有限元与有限差分法基本
有限元法与有限差分法的主要区别
有限元法与有限差分法的主要区别有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限元素法有限体积法有限差分法有限容积法的区别
1.1 概念有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
1.2 差分格式(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。
(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
1.3 构造差分的方法构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2. FEM2.1 概述有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
2.2 原理有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限差分法和有限元法的区别
有限差分法和有限元法的区别
有限差分法是一类数值分析方法,它是基于差分方程来解决一定类别
的偏微分方程或积分方程,以求得近似解。
它将偏微分方程抽象成一系列
分布在有限区域内的相连点上的离散数学模型,从而使得本来不可解的微
分方程可以近似地变成可解的差分公式,而实际上只是用有限个离散量来
代替连续量,实现状态的模拟和描述。
有限元法也称为有限元分析,是解决偏微分方程的数值计算方法之一。
有限元法将一个定义在有界区域上的连续域分解为有限个单元,并建立一
种合理的元素模型,用此模型描述物体的本构特性和它们在边界处的分布,并以此为基础通过拉格朗日乘子法解决局部有限元素方程,组合解得整体
有限元素解,从而解决问题。
两者的主要区别在于:1、求解的机制不同,有限差分法是将偏微分
方程转化为离散数学模型,而有限元法是将定义在有界区域上的连续域分
解为有限个单元,然后通过拉格朗日乘子法解决局部有限元素方程;2、
精度不同,有限差分法的精度取决于离散化的程度,而有限元法依赖于所
建立模型的准确性,有限元法的精度普遍比有限差分法要高;3、应用范
围不同,有限差分法能处理一些更加复杂的问题,而有限元法只能处理。
有限元、有限差分法
有限元法原理将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。
从而使一个连续的无限自由度问题变成离散的有限自由度问题。
运用步骤步骤1:剖分:将待解区域进行分割,离散成有限个元素的集合.元素(单元)的形状原则上是任意的.二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等.每个单元的顶点称为节点(或结点).步骤2:单元分析:进行分片插值,即将分割单元中任意点的未知函数用该分割单元中形状函数及离散网格点上的函数值展开,即建立一个线性插值函数步骤3:求解近似变分方程用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。
有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。
每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。
根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。
有限元法已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调、不协调、混合、杂交、拟协调元等。
有限元法十分有效、通用性强、应用广泛,已有许多大型或专用程序系统供工程设计使用。
结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。
有限差分法the Finite Difference Method微分方程和积分微分方程数值解的方法。
基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
有限元与有限差分法基础
1.连续体离散化
•
连续体:是指所求解的对象(如物体或结构)。
•
离散化(划分网格或网络化):是将所求解的对象划
分为有限
• 个具有规则形状的微小块体,把每个微小块体称为单元, 相邻两个
• 单元之间只通过若干点互相连接,每个连接点称为节点。
•
相邻单元只在节点处连接,载荷也只通过节点在各单
元之间传
• 递,这些有限个单元的集合体,即原来的连续体。
“ 有限元法 ” 这一名称是1960年美国的克拉夫 (Clough,R.W.)在一篇题为 “平面应力分析的有限元 法” 论文中首先使用。此后,有限元法的应用得到蓬勃 发展。
到20世纪80年代初期国际上较大型的结构分析有限元 通用程序多达几百种,从而为工程应用提供了方便条件。 由于有限元通用程序使用方便,计算精度高,其计算结果 已成为各类工业产品设计和性能分析的可靠依据。
第二讲 有限元与有限差分法基础
• CAE的工具: • 有限元法(FEM)、有限差分法(FDM)、边界元法
(BEM)、有限体积法(FVM)、无网格法等等 • 在材料成形的CAE中主要使用的是有限元法和有限差分法
1
“ 有限元法 ” 的基本思想早在20世纪40年代初期就 有人提出,但真正用于工程中则是电子计算机出现以后。
自由度
位移 温度 电位 压力 磁位
7
节点(node)和 单元(element) 网格(grid)
载荷
节点: 空间中的坐标位置,具有一定自由度
和存在相互物理作用。
单元: 一组节点自由度间相互作用的数值、 矩阵描述(称为刚度或系数矩阵)。单元有线 、面或实体以及二维或三维的单元等种类。
有限元模型由一些简单形状的单元组成,单元之间通 过节点连接,并承受一定载荷。
有限元法与有限差分法的主要区别
