上海中考数学新定义类型题专项训练123
上海中考数学新定义类型题专项训练123
![上海中考数学新定义类型题专项训练123](https://img.taocdn.com/s3/m/acdc020fa2161479171128fa.png)
中考阅读理解类新定义类题型专项姓名_______________[代数类]1.(本题10分)设A 是含有根式的代数式,若存在另一个不恒等于零的代数式B ,使乘积AB 不含根式,则称B 为A 的共扼根式。
(1)设A ,写出它的一个共轭根式:B =; (2)对于(1)中的A 和B ,计算:2211A B A B+++2. 将关于x 的一元二次方程02=++q px x 变形为q px x --=2,就可将2x 表示为关于x的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”.已知012=--x x ,可用“降次法”求得134--x x 的值是3. 下表是六年级学生小林的学期成绩单,由于不小心蘸上了墨水,他的数学平时成绩看不到,小林去问了数学课代表,课代表说他也不知道小林的平时成绩,但他说:“我知道老师核算学期总成绩的方法,就是期中成绩与平时成绩各占30%,而期末成绩占40%.”小林核对了语文成绩:77%3070%4080%3080=⨯+⨯+⨯,完全正确,他再核对了英语成绩,同样如课代表所说,那么按上述方法核算的话,小林的数学平时成绩是 分.[几何类]4.我们把四边形两条对角线中点的连线段称为“奇异中位线”。
现有两个全等三角形,边长分别为3cm 、4cm 、5cm 。
将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的“奇异中位线”的长不为0,那么“奇异中位线”的长是cm 。
5. 当两个圆有两个公共点,且其中一个圆的圆心在另一圆的圆内时,我们称此两圆的位置关系为“内相交”.如果⊙1O 、⊙2O 半径分别3和1,且两圆“内相交”,那么两圆的圆心距d 的取值范围是.6.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.在Rt △ABC 中,∠C =90°,若Rt △ABC 是“好玩三角形”,则tanA = .7.如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形称为“倍边三角形”,如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为.8.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt △ABC 中,∠C =90°,较短的一条直角边边长为1,如果Rt △ABC 是“有趣三角形”,那么这个三角形“有趣中线”长等于.9.我们把梯形下底与上底的差叫做梯形的底差,梯形的高与中位线的比值叫做梯形的纵横比,如果某一等腰梯形腰长为5,底差等于6,面积为24,则该等腰梯形的纵横比等于;10.三角形的三条高或其延长线相交于一点,这点称为三角形的垂心.边长为2的等边三角形的垂心到这个三角形各顶点之间的距离之和为___________. 11.将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍得△AB′ C′,即如图①,∠BAB′=θ,AB B C AC n AB BC AC ''''===,我们将这种变换记为[θ,n ] .如图②,在△DEF中,∠DFE =90°,将△DEF 绕点D 旋转,作变换[60°,n ]得△DE ′F ′,如果点E 、F 、F ′恰好在同一直线上,那么n =.12.我们假设把两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.如果Rt △ABCABCB′C ′DE ′F ′F图① 图②是奇异三角形,在Rt △ABC 中,∠C =90°,AB =c ,AC =b ,BC =a ,且b >a ,其中,a =1,那么b =.13.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等 腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于;14. 如图4-1,点P 是以r 为半径的圆O 外一点,点'P 在线段OP 上,若满足2'OP OP r ⋅=,则称点'P 是点P 关于圆O 的反演点.如图4-2,在Rt △ABO 中,90B ︒∠=,AB =2,BO =4,圆O 的半径为2,如果点'A 、'B 分别是点A 、B 关于圆O 的反演点,那么'A 'B 的长是 .15.我们把两个三角形的外心之间的距离叫做外心距.如图4,在Rt △ABC 和Rt △ACD中,︒=∠=∠90ACD ACB ,点D 在边BC 的延长线上,如果3==DC BC ,那么△ABC 和△ACD 的外心距是.16.在平面直角坐标系中,我们把半径相等且外切、连心线与直线x y =平行的两个圆,称之为“孪生圆”;已知圆A 的圆心为(3,2-)半径为2,那么圆A 的所有“孪生圆”的圆心坐标为17、设二次函数解析式为bx ax y +=2,若某一次函数解析式为b ax y +=,则称该一次函A BC 图4数为二次函数的“伴随直线”;同时称以点()b a ,为圆心,半径长为22b a +的圆为二次函数的“伴随圆”.下面给出对于二次函数nx mx y +=2及其“伴随直线”和“伴随圆”的一些结论:(1) 若该二次函数的“伴随直线”经过第二、三象限,则该二次函数的开口向上;(2) 该二次函数的“伴随直线”与坐标轴围成的三角形面积为mn 22-;(3) 若m 、n 满足关系2nm -≠,则该二次函数与其“伴随直线”一定有2个交点;(4) 该二次函数的“伴随圆”与坐标轴所围成的三角形面积为mn 2;(5) 该二次函数的“伴随圆”圆心到其“伴随直线”的距离为122+m m .以上给出的5个结论中,正确结论的序号是;18. 如果A 、B 分别是圆O 1、圆O 2上两个动点,当A 、B 两点之间距离最大时,那么这个最大距离被称为圆O 1、圆O 2的“远距”.已知,圆O 1的半径为1,圆O 2的半径为2,当两圆相交时,圆O 1、圆O 2的“远距”可能是() (A )3; (B )4; (C )5; (D )6.[函数类]1.将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形。
2023年上海市16区数学中考二模专题汇编5 图形的平移、旋转、翻折、新定义(18题)含详解
![2023年上海市16区数学中考二模专题汇编5 图形的平移、旋转、翻折、新定义(18题)含详解](https://img.taocdn.com/s3/m/0ee75e75bf1e650e52ea551810a6f524cdbfcb4b.png)
专题05图形的平移、旋转、翻折、新定义(18题)一、单选题1.(2023·上海黄浦·统考二模)下列轴对称图形中,对称轴条数最多的是()A.等边三角形B.菱形C.等腰梯形D.圆2.(2023·上海嘉定·统考二模)下列图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰梯形C.矩形D.正五边形二、填空题5.(2023·上海黄浦A的对应点是点6.(2023·上海静安处,点A落在点7.(2023·上海金山·统考二模)已知线段AC上,如果点E关于直线8.(2023·上海闵行三角形为特征三角形.9.(2023·上海浦东新·于点F.如果2AD AB=10.(2023·上海徐汇·统考二模)如图,抛物线“月牙线”,抛物线1C和抛物线=,那么抛物线果BD CD11.(2023·上海宝山·统考二模)13.(2023·上海闵行·统考二模)如图,在菱形ABCD 中,6AB =,80A ∠=︒,如果将菱形ABCD 绕着点D 逆时针旋转后,点A 恰好落在菱形ABCD 的初始边AB 上的点E 处,那么点E 到直线BD 的距离为___________.14.(2023·上海嘉定·统考二模)如图,在Rt ABC 中,90C ∠=︒,4AC =,2BC =,点D 、E 分别是边BC 、BA 的中点,连接DE .将BDE 绕点B 顺时针方向旋转,点D 、E 的对应点分别是点1D 、1E .如果点1E 落在线段AC 上,那么线段1CD =____.三、解答题15.(2023·上海静安·统考二模)如图,在平面直角坐标系xOy 中,抛物线()240y ax x c a =-+≠与x 轴分别交于点()1,0A 、点()3,0B ,与y 轴交于点C ,连接BC ,点P 在线段BC 上,设点P 的横坐标为m .(1)求直线BC 的表达式;(1)如图,如果点O '恰好落在半圆O 上,求证: O A BC'=;(2)如果30DAB ∠=o ,求EF O D'的值;(3)如果3,1OA O D ==',求OF 的长.17.(2023·上海徐汇·统考二模)如图,已知抛物线2y x bx c =++经过点()2,7A -,与x 轴交于点B 、()5,0C .(1)求抛物线的顶点M 的坐标;(2)点E 在抛物线的对称轴上,且位于x 轴的上方,将BCE 沿直线BE 翻折,如果点C 的对应点F 恰好落在抛物线的对称轴上,求点E 的坐标;(3)点P 在抛物线的对称轴上,点Q 是抛物线上位于第四象限内的点,当CPQ 为等边三角形时,求直线BQ 的表达式.18.(2023·上海松江·统考二模)在平面直角坐标系xOy 中(如图),已知直线2y x =-+与y 轴交于点A ,抛物线()21(0)y x t t =-->的顶点为B .(1)若抛物线经过点A ,求抛物线解析式;(2)将线段OB 绕点B 顺时针旋转90︒,点O 落在点C 处,如果点C 在抛物线上,求点C 的坐标;(3)设抛物线的对称轴与直线2y x =-+交于点D ,且点D 位于x 轴上方,如果45BOD ∠=︒,求t 的值.专题05图形的平移、旋转、翻折、新定义(18题)一、单选题1.(2023·上海黄浦·统考二模)下列轴对称图形中,对称轴条数最多的是()A.等边三角形B.菱形C.等腰梯形D.圆【答案】D【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,从而可以画出它们的对称轴.【详解】解:等边三角形有3条对称轴,菱形有2条对称轴,等腰梯形有1条对称轴,圆形有无数条对称轴,圆的对称轴条数最多,故选:D.【点睛】此题主要考查如何确定轴对称图形的对称轴条数及位置,解题的关键是掌握轴对称的概念.2.(2023·上海嘉定·统考二模)下列图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰梯形C.矩形D.正五边形【答案】C【分析】根据轴对称图形的定义、中心对称图形的定义逐项判断即可.【详解】A选项:等边三角形是轴对称图形,不是中心对称图形.故本选项不合题意;B选项:等腰梯形是轴对称图形,不是中心对称图形.故本选项不合题意;C选项:矩形既是轴对称图形,又是中心对称图形.故本选项符合题意;D选项:正五边形是轴对称图形,不是中心对称图形,故本选项不合题意.故选C.【点睛】本题考查轴对称图形、中心对称图形,理解定义,会根据定义判断轴对称图形和中心对称图形是解答的关键.二、填空题在正方形ABCD 和正三角形∴点O ,E 均在BC 的垂直平分线上,∴点E ,O ,P ,G 四三点共线,∵正方形ABCD 和正三角形∴6BC BE ==.116OG BG BC ===⨯=在正方形ABCD 和正三角形∴点O ,E 均在BC 的垂直平分线上,∴点E ,O ,P ,G 四三点共线,∵正方形ABCD 和正三角形∴6BC BE ==.∴11622OG BG BC ===⨯【答案】20【分析】根据旋转可得根据AA B '∠【详解】解:∵∴180ACB ∠=∵将ABC 绕点∴30B A C BAC ∠=∠=''︒,∴(11802CAA CA A ''∠=∠=︒∴AA B CA A B A C '''''∠=∠-∠故答案为:20︒.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理等知识,掌握旋转的性质是关键.A 的对应点是点1A ,点B 的对应点是点1B ),如果点1A 坐标是()20-,,那么点1B 的坐标是________.【答案】()12,【分析】各对应点之间的关系是横坐标减3,纵坐标加3,那么让点B 的横坐标减3,纵坐标加3即为点1B 的坐标.【详解】解:∵()13A -,平移后对应点1A 的坐标为()20-,,∴A 点的平移方法是:先向左平移3个单位,再向上平移3个单位,∴B 点的平移方法与A 点的平移方法是相同的,∴()41B -,平移后的坐标是:()4313--+,即()12,.故答案为:()12,.【点睛】此题主要考查了点的平移规律与图形的平移,关键是掌握平移规律,左右移,纵不变,横减加,上下移,横不变,纵加减.6.(2023·上海静安·统考二模)如图,在ABC 中,AB AC =,将ABC 绕着点B 旋转后,点C 落在AC 边上的点E 处,点A 落在点D 处,DE 与AB 相交于点F ,如果BE BF =,那么DBC ∠的大小是______.【答案】108︒/108度【分析】设A x ∠=,由AB AC =,BE BF =得ABC C ∠∠=,BEF BFE ∠∠=,再由旋转的性质得DEB C ABC DBE ∠∠∠∠===,BE BC =,从而有CBE A x ∠∠==,同理可证:EBF A x ∠∠==,利用三角形的内角和定理构造方程即可求解.【详解】解:设A x ∠=,∵AB AC =,BE BF =,∴ABC C ∠∠=,BEF BFE ∠∠=,∵将ABC 绕着点B 旋转后,点C 落在AC 边上的点E 处,点A 落在点D 处,DE 与AB 相交于点F ,∴DEB C ABC DBE ∠∠∠∠===,BE BC =,∵180BEC C CBE ABC C A ∠∠∠∠∠∠++=++=︒,∴CBE A x ∠∠==,同理可证:EBF A x ∠∠==,【点睛】本题考查解直角三角形,轴对称的性质,掌握垂线段最短是解题的关键.8.