91kN按拉杆直径为12,查表格得容许应力为12.9KN≥10.91,故拉杆直径及间距均能满足要求。
混凝土侧压力的计算
K1621+193涵洞台身拉杆演算1、墙身结构尺寸墙身上口尺寸1.05m,下口尺寸为1.78m,墙高2.9m,墙身长37.3m (单侧),每4m设置沉降缝。
2、浇筑过程中混凝土侧压力的计算(取两式中较小值)F=0.22γc t oβ1β2V1/2(公式1)F=γc H(公式2)式中:F—新浇筑混凝土对模板的侧压力,kN/m2;γc—混凝土的重力密度,24kN/m3;t o—新浇混凝土的初凝时间(h)可按实测确定(本段位4h)。
当缺乏试验资料时,可采用t o=200/(T+15)=4.76计算(T为混凝土的温度=28);V—混凝土的浇筑速度m/h(按泵车浇筑速度30m3/h进行控制,浇筑长度按37.3m控制,则混凝土浇筑速度为V=30/(1.05+1.78)/2*37.3=0.6m/h;H—混凝土侧压力计算位置处至新浇混凝土顶面的总高度,H=0.6*4=2.4m;β1—外加剂影响修正系数,不掺外加剂时取1.0,掺具有缓凝作用的外加剂时取1.2;(本段掺外加剂,取1.2)β2—混凝土坍落度影响修正系数,当坍落度小于30mm时,取0.85;50~90mm时,取1.0;110~150mm时,取1.15。
(本段取1.15)F=0.22γc t oβ1β2V1/2=0.22×24×4×1.2×1.15×0.78=22.73kN/m2F=γc H=24×2.4=57.6kN/m2取两者较小值22.73kN/m2计算。
3、对拉螺杆受力验算及间距确定各拉杆尺寸容许拉力表螺栓直径(mm)螺纹内径(mm)净面积(mm2)质量(kg/m)容许拉力(N)12 9.85 75 0.89 1290014 11.55 105 1.21 1780016 13.55 144 1.58 2450018 14.93 174 2 2960020 16.93 225 2.46 3820022 18.93 282 2.98 47900初步拟定该涵洞墙身拉杆采用14拉杆(因实际为全丝拉杆,可采用12拉杆容许拉力进行演算),对拉螺栓取横向800mm,竖向600mm,按最大侧压力计算,每根螺栓承受的拉力为:N=22.73kN/m2×0.6m*0.8m=10.91kN按拉杆直径为12,查表格得容许应力为12.9KN≥10.91,故拉杆直径及间距均能满足要求。
(完整word版)混凝土浇筑时对模板的侧压力计算
β2—--—-—混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—90mm时,取1;110-150mm时,取1.15。
=0。22x25x5x1。0x1。15 x0.51/2
=22.4kN/m2
=25x3=75kN/ m2
取二者中的较小值,F=22.4kN/ m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值4 kN/ m2,分别取荷载分项系数1.2和1。4,则作用于模板的总荷载设计值为:
(5) 掺加剂对混凝土的凝结速度和稠度有调整作用,从而影响到混凝土的侧压力.
(6) 随混凝土重力密度的增加而增大。
通过以上试验研究,《混凝土结构工程施工及验收规范》(GB50204—1992)提出了以流体静压力原理为基础,并综合考虑泵送和初凝时间等有关因素的计算公式:当初凝前混凝土已充分振捣液化,则有效压头h=t0v,当浇筑高度H较小、浇筑速度较快时,可能t0v>H,则取h=H;当H较大,施工时采用分层浇筑,先浇的几层在基本上脱离了振捣影响区,有一定的“自立"能力,以及在配筋和模板等因素影响下,有效压头降低,侧压力减小,即h<t0v0,此时考虑一个有效压头影响系数,再计入坍落度和外加剂影响的调整系数;即当采用内部振捣器时,新浇混凝土对模板侧面压力的标准值按两式计算,并取最小值.