有限差分方法()是计算机数值模拟最早采用地方法,至今仍被广泛运用.该方法将求解域划分为差分网格,用有限个网格节点代替连续地求解域.有限差分法以级数展开等方法,把控制方程中地导数用网格节点上地函数值地差商代替进行离散,从而建立以网格节点上地值为未知数地代数方程组.该方法是一种直接将微分问题变为代数问题地近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟地数值方法.对于有限差分格式,从格式地精度来划分,有一阶格式、二阶格式和高阶格式.从差分地空间形式来考虑,可分为中心格式和逆风格式.考虑时间因子地影响,差分格式还可以分为显格式、隐格式、显隐交替格式等.目前常见地差分格式,主要是上述几种形式地组合,不同地组合构成不同地差分格式.差分方法主要适用于有结构网格,网格地步长一般根据实际地形地情况和柯朗稳定条件来决定.构造差分地方法有多种形式,目前主要采用地是泰勒级数展开方法.其基本地差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度.通过对时间和空间这几种不同差分格式地组合,可以组合成不同地差分计算格式.有限元方法地基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠地单元,在每个单元内,选择一些合适地节点作为求解函数地插值点,将微分方程中地变量改写成由各变量或其导数地节点值与所选用地插值函数组成地线性表达式,借助于变分原理或加权余量法,将微分方程离散求解.采用不同地权函数和插值函数形式,便构成不同地有限元方法.有限元方法最早应用于结构力学,后来随着计算机地发展慢慢用于流体力学地数值模拟.在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接地单元,在每个单元内选择基函数,用单元基函数地线形组合来逼近单元中地真解,整个计算域上总体地基函数可以看为由每个单元基函数组成地,则整个计算域内地解可以看作是由所有单元上地近似解构成.在河道数值模拟中,常见地有限元计算方法是由变分法和加权余量法发展而来地里兹法和伽辽金法、最小二乘法等.根据所采用地权函数和插值函数地不同,有限元方法也分为多种计算格式.从权函数地选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格地形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数地精度来划分,又分为线性插值函数和高次插值函数等.不同地组合同样构成不同地有限元计算格式.对于权函数,伽辽金()法是将权函数取为逼近函数中地基函数;最小二乘法是令权函数等于余量本身,而内积地极小值则为对代求系数地平方误差最小;在配置法中,先在计算域内选取个配置点.令近似解在选定地个配置点上严格满足微分方程,即在配置点上令方程余量为.插值函数一般由不同次幂地多项式组成,但也有采用三角函数或指数函数组成地乘积表示,但最常用地多项式插值函数.有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日()多项式插值;另一种不仅要求插值多项式本身,还要求它地导数值在插值点取已知值,称为哈密特()多项式插值.单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等.常采用地无因次坐标是一种局部坐标系,它地定义取决于单元地几何形状,一维看作长度比,二维看作面积比,三维看作体积比.在二维有限元中,三角形单元应用地最早,近来四边形等参元地应用也越来越广.对于二维三角形和四边形电源单元,常采用地插值函数为有插值直角坐标系中地线性插值函数及二阶或更高阶插值函数、面积坐标系中地线性插值函数、二阶或更高阶插值函数等. 对于有限元方法,其基本思路和解题步骤可归纳为()建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价地积分表达式,这是有限元法地出发点.()区域单元剖分,根据求解区域地形状及实际问题地物理特点,将区域剖分为若干相互连接、不重叠地单元.区域单元划分是采用有限元方法地前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间地关系之外,还要表示节点地位置坐标,同时还需要列出自然边界和本质边界地节点序号和相应地边界值.()确定单元基函数,根据单元中节点数目及对近似解精度地要求,选择满足一定插值条件地插值函数作为单元基函数.有限元方法中地基函数是在单元中选取地,由于各单元具有规则地几何形状,在选取基函数时可遵循一定地法则.()单元分析:将各个单元中地求解函数用单元基函数地线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点地参数值)地代数方程组,称为单元有限元方程.()总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程.()边界条件地处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件).对于自然边界条件,一般在积分表达式中可自动得到满足.对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足. ()解有限元方程:根据边界条件修正地总体有限元方程组,是含所有待定未知量地封闭方程组,采用适当地数值计算方法求解,可求得各节点地函数值.有限体积法()又称为控制体积法.其基本思路是:将计算区域划分为一系列不重复地控制体积,并使每个网格点周围有一个控制体积;将待解地微分方程对每一个控制体积积分,便得出一组离散方程.其中地未知数是网格点上地因变量地数值.为了求出控制体积地积分,必须假定值在网格点之间地变化规律,即假设值地分段地分布地分布剖面.从积分区域地选取方法看来,有限体积法属于加权剩余法中地子区域法;从未知解地近似方法看来,有限体积法属于采用局部近似地离散方法.简言之,子区域法属于有限体积发地基本方法.有限体积法地基本思路易于理解,并能得出直接地物理解释.离散方程地物理意义,就是因变量在有限大小地控制体积中地守恒原理,如同微分方程表示因变量在无限小地控制体积中地守恒原理一样. 限体积法得出地离散方程,要求因变量地积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足.这是有限体积法吸引人地优点.有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确地积分守恒.就离散方法而言,有限体积法可视作有限单元法和有限差分法地中间物.有限单元法必须假定值在网格点之间地变化规律(既插值函数),并将其作为近似解.有限差分法只考虑网格点上地数值而不考虑值在网格点之间如何变化.有限体积法只寻求地结点值,这与有限差分法相类似;但有限体积法在寻求控制体积地积分时,必须假定值在网格点之间地分布,这又与有限单元法相类似.在有限体积法中,插值函数只用于计算控制体积地积分,得出离散方程之后,便可忘掉插值函数;如果需要地话,可以对微分方程中不同地项采取不同地插值函数.。
偏微分方程数值解
2.1 直接差分法
(1) 取 N+1 个节点将 I =[a, b] 分成 N 个小区间:
a x0 x1 L xi L xN b
I i : xi 1 x xi , i 1, 2, L , N
hi xi xi 1 , h max hi .