(2023·上海闵行·统考二模)阅读理解:如果一个三角形中有两个内角三角形为特征三角形.问题解决:如图,在ABC 中,【答案】253【分析】由题意可分:,A B βα∠=∠=,过点∴A ADC ∠=∠,∵4tan 3A =,∴4tan 3ADC ∠=,∵ABC 是特征三角形,即∴2ABE ABC ∠=∠,∴BC 平分ABE ∠,【答案】35【分析】通过证明AEF △得出边之间的关系,即可求解.【详解】解:∵2=AD AB ∴设,2AB a AD a ==,【点睛】本题主要考查了矩形的折叠问题,以及解直角三角形的方法和步骤.10.(2023·上海徐汇·统考二模)如图,抛物线则tan tan DAC ∠=∠∴t n a CD DAC AC ∠==∴165CD =∴1695BD =-=;作DE AB ⊥于E ,则∵AD AD =,∴Rt △∵,90ACB ∠=︒,设BD x =,则CD DE =【答案】3372-【分析】利用含30度角的直角三角形的性质,分别求出出90DBE ∠=︒,在Rt【答案】3【分析】如图,旋转、菱形的性质可知,180ADE DEA ∠=︒-∠-∠由旋转、菱形的性质可知,∴80DEA A ∠=∠=︒,ABD ∠∴180ADE DEA ∠=︒-∠-∠【答案】355【分析】根据勾股定理求得AB ,根据旋转的性质得出根据相似三角形的性质即可求解.设旋转角为α,∴11ABE CBD ∠=∠,旋转,∴115,1BE BE BD BD ====,三、解答题15.(2023·上海静安·统考二模)如图,在平面直角坐标系xOy 中,抛物线()240y ax x c a =-+≠与x 轴分别交于点(1)求直线BC 的表达式;(2)如果以P 为顶点的新抛物线经过原点,且与①求新抛物线的表达式(用含②过点P 向x 轴作垂线,交原抛物线于点【答案】(1)3y x =-+(2)①()2233m y x m m m-=--+,【分析】(1)先利用待定系数法求出抛物线解析式,进而求出点式即可;(2)①先求出()3P m m -+,,设新抛物线解析式为抛物线解析式,再根据点P 在线段称时,当四边形AEDP 关于PE 【详解】(1)解:把()1,0A 、B ∴13a c =⎧⎨=⎩,∴抛物线解析式为24y x x =-+在243y x x =-+中,令0x =,则∴()0,3C ;设直线BC 的解析式为y kx b =+∴303k b b +=⎧⎨=⎩,∴13k b =-⎧⎨=⎩,∴直线BC 的解析式为y x =-+(2)解:①∵点P 在线段BC【点睛】本题主要考查了待定系数法求二次函数解析式,轴对称的性质,求一次函数解析式等等,灵活运用所学知识是解题的关键.16.(2023·上海松江·统考二模)如图,(1)如图,如果点O '恰好落在半圆O 上,求证: O A BC'=;(2)如果30DAB ∠=o ,求EF O D'的值;(3)如果3,1OA O D ==',求OF 的长.【答案】(1)见解析(2)24(3)97OF =或95OF =.【分析】(1)如图:连接,OC O C ',先根据圆的性质和对称的性质说明OAO ' 是等边三角形,明60COO BOC '∠=∠=︒即可证明结论;(2)设圆O 的半径为2a ,则2O A OA a '==,如图:作ON AD ⊥于N ;先根据对称的性质和等腰三角形的性质可得,30120ODA OAD AOD ︒︒∠=∠=∠=,然后解直角三角形可得()232O D a '=-、EF OE ==∵点O '恰好落在半圆O 上,∴OO OA '=,∵点O '与点O 关于直线AC 对称∴AO OA CO CO ==='',O AC '∠∵,30OA OD OAD =∠=︒,∴,30120ODA OAD AOD ︒∠=∠=∠=在Rt AON △中,sin 30ON OA =⋅︒∵ON AD ⊥,∴FN FM=∴1212AFD OFA AD FM S AD S AO AO FN ⨯==⨯ ,又∵AFD S DF S OF = ,∴FN FM =,∴1212AFD OFA AD FM S AD S AO AO FN ∆∆⨯==⨯,又∵AFD OFA S DF S OF ∆∆=,(1)求抛物线的顶点M 的坐标;(2)点E 在抛物线的对称轴上,且位于的对称轴上,求点E 的坐标;(3)点P 在抛物线的对称轴上,点式.【答案】(1)245y x x =--,顶点坐标为:(2)点E 的坐标为()2,3;(3)直线BQ 的函数表达式为【分析】(1)利用待定系数法求解抛物线的解析式,再化为顶点式,即可得到顶点坐标;(2)先求解抛物线与x 轴交于轴与x 轴交于点H ,则H 点的坐标为2233FH FB BH =-=,(3)连接CF ,证明FCB 于点K ,可得点K 的坐标为【详解】(1)解:∵抛物线∵抛物线与x 轴交于(1,0B -∴6BC =,抛物线的对称轴为直线设抛物线的对称轴与x 轴交于点由翻折得6CB FB ==,由勾股定理,得FH FB =∴点F 的坐标为()2,33,∴60FBH ∠=︒,∴CP CQ =,CB CF =,∠∴FCP BCQ ∠=∠,∴BCQ FCP ≌,∴CBQ CFH ∠=∠,∵BCF △为等边三角形,∴30CFH CBQ ∠=︒=∠,设BP 与x 轴相交于点K ,∴3tan 303OK OB =︒= .(1)若抛物线经过点A ,求抛物线解析式;∵旋转,∴,90OB OC OBC =∠=∴BEO OBC BDC ∠=∠=∠∴90OBE CBD ∠=︒-∠由2y x =-+,令0y =,得∴2OA OH ==,AH =∴OAH △是等腰直角三角形∵BD y ∥轴,。
专题2.4新定义的四种题型与真题训练-中考数学考前30天迅速提分复习方案(上海专用)(解析版)
![专题2.4新定义的四种题型与真题训练-中考数学考前30天迅速提分复习方案(上海专用)(解析版)](https://img.taocdn.com/s3/m/858bc3df82d049649b6648d7c1c708a1284a0aa5.png)
专题2.4新定义的四种题型与真题训练题型一:函数中新定义问题1.(2022青浦一模18)如图,一次函数y =ax +b (a <0,b >0)的图象与x 轴,y 轴分别相交于点A ,点B ,将它绕点O 逆时针旋转90°后,与x 轴相交于点C ,我们将图象过点A ,B ,C 的二次函数叫做与这个一次函数关联的二次函数.如果一次函数y =﹣kx +k (k >0)的关联二次函数是y =mx 2+2mx +c (m ≠0),那么这个一次函数的解析式为.【解答】解:对y =﹣kx +k ,当x =0时,y =k ,当y =0时,x =1,∴A (1,0),B (0,k ),∴C (﹣k ,0),将A 、B 、C 的坐标代入y =mx 2+2mx +c 得,,解得:或或,∵m ≠0,k >0,∴m =﹣1,k =3,c =3,∴一次函数的解析式为y =﹣3x +3,故答案为:y =﹣3x +3.2.(2022黄埔一模18)若抛物线2111y ax b x c =++的顶点为A ,抛物线2222y ax b x c =-++的顶点为B ,且满足顶点A 在抛物线2y 上,顶点B 在抛物线1y 上,则称抛物线1y 与抛物线2y 互为“关联抛物线”,已知顶点为M 的抛物线()223y x =-+与顶点为N 的抛物线互为“关联抛物线”,直线MN 与x 轴正半轴交于点D ,如果3tan 4MDO ∠=,那么顶点为N 的抛物线的表达式为_________【详解】设顶点为N 的抛物线顶点坐标N 为(a ,b )已知抛物线()223y x =-+的顶点坐标M 为(2,3)∵3tan 4MDO ∠=,∴34M M N y x x =-,即3324Dx =-,解得24D x =±∵直线MN 与x 轴正半轴交于点D,∴D 点坐标为(6,0)则直线MD 解析式为3(6)4y x =--N 点在直线MD 3(6)4y x =--上,N 点也在抛物线()223y x =-+故有()23(6)423b a b a ⎧=--⎪⎨⎪=-+⎩,化简得2394247b a b a a ⎧=-+⎪⎨⎪=-+⎩联立得2394742a a a --=-+,化简得2135042a a -+=解得a =54或a =2(舍),将a =54代入3942b a =-有359157257442161616b =-⨯+=-+=解得545716a b ⎧=⎪⎪⎨⎪=⎪⎩,故N 点坐标为(54,5716)则顶点为N 的抛物线的表达式为2557()416y a x =-+将(2,3)代入2557()416y a x =-+有,25573(2416a =-+化简得95731616a =+,解得a =-1故顶点为N 的抛物线的表达式为2557(416y x =--+故答案为:2557()416y x =--+.3.(2020杨浦二模)定义:对于函数y =f (x ),如果当a ≤x ≤b 时,m ≤y ≤n ,且满足n ﹣m =k (b ﹣a )(k 是常数),那么称此函数为“k 级函数”.如:正比例函数y =﹣3x ,当1≤x ≤3时,﹣9≤y ≤﹣3,则﹣3﹣(﹣9)=k (3﹣1),求得k =3,所以函数y =﹣3x 为“3级函数”.如果一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”,那么k 的值是.【分析】根据一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”解答即可.【解答】解:因为一次函数y=2x﹣1(1≤x≤5)为“k级函数”,可得:k=2,故答案为:2.题型二:三角形中的新定义1.(2022嘉定一模18)如图,在△ABC中,∠C=90°,BC=2,,点D在边AC上,CD:AD=1:3,联结BD,点E在线段BD上,如果∠BCE=∠A,那么CE=.【解答】解:过点E作EF⊥BC,垂足为F,∵∠ACB=90°,BC=2,,∴AC===4,∵CD:AD=1:3,∴CD=1,∵∠BCE=∠A,∠ACB=∠CFE=90°,∴△ABC∽△CEF,∴===2,∴设EF为a,则CF为2a,BF为2﹣2a,∵∠ACB=∠BFE=90°,∠CBD=∠FBE,∴△BFE∽△BCD,∴=,∴=,∴a=,∴EF=,CF=1,∴CE===,故答案为:.2、(2022杨浦一模17)新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为格线三角形.如图,已知等腰Rt△ABC为“格线三角形”,且∠BAC=90°,那么直线BC与直线c的夹角α的余切值为.【解答】解:过B 作BE ⊥直线a 于E ,延长EB 交直线c 于F ,过C 作CD ⊥直线a 于D ,则∠CDA =∠AEB =90°,∵直线a ∥直线b ∥直线c ,相邻两条平行线间的距离相等(设为d ),∴BF ⊥直线c ,CD =2d ,∴BE =BF =d ,∵∠CAB =90°,∠CDA =90°,∴∠DCA +∠DAC =90°,∠EAB +∠DAC =90°,∴∠DCA =∠EAB ,在△CDA 和△AEB 中,,∴△CDA ≌△AEB (AAS ),∴AE =CD =2d ,AD =BE =d ,∴CF =DE =AE +AD =2d +d =3d ,∵BF =d ,∴cotα===3,故答案为:3.3.(2022长宁一模17)定义:在△A 中,点D 和点E 分别在AB 边、AC 边上,且DE //BC ,点D 、点E 之间距离与直线DE 与直线BC 间的距离之比称为DE 关于BC 的横纵比.已知,在△A 中,4,BC BC =上的高长为3,DE 关于BC 的横纵比为2:3,则DE =_______.【详解】如图,AF BC ⊥于F ,交DE 于点G ,//DE BC ,ADE ABC ∴△△∽,AG DE ⊥,DE AGBC AF∴=,3AF = DE 关于BC 的横纵比为2:3,4BC =,23DE GF ∴=设2DE a =,则3GF a =,33AG AF GF a∴=-=-23343a a -∴=,解得23a =,43DE ∴=,故答案为:434.(2022虹口一模17)在网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形称为“格点三角形”.如图,在4×4的网格中,△ABC 是一个格点三角形,如果△DEF 也是该网格中的一个格点三角形,它与△ABC 相似且面积最大,那么△DEF 与△ABC 相似比的值是.【解答】解:由表格可得:AB =,BC =2,AC =,如图所示:作△DEF ,DE =,DF =,EF =5,∵===,∴△DEF ∽△ABC ,则△DEF 与△ABC 相似比的值是.故答案为:.5.(2020松江二模)如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于度.【分析】设直角三角形的最小内角为x ,另一个内角为y ,根据三角形的内角和列方程组即可得到结论.【解答】解:设直角三角形的最小内角为x ,另一个内角为y ,由题意得,,解得:,答:该三角形的最小内角等于22.5°,故答案为:22.5.6.(2020嘉定二模)定义:如果三角形的两个内角∠α与∠β满足∠α=2∠β,那么,我们将这样的三角形称为“倍角三角形”,如果一个等腰三角形是“倍角三角形”,那么这个等腰三角形的腰长与底边长的比值为【考查内容】新定义题型,黄金三角形【评析】中等【解析】当∠α为底角时,用内角和公式求得∠β= 36,此时为黄金三角形,腰长与底边长的比值215+;当当∠α为顶角时,用内角和公式求得∠β= 45,此时为等腰直角三角形,腰长与底边长的比值22。
上海中考数学新定义类型题专项训练
![上海中考数学新定义类型题专项训练](https://img.taocdn.com/s3/m/08d2a5b3580216fc700afdd8.png)
中考阅读理解类新定义类题型专项姓名_______________[代数类]1.(本题10分)设A 是含有根式的代数式,若存在另一个不恒等于零的代数式B ,使乘积AB 不含根式,则称B 为A 的共扼根式。