γc-—-—--混凝土的重力密度(kN/m3)取25 kN/m3
t0---———新浇混凝土的初凝时间(h),可按实测确定。当缺乏实验资料时,可采用t=200/(T+15)计算;一般取值5h
V——----混凝土的浇灌速度(m/h);取0。5m/h
H---—--混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取3m
混凝土浇筑模板侧压力计算公式
混凝土浇筑模板侧压力计算在进行混凝土结构模板设计时,常需要知道新浇注混凝土对模板侧面的最大压力值,以便据此计算确定模板厚度和支撑的间距等。
混凝土作用于模板的侧压力,根据测定,随混凝土的浇注高度而增加,当浇注高度达到某一临界值时,侧压力就不再增加,此时的侧压力即为新浇注混凝土的最大侧压力。
侧压力达到最大值的浇注高度称为混凝土的有效压头。
通过理论推导和实验,国内外推出过很多混凝土最大侧压力的计算公式,现选取我国《混凝土结构工程施工及验收规范》(GB50204-92)中提到的新浇注混凝土作用在模板上的最大侧压力计算公式如下:当采用内部振捣器时,新浇筑的混凝土作用于模板的侧压力标准值,可按下列公式计算,并取其中的较小值,其中F-新浇混凝土对模板产生的最大侧压力(kN/m2);H-有效压头高度(m);v-混凝土浇筑速度(m/h);T-混凝土入模时的温度(℃);rc-混凝土的容重(kN/m3);k-外加剂影响修正系数,不掺外加剂时取k=1.0,掺缓凝作用的外加剂时k=1.2;β1-外加剂影响修正系数,不掺外加剂时取1.0;掺具有缓凝作用的外加剂时取1.2;β2-塌落度影响修正系数,当塌落度小于30mm时,取0.85;50-90mm时,取1.0;110-150时,取1.15。
混凝土的有效压头高度H如下取值:当v/T<0.035时,h=0.22+24.9v/T;当v/T>0.035时,h=1.53+3.8v/T;混凝土侧压力计算两公式为啥去最小值?新浇混凝土对模板侧面压力是入模的具有一定流动性的新浇混凝土在浇筑、振捣和自重的共同作用下,对限制其流动的侧模板所产生的压力。
我国有关部门在20世纪60 ~80年代初期对混凝土侧压力进行了大量的测试研究,发现对于不同的结构类型、尽管一次浇筑高度、浇筑速度不同,但混凝土侧压力分布曲线的走势基本相同:即从浇筑面向下至最大侧压力处,基本遵循流体静压力的分布规律;达到最大值后,侧压力就随即逐渐减小或维持一段稳压高度后逐渐减小,压力图形对浇筑高度轴呈山形或梯台形分布。
混凝土浇筑时对的侧压力计算
一 侧压力计算混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即位新浇筑混凝土的最大侧压力。
侧压力达到最大值的浇筑高度称为混凝土的有效压头。
通过理论和实践,可按下列二式计算,并取其最小值(原因见后面说明):式中 F------新浇筑混凝土对模板的最大侧压力(KN/m 2)γc------混凝土的重力密度(kN/m 3)取25 kN/m 3t0------新浇混凝土的初凝时间(h ),可按实测确定。
当缺乏实验资料时,可采用t=200/(T+15)计算;一般取值5hV------混凝土的浇灌速度(m/h );取0.5m/hH------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m );取3mβ1------外加剂影响修正系数,不掺外加剂时取1;β2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50—90mm 时,取1;110—150mm 时,取1.15。