i
于是,得到 I 的一个网格剖分.
(2) 对 I = [a, b] 进行对偶剖分 取 xi 1 , xi 的中点
x
1 i 2
1 xi 1 xi , 2
i 1, 2,
,N
称为半整数点,则
a x0 x1 x3
2 2
x
1 N 2
xN b
构成 I 的一个对偶剖分. (3) 将方程 (2.1) 在内点 xi 处离散化.
d2 du hi 1 hi dx 2 ( p dx ) 12 i
d 3u 2 p O ( h ) dx3 i
于是得逼近方程 (2.1)~(2.2) 的差分方程:
ui 1 ui ui ui 1 2 p 1 Lhui pi 1 i h h h h i i 1 i 1 i 2 2 i i 1, 2, ui 1 ui qiui fi , hi hi 1 u0 , uN
1 i 2
) W (x
1 i 2
)
x
i
x
1 2
i
1 2
qudx
x
f dx
i
1 2
du W ( x) , dx p ( x)
沿 [ xi 1 , xi ] 积分,得
有限差分法和有限元法
有限差分法和有限元法
有限差分法(Finite Difference Method)和有限元法(Finite Element Method)是两种常用的数值计算方法,用于求解偏微分方程的数值解。
有限差分法是通过将求解区域离散化为网格,然后在各个网格节点处用差分逼近偏微分方程中的导数项,将偏微分方程转化为代数方程组。
通过求解这个方程组,可以得到离散节点上的数值解。
有限差分法适用于一维、二维或三维的问题,可用来处理线性或非线性、稳定或非稳定的偏微分方程。
有限差分法的优点是简单易实现,容易理解和计算,但是对于复杂的几何形状和边界条件,离散网格的选择可能会对精度和计算结果产生较大的影响。
有限元法则是通过将求解区域划分为互不重叠的有限元,每个有限元内部采用局部函数近似原方程,然后将所有有限元的近似解拼接在一起,形成整个求解区域上的近似解。
有限元法通常在每个有限元上构造基函数,通过求解代数方程组确定基函数的系数,从而得到整个求解区域上的数值解。
有限元法适用于一维、二维或三维的问题,能够处理各种几何形状和边界条件,适用范围更广。
有限元法的优点是对复杂几何形状的适应性好,精度高,但是相对于有限差分法而言,复杂度较高,需要更多的计算量和计算时间。
总体来说,有限差分法更适用于简单的几何形状和边界条件,而有限元法更适用于复杂的几何形状和边界条件。
两种方法在
实际的工程和科学计算中都有广泛的应用,选择哪种方法取决于具体问题的性质和求解的要求。
有限元方法与有限差分方法异同点
第一个优点是有限差分法的精度仅仅依赖于完备性的程度,或者,因此对保证收敛来说除完备性条件外无需其它条件。
相反地,有限元法则要求满足完备性条件和某种补充条件。
有限差分法的第二个优点在于,离散误差的上界较之在有限元精度分析中作者通常使用逼近定理给出的离散误差的上界要低。
有限元
有限元方法的基础是变分原理,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式 ,借助于变分原理或加权余量法,将微分方程离散求解。
有限差分
将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
1.三种方法都是通过离散的方式求解微分方程,但离散方式不同,比如有限差分是用差分的问题不同,比如有限差分法适应线性的区域规则的问题,而有限元法可计算非线性不规则区域问题;
3.三种方法都可以做到高精度。
1。有限元法的相对优点和下述事实有关:在泛函中所包含的函数,在有限差分法的情况是与微分方程中所包含的函数导数的阶(2p)相同,而在有限元法的情况则是这种阶的一半。
有限差分 有限元 有限体积
有限差分有限元有限体积有限差分、有限元和有限体积是数值计算方法中常用的三种离散化方法。
它们的核心思想是将微分方程式转化为一系列有限的点上的代数方程式,将连续问题转化为离散问题。
一、有限差分法有限差分法是将微分方程的导数用差商来逼近的方法,用差商来代替微分运算。
用区间的两个端点上的函数值之差来代替区间内函数导数的平均值。
在连续的区间上进行近似,大大减小了计算量。
有限差分法是一种较为简单的数值解法,适用于规则网格的微分方程求解,被广泛应用在流体力学、结构力学、电场问题等领域中。
二、有限元法有限元法是将求解域分成若干个划分元,然后在每个单元内用多项式函数逼近问题的解,最终利用点、线、面元件的连接关系来求解整体问题的一种方法。