(1)设A =,写出它的一个共轭根式:B =; (2)对于(1)中的A 和B ,计算:2211A B A B+++2. 将关于x 的一元二次方程02=++q px x 变形为q px x --=2,就可将2x 表示为关于x的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”.已知012=--x x ,可用“降次法”求得134--x x 的值是3. 下表是六年级学生小林的学期成绩单,由于不小心蘸上了墨水,他的数学平时成绩看不到,小林去问了数学课代表,课代表说他也不知道小林的平时成绩,但他说:“我知道老师核算学期总成绩的方法,就是期中成绩与平时成绩各占30%,而期末成绩占40%.”小林核对了语文成绩:77%3070%4080%3080=⨯+⨯+⨯,完全正确,他再核对了英语成绩,同样如课代表所说,那么按上述方法核算的话,小林的数学平时成绩是 分.[几何类]4.我们把四边形两条对角线中点的连线段称为“奇异中位线”。
现有两个全等三角形,边长分别为3cm 、4cm 、5cm 。
将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的“奇异中位线”的长不为0,那么“奇异中位线”的长是cm 。
5. 当两个圆有两个公共点,且其中一个圆的圆心在另一圆的圆内时,我们称此两圆的位置关系为“内相交”.如果⊙1O 、⊙2O 半径分别3和1,且两圆“内相交”,那么两圆的圆心距d 的取值范围是.6.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.在Rt △ABC 中,∠C =90°,若Rt △ABC 是“好玩三角形”,则tanA = .7.如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形称为“倍边三角形”,如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为.8.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt △ABC 中,∠C =90°,较短的一条直角边边长为1,如果Rt △ABC 是“有趣三角形”,那么这个三角形“有趣中线”长等于.9.我们把梯形下底与上底的差叫做梯形的底差,梯形的高与中位线的比值叫做梯形的纵横比,如果某一等腰梯形腰长为5,底差等于6,面积为24,则该等腰梯形的纵横比等于;10.三角形的三条高或其延长线相交于一点,这点称为三角形的垂心.边长为2的等边三角形的垂心到这个三角形各顶点之间的距离之和为___________. 11.将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍得△AB′ C′,即如图①,∠BAB′=θ,AB B C AC n AB BC AC''''===,我们将这种变换记为[θ,n ] .如图②,在△DEF中,∠DFE =90°,将△DEF 绕点D 旋转,作变换[60°,n ]得△DE ′F ′,如果点E 、F 、F ′恰好在同一直线上,那么n =.12.我们假设把两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.如果Rt △ABCABCB′C ′DE ′F ′F图① 图②是奇异三角形,在Rt △ABC 中,∠C =90°,AB =c ,AC =b ,BC =a ,且b >a ,其中,a =1,那么b =.13.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等 腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于;14. 如图4-1,点P 是以r 为半径的圆O 外一点,点'P 在线段OP 上,若满足2'OP OP r ⋅=,则称点'P 是点P 关于圆O 的反演点.如图4-2,在Rt △ABO 中,90B ︒∠=,AB =2,BO =4,圆O 的半径为2,如果点'A 、'B 分别是点A 、B 关于圆O 的反演点,那么'A 'B 的长是 .15.我们把两个三角形的外心之间的距离叫做外心距.如图4,在Rt △ABC 和Rt △ACD中,︒=∠=∠90ACD ACB ,点D 在边BC 的延长线上,如果3==DC BC ,那么△ABC 和△ACD 的外心距是.16.在平面直角坐标系中,我们把半径相等且外切、连心线与直线x y =平行的两个圆,称之为“孪生圆”;已知圆A 的圆心为(3,2-)半径为2,那么圆A 的所有“孪生圆”的圆心坐标为17、设二次函数解析式为bx ax y +=2,若某一次函数解析式为b ax y +=,则称该一次函A BC 图4数为二次函数的“伴随直线”;同时称以点()b a ,为圆心,半径长为22b a +的圆为二次函数的“伴随圆”.下面给出对于二次函数nx mx y +=2及其“伴随直线”和“伴随圆”的一些结论:(1) 若该二次函数的“伴随直线”经过第二、三象限,则该二次函数的开口向上;(2) 该二次函数的“伴随直线”与坐标轴围成的三角形面积为mn 22-;(3) 若m 、n 满足关系2nm -≠,则该二次函数与其“伴随直线”一定有2个交点;(4) 该二次函数的“伴随圆”与坐标轴所围成的三角形面积为mn 2;(5) 该二次函数的“伴随圆”圆心到其“伴随直线”的距离为122+m m .以上给出的5个结论中,正确结论的序号是;18. 如果A 、B 分别是圆O 1、圆O 2上两个动点,当A 、B 两点之间距离最大时,那么这个最大距离被称为圆O 1、圆O 2的“远距”.已知,圆O 1的半径为1,圆O 2的半径为2,当两圆相交时,圆O 1、圆O 2的“远距”可能是() (A )3;(B )4;(C )5;(D )6.[函数类]1.将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形。
中考数学总复习新定义问题专题综合训练题含和解析语文
![中考数学总复习新定义问题专题综合训练题含和解析语文](https://img.taocdn.com/s3/m/16cd4261daef5ef7bb0d3c35.png)
2021 年中考数学总复习新定义问题专题综合训练题1.关于两个不相等的实数 a,b,我们规定符号 max{a,b} 表示 a,b 中的较大值,如: max{2,4}=4,依照这个规定,方程 max{x,-x}=2x+1的解为( ) xA.1- 2 B.2- 2 C .1+ 2或 1- 2 D .1+ 2或-12. 定义[a ,b,c]为函数 y=ax2+bx+c 的特色数,下面给出特色数为[2m,1-m ,-1-m]的函数的一些结论:①当 m=- 3时,函数图象的极点坐标是 ( 1,38) ;②当 m>0时,函数图象截 x轴所得的线段长度大于3 3;③当 m<0时,函数在21x>时,y 随 x 的增大而减小;④当 m≠0时,函数图象经过同一个点.其中正确4的结论有 ( )A.①②③④ B.①②④ C .①③④ D .②④3. 我们知道,一元二次方程 x2=-1 没有实数根,即不存在一个实数的平方等于- 1,假设我们规定一个新数“ i 〞,使其满足 i2=-1 ( 即方程 x2=-1 有一个根为i) ,并且进一步规定:一的确数可以与新数进行四那么运算,且原有的运算律和运算法那么依旧成立,于是有i 1=i ,i 2=-1,i 3= i 2· i =( -1)· i =- i, i4=( i 2) 2=( -1) 2=1,从而对任意正整数 n,我们可以获取 i 4n+1=i 4n· i =(i 4) n· i=i ,同理可得i 4n+2=-1, i 4n+ 3=- i , i 4n=1,那么 i + i 2+ i 3+ i 4+⋯+i2021+ i 2021 的值为( )A.0 B .1 C .-1 D .i4.关于实数 a,b,定义一种新运算“ ?〞为: a?b=12,这里等式右边是实a-b1数运算.比方: 1?3=2=-1-3 1 2.那么方程 x?(-2) =-1 的解是 ( ) 8 x-4第 1 页A.x=4 B .x=5 C .x=6 D .x=75. 现定义一种变换:关于一个由有限个数组成的序列 S0,将其中的每个数换成该数在 S0 中出现的次数,可获取一个新序列 S1,比方序列 S0:(4,2,3,4,2) ,经过变换可生成新序列 S1:(2,2,1,2,2),假设 S0 可以为任意序列,那么下面的序列可作为 S1 的是( )A.(1,2,1,2,2) B .(2,2,2,3,3)C.(1,1,2,2,3) D .(1,2,1,1,2)6. 设[ x) 表示大于x 的最小整数,如 [3) =4,[ -1.2) =-1,那么以下结论中正确的是____.( 填写所有正确结论的序号 )①[0) =0;②[x) -x 的最小值是 0;③[x) -x 的最大值是 1;④存在实数 x,使[x) -x=0.5 成立.7. 关于正整数n,定义F(n) =2〔n<10〕,nf 〔n〕〔n≥10〕,其中f ( n)表示n 的首位数字、末位数字的平方和.比方:F(6) =6 2=3 6,F(123) =f (123) =12+32=10. 规定F1( n) =F( n) ,F k+1( n) =F( F k( n))( k 为正整数) .比方:F1(123) =F(123) =1 0,F2(123) =F( F1(123)) =F(10) =1.(1) 求:F2(4) =____,F2021(4) =____;(2) 假设 F3m(4) =89,求正整数 m的最小值.8. 定义一种新运算:a b=b 2-ab,如:1 2=22-1×2=2,那么( -1 2) 3=____.9. 定义一种新运算:观察以下各式:1⊙3=1×4+3=7;3⊙( -1) =3×4-1=11;5⊙4=5×4+4=24;4⊙( -3)=4×4-3=13.第 2 页(1) 请你想一想: a⊙b=;(2) 假设 a≠b,那么 a⊙b____b⊙a( 填“=〞或“≠〞 ) ;(3) 假设a⊙( -2b) =4,请计算( a-b) ⊙(2 a+b) 的值.10. 假设三角形的某一边长等于其外接圆半径,那么将此三角形称为等径三角形,该边所对的角称为等径角.△ ABC 是等径三角形,那么等径角的度数为.11. 对某种几何图形给出以下定义:吻合必然条件的动点所形成的图形,叫做吻合这个条件的点的轨迹.比方,平面内到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.(1) 如图 1,在△ABC中,A B=A C,∠BAC=90°,A(0,2) ,B 是x 轴上一动点,当点 B在 x 轴上运动时,点 C在坐标系中运动,点 C运动形成的轨迹是直线 DE,且 DE⊥x轴于点 G, 那么直线 D E的表达式是 .(2) 当△ABC是等边三角形时,在(1) 的条件下,动点 C形成的轨迹也是一条直线 .①当点 B运动到如图 2 的地址时, AC∥x 轴,那么 C点的坐标是;②在备用图中画出动点 C形成直线的表示图,并求出这条直线的表达式;③设②中这条直线分别与 x,y 轴交于 E,F 两点,当点 C在线段 EF上运动时,点 H在线段 OF上运动( 不与 O,F 重合) ,且 CH=CE,求 C E的取值范围.12. 对x,y 定义一种新运算T,规定:T( x,y) =a x+by2x+y( 其中a,b 均为非零常数) ,这里等式右边是平时的四那么运算,比方:T(0,1)=a× 0+b×12× 0+1=b.(1) T(1 ,-1)=-2,T(4 ,2) =1.①求a,b 的值;第 3 页②假设关于m的不等式组T〔2m,5-4m〕≤4,T〔m,3-2m〕>p恰好有 3 个整数解,求实数p 的取值范围;(2) 假设T(x,y) =T( y,x) 对任意实数x,y 都成立( 这里T( x,y) 和T(y,x) 均有意义),那么a,b 应满足怎样的关系式?13. 实数 a,n,m,b 满足 a<n<m<b,这四个数在数轴上对应的点分别为 A,N,M,B(如图) ,假设AM 2=BM·A B,B N2=A N·AB,那么称 m为 a,b 的“大黄金数〞,n 为 a,b 的“小黄金数〞,当 b-a=2 时,求 a,b 的大黄金数与小黄金数之差m-n.参照答案 :1. D 剖析:依照x 与-x 的大小关系,取x 与-x 中的最大值化简所求方程,求出解即可.2. B3. A4. B5. D 【剖析】依照题意可知,S1 中 2 有 2 的倍数个, 3 有 3 的倍数个,据此即可作出选择. A.∵2 有 3 个,∴不可以作为S1,应选项错误; B.∵2 有 3 个,∴不可以作为S1,应选项错误; C.3 只有 1 个,∴不可以作为S 1,应选项错误;D.吻合定义的一种变换,应选项正确.应选 D.6. ③④7. 解:(1)37 ,26 (2)68. -9 【剖析】先依照新定义计算出- 1 2=6,尔后计算再依照新定义计算 6 3 即可.- 1 2=2 2-( -1) ×2=6,6 3=32-6×3=-9,所以( -第 4 页1 2) 3=-9.9. 解:(1) 4a +b(2) ≠(3) 因为 a⊙( -2b)=4,所以 4 a-2 b=4,所以 2a-b=2,(a -b) ⊙(2a +b) =4(a -b) +(2a +b)=4a-4b+2 a+b=6 a-3b=3(2a-b)=3×2=6剖析:(1) 观察前面的例子可得a⊙b=4a+b;(2) 依照定义a⊙b=4a+b,b⊙a=4b+a,因为a≠b,所以a⊙b≠b⊙a;(3) 依照定义先将a⊙( -2b) =4 化简,再将(a-b) ⊙(2 a+b) 化简并把上面获取的式子代入计算.10. 30 °或 150°11. 解:(1)x =2 (2) ①(4 33,2) ②画图略, y= 3x-2 ③4923≤EC<33 a-b12. 解:(1) ①依照题意得 T(1,-1)==-2,即 a-b=-2; 2-14a+2bT=(4,2) ==1,即 2a+b=5,解得 a=1,b=38+2②依照题意得2m+3〔5-4m〕≤4①,4m+5-4mm+3〔3-2m〕>p②,2m+3-2m由①得 m≥-1;2由②得 m<9-3p,∴不等式组的解集为-51 9-3p≤m<,2 5∵不等式组恰好有 3 个整数解,即 m=0,1,2,∴2<9-3p≤3,5解得-2≤p<-1 3(2) 由 T(x ,y) =T(y,x) ,获取a x+by ay+bx =,2x+y 2y+x 第 5 页中考数学总复习新定义问题专题综合训练题含和剖析语文整理得(x 2 2)(2b -a) =0,-y∵T(x ,y) =T(y,x) 对任意实数 x,y 都成立,∴ 2b-a=0,即 a=2b 13. 解:AB=b-a=2,设 AM=x,那么 BM=2-x,由题意得 x 2=2(2 -x) ,解得x1=-1+ 5,x2=-1- 5( 舍去) ,那么 AM=BN= 5-1,∴MN=m-n=A M+BN -2=2( 5-1) -2=2 5-4第 6 页。