1/2=22.4kN/m 2=25x3=75kN/ m2取二者中的较小值,F=22.4kN/ m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值4 kN/ m2,分别取荷载分项系数1.2和1.4,则作用于模板的总荷载设计值为: 有效压头高度:m F h c 3.12548.32===γ二、对拉螺栓计算:对拉螺栓采用D16螺杆;纵向最大间距为750mm ,横向最大间距为1200mm 。
对拉螺栓经验公式如下:f A N *≤N---对拉螺栓所承受的拉力的设计值。
一般为混凝土的侧压力A---对拉螺栓净截面面积(mm2)A=201mm2f--对拉螺栓抗拉强度设计值单根D16螺杆所能承受最大拉力:Fmax=f A=335X201=67.3KN故满足要求为什么两者取最小值?新浇混凝土对模板侧面压力是入模的具有一定流动性的新浇混凝土在浇筑、振捣和自重的共同作用下,对限制其流动的侧模板所产生的压力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泵送混凝土对侧压力计算公式应用分析公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]泵送混凝土对模板侧压力计算公式应用分析摘要:泵送混凝土侧压力受混凝土初凝时间和浇筑速度影响,在实际施工中往往是使用既有模板及支撑,所以,与其说是模板设计,不如说是荷载设计。
决定荷载大小有模板、钢楞、拉筋、扣件四个环节。
控制混凝土的侧压力是保证高支模作业安全的最有效措施。
关键词:泵送混凝土;模板侧压力;施工安全。
1 新浇混凝土侧压力的影响因素刚浇筑入模的混凝土, 在振动作用下, 具有很大的流动性, 类似液体, 因此这时混凝土对模板的侧压力分布规律亦类似静水压力。
但由于混凝土具有触变性, 只要振动一停止, 混凝土在振动时所获得的流动性将会丧失, 而且随着水泥的水化作用不断进行, 混凝土的极限剪切应力逐渐增大, 因而实际作用在模板上的侧压力要比按静水压力计算公式求得的小,从而影响混凝土模板侧压力的因素也要复杂的多,影响混凝土侧压力的因素有: 水泥的品种, 外加剂的种类,集料的种类及其级配, 混凝土的配合比及其稠度(又称坍落度) , 周围环境温度及混凝土的温度, 捣实混凝土的方法, 模板的刚度及表面的粗糙程度, 结构构件的配筋情况及断面尺寸等。
泵送混凝土的坍落度,可按国家现行标准《混凝土结构工程施工及验收规范》的规定选用。
对不同泵送高度,入泵时混凝土的坍落度,可按下表选用。
工经验时,应通过试验确定。
2 泵送混凝土侧压力泵送混凝土的特点泵送混凝土由于其效率高、浇筑速度快、机械化程度高、技术措施费用低、现场施工文明、其优越性十分显着, 这是实现现浇混凝土工业化生产的重要途径, 也是混凝土施工工艺的一大飞跃。
这种施工方法所使用的混凝土因可泵性要求, 一般都是坍落度较大、流动性较好、粘聚性较大;其材料组成、配合比、坍落度等变化小, 浇筑过程比较连续均衡同时加入适量外加剂。
所有这些特点, 使得泵送混凝土对模板的侧压力影响比较突出。
泵送混凝土侧压力的影响因素分析混凝土浇注速度混凝土的浇注速度仍就是影响泵送混凝土对模板侧压力的一个重要影响因素,随着混凝土浇注速度的增加, 混凝土侧压力也增大,大多数研究者认为, 混凝土的最大侧压力F 与浇注速度V 的关系式为幂函数(即F = kV n )。
温度温度是影响混凝土凝结、硬化的重要因素, 从而也影响混凝土侧压力, 在一定的浇注速度下, 温度愈低则混凝土侧压力愈大, 两者成反比关系。
混凝土的振捣方法振捣密实混凝土的方法有两种: 一种为人工捣实, 一种为机械捣实。
目前, 大多采用机械捣实, 特别是对于一次浇捣量较大的泵送混凝土,捣实方法影响混凝土的液化程度, 机械振捣会使混凝土液化得好, 流动性会增大, 混凝土侧压力相应地会增大。
试验表明,机械振动捣时的混凝土侧压力要比手工捣实时增大约56%,当混凝土侧压力计算公式标明采用机械捣实时, 该因素不另考虑。