该方法可以处理复杂的几何形状和物理变化,适用于非常规的边界条件和材料特性,解决超过几百万自由度的三维大规模问题。
三、有限体积法有限体积法是将求解域分成若干个控制体,对质量、能量、动量等守恒量在各个控制体上进行积分,从而推导出控制体内分布的方程。
该方法以区域的体积分为基础,在各个控制体内求解守恒方程。
该方法适用于复杂的多组分、多相流动的领域以及非稳态或非线性问题。
无论是有限差分、有限元还是有限体积法,其核心思想都是通过把连续的微分方程式离散求解,从而转化为一系列有限的点上的代数方程式,解决了连续问题转化为离散问题的过程,从而通过离散求解代数方程式来得到问题的解。
这三种数值计算方法的应用使科学计算得以更加高效、精确地进行,对现代计算、科学技术的推进起到了巨大的贡献。
计算电磁场理论中的有限差分法与有限元法
计算电磁场理论中的有限差分法与有限元法电磁场理论是电磁学的重要组成部分,研究电磁场的分布和变化规律对于解决实际问题具有重要意义。
在计算电磁场中,有限差分法和有限元法是两种常用的数值计算方法。
本文将从理论原理、应用范围和优缺点等方面对这两种方法进行探讨。
有限差分法是一种将连续问题离散化的方法,通过将连续的电磁场分割成网格,然后在每个网格上进行离散计算。
这种方法的基本思想是将微分方程转化为差分方程,然后利用差分方程进行求解。
有限差分法的优点是简单易懂,计算过程直观,适用于各种电磁场问题的求解。
然而,由于差分法中的网格离散化会引入一定的误差,所以在计算精度上存在一定的限制。
与有限差分法相比,有限元法是一种更加精确的数值计算方法。
有限元法将电磁场问题的求解区域划分为有限个小单元,然后在每个小单元上建立适当的插值函数,通过求解代数方程组得到电磁场的近似解。
有限元法的优点是可以处理复杂的几何形状和材料特性,适用于各种边界条件和非线性问题。
然而,有限元法的计算过程相对较为复杂,需要对问题进行合理的离散化和网格划分,同时对于大规模问题,计算量也较大。
在实际应用中,根据具体问题的特点和求解要求,选择合适的数值计算方法是十分重要的。
对于简单的电磁场问题,如一维导线的电流分布,可以选择有限差分法进行求解。
而对于复杂的电磁场问题,如三维空间中的电磁波传播,有限元法更适合。
此外,有限差分法和有限元法还可以结合使用,通过将两种方法的优点相结合,提高计算精度和效率。
除了理论原理和应用范围,有限差分法和有限元法的优缺点也值得关注。
有限差分法的优点是简单易懂,计算过程直观,而且对于一些简单问题可以得到较为准确的结果。
然而,由于差分法中的网格离散化会引入一定的误差,对于复杂问题的求解精度有限。
相比之下,有限元法可以处理复杂的几何形状和材料特性,适用于各种边界条件和非线性问题,计算精度较高。
然而,有限元法的计算过程相对复杂,需要对问题进行合理的离散化和网格划分,同时对于大规模问题计算量较大。
数值模拟的理论与方法
数值模拟的理论与方法在现代科学研究中,数值模拟已经成为一种不可替代的工具。
它可以利用计算机对物理、化学、生物等领域的各种现象进行模拟和预测,为科研人员提供重要的理论分析和决策依据。
本文将介绍数值模拟的理论和方法,并讨论其在不同领域中的应用。
一、数值模拟的理论基础数值模拟的理论基础主要包括有限元方法(FEM)、有限差分法(FDM)、谱方法(SPM)等。
有限元方法是一种常用的数值模拟方法,其原理是将实际问题转换为一系列有限元,建立有限元方程组求解得到解。
有限元方法广泛应用于工程、力学、材料等领域。
有限差分法是另一种广泛运用的数值模拟方法,其原理是将空间分为网格,利用差分公式近似求出偏微分方程的解。
谱方法是一种利用特殊函数的展开式将实际问题离散化的方法,具有较高的精度和收敛速度。
二、数值模拟的方法数值模拟的方法可以分为建模、网格生成、求解和后处理等几个步骤。
建模是数值模拟的第一步,其目的是将实际问题转化为数学模型。
建模涉及到问题的边界条件、初始条件等,需要根据实际问题进行选择和确定。
网格生成是指将数学模型离散化成网格,目的是将实际问题转化为数值计算问题。
网格生成的好坏直接影响数值模拟结果的精度和效率。
常用的网格生成方法有三角形网格生成法、四面体网格生成法等。
求解是指根据前面所述的数学模型进行计算,求解得到物理量和数学量等的数值解。
求解过程中需要根据问题的复杂程度选择合适的数值方法,比如前文提到的有限元方法、有限差分法等。
后处理是将求解得到的数值解转换为实际问题的物理量,进行分析和预测的过程。
后处理的方法包括时间序列分析、等值线分析、谱分析等。
三、数值模拟的应用数值模拟在各个领域中都有着广泛的应用。