上海中考数学新定义类型题专项训练(精)
![上海中考数学新定义类型题专项训练(精)](https://img.taocdn.com/s3/m/7c91cb602b160b4e767fcff9.png)
1中考阅读理解类新定义类题型专项姓名_______________[代数类]1.(本题10分)设A 是含有根式的代数式,若存在另一个不恒等于零的代数式B ,使乘积AB 不含根式,则称B 为A 的共扼根式。
(1)设A ,写出它的一个共轭根式:B = ;(2)对于(1)中的A 和B ,计算:2211A B A B+++2. 将关于x 的一元二次方程02=++q px x 变形为q px x --=2,就可将2x 表示为关于x的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”.已知012=--x x ,可用“降次法”求得134--x x 的值是3. 下表是六年级学生小林的学期成绩单,由于不小心蘸上了墨水,他的数学平时成绩看不到,小林去问了数学课代表,课代表说他也不知道小林的平时成绩,但他说:“我知道老师核算学期总成绩的方法,就是期中成绩与平时成绩各占30%,而期末成绩占40%. ”小林核对了语文成绩:77%3070%4080%3080=⨯+⨯+⨯,完全正确,他再核对了英语成绩,同样如课代表所说,那么按上述方法核算的话,小林的数学平时成绩是 .[几何类]4.我们把四边形两条对角线中点的连线段称为“奇异中位线”。
现有两个全等三角形,边长分别为3cm 、4cm 、5cm 。
将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的“奇异中位线”的长不为0,那么“奇异中位线”的长是 cm。
25. 当两个圆有两个公共点,且其中一个圆的圆心在另一圆的圆内时,我们称此两圆的位置关系为“内相交”. 如果⊙1O 、⊙2O 半径分别3和1,且两圆“内相交”,那么两圆的圆心距d 的取值范围是 .6.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.在Rt △ABC 中,∠C =90°,若Rt △ABC 是“好玩三角形”,则tanA = .7.如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形称为“倍边三角形”,如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为.8.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”. 已知Rt △ABC 中,∠C =90°,较短的一条直角边边长为1,如果Rt △ABC 是“有趣三角形”,那么这个三角形“有趣中线”长等于 .9.我们把梯形下底与上底的差叫做梯形的底差,梯形的高与中位线的比值叫做梯形的纵横比,如果某一等腰梯形腰长为5,底差等于6,面积为24,则该等腰梯形的纵横比等于;10. 三角形的三条高或其延长线相交于一点,这点称为三角形的垂心.边长为2的等边三角形的垂心到这个三角形各顶点之间的距离之和为___________.11.将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍得△AB′ C′ ,即如图①,∠BAB′ =θ,我们将这种变换记为[θ,n ] .如图②,在△DEF 中,∠DFE =90°,将△DEF 绕点D 旋转,作变换[60°, n ]得△DE ′F ′,如果点E 、F 、F ′恰好在同一直线上,那么n = .AB B C AC n AB BC AC ''''===C ′E ′F ′图①图②312.我们假设把两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.如果 Rt △ABC 是奇异三角形,在Rt △ABC 中,∠C =90°,AB =c ,AC =b ,BC =a ,且b >a ,其中,a =1,那么b =.13.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于;14. 如图4-1,点P 是以r 为半径的圆O 外一点,点' P 在线段OP 上,若满足2' OP OP r ⋅=,则称点' P 是点P 关于圆O 的反演点.如图4-2,在Rt △ABO 中,90B︒∠=,AB =2,BO =4,圆O 的半径为2,如果点' A 、' B 分别是点A 、B 关于圆O 的反演点,那么' A ' B 的长是15.我们把两个三角形的外心之间的距离叫做外心距.如图4,在Rt △ABC 和Rt △ACD中,︒=∠=∠90ACD ACB ,点D 在边BC 的延长线上,如果3==DC BC ,那么△ABC 和△ACD 的外心距是.16.在平面直角坐标系中,我们把半径相等且外切、连心线与直线 x y =平行的两个圆,称之为“孪生圆”;已知圆A 的圆心为(3, 2-)半径为2,那么圆A 的所有“孪生圆”的圆心坐标为A BC 图4417、设二次函数解析式为bx ax y +=2,若某一次函数解析式为b ax y +=,则称该一次函数为二次函数的“伴随直线”;同时称以点(b a , 为圆心,半径长为22b a +的圆为二次函数的“伴随圆”. 下面给出对于二次函数nx mx y +=2及其“伴随直线”和“伴随圆”的一些结论:(1 若该二次函数的“伴随直线”经过第二、三象限,则该二次函数的开口向上;(2 该二次函数的“伴随直线”与坐标轴围成的三角形面积为mn 22-;(3 若m 、n 满足关系2nm -≠,则该二次函数与其“伴随直线”一定有2个交点;(4 该二次函数的“伴随圆”与坐标轴所围成的三角形面积为mn 2;(5 该二次函数的“伴随圆”圆心到其“伴随直线”的距离为122+m m .以上给出的5个结论中,正确结论的序号是;18. 如果A 、B 分别是圆O 1、圆O 2上两个动点,当A 、B 两点之间距离最大时,那么这个最大距离被称为圆O 1、圆O 2的“远距”.已知,圆O 1的半径为1,圆O 2的半径为2,当两圆相交时,圆O 1、圆O 2的“远距”可能是()(A )3;(B )4;(C )5;(D )6.[函数类]1.将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形。
2024中考数学新定义及探究题专题 《二次函数及新定义》 (含解析)
![2024中考数学新定义及探究题专题 《二次函数及新定义》 (含解析)](https://img.taocdn.com/s3/m/45d89784b8f3f90f76c66137ee06eff9aff84978.png)
2024中考数学新定义及探究题专题《二次函数及新定义》(学生版)【类型1二次函数问题中的新定义问题】1.(2023春·山东济南·九年级统考期末)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(c为常数)在的图象上存在两个二倍点,则c的取值范围是()A.B.C.D.2.(2023春·湖北咸宁·九年级统考期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.若互异二次函数的对称轴为直线x=1且图象经过点(﹣1,0),则这个互异二次函数的二次项系数是()A.B.C.1D.﹣13.(2023春·广西南宁·九年级统考期中)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.4.(2023春·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考期末)定义:我们不妨把纵坐标是横坐标2倍的点称为“青竹点”.例如:点、……都是“青竹点”.显然,函数的图象上有两个“青竹点”:和.(1)下列函数中,函数图象上存在“青竹点”的,请在横线上打“√”,不存在“青竹点”的,请打“×”.①________;②________;③________.(2)若抛物线(m为常数)上存在两个不同的“青竹点”,求m的取值范围;(3)若函数的图象上存在唯一的一个“青竹点”,且当时,a的最小值为c,求c的值.5.(2023春·江苏泰州·九年级统考期中)定义:两个二次项系数之和为,对称轴相同,且图像与轴交点也相同的二次函数互为友好同轴二次函数.例如:的友好同轴二次函数为.(1)函数的友好同轴二次函数为.(2)当时,函数的友好同轴二次函数有最大值为,求的值.(3)已知点分别在二次函数及其友好同轴二次函数的图像上,比较的大小,并说明理由.6.(2023春·浙江金华·九年级校考期中)定义:若抛物线y=ax2+bx+c与x轴两交点间的距离为4,称此抛物线为定弦抛物线.(1)判断抛物线y=x2+2x﹣3是否是定弦抛物线,请说明理由;(2)当一定弦抛物线的对称轴为直线x=1,且它的图像与坐标轴的交点间的连线所围成的图形是直角三角形,求该抛物线的表达式;(3)若定弦抛物线y=x2+bx+c(b<0)与x轴交于A、B两点(A在B左边),当2≤x≤4时,该抛物线的最大值与最小值之差等于OB之间的距离,求b的值.7.(2023春·浙江·九年级期末)定义:若抛物线与抛物线.同时满足且,则称这两条抛物线是一对“共轭抛物线”.(1)已知抛物线与是一对共轭抛物线,求的解析式;(2)如图1,将一副边长为的正方形七巧板拼成图2的形式,若以BC中点为原点,直线BC为x轴建立平面直角坐标系,设经过点A,E,D的抛物线为,经过A、B、C的抛物线为,请立接写出、的解析式并判断它们是否为一对共轭抛物线.8.(2023春·湖南长沙·九年级校联考期末)定义:如果抛物线与轴交于点,,那么我们把线段叫做雅礼弦,两点之间的距离称为抛物线的雅礼弦长.(1)求抛物线的雅礼弦长;(2)求抛物线的雅礼弦长的取值范围;(3)设,为正整数,且,抛物线的雅礼弦长为,抛物线的雅礼弦长为,,试求出与之间的函数关系式,若不论为何值,恒成立,求,的值.9.(2023春·河南濮阳·九年级统考期中)小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0)与y=a2x2+b2x+c2(a2≠0)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=x2-3x-2的“旋转函数”.小明是这样思考的:由函数y=x2-3x-2可知,a1=1,b1=-3,c1=-2,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面问题:(1)直接写出函数y=x2-3x-2的“旋转函数”;(2)若函数与y=x2-2nx+n互为“旋转函数”,求(m+n)2020的值;(3)已知函数的图象与x轴交于点A、B两点(A在B的左边),与y轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数互为“旋转函数”10.(2023春·山西大同·九年级统考期中)请阅读下列材料,并完成相应的任务:定义:我们把自变量为的二次函数与(,)称为一对“亲密函数”,如的“亲密函数”是.任务:(1)写出二次函数的“亲密函数”:______;(2)二次函数的图像与轴交点的横坐标为1和,它的“亲密函数”的图像与轴交点的横坐标为______,猜想二次函数()的图像与轴交点的横坐标与其“亲密函数”的图像与轴交点的横坐标之间的关系是______;(3)二次函数的图像与轴交点的横坐标为1和,请利用(2)中的结论直接写出二次函数的图像与轴交点的横坐标.【类型2二次函数与一次函数综合问题中的新定义问题】1.(2023春·九年级课时练习)定义:由a,b构造的二次函数叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数的“本源函数”(a,b为常数,且).若一次函数y=ax+b的“滋生函数”是,那么二次函数的“本源函数”是.2.(2023春·浙江湖州·九年级统考期中)定义:如果函数图象上存在横、纵坐标相等的点,则称该点为函数的不动点.例如,点是函数的不动点.已知二次函数(是实数).(1)若点是该二次函数的一个不动点,求的值;(2)若该二次函数始终存在不动点,求的取值范围.3.(2023·安徽·模拟预测)已知函数与函数,定义“和函数”.(1)若,则“和函数”;(2)若“和函数”为,则,;(3)若该“和函数”的顶点在直线上,求.4.(2023·北京·模拟预测)城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系,对两点和,用以下方式定义两点间距离:.(1)①已知点,则______.②函数的图象如图①所示,是图象上一点,,求点的坐标.(2)函数的图象如图②所示,是图象上一点,求的最小值及对应的点的坐标.5.