混凝土的坍落度混凝土坍落度大,其流动性好, 侧压力也增加。
对于泵送混凝土, 因为可泵性要求,使得其坍落度较一般混凝土大, 因而其侧压力相对较大。
水泥品种混凝土的初凝时间不同于水泥的初凝时间,虽然不同水泥的初凝时间相差较大(相差幅度为1~ 4 h),但用它们的配制混凝土时,在温度、配合比基本相同的条件下,相差很小(仅1 h 左右)。
因此,水泥品种对混凝土侧压力计算式中可不予考虑。
集料种类与级配集料的种类与级配决定了混凝土的容重,也影响混凝土的内摩擦力。
对于混凝土的容重,其对混凝土侧压力有较大的影响, 但在一般工业与民用建筑施工中所使用的普通混凝土,其容重可以看成是一个常数。
因此,在考虑混凝土侧压力的计算公式时,只需要说明即可。
混凝土配合比在泵送混凝土中, 常用的外加剂主要是减水剂, 大多数减水剂都具有一定的缓凝作用。
据有关资料表明, 掺有减水剂的混凝土侧压力比未掺的要大,如掺有木质素磺酸钙外加剂的混凝土侧压力比未掺外加剂的平均增大17. 9%。
3. 几种计算公式我国GBJ 204-83规范计算式在一般工业与民用建筑中, 当采用内部振动器时, 若混凝土的浇注速度在6m/h 以下, 新浇注的混凝土作用于模板的最大侧压力, 可按下列二式计算, 取二者中的较小值:式中 T——混凝土温度(℃);F——新浇混凝土的最大侧压力(kN/m 2);V——混凝土的浇注速度(m/h );h——混凝土侧压计算位置处至新浇混凝土顶面的高度(m );K s——混凝土坍落度影响修正系数,当混凝土坍落度小于3 cm 时取;5~9 cm 时取; 11~ 15 cm 时取;K w ——外加剂的影响修正系数,不掺加外加剂时取, 掺具有缓凝作用的外加剂时取。
由于是泵送混凝土,所以,必掺外加剂,塌落度必大于11cm,所以,对于泵送混凝土,上述计算公式为:该公式对混凝土侧压力的主要影响因素, 考虑较为详细, 主要考虑下列因素的影响: 浇注速度、浇注时混凝土温度、混凝土的稠度及外加剂,公式的形式也简单明确, 在模板设计中有着广泛的应用,但该公式只适宜于浇注速度在6m/h 以下的情况, 影响了它在浇注速度较大的泵送混凝土侧压力计算中的应用。
我国GB50204-92规范计算式混凝土结构工程施工及验收规范GB50204-92规定的混凝土侧压力是以流体静压力原理为基础, 并结合浇注速度与侧压力的试验数据(包括泵送混凝土的试验资料) 而建立的, 改善了原规范公式对浇注速度大于2 m/h时侧压力偏低的情况。
该规范中新浇注的混凝土作用于模板的最大侧压力可按下列二式计算, 取二者中较小值:式中 r ——新浇混凝土的重力密度t0 ——混凝土初凝时间, 其计算公式式中β1 ——取值同前面的K sβ2 ——取值同前面的K w由于是泵送混凝土,所以,必掺外加剂,塌落度必大于11cm,混凝土重力密度一般为m3~m3,计算取r =m3,所以,对于泵送混凝土,上述计算公式为:我国冶金建筑研究总院建议的计算方法对于采用泵送工艺的新浇注混凝土, 其对钢模板产生的最大侧压力按下式计算:有效压头为式中, T 为新浇混凝土的初凝时间(h),可实测,在尚未制定统一的标准测定方法之前, 建议可暂用贯入阻力法测定(一般为6 h)。
该计算公式适用于混凝土有效压头h≤H 的情况;若h>H 时,则取h= H,其中H 为浇注总高度,单位为m。
混凝土重力密度计算取r =m3,则公式可变为:三种计算公式的对照在室温情况下(T(t0)=20℃),三种公式为:从图中看出, GBJ 204-83规范计算式偏小,冶金建筑研究总院建议的计算方法偏大, GB50204-92规范计算式较为合理。
当V≤h时,GBJ 204-83规范与GB50204-92规范计算结果较为接近。