在物理学中,康普顿散射、光子物理、量子场论等都需要利用数值模拟方法进行研究。
在化学中,分子模拟、反应动力学等也是利用数值模拟方法进行研究的核心手段。
在生物医学中,数值模拟可以帮助研究心血管疾病、肿瘤治疗等问题。
有限元法 有限差分法 有限体积法的区别
三者各有所长:有限差分法:直观,理论成熟,精度可选。
但是不规则区域处理繁琐,虽然网格生成可以使FDM应用于不规则区域,但是对区域的连续性等要求较严。
使用FDM的好处在于易于编程,易于并行。
有限元方法:适合处理复杂区域,精度可选。
缺憾在于内存和计算量巨大。
并行不如FDM和FVM直观。
不过FEM的并行是当前和将来应用的一个不错的方向。
有限容积法:适于流体计算,可以应用于不规则网格,适于并行。
但是精度基本上只能是二阶了。
FVM的优势正逐渐显现出来,FVM在应力应变,高频电磁场方面的特殊的优点正在被人重视。
比较一下:有限容积法和有限差分法:一个区别就是有限容积法的截差是不定的(跟取的相邻点有关,积分方法离散方程),而有限差分就可以直接知道截差(微分方法离散方程)。
有限容积法和有限差分法最本质的区别是,前者是根据积分方程推导出来的(即对每个控制体积分),后者直接根据微分方程推导出来,所以前者的精度不但取决于积分时的精度,还取决与对导数处理的精度,一般有限容积法总体的精度为二阶,因为积分的精度限制,当然有限容积法对于守恒型方程导出的离散方程可以保持守恒型;而后者直接由微分方程导出,不涉及积分过程,各种导数的微分借助Taylor展开,直接写出离散方程,当然不一定有守恒性,精度也和有限容积法不一样,一般有限差分法可以使精度更高一些。
当然二者有联系,有时导出的形式一样,但是概念上是不一样的。
至于有限容积法和有限元相比,有限元在复杂区域的适应性对有限容积是毫无优势可言的,至于有限容积的守恒性,物理概念明显的这些特点,有限元是没有的。
目前有限容积在精度方面与有限元法有些差距。
有限元方法比有限差分优越的方面主要在能适应不规则区域,但是这只是指的是传统意义上的有限差分,现在发展的一些有限差分已经能适应不规则区域。
对于椭圆型方程,如果区域规则,传统有限差分和有限元都能解,在求解效率,这里主要指编程负责度和收敛快慢、内存需要,肯定有限差分有优势。
时域有限差分有限元
时域有限差分有限元
时域有限差分(FDTD)和有限元法(FEM)是两种常用的数值模
拟方法,用于求解时域中的波动现象和电磁场问题。
它们在工程学、物理学和地球科学等领域都有广泛的应用。
首先,让我们从时域有限差分(FDTD)方法开始。
FDTD方法是
一种数值求解Maxwell方程组的离散化方法,它将时域Maxwell方
程组转化为差分形式,通过在空间和时间上进行离散化,将连续的
时域问题转化为离散的网格问题。
FDTD方法的优点包括易于理解和
实现、适用于各种介质和边界条件,能够模拟宽频段的波动现象等。
在电磁场、光学、天线设计等领域得到了广泛的应用。
其次,让我们来看看有限元法(FEM)。
有限元法是一种广泛应
用的数值分析方法,用于求解偏微分方程和变分问题。
在时域中,
有限元法可以用于求解Maxwell方程组、热传导方程等问题。
有限
元法将求解区域分割成有限数量的单元,通过建立单元之间的关系,建立整个系统的离散方程,然后通过数值方法求解得到近似解。
有
限元法的优点包括适用于复杂几何形状、能够处理各向异性材料、
可以考虑不同类型的边界条件等。
综上所述,时域有限差分和有限元法都是重要的数值模拟方法,在不同的领域有着广泛的应用。
它们各自有着特点和适用范围,选
择合适的方法取决于具体的求解问题和模拟需求。
在工程实践中,
通常需要根据具体情况来选择合适的数值模拟方法,以获得准确的
仿真结果。
数值计算中的有限元和有限差分方法
数值计算中的有限元和有限差分方法数值计算是一种利用数字来求解数学问题的技术。
在各个领域中,数值计算都被广泛应用,尤其是在工程计算中具有重要的地位。
有限元和有限差分方法是数值计算的两个重要工具,本文将介绍它们的原理、优缺点以及应用。
一、有限元方法有限元方法(Finite Element Method,简称FEM)是一种适用于工程力学、流体力学、热传导等问题的数值计算方法。
首先将问题区域离散化成若干个小区域,每个小区域称为有限元;然后通过对每个有限元的变形、应力和应变的计算,得到整个问题的解。
有限元方法的基本原理是建立一个局部变形和应力的数学模型,借助于位移和应力的离散函数来代表局部信息,并将不连续的位移和应力函数在结点处相互连接,形成一个连续作用的整体模型,从而求解整个问题的解。