(2023春·上海·九年级上海市民办新复兴初级中学校考期中)我们定义【,,】为函数的“特征数”,如:函数的“特征数”是【2,,5】,函数的“特征数”是【0,1,2】(1)若一个函数的“特征数”是【1,,1】,将此函数图像先向左平移2个单位,再向上平移1个单位,得到一个图像对应的函数“特征数”是______;(2)将“特征数”是【0,,】的图像向上平移2个单位,得到一个新函数,这个函数的解析式是______;(3)在(2)中,平移前后的两个函数图像分别与轴交于A、两点,与直线分别交于、两点,在给出的平面直角坐标系中画出图形,并求出以A、、、四点为顶点的四边形的面积;(4)若(3)中的四边形与“特征数”是【1,,】的函数图像有交点,求满足条件的实数的取值范围.6.(2023春·福建龙岩·九年级校考期末)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等.我们称这样的两个函数互为相关函数.例如:一次函数,它的相关函数为(1)已知点A(-2,1)在一次函数的相关函数的图象上时,求a的值.(2)已知二次函数.当点B(m,)在这个函数的相关函数的图象上时,求m的值.7.(2023春·江苏南通·九年级统考期末)定义:若图形与图形有且只有两个公共点,则称图形与图形互为“双联图形”,即图形是图形的“双联图形”,图形是图形的“双联图形”.(1)若直线与抛物线互为“双联图形”,且直线不是双曲线的“双联图形”,求实数的取值范围;(2)如图2,已知,,三点.若二次函数的图象与互为“双联图形”,直接写出的取值范围.8.(2023春·北京·九年级北京市第三中学校考期中)定义:在平面直角坐标系中,图形G 上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)①点A(1,3)的“坐标差”为;②抛物线y=﹣x2+3x+3的“特征值”为;(2)某二次函数y=﹣x2+bx+c(c≠0)的“特征值”为1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.①直接写出m=;(用含c的式子表示)②求b的值.9.(2023春·北京·九年级人大附中校考期中)对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是.(1)直接写出有界函数的边界值;(2)已知函数是有界函数,且边界值为3,直接写出的最大值;(3)将函数的图象向下平移个单位,得到的函数的边界值是,直接写出的取值范围,使得.10.(2023春·湖南长沙·九年级校考期中)若定义:若一个函数图像上存在纵坐标是横坐标2倍的点,则把该函数称为“明德函数”,该点称为“明德点”,例如:“明德函数”,其“明德点”为(1,2).(1)①判断:函数__________“明德函数”(填“是”或“不是”);②函数的图像上的明德点是___________;(2)若抛物线上有两个“明德点”,求m的取值范围;(3)若函数的图像上存在唯一的一个“明德点”,且当时,的最小值为,求的值.【类型3二次函数与几何图形综合问题中的新定义问题】1.(2023春·四川绵阳·九年级统考期末)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形中,点,点,则互异二次函数与正方形有交点时的最大值和最小值分别是()A.4,-1B.,-1C.4,0D.,-1 2.(2023春·山东济南·九年级统考期末)定义:关于x轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:y1=(x﹣1)2﹣2的“同轴对称抛物线”为y2=﹣(x﹣1)2+2.(1)请写出抛物线y1=(x﹣1)2﹣2的顶点坐标;及其“同轴对称抛物线”y2=﹣(x﹣1)2+2的顶点坐标;(2)求抛物线y=﹣2x2+4x+3的“同轴对称抛物线”的解析式.(3)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“同轴对称抛物线”于点C,分别作点B、C关于抛物线对称轴对称的点、,连接BC、、、.①当四边形为正方形时,求a的值.②当抛物线L与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围.3.(2023春·北京门头沟·九年级大峪中学校考期中)定义:对于平面直角坐标系上的点和抛物线,我们称是抛物线的相伴点,抛物线是点的相伴抛物线.如图,已知点,,.(1)点的相伴抛物线的解析式为______;过,两点的抛物线的相伴点坐标为______;(2)设点在直线上运动:①点的相伴抛物线的顶点都在同一条抛物线上,求抛物线的解析式.②当点的相伴抛物线的顶点落在内部时,请直接写出的取值范围.4.(2023春·浙江绍兴·九年级校联考期中)定义:如图1,抛物线与x轴交于A,B两点,点P在该抛物线上(P点与A.B两点不重合),如果△ABP中PA与PB两条边的三边满足其中一边是另一边倍,则称点P为抛物线的“好”点.(1)命题:P(0,3)是抛物线的“好”点.该命题是_____(真或假)命题.(2)如图2,已知抛物线C:与轴交于A,B两点,点P(1,2)是抛物线C的“好”点,求抛物线C的函数表达式.=S△AB P的Q点(异于点P)的(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ坐标.5.(2023·安徽安庆·九年级统考期末)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=-与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为______,点A的坐标为______,点B的坐标为______.(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点M的坐标.6.(2023春·湖南长沙·九年级统考期中)定义:在线段MN上存在点P、Q将线段MN分为相等的三部分,则称P、Q为线段MN的三等分点.已知一次函数y=﹣x+3的图象与x、y轴分别交于点M、N,且A、C为线段MN的三等分点(点A在点C的左边).(1)直接写出点A、C的坐标;(2)①二次函数的图象恰好经过点O、A、C,试求此二次函数的解析式;②过点A、C分别作AB、CD垂直x轴于B、D两点,在此抛物线O、C之间取一点P(点P不与O、C重合)作PF⊥x轴于点F,PF交OC于点E,是否存在点P使得AP=BE?若存在,求出点P的坐标?若不存在,试说明理由;(3)在(2)的条件下,将△OAB沿AC方向移动到△O'A'B'(点A'在线段AC上,且不与C重合),△O'A'B'与△OCD重叠部分的面积为S,试求当S=时点A'的坐标.7.(2023春·安徽合肥·九年级统考期中)定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为点P的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)求点A(2,1)的“坐标差”和抛物线y=﹣x2+3x+4的“特征值”.(2)某二次函数=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等,求此二次函数的解析式.(3)如图所示,二次函数y=﹣x2+px+q的图象顶点在“坐标差”为2的一次函数的图象上,四边形DEFO是矩形,点E的坐标为(7,3),点O为坐标原点,点D在x轴上,当二次函数y=﹣x2+px+q的图象与矩形的边有四个交点时,求p的取值范围.8.(2023·浙江杭州·九年级统考期中)新定义:我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)初步尝试如图1,已知等腰直角△ABC,∠ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形.(2)理解运用如图2,已知△ACD为直角三角形,∠ADC=90°,以AC,AD为边向外作正方向ACFB和正方形ADGE,连接BE,求证:△ACD与△ABE为偏等积三角形.(3)综合探究如图3,二次函数y=x2–x–5的图象与x轴交于A,B两点,与y轴交于点C,在二次函数的图象上是否存在一点D,使△ABC与△ABD是偏等积三角形?若存在,请求出点D的坐标;若不存在,请说明理由.9.(2023春·江西赣州·九年级统考期末)我们给出如下定义:在平面直角坐标系xOy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.如下图,抛物线F2都是抛物线F1的过顶抛物线,设F1的顶点为A,F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.(1)如图1,如果抛物线y=x2的过顶抛物线为y=ax2+bx,C(2,0),那么①a=,b=.②如果顺次连接A、B、C、D四点,那么四边形ABCD为()A.平行四边形B.矩形C.菱形D.正方形(2)如图2,抛物线y=ax2+c的过顶抛物线为F2,B(2,c-1).求四边形ABCD的面积.(3)如果抛物线的过顶抛物线是F2,四边形ABCD的面积为,请直接写出点B的坐标.10.(2023春·江西赣州·九年级校考期末)定义:在平面直角坐标系中,抛物线y=a+bx+c (a≠0)与直线y=m交于点A、C(点C在点A右边)将抛物线y=a+bx+c沿直线y=m翻折,翻折前后两抛物线的顶点分别为点B、D.我们将两抛物线之间形成的封闭图形称为惊喜线,四边形ABCD称为惊喜四边形,对角线BD与AC之比称为惊喜度(Degreeofsurprise),记作|D|=.(1)图①是抛物线y=﹣2x﹣3沿直线y=0翻折后得到惊喜线.则点A坐标,点B 坐标,惊喜四边形ABCD属于所学过的哪种特殊平行四边形,|D|为.(2)如果抛物线y=m﹣6m(m>0)沿直线y=m翻折后所得惊喜线的惊喜度为1,求m的值.(3)如果抛物线y=﹣6m沿直线y=m翻折后所得的惊喜线在m﹣1≤x≤m+3时,其最高点的纵坐标为16,求m的值并直接写出惊喜度|D|2024中考数学新定义及探究题专题《二次函数及新定义》(解析版)【类型1二次函数问题中的新定义问题】1.(2023春·山东济南·九年级统考期末)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(c为常数)在的图象上存在两个二倍点,则c的取值范围是()A.B.C.D.【答案】D【分析】由点的纵坐标是横坐标的2倍可得二倍点在直线上,由可得二倍点所在线段的端点坐标,结合图象,通过求抛物线与线段的交点求解.【详解】解:由题意可得二倍点所在直线为,将代入得,将代入得,设,,如图,联立与,得方程,即抛物线与直线有两个交点,,解得,当直线和直线与抛物线交点在点A,上方时,抛物线与线段有两个交点,把代入,得,把代入得,,解得,.故选D.【点睛】本题考查二次函数图象与正比例函数图象的交点问题,解题关键掌握函数与方程及不等式的关系,将代数问题转化为图形问题求解.2.(2023春·湖北咸宁·九年级统考期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.若互异二次函数的对称轴为直线x=1且图象经过点(﹣1,0),则这个互异二次函数的二次项系数是()A.B.C.1D.﹣1【答案】B【分析】根据函数的对称轴和互异二次函数的特点计算即可;【详解】由题可知:此函数的横坐标与纵坐标互为相反数,且对称轴为直线x=1且图象经过点(﹣1,0),设此函数为,∴,解得:,∴此函数的二次项系数为;故选B.【点睛】本题主要考查了二次函数的性质,准确计算是解题的关键.3.(2023春·广西南宁·九年级统考期中)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.【答案】D【分析】根据新定义得到当m≥0时,n′=-m2+4m+2-4=-(m-2)2+2,在0≤m≤3时,得到-2≤n′≤2;当m<0时,n′=m2-4m-2=(m-2)2-6,在-1≤m<0时,得到-2≤n′≤3,即可得到限变点P′的纵坐标n'的取值范围是-2≤n′≤3.【详解】解:由题意可知,当m≥0时,n′=-m2+4m+2-4=-(m-2)2+2,∴当0≤m≤3时,-2≤n′≤2,当m<0时,n′=m2-4m-2=(m-2)2-6,∴当-1≤m<0时,-2<n′≤3,综上,当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是-2≤n′≤3,故选:D.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是根据限变点的定义得到n′关于m的函数.4.(2023春·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考期末)定义:我们不妨把纵坐标是横坐标2倍的点称为“青竹点”.例如:点、……都是“青竹点”.显然,函数的图象上有两个“青竹点”:和.(1)下列函数中,函数图象上存在“青竹点”的,请在横线上打“√”,不存在“青竹点”的,请打“×”.①________;②________;③________.(2)若抛物线(m为常数)上存在两个不同的“青竹点”,求m的取值范围;(3)若函数的图象上存在唯一的一个“青竹点”,且当时,a的最小值为c,求c的值.【答案】(1)×;√;×(2)(3)【分析】(1)根据“青一函数”的定义直接判断即可;(2)根据题意得出关于的一元二次方程,再根据根的判别式得出关于m的不等式,即可求解;(3)根据题意得出关于的一元二次方程,再根据根的判别式得出关于a的二次函数,利用二次函数最值求解即可.