三种计算公式对照图GB50204-92规范计算式参数选择泵送混凝土条件下,r=24kN/m3,侧压力计算公式为:T一般在5℃~28℃之间变化,当V分别为h、h、h、h、h时,F为:混凝土最大侧压力与施工温度关系图当V分别为h、h、h、h、h时,hmax为:混凝土有效压头与施工温度的关系图从上图可看出,当模板高度低于时不需要考虑混凝土初凝时间即浇筑速度对模板侧压力的影响。
混凝土侧压力分布见下图。
侧压力计算分布图其中:h有效压头高度h=F/γc(m)泵送混凝土条件下侧压力由两个因素决定——混凝土初凝时间和混凝土浇筑速度,所以,混凝土初凝时间和混凝土浇筑速度成为确定混凝土对模板的侧压力大小的关键。
由于这两个参数波动特别大,混凝土初凝时间在1℃~10℃之间波动,混凝土浇筑速度可在h~40m/h波动,如此大的差距,对模板的设计至关重要,这也正是高支模易发生垮塌的重要原因。
混凝土初凝时间的选择混凝土初凝时间与试验室初凝时间不同,试验室计算初凝时间从水泥加水开始,而作为计算模板侧压力的混凝土初凝时间则是从混凝土入模开始算起。
混凝土初凝时间与混凝土施工温度有如下关系:根据《建筑工程冬期施工规范》JGJ104-97规定:当室外日平均气温连续5d稳定低于5℃即进入冬期施工,当室外日平均气温连续5d稳定高于5℃即解除冬期施工。
所以混凝土的最低施工温度为5℃。
夏季高温时施工混凝土入模温度要求不高于28℃,当温度高于28℃时即采取降温措施,所以,混凝土的最高施工温度为28℃。
作为模板设计要求的混凝土施工温度范围为:5℃~28℃,与此相应的混凝土初凝时间为:10~。
混凝土施工温度与初凝时间关系见下图。
混凝土施工温度与初凝时间关系图混凝土浇筑速度的选择影响混凝土浇筑速度有三个环节:混凝土搅拌站生产能力、混凝土的运输能力、混凝土的泵送能力,一般情况下,这三者是相互配套的、协调的,而且一般情况下,三者之间的关系为:混凝土搅拌站生产能力﹥混凝土的运输能力﹥混凝土的泵送能力,尤其在使用商品混凝土时。
所以,混凝土浇筑速度一般按照输送泵的能力来确定。
混凝土泵的实际平均输出量,可根据混凝土泵的最大输出量、配管情况和作业效率,按下式计算:Q1=Qmax×α1×η式中 Q1 ——每台混凝土泵的实际平均输出量(m3/h);Qmax——每台混凝土泵的最大输出量(m3/h);α1 ——配管条件系数。
可取~;η——作业效率。
根据混凝土搅拌运输车向混凝土泵供料的间断时间、拆装混凝土输送管和布料停歇等情况,可取~。
作为模板设计荷载取值,宜考虑最不利工况,也即各种参数宜取高值,这样混凝土泵的实际平均输出量计算公式就为:Q1=混凝土浇筑速度就为:式中:V——混凝土浇筑速度(m/h);A ——结构截面积(m2)。
设计模板和支撑时,首先对荷载的选择应特别慎重,一定要考虑最不利工况,否则,即使模板、支撑的设计计算有多么详细、合理,仍然隐含了巨大的安全隐患。
此外,模板、支撑的设计一定要注明施工条件,即混凝土的初凝时间和混凝土的浇筑速度,施工过程要严格控制,方可保证施工安全。
4 荷载设计与其说模板设计,不如说荷载设计,因为大多数情况下,模板是现成的,或者由于经济的、便于操作等的原因,模板的设计重量是有限度的,也即模板的承载能力是有限度的。
所以,在施工现场,尤其是利用既有模板的情况下,进行荷载设计比模板设计更加合理和有效。
现以举例说明这一情况。
钢模板采用P3015(1500mm×300mm),内钢楞采用2根Φ51×钢管,间距为750mm,外钢楞采用同一规格钢管,间距为900mm,对拉螺栓采用M18,间距为750mm。
钢材抗拉强度设计值:Q235钢为215N/mm2,普通螺栓为170N/mm2;钢模的允许挠度:面板为,钢楞为3mm。
按模板强度确定的最大侧压力(1)计算简图(2)按模板强度确定的最大侧压力P3015钢模板(δ=)截面特征,Ixj=×104mm4,Wxj=×103mm3。