通过该方法可以精确地求解各种材料构件的形变、应变以及应力分布等问题,并且具有灵活性和广泛性。
有限元方法的优点是求解精度较高,分析结果可靠。
可以分析复杂的问题以及非线性问题,并可进行多物理场耦合分析。
此外,还可以基于现有的有限元软件进行建模分析,避免重复造轮子。
然而,它也存在限制,例如建模时需要对问题进行适当的假设,并且需要对材料力学性质等信息有一定的了解。
此外,考虑更复杂的物理现象时,需要使用更高阶的元来表示求解方程,这会导致计算量增加,计算时间增长。
二、有限差分法有限差分方法(Finite Difference Method,简称FDM)是一种常用的求解微分方程的数值计算方法。
该方法将微分方程中的导数用有限差分的形式表示出来,从而将连续问题离散化成为一个离散点问题,并通过计算在各个离散点上函数值的差分,从而得到微分方程的数值解。
有限差分方法的基本思想是将连续函数转化为离散函数,然后在离散点上近似求解微分方程。
该方法简单易懂,计算量小,代码实现相对容易。
因此,将微分方程离散化是数值计算中经常采用的方法。
与有限元方法相比,有限差分方法在处理一些简单问题的时候表现更好,计算速度快,精度也有保障。
有限差分法与有限元法对比及FLAC3D应用
FLAC3D不像有限元软 件,它在建模过程中 就划分了网格,不需 要再重新划分网格。 一般在需要分析的区 域网格建的密一点, 这样会提高计算的精 度。 在建模过程中,在生成相邻的两个网格时,两个网格的单元数必须要相 同,要不然就会造成网格的不连续性
定义边界条件,材料特性 针对三维模型,固定x=0和x=100处x向位移,y=0和y=60处y向位移,模型底 面固定x,y,z三个方向位移。 土体的本构关系定义为mohr-coulomb模型,针对此模型需要定义的参 数分别为体积模量K,剪切模量G,摩擦角,粘聚力c,抗拉强度,剪胀角。
命令栏
分析问题过程
建立网格
初始条件 前处理 边界条件
初始应力平衡
外荷载 求解 后处理
实例分析
三维加筋土路堤处治不均匀 沉降模型 在不同地基路段的结合处, 地基刚度差异较大,经常产 生差异沉降。地基的这种差 异沉降将加剧路面结构的破 坏
土层的参数: 模型 软弱土层 硬粘土层 路堤土
ρ(kg/m^3) C(kpa) ϕ (o) E(kpa)
在FLAC3D中,有一个网格形状库,提供了12种最基本的原始网格形状。有矩形网 格(Brick)、退化矩形网格 (Degenerate Brick)、形网格(Wedge) (Pyramid)、四面体形 网格(Tetrahedron)、圆柱体形网格(Cylinder)、、金字塔形网格矩形体外环绕放射状 网格(Radial Brick)、平行六面体外环绕放射状网格(Radial Tunnel)、圆柱体外环绕放 射状网格(Radial Cylinder)、柱形壳体网格(Cylindrical Shell)、交叉圆柱体网格 (Cylinder Intersection)、交叉平行六面体网格(Tunnel Intersection)。通过这12种基本 的模型就可以组合成复杂的岩土工程的模型。 FLAC3D的生成网格用generate zone命令 FLAC3D的模型定义采用model命令,材料参数用property命令 FLAC3D的边界条件,初始条件采用fix,free,initial命令 FLAC3D的计算求解采用step,solve,set mech命令 FLAC3D的施加外荷载采用apply命令
有限元、边界元、有限差分法的区别
有限元法、边界元法、有限差分法的区别和各自的优点请问:有限元法、边界元法、有限差分法等方法有哪些区别和各自的优点?尤其是在声学方面。
谢谢!网格的跑分上不同,差分要求模型规则,有限元可以是任意不规则模型,FEM: irregular grid-> easy to describe complex shape, hard in mesh generationFDM: regular mesh -> easy in grid generation, hard to describe complex shape=> less accurate than FEMBEM: irregular mesh in boundary -> mesh generation much easier than that of FEM. need much less computation resource than the above two. BUT need basic solution (Green function) at the boundary.对于这个基础问题一定要搞清楚,不然有限元就无从谈起。