【详解】(1)解:①令,方程无解,∴函数图像上不存在“青竹点”,故答案为:×;②令,解得:,,∴函数图像上存在“青竹点”和,故答案为:√;③令,方程无解,∴函数图像上不存在“青竹点”,故答案为:×;(2)解:由题意得,整理,得,∵抛物线(m为常数)上存在两个不同的“青竹点”,∴,解得;(3)解:由题意得整理,得∵函数的图像上存在唯一的一个“青竹点”,∴整理,得∴当时,a的最小值为,∵当时,a的最小值为c,∴∴,【点睛】本题属于函数背景下新定义问题,主要考查二次函数的性质,二次函数与一元二次方程的关系,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程的关系,一元二次方程根的判别式.5.(2023春·江苏泰州·九年级统考期中)定义:两个二次项系数之和为,对称轴相同,且图像与轴交点也相同的二次函数互为友好同轴二次函数.例如:的友好同轴二次函数为.(1)函数的友好同轴二次函数为.(2)当时,函数的友好同轴二次函数有最大值为,求的值.(3)已知点分别在二次函数及其友好同轴二次函数的图像上,比较的大小,并说明理由.【答案】(1);(2);(3)当时,;当时,;当时,【分析】(1)根据友好同轴二次函数的定义,找出的友好同轴二次函数即可;(2)根据友好同轴二次函数的定义,找出的友好同轴二次函数,判断函数图像开口方向,利用函数的对称轴和自变量范围进行最大值讨论;(3)先根据友好同轴二次函数的定义,找出的友好同轴二次函数,再把两点代入,作差后比较大小,为含参数的二次不等式,求解的范围即可.【详解】(1)设友好同轴二次函数为,由函数可知,对称轴为直线,与轴交点为,,,对称轴为直线,,友好同轴二次函数为;(2)由函数可求得,该函数的友好同轴二次函数为;①当时,时,,解得:;②当时,时,,解得:;综上所述,;(3)由函数可求得,该函数的友好同轴二次函数为,把分别代入可得,,,则,,,①当时,,即,,解得:;②当时,,即,,解得:;③当时,,即,,解得:;综上所述,当时,;当时,;当时,.【点睛】本题考查二次函数的性质以及新定义问题,掌握二次函数的基本性质以及研究手段,准确根据题意求出符合要求的友好同轴二次函数是解题关键.6.(2023春·浙江金华·九年级校考期中)定义:若抛物线y=ax2+bx+c与x轴两交点间的距离为4,称此抛物线为定弦抛物线.(1)判断抛物线y=x2+2x﹣3是否是定弦抛物线,请说明理由;(2)当一定弦抛物线的对称轴为直线x=1,且它的图像与坐标轴的交点间的连线所围成的图形是直角三角形,求该抛物线的表达式;(3)若定弦抛物线y=x2+bx+c(b<0)与x轴交于A、B两点(A在B左边),当2≤x≤4时,该抛物线的最大值与最小值之差等于OB之间的距离,求b的值.【答案】(1)是定弦抛物线,理由见解析(2)或(3)b=﹣4或【分析】(1)令y=0,求出与x轴的交点坐标,可判断;(2)分开口向上向下讨论,利用定弦抛物线的定义和对称轴可求出与x轴交点坐标,用相似求出与y轴交点坐标,代入可得答案;(3)根据对称轴和所给范围分情况讨论即可.【详解】(1)解:当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,则|x1-x2|=4,即该抛物线是定弦抛物线;(2):当该抛物线开口向下时,如图所示.∵该定弦抛物线的对称轴为直线x=1,设则解得:∴C(﹣1,0),D(3,0),∵△CED为直角三角形∴由题意可得∠CED=90°,∵EO⊥CD,∴△CEO∽△EDO,∴OE2=OC·OD=3,∴E(0,)设该定弦抛物线表达式为,把E(0,)代入求得∴该定弦抛物线表达式为,当该抛物线开口向上时,同理可得该定弦抛物线表达式为,∴综上所述,该定弦抛物线表达式为或;(3)解:若≤2,则在2≤x≤4中,当x=4时该定弦抛物线取最大值,当x=2时该定弦抛物线取最小值.∴l6+4b+c-(4+2b+c)=+2,解得:b=﹣4,∵≤2,∴b≥﹣4,即b=﹣4,若≤3,则在2≤x≤4中,当x=4时该定弦抛物线取最大值,当x=时该定弦抛物线取最小值.∴16+4b+c﹣=+2,解得:b1=﹣4,b2=﹣14,∵2≤≤3,∴﹣6≤b≤﹣4,∴b1=﹣4,b2=﹣14(舍去),若≤4,则在2≤x≤4中,当x=2时该定弦抛物线取最大值,当x=时该定弦抛物线取最小值.∴4+2b+c﹣=+2,解得:b=﹣5,∵≤4,∴﹣8≤b<﹣6,∴b=﹣5不合题意,舍去,若>4,则在2≤x≤4中,当x=2时该定弦抛物线取最大值,当x=4时该定弦抛物线取最小值.∴4+2b+c-(16+4b+c)=+2,解得:b=-,∵>4,∴b<﹣8,∴b=﹣,∴综上所述b=﹣4或.【点睛】本题考查了二次函数的综合性质,包括与x轴交点问题,最值问题,以及和相似的结合,准确地理解定弦抛物线的定义以及分类讨论是解决本题的关键.7.(2023春·浙江·九年级期末)定义:若抛物线与抛物线.同时满足且,则称这两条抛物线是一对“共轭抛物线”.(1)已知抛物线与是一对共轭抛物线,求的解析式;(2)如图1,将一副边长为的正方形七巧板拼成图2的形式,若以BC中点为原点,直线BC为x轴建立平面直角坐标系,设经过点A,E,D的抛物线为,经过A、B、C的抛物线为,请立接写出、的解析式并判断它们是否为一对共轭抛物线.【答案】(1)(2),,、是一对共轭抛物线【分析】(1)将化作顶点式,可求出,和的值,根据“共轭抛物线”的定义可求出,和的值,进而求出的解析式;(2)根据七巧板各个图形之间的关系可求出各个图形的边长,进而可表示点,,,,的坐标,分别求出和的解析式,再根据“共轭抛物线”的定义可求解.【详解】(1)解:,∴,,,∵抛物线与是一对共轭抛物线,∴,且,.(2)解:如图,由题意得,,则,,,,,∵点为的中点,∴,∴,,,,,∴可设抛物线,与抛物线,∴,,解得:,,∴抛物线,抛物线,∴,,,,,,∵,,∴满足且,∴、是一对共轭抛物线.【点睛】本题属于二次函数的新定义类问题,主要考查利用待定系数法求函数表达式,二次函数的顶点式,一般式及交点式三种方式的变换,熟知相关运算是解题关键.8.(2023春·湖南长沙·九年级校联考期末)定义:如果抛物线与轴交于点,,那么我们把线段叫做雅礼弦,两点之间的距离称为抛物线。
中考数学复习新定义题型专题训练
![中考数学复习新定义题型专题训练](https://img.taocdn.com/s3/m/7756bc62b4daa58da0114ac6.png)
中考数学复习新定义题型专题训练典例精析:例1.我们把分子为1的分数叫做理想分数,如,,,111234任何一个理想分数都可以写成两个不同理想分数的和,如()=+;=+;=+;=1111111111236341245209 ;根据对上述式子的观察思考:如果理想分数111n a b=+(n 是不小于2的正整数),那么a b += (用含n 的点评:本题可以视为“规律性的题型中的定义”,主要是根据定义(本题是“理想分数”)计算推理发现规律,从实例规律迁移解决问题.2.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是1112=--,1-的差倒数为()11112=--,现已知11x 3=-,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依次类推,则 2020x =.例2.我们把a b c d 称作二阶行列式,规定它的运算法则为a bad bc c d=-,比如:232534245=⨯-⨯=-,如果有23x01x->,则x 的取值范围为 . 分析:根据二阶行列式规定的运算法则可知:()2x 3x 10--⨯> ,解得:x 1>;∴故应填:x 1>.点评:本题可以视为“运算建模题型中定义”,主要是根据定义所规定的运算法则进行运算推理来解决问题;这类题可以串联起数学的多个知识点,是中考中出现频率比较高的一种题型.追踪练习:1.对于点(),x y 的一次操作变换()(),,1p x y x y x y =+-,且规定()()(),,n 1n 1p x y P P x y -=(n 为大于1的整数);如()(),,1p 1231=-,()()()(),,(.),2111p 12P 12P 3124==-=,(),3p 12=((,))(,)(,)122P p 12p 2462==-,则(,)2019p 11-= ( )A.(),100902-B.(),101002-C.(),100902D.()101002、2.对于正数x ,如果规定()1f x 1x =+,例如:()11f 4145==+,114f 14514⎛⎫== ⎪⎝⎭+;根据上面的规定计算()()()()111f 2019f 2018f 2f 1f f f 220182019⎛⎫⎛⎫⎛⎫++++++++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 的值为, ()()()()111f 2020f 2019f 2f 1f f f 220192020⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值二阶行列式运算法则”,计算填空:; ⑵.x 3x 2x 4x 3+---= ;⑶.2x x 26x 2x-=+,则x = .4.若定义()a,b ☆()m,n am bn =+ ,则⎛⋅ ⎝= .5.对于两个不相等的实数a,b,定义一种新的运算如下,)a b a b 0=+> ,如:32= ()654 的值.6.我们定义a b ad bc c d =-,比如:()121623661236-=-⨯-⨯=--=-;若x,y 均为点评:本题可以视为“探索题型中的新定义”,主要是根据定义计算推理论证,这类题一般要在定义的前提下进行匪类讨论,往往和存在性问题交融在一起.追踪练习:1.若平面直角坐标系中,两点关于过原点的一条直线成轴对称,则这两点就是互为镜面点, 这条直线叫镜面直线,如(),A 23)和(),B 32是以x y =为镜面直线的镜面点. ⑴.若(),M 41和(),N 14--是一对镜面点,则镜面直线为 .⑵.若以y =为镜面直线,则(),E 20-的镜面点为 .2.如图,A,B 是⊙O 上的两个顶点,P 是⊙O 上的动点(P 不与A,B 重合),我们称APB∠是⊙O 上关于点A,B 的滑动角.3.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内ABCD 的准内点.⑴.如图2,AFD ∠与DEC ∠的角平分线相交于点P .求证:点P 是四边形ABCD 的准内点.⑵.分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)⑶.判断下列命题的真假,在括号内填“真”或“假”.①任意凸四边形一定存在准内点.( )②任意凸四边形一定只有一个准内点.( )③若点P 是四边形ABCD 的准内点,则PA PB PC PD +=+或PA PC PB PD +=+( ).例4. 对于实数a b 、,定义运算某“*”:()()22a ab a b a b ab b a b ⎧-≥⎪=⎨-<⎪⎩*.例如42*,因为42>,所以2424428=-⨯=*.若12x x 、是一元二次方程2x 5x 60-+=的两个根,则*12x x = .分析:∵12x x 、是一元二次方程2x 5x 60-+=的两个根∴()()x 2x 30--= 解得:x 3= 或x 2=①.当12x 3,x 2== 时,1x *2x =23233-⨯=;②.当12x 2,x 3== 时,1x *2x =22333⨯-=-.故应填:3或3-. 点评:本题可以视为“开放题型中的新定义”,本题的结论是开放的,常常要根据条件分类讨论,结合对应的定义法则进行运算推理(实际上是同一名称多种形式),这类题容易漏解.追踪练习:1. 对实数a ☆b ()()-⎧>≠⎪=⎨≤≠⎪⎩b b a a b,a 0a a b,a 0 ;比如2☆3-==3128,计算[2☆()-4]× [()-4☆()-2]= .2.在平面直角坐标系xOy 中,对于任意两点()111P x ,y 和()222P x ,y 的“非常距离”,给出以下概念:若1212x x y y -≥- ,则点1P 和点2P 的“非常距离”距离为12x x -;.若1212x x y y -<- ,则点1P 和点2P 的“非常距离”距离为12y y -.例如:点()1P 1,2和()2P 3,5。
2022年中考数学专题复习重难点专练新定义(上海版)
![2022年中考数学专题复习重难点专练新定义(上海版)](https://img.taocdn.com/s3/m/830ff381dc88d0d233d4b14e852458fb770b38a8.png)
2022年中考数学专题复习重难点专练新定义(上海版)学校:___________姓名:___________班级:___________考生__________评卷人得分一、填空题1.如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于_____度.2.如果一条直线把一个四边形分成两部分,这两部分图形的周长相等,那么这条直线称为这个四边形的“等分周长线”.在直角梯形ABCD中,AB∥CD,∥A=90°,DC=AD,∥B是锐角,cotB=512,AB=17.如果点E在梯形的边上,CE是梯形ABCD的“等分周长线”,那么∥BCE的周长为____.3.定义:如果三角形的两个内角∥α与∥β满足∥α=2∥β,那么,我们将这样的三角形称为“倍角三角形”.如果一个等腰三角形是“倍角三角形”,那么这个等腰三角形的腰长与底边长的比值为____.4.如果一个四边形有且只有三个顶点在圆上,那么称这个四边形是该圆的“联络四边形”,已知圆的半径长为5,这个圆的一个联络四边形是边长为25的菱形,那么这个菱形不在圆上的顶点与圆心的距离是________.5.小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的两条直线称为这两个直角三角形的相似分割线.如图1、图2,直线CG、DH分别是两个不相似的Rt∥ABC和Rt∥DEF的相似分割线,CG、DH分别与斜边AB、EF交于点G、H,如果∥BCG与∥DFH相似,AC=3,AB=5,DE=4,DF=8,那么AG=_____.6.定义:对于函数y=f(x),如果当a≤x≤b时,m≤y≤n,且满足n﹣m=k(b﹣a)(k 是常数),那么称此函数为“k级函数”.如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y ≤﹣3,则﹣3﹣(﹣9)=k (3﹣1),求得k =3,所以函数y =﹣3x 为“3级函数”.如果一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”,那么k 的值是_____.7.新定义:有一组对角互余的凸四边形称为对余四边形.如图,已知在对余四边形ABCD 中,10AB =,12BC =,5CD =,3tan 4B =,那么边AD 的长为______.8.如果四边形边上的点,它与对边两个端点的连线将这个四边形分成的三个三角形都相似,我们就把这个点叫做该四边形的“强相似点”.如图1,在四边形ABCD 中,点Q 在边AD 上,如果QAB 、QBC 和QDC 都相似,那么点Q 就是四边形ABCD 的“强相似点”;如图2,在四边形ABCD 中,AD BC //,2AB DC ==,8BC =,60B ∠=︒,如果点Q 是边AD 上的“强相似点”,那么AQ =___.9.我们约定:如果一个四边形存在一条对角线,使得这条对角线是四边形某两边的比例中项,那么就称这个四边形为“闪亮四边形”,这条对角线为“闪亮对角线”.相关两边为“闪亮边”.例如:图1中的四边形ABCD 中,AB AC AD ==,则2AC AB AD =⋅,所以四边形ABCD 是闪亮四边形,AC 是闪亮对角线,AB 、AD 是对应的闪亮边.如图2,已知闪亮四边形ABCD 中,AC 是闪亮对角线,AD 、CD 是对应的闪亮边,且90ABC ∠=︒,60D ∠=︒,4AB =,2BC =,那么线段AD 的长为________.10.定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线,在四边形ABCD中,对角线BD是它的相似对角线,∥ABC=70°,BD平分∥ABC,那么∥ADC=____________度11.在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.如图,请在边长为1个单位的2×3的方格纸中,找出一个格点三角形DEF.如果∥DEF与∥ABC相似(相似比不为1),那么∥DEF的面积为______.12.如果直线l把∥ABC分割后的两个部分面积相等,且周长也相等,那么就把直线l叫做∥ABC的“完美分割线”,已知在∥ABC中,AB=AC,∥ABC的一条“完美分割线”为直线l,且直线l平行于BC,若AB=2,则BC的长等于_____.13.如果矩形一边的两个端点与它对边上的一点所构成的角是直角,那么我们就把这个点叫做矩形的“直角点”,如图,如果E是矩形ABCD的一个“直角点”,且3CD EC=,那么:AD AB的值是__________.14.以一个等腰直角三角形的腰为边分别向形外做等边三角形,我们把这两个等边三角形重心之间的距离称作这个等腰直角三角形的“肩心距”,如果一个等腰直角三角形的腰长为2,那么它的“肩心距”_____.15.我们把有两条中线互相垂直的三角形称为“中垂三角形”,其中ABC∆的中线,BD CE互相垂直于点G,如果9BD=,12CE=,那么,D E两点间的距离是__________.参考答案:1.22.5【解析】【分析】按照题干给的定义设出一个最小角和另一个内角列方程求解即可.【详解】设直角三角形的最小内角为x ,另一个内角为y ,由题意得,()90290x y x y ⎧+=⎪⎨-=⎪⎩, 解得:22.567.5x y ⎧=⎨=⎩, 答:该三角形的最小内角等于22.5°,故答案为:22.5.【点睛】此题表面是考查对新定义的理解,其实是考查一元二次方程组的应用.2.42【解析】【分析】作CH∥AB 于H ,设BH =5a ,证明四边形ADCH 为矩形,得到AD =CH =12a ,根据题意求出a ,根据勾股定理求出BC ,根据“等分周长线”计算,得到答案.【详解】解:作CH∥AB 于H ,设BH =5a ,∥cotB =512, ∥BH CH =512, ∥CH =12a ,∥AB∥CD ,∥∥D =∥A =90°,又CH∥AB ,∥四边形ADCH 为矩形,∥AD=CH=12a,CD=AH,∥DC=AD,∥AH=CD=12a,由题意得,12a+5a=17,解得,a=1,∥AD=CD=AH=12,BH=5,在Rt∥CHB中,BC=22CH BH+=13,∥四边形ABCD的周长=12+12+17+13=54,∥CE是梯形ABCD的“等分周长线”,∥点E在AB上,∥AE=17+13﹣27=3,∥EH=12﹣3=9,由勾股定理得,EC=22CH EH+=15,∥∥BCE的周长=14+13+15=42,故答案为:42.【点睛】考查了的是直角梯形的性质、矩形的判定和性质、勾股定理,解题关键是正确理解四边形的“等分周长线”的定义并运用.3.22或512+.【解析】【分析】若等腰三角形的三个内角α∠、β∠,β∠,利用2180和2αβ∠=∠得45β=︒,此“倍角三角形”为等腰直角三角形,从而得到腰长与底边长的比值;若等腰三角形的三个内角α∠、α∠,β∠,利用2180和2αβ∠=∠得36β=︒,如图,72B C,36A∠=︒,作ABC∠的平分线BD,则36ABD CBD∠=∠=︒,易得DA DB CB,再证明BDC ACB ∽,利用相似比得到::BC AC CD BC ,等量代换得到:():BC ACAC BC BC ,然后解关于AC 的方程220AC AC BC BC 得AC 与BC 的比值即可. 【详解】解:若等腰三角形的三个内角α∠、β∠,β∠,2180,2αβ∠=∠,4180,解得45β=︒,∴此“倍角三角形”为等腰直角三角形,∴腰长与底边长的比值为22; 若等腰三角形的三个内角α∠、α∠,β∠,2180,2αβ∠=∠, 5180,解得36β=︒,如图,72BC ,36A ∠=︒,作ABC ∠的平分线BD ,则36ABD CBD ∠=∠=︒, DA DB ∴=,72BDC A ABD ,BDC C ∴∠=∠,BD BC ∴=,即DA DB CB ,CBD A ,BCD ACB ∠=∠, BDC ACB ∽,::BC AC CD BC ,即:():BC AC AC BC BC ,整理得220AC AC BC BC ,解得152AC BC ,即512AC BC +=, 此时腰长与底边长的比值为512+, 综上所述,这个等腰三角形的腰长与底边长的比值为22或512+. 故答案为22或512+.【点睛】本题考查了三角形的相似判定和性质,等腰三角形的性质,熟悉相关性质是解题的关键.4.1【解析】【分析】此题应根据题意先找到圆心位置,再根据圆心位置求出不在圆上的顶点到该圆圆心的距离即可.【详解】根据题意作图可分两种情况:1如图:作OP BC⊥,BC=25,BO=5,∥A,B,C在圆O上,∥BP=5(垂径定理),又222BP OP BO+=,∥OP=22BO BP-= ()2255-=25;因为ABCD是菱形,∥AC⊥BD,即∥BQC=90°,在∥BOP与∥BQC中,OBP QBCOPB BQC∠=∠⎧⎨∠=∠⎩,∥∥BOP~∥BQC,∥BP BOBQ BC=,即5525BQ=,∥BQ=2,∥BQ>BO,∥此情况不符合题意,舍去;2,如图,同理可得OP=25,在∥BOP与∥BQC中,OBP QBCOPB BQC∠=∠⎧⎨∠=∠⎩,∥∥BOP~∥BQC,∥BP BOBQ BC=,即5525BQ=,∥BQ=2,∥OQ=BO-BQ=3,∥OD=QD OQ-=BQ OQ-=1,综上所述,这个菱形不在圆上的顶点与圆心的距离是1.故答案是:1.【点睛】此题是新型概念的题型,实际是求点到圆心的距离的知识点,难度偏难.5.3【解析】【分析】先由勾股定理得出BC 的值,再由∥BCG∥∥DFH 列出比例式,设AG =x ,用含x 的式子表示出DH ;按照相似分割线可知,∥AGC∥∥DHE ,但要先得出两个相似三角形的边或角是如何对应的,再根据相似三角形的性质列出比例式,解得x 值即可.【详解】解:∥Rt∥ABC ,AC =3,AB =5,∥由勾股定理得:BC =4,∥∥BCG∥∥DFH ,∥BG DH =BC DF, 已知DF =8,设AG =x ,则BG =5﹣x , ∥5-x DH=48, ∥DH =10﹣2x ,∥∥BCG∥∥DFH ,∥∥B =∥FDH ,∥BGC =∥CHF ,∥∥AGC =∥DHE ,∥∥A+∥B =90°,∥EDH+∥FDH =90°,∥∥A =∥EDH ,∥∥AGC∥∥DHE ,∥AG DH=AC DE , 又DE =4,∥102-x x =34, 解得:x =3,经检验,x =3是原方程的解,且符合题意.∥AG =3.故答案为:3.【点睛】此题考查的是相似三角形的判定及性质,掌握相似三角形的判定及性质是解决此题的关键. 6.2【解析】【分析】先根据一次函数的性质求出对应的y 的取值范围,再根据k 级函数的定义解答即可.【详解】解:∥一次函数y =2x ﹣1,1≤x ≤5,∥1≤y ≤9,∥一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”,∥9-1=k (5-1),解得:k =2;故答案为:2.【点睛】 本题是新定义试题,主要考查了对“k 级函数”的理解和一次函数的性质,正确理解“k 级函数”的概念、熟练掌握一次函数的性质是解题关键.7.9【解析】【分析】连接AC ,作AE BC ⊥交BC 于E 点,由3tan 4B =,10AB =,可得AE=6,BE=8,并求出AC 的长,作CF AD ⊥交AD 于F 点,可证B DCF ∠=∠,最后求得AF 和DF 的长,可解出最终结果.【详解】解:如图,连接AC ,作AE BC ⊥交BC 于E 点,3tan 4B =,10AB =, ∴3tan 4AE B BE ==,设AE=3x ,BE=4x ,∴222AE BE AB+=,则()()2223425100x x x+==,解得x=2,则AE=6,BE=8,又12BC=,∴CE=BC-BE=4,∴22213AC AE CE=+=,作CF AD⊥交AD于F点,90B D∠+∠=︒,90D DCF∠+∠=︒,∴B DCF∠=∠,3tan4B==tan DCF∠=DFCF,又5CD=,∴同理可得DF=3,CF=4,∴226AF AC CF=-=,∴AD=AF+DF=9.故答案为:9.【点睛】本题考查四边形综合问题,涉及解直角三角形,勾股定理,有一定难度,熟练掌握直角三角形和勾股定理知识点,根据题意做出正确的辅助线是解决本题的关键.8.35+或35-【解析】【分析】过点A作AE∥CD,交BC于点E,可证四边形ADCE是平行四边形,由平行四边形的性质可得AD的长,利用“强相似点”的定义可得∥ABQ∥∥DQC,则由相似三角形的性质可得AQ DCAB DQ=,再根据线段之间的数量关系建立关于AQ的方程,求解后即可求出AQ的长.【详解】解:如图,过点A作AE∥CD,交BC于点E,∥在四边形ABCD 中,AD BC //,2AB DC ==,∥四边形ADCE 是平行四边形,∥AE =CD =AB =2,AD =CE .∥60B ∠=︒,∥∥ABE 是等边三角形.∥BE =AE =AB =2.∥AD =BC -BE =6.∥点Q 是边AD 上的“强相似点”,∥∥ABQ∥∥DQC .∥AQ DC AB DQ=. 设AQ =x ,则DQ =6-x ,即226x x =-. 解得135x ,235x .故答案为:35+或35-.【点睛】本题考查了相似三角形的性质、平行四边形的判定与性质等知识,掌握平行四边形的判定与性质及相似三角形的性质并能灵活应用所学知识是解题的关键.9.25【解析】【分析】根据“闪亮四边形”的定义可知AC 2=CD×AD ,再证明△ACD 是等边三角形即可解决问题.【详解】解:∥四边形ABCD 是闪亮四边形,AC 是闪亮对角线,CD 、AD 是对应的闪亮边.∥2AC CD AD=⋅,如图,作CH∥AD于H,∥cosDH CD D=⋅∠,sinCH CD D=⋅∠cosAH AD CD D=-⋅∠∥222AC AH CH=+22(cos)(sin)AD CD D CD D=-⋅∠+⋅∠222cosAD CD AD CD D=+-⋅⋅∠22AD CD AD CD=+-⋅∥2AC CD AD=⋅,∥2220AD AD CD CD-⋅+=∥2()0AD CD-=∥AD=CD∥∥D=60゜∥∥ACD是等边三角形∥AC=CD=AD∥90ABC∠=︒,60D∠=︒,4AB=,2BC=,∥22224225=+=+=AC AB BC(负值舍去)∥AD=25故答案为:25【点睛】本题考查了等边三角形的判定,勾股定理以及解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.10.145【解析】【分析】先画出示意图,由相似三角形的判定可知,在∥ABD和∥DBC中,已知∥ABD=∥CBD,所以需另一组对应角相等,若∥A=∥C,则∥ABD与∥DBC全等不符合题意,所以必定有∥A=∥BDC,再根据四边形的内角和为360°列式求解.【详解】解:根据题意画出示意图,已知∥ABD=∥CBD,∥ABD与∥DBC相似,但不全等,∥∥A=∥BDC,∥ADB=∥C.又∥A+∥ABC+∥C+∥ADC=360°,∥2∥ADB+2∥BDC+∥ABC=360°,∥∥ADB+∥BDC=145°,即∥ADC=145°.【点睛】对于新定义问题,读懂题意是关键.11.1;【解析】【分析】根据小正方形的边长,分别求出ABC和DEF三边的长,然后判断它们是否对应成比例,再用三角形面积公式求解即可.【详解】如图,∥12AB BC==,,5AC=∥:?:?1:2:5AB BC AC=∥2DE=,2EF=,10DF=∥::2:2:101:2:5DE EF DF ==∥:?:?::AB BC AC DE EF DF =∥~ABC DEF∥12112DEF S =⨯⨯= 故答案为:1【点睛】本题考查了在网格中画与已知三角形相似的三角形、三角形全等的判定以及三角形面积公式,熟练掌握三角形全等的判定是解题的关键.12.42﹣4.