有限元法的优点是适应性强,自由边界条件自动满足,但是不适合计算大尺度,对于透射边界需单独处理,单元太多的模型,计算速度慢边界元法的优点是域内二维问题化成了边界一维问题来处理,自动满足透射边界,但是构造G函数非常麻烦有限差分法适合大尺度(如地震波),方法简单,计算速度快,但是边界处理太麻烦.:) :( :D :'([quote]原帖由[i]jonewore[/i] 于2007-10-1 20:31 发表[url=/forum/redirect.php?goto=findpost&pid=1152036&ptid=7785 04][img]/forum/images/common/back.gif[/img][/url]有限元法的优点是适应性强,自由边界条件自动满足,但是不适合计算大尺度,对于透射边界需单独处理,单元太多的模型,计算速度慢边界元法的优点是域内二维问题化成了边界一维问题来处理,自动满足透射边界,但是构造 ... [/quote]你说自动满足透射边界是什么意思?是说边界的反射波可以完全吸收吗(不用再使用人工边界?)?能不能详细说一下呢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二 维 问 题
2020/8/8
ε
ε
平 面xxyzyzxzyxyzxxy应yxy力和wvuzxyux平wuvxzyuvxy面wuyvxzvy应变000xzy状0xy态000xzy
0
0
0y0zuvwuv
Lu
Lu
xy
x
20/162
线弹性问题几何方程—二维问题
二
维
问
ε
ε
题
2020/8/8
轴 对xxyzyzrrxzzyxyzzrz称状态wvuzxyuzwuvxzyurwuwrzuyvxzwr
2020/8/8
3/162
有限元法的基本思想
2020/8/8
4/162
有限元法的基本思想
2020/8/8
5/162
有限元法的基本思想
2020/8/8
6/162
有限元法的基本思想
2020/8/8
7/162
有限元法的基本思想
离散为单元网格的冲压件仍然要保证是一 个连续体,单元与单元之间没有裂缝、不 能重叠,所有单元通过单元节点相互关联 着
部随体坐标系。适合于薄壳单元和中厚壳单
202元0/8/8
42/162
常用单元模型
准三维空间单元
② 壳理论单元 由空间壳理论严格构造的壳单元。适合 于薄壳单元和中厚壳单元
③ 退化单元
由三维实体单元退化成的壳单元。只适
合于中厚壳单元
2020/8/8
43/162
单元模型构造
有限元法的基本思想
通过单元分片近似,在每个单元内假设 近似函数来分片表示系统的场函数
线弹性问题本构方程—三维问题
三维问题
1
0
1
0
σ D ε
De
E
0
(1 )(1 2 )
0
1e
0
0
1 2
2
0 0 0
0
0
0
0
0
E20为20/8弹/8 性模量;为泊松比
0 0 0 0
1 2
2 0
0
0
0
0
0
1 2
2
23/162
线弹性问题本构方程—平面应力
二维问题
平面应力状态
4
4节点四边形
双线性单元
2020/8/8
1
3 2 35/162
常用单元模型
二维单元 8节点四边 形二次单元
12节点四边 形三次单元
2020/8/8
4 73
8
6
1
2
5
4 10 9 3
11
8
12
7
1
2
56
36/162
常用单元模型
三维单元 4节点四面体 线性单元
4
1
3
2020/8/8
2
10节点四面 体二次单元
20W20e/8为/8 A弹u性T P体dA所受Vu的TG外dV力功
14/162
离散化过程
为弹性体的应变 为弹性体的应力
u为弹性体的可容位移
弹性体处于平衡状态时,其势能应为最小
P
பைடு நூலகம் V
ε T σ dV
uT PdA
A
uTGdV 0
V
2020/8/8
15/162
离散化过程
单元插值关系 u Nue N为单元形函数矩阵 ue 单元节点自由度向量
2020/8/8 45/162
单元模型构造方法
整体坐标系法 局部坐标系法
Lagrange插值方法 Hermite插值方法
2020/8/8
46/162
单元模型构造方法
2节点线单元
1. 假设插值多项式
u(x) a0 a1x
u1 u
u2
1
2
x1 x
x2
ox
2. 利用节点值求 a0 和 a1
为什么要建立单元局部随体坐标系 ?
1. 简化分析问题的复杂程度。
2. 在局部坐标系中,空间桁架的每根杆每变
成了一维2节点线单元
2020/8/8
39/162
常用单元模型
准三维空间单元
框架单元
三维梁单元+一维2节点线单元+单元局部随体坐标系
框架单元的特点 两端都是刚性联结 可以要承受拉压、弯曲、扭转3种变形模式
0
zr
rr
zz
zr
rr
rzz
z
zr
rr
zz
zr
29/162
线弹性问题本构方程—轴对称
轴对称状态
xrrx
xrrx
rr zz zr
D
e (1 (1
)E(1)E(2100rxyyz)zzyyz21)01D0e1000rxyyz1zzyy
1 1 0 0
4
8
10
1 79 3
5
6
2
37/162
常用单元模型
三维单元
8节点六面 体线性单元
8
5 6
7
1
4
2020/8/8
3
2
20节点六面 体二次单元
5 17
1
16 8 13 20
15
12
6 14 18 4 11
7 19
9 2 10 338/162
常用单元模型
准三维空间单元
桁架单元 一维2节点线单元+单元局部随体坐标系
zz 0 xz 0 yz 0
xz 0
xx
yy
zz xy
yz
2020zx/8/8
xx
y
y
0
xy
0 0
xx yy
x
y
xx
yy
zz xy
y
z
zx
yz 0
xx
yy
zz
xy
24/162
线弹性问题本构方程—平面应力
平面应力状态
xx
yy
zz xy
yz
2020zx/8/8
xx
y
y
zz xy
0 0
xx
y
y
zz
xy
xx
yy
zz xy
y
z
zx
yz 0
xx yy
xy
26/162
线弹性问题本构方程—平面应变
平面应变状态
xx
xx
xyDxy e
xy
2020/8/8
12/162
有限元法的基本思想
位移法基本过程
1)离散化过程
2)单元平衡方程组装过程 3)约束处理过程
4)方程组求解过程
5)应变、应力回代过程
2020/8/8
13/162
离散化过程
P
最小势能原理
弹性体的势能 p
A V
G
p Wi We
弹性体
W
i
为1弹性εT体σ d变V形后所具有的内能 2V
32/162
常用单元模型
一维单元
2节点线单元
1
3节点线单元
1
梁单元
1
2020/8/8
2
3 2
2
33/162
常用单元模型
二维单元
3节点三角形
线性单元
1
3 2
6节点三角形 二次单元
2020/8/8
3
6
5
1
2
4
34/162
常用单元模型
二维单元
10节点三角 形三次单元
8 9
1 4
3
7 10 6
2 5
选择近似函数
简单、实用的原则
在有限元法中,近似函数称为插值函数
2020/8/8
44/162
单元模型构造
插值函数
一般都采用多项式函数,主要原因是:
采用多项式插值函数比较容易推导单元平衡 方程,特别是易于进行微分和积分运算。
随着多项式函数阶次的增加,可以提高有限 元法的计算精度。从理论上说,无限提高多 项式的阶数,可以求得系统的精确解。
有限元法的基本思想
基本思想
通过在单元内假设不同的插值函数,建立不同 的单元模型,适应各种各样的变形模式和受力 模式
F
F
2020/8/8
X
X
11/162
有限元法的基本思想
有限元法分类
1)位移法:基于最小势能原理或虚功原理 2)力法: 基于最小余能原理 3)杂交法:基于修正余能原理 4)混合法:基于Reissner变分原理
2020/8/8
B 称为应变矩阵 B LN
k 称为单元刚度矩阵 k BT De Bdv v
2020f/8/称8 为单元载荷向量
f
N T Pda
a
N
v
TG1d7/v162
离散化过程
单元刚度矩阵的特性
对称性 奇异性 主元恒正且对角占优
2020/8/8
18/162
线弹性问题几何方程—三维问题
三 维 问 题
xx
xx
Dxyexy xy
yy
11E0Exz2zy
0yz
21010D10e100x1yyzzyyz1002002
xx yy xy
2020/8/8
0zx
0zx
25/162
线弹性问题本构方程—平面应变
二维问题
平面应变状态
zz 0 xz 0 yz 0 xz 0
x
0
0
y
0 z
0
y
r
10 r 0x