【解析】【分析】 设直线l 与AB 、CD 分别交于点E 、D ,由“完美分割线”的定义可知,S △AED =S 四边形BCDE ,设AE =AD =x ,证∥AED ∥∥ABC ,可求x 的值,进一步可求出BC 的长.【详解】解:如图,设直线l 与AB 、CD 分别交于点E 、D ,则由“完美分割线”的定义可知,S △AED =S 四边形BCDE ,∥12ABC S S =△ADE △, ∥l ∥BC ,∥∥AED ∥∥ABC ,∥1222AE AD AB AC ===, 设AE =AD =x ,则222x =, ∥x =2,∥BE=CD=2﹣2,∥BC=22﹣2(2﹣2)=42﹣4.【点睛】本题考查了新定义,相似三角形的判定与性质等,解题关键是能够领悟新定义的性质,并进行运用.13.23【解析】【分析】先证明∆BEC~∆EAD,可得:BC CEED DA=,设EC=x,则AB=CD=3x,ED=2x,结合AD=BC,可得:2AD x=,进而可得到答案.【详解】∥E是矩形ABCD的一个“直角点”,∥∥AEB=90°,∥∥AED+∥BEC=90°,∥∥EAD+∥AED=90°,∥∥BEC=∥EAD,∥∥D=∥C,∥∆BEC~∆EAD,∥BC CEED DA=,∥3CD EC=,设EC=x,则AB=CD=3x,ED=2x,∥2BC xx DA=,∥AD=BC,∥2222AD x x x=⋅=,即:2AD x=,∥:AD AB=2x:3x=23.故答案是:23.【点睛】本题主要考查相似三角形的判定和性质定理,设EC=x,用代数式表示线段长,是解题的关键.14.32+63【解析】【分析】延长DF交边BC于点F,根据等腰直角三角形的腰长为2,DBA和EAC是等边三角形,可以求得123G M G N3==,并且可证MN∥12G G,利用平行线之间的线段对应成比例即可求解.【详解】解:如图示:等腰直角三角形的腰长为2,即:2AB AC==,∥DBA和EAC是等边三角形,ABC等腰直角三角形∥BC=22,DM=EN=3延长DF交边BC于点F∥12G G、分别是等边△ABD和等边△ACE的重心∥DM垂直且平分AB,EN垂直且平分AC,123G M G N3==又∥∥BAC=90°∥AC∥DF∥点F是BC的中点同理可得EN 的延长线也交BC 于点F∥111MF AC 1FN AB 1MN BC 2222======,,∥2FN 1NG 33=,1FM 1MG 33= ∥21FN FM NG MG = ∥MN∥12G G∥121MN FM G G FG =,即1221G G 313=+ ,解得126G G 23=+. 【点睛】本题考查了等边三角形的性质,等腰三角形的性质,重心的性质和平行线的性质,熟悉相关性质定理,灵活运用是解题的关键.15.5【解析】【分析】连接DE ,设BD 、CE 交于点G ,证明DE 是△ABC 的中位线,得出DE=12BC ,DE∥BC ,证明△GDE∥∥GBC ,得出12GD GE DE GB GC BC ===,求出GC=8,GE=6,由勾股定理得出2210BC GC GB =+=,即可得出答案.【详解】连接DE ,设BD 、CE 交于点G ,如图所示:∥∥ABC 的中线BD 、CE 互相垂直,∥DE 是△ABC 的中位线,∥BGC=90°,∥DE=12BC ,DE∥BC ,∥∥GDE∥△GBC,∥12 GD GE DEGB GC BC===,∥2212833GC CE==⨯=,229633GB BD==⨯=,∥22228610BC GC GB=+=+=,∥DE=5;故答案为:5.【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理、勾股定理等知识;熟练掌握相似三角形的判定与性质和三角形中位线定理是解题的关键.。
中考数学《二次函数中的新定义问题》专项训练
![中考数学《二次函数中的新定义问题》专项训练](https://img.taocdn.com/s3/m/912c7cf4370cba1aa8114431b90d6c85ec3a882f.png)
专题22.11 二次函数中的新定义问题专项训练(30道)【人教版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可加强学生对新定义函数的理解!1.(2021•雅安)定义:min{a,b}=a(a≤b)b(a>b),若函数y=min{x+1,﹣x2+2x+3},则该函数的最大值为( )A.0B.2C.3D.42.(2021•章丘区模拟)定义:对于二次函数y=ax2+(b+1)x+b﹣2(a≠0),若存在自变量x0,使得函数值等于x0成立,则称x0为该函数的不动点,对于任意实数b,该函数恒有两个相异的不动点,则实数a的取值范围为( )A.0<a<2B.0<a≤2C.﹣2<a<0D.﹣2≤a<03.(2021•岳阳)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC中,点A(0,2),点C(2,0),则互异二次函数y=(x﹣m)2﹣m与正方形OABC 有交点时m的最大值和最小值分别是( )A.4,﹣1B.5―172,﹣1C.4,0D.5+172,﹣14.(2020•宁乡市一模)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[m﹣1,m+1,﹣2m]的函数的一些结论,其中不正确的是( )A.当m=2时,函数图象的顶点坐标为(―32,―254)B.当m>1时,函数图象截x轴所得的线段长大于3C.当m<0时,函数在x<12时,y随x的增大而增大D.不论m取何值,函数图象经过两个定点5.(2020•市中区二模)对某一个函数给出如下定义:如果存在常数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数;在所有满足条件的M中,其最小值称为这个函数的上确界.例如,函数y=﹣(x+1)2+2,y≤2,因此是有上界函数,其上确界是2,如果函数y=﹣2x+1(m≤x≤n,m<n)的上确界是n,且这个函数的最小值不超过2m,则m的取值范围是( )A.m≤13B.m<13C.13<m≤12D.m≤126.(2020秋•思明区校级期末)对于一个函数:当自变量x取a时,其函数值y也等于a,我们称a为这个函数的不动点,若二次函数y=x2+2x+c(c为常数)有两个不相等且都小于1的不动点,则c的取值范围是( )A.c<﹣3B.c>―14C.﹣3<c<﹣2D.﹣2<c<147.(2020秋•亳州月考)定义:在平面直角坐标系中,过一点P分别作坐标轴的垂线,这两条垂线与坐标轴围成一个矩形,若矩形的周长值与面积值相等,则点P叫作和谐点,所围成的矩形叫作和谐矩形.已知点P是抛物线y=x2+k上的和谐点,所围成的和谐矩形的面积为16,则k的值可以是( )A.16B.4C.﹣12D.﹣188.(2021•河南模拟)新定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0,a,b,c为实数)的“图象数”,如:y=x2﹣2x+3的“图象数”为[1,﹣2,3],若“图象数”是[m,2m+4,2m+4]的二次函数的图象与x 轴只有一个交点,则m的值为( )A.﹣2B.14C.﹣2或2D.29.(2021春•江岸区校级月考)定义:在平面直角坐标系中,若点A满足横、纵坐标都为整数,则把点A 叫做“整点”.如:B(3,0)、C(﹣1,3)都是“整点”.抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于点M,N两点,若该抛物线在M、N之间的部分与线段MN所围的区域(包括边界)恰有5个整点,则a的取值范围是( )A.﹣1≤a<0B.﹣2≤a<﹣1C.﹣1≤a<―12D.﹣2≤a<010.(2021•深圳模拟)我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是( )①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4,A.4B.3C.2D.111.(2021•东安县模拟)“爱心是人间真情所在”!现用“❤”定义一种运算,对任意实数m、n和抛物线y=ax2,当y=ax2❤(m,n)后都可得到y=a(x﹣m)2+n.当y=x2❤(m,n)后得到了新函数的图象(如图所示),则n m= .12.(2021•天宁区校级模拟)若定义一种新运算:a⊗b=ab(a≥3b)2a―b―2(a<3b),例如:4⊗1=4×1=4;5⊗4=10﹣4﹣2=4.则函数y=(﹣x+3)⊗(x+1)的最大值是 .13.(2020春•江岸区校级月考)定义符号min{a,b}为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min{1,3}=1,min{﹣2,1}=﹣2.若关于x的函数y=min{﹣x2+4x,kx﹣2k+2}的最大值为3,则k= .14.(2021•武汉模拟)定义x轴上横坐标为整数的点叫“整点”,例如(1,0)、(﹣3,0)都是“整点”.已知抛物线y=2x2﹣3ax+a2与x轴交于A、B两点,且抛物线对称轴位于y轴左侧,若线段AB上有2个“整点”(不包含A、B两点),则a的取值或取值范围是 .15.(2021秋•康巴什期中)如下图,正方形ABCD的边AB在x轴上,A(﹣4,0),B(﹣2,0),定义:若某个抛物线上存在一点P,使得点P到正方形ABCD四个顶点的距离相等,则称这个抛物线为正方形ABCD的“友好抛物线”.若抛物线y=2x2﹣nx﹣n2﹣1是正方形ABCD的“友好抛物线”,则n的值为 .16.(2021•邗江区二模)定义:在平面直角坐标系中,O为坐标原点,设点P的坐标为(x,y),当x<0时,点P的变换点P'的坐标为(﹣x,y);当x≥0时,点P的变换点P'的坐标为(﹣y,x).抛物线y=(x﹣2)2+n与x轴交于点C,D(点C在点D的左侧),顶点为E,点P在该抛物线上.若点P的变换点P'在抛物线的对称轴上,且四边形ECP'D是菱形,则满足该条件所有n值的和为 .17.(2021•吴兴区校级三模)定义:如果二次函数y=ax2+bx+c的图象经过点(﹣1,0),那么称此二次函数图象为“线性曲线”.例如:二次函数y=2x2﹣5x﹣7和y=﹣x2+3x+4的图象都是“线性曲线”.若“线性曲线”y=x2﹣mx+1﹣2k与坐标轴只有两个公共点,则k的值 .18.(2021•庆云县二模)在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=y(x≥0)―y(x<0),则称点Q为点P的“可控变点”.请问:若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,则实数a的值是 .19.(2021秋•武汉月考)在平面直角坐标系中,将抛物线C1:y=x2绕点(1,0)旋转180°后,得到抛物线C2,定义抛物线C1和C2上位于﹣2≤x≤2范围内的部分为图象C3.若一次函数y=kx+k﹣1(k>0)的图象与图象C3有两个交点,则k的范围是: .20.(2021•九江二模)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线被称为:“直角抛物线”.如图,直线l:y=15x+b经过点M(0,14),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n) (n为正整数),依次是直线l上的点,第一个抛物线与x轴正半轴的交点A1(x1,0)和A2(x2,0),第二个抛物线与x轴交点A2(x2,0)和A3(x3,0),以此类推,若x1=d(0<d<1),当d为 时,这组抛物线中存在直角抛物线.21.(2020秋•海淀区校级期末)已知函数y1=2kx+k与函数y2=x2﹣2x+3,定义新函数y=y2﹣y1.(1)若k=2,则新函数y= ;(2)若新函数y的解析式为y=x2+bx﹣2,则k= ,b= ;(3)设新函数y顶点为(m,n).①当k为何值时,n有大值,并求出最大值;②求n与m的函数解析式.22.(2021•雨花区一模)定义:对于给定函数y=ax2+bx+c(其中a,b,c为常数,且a≠0),则称函数y=ax2+bx+c,(x≥0)ax2―bx―c,(x<0)为函数y=ax2+bx+c(其中a,b,c为常数,且a≠0)的“相依函数”,此“相依函数”的图象记为G.(1)已知函数y=﹣x2+2x﹣1.①写出这个函数的“相依函数” ;②当﹣1≤x≤1时,此相依函数的最大值为 ;(2)若直线y=m与函数y=﹣x2+2x﹣1的相依函数的图象G恰好有两个公共点,求出m的取值范围;(3)设函数y=―12x2+nx+1(n>0)的相依函数的图象G在﹣4≤x≤2上的最高点的纵坐标为y0,当32≤y0≤9时,求出n的取值范围.23.(2021春•东湖区校级月考)在直角坐标系xOy中,定义点C(a,b)为抛物线y=ax2+bx(a≠0)的特征点坐标.(1)已知抛物线L经过点A(﹣2,﹣2)、B(﹣4,0),则它的特征点坐标是 ;(2)若抛物线L1:y=ax2+bx的位置如图所示:①抛物线L1:y=ax2+bx关于原点O对称的抛物线L2的解析式为 ;②若抛物线L1的特征点C在抛物线L2的对称轴上,试求a、b之间的关系式;③在②的条件下,已知抛物线L1、L2与x轴有两个不同的交点M、N,当点C、M、N为顶点构成的三角形是等腰三角形时,求a的值.24.(2021•苏州二模)定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“N”函数.(1)写出y=﹣x2+x﹣1的“N”函数的表达式;(2)若题(1)中的两个“N”函数与正比例函数y=kx(k≠0)的图象只有两个交点,求k的值;(3)如图,二次函数y1与y2互为“N”函数,A、B分别是“N”函数y1与y2图象的顶点,C是“N”函数y2与y轴正半轴的交点,连接AB、AC、BC,若点A(﹣2,1)且△ABC为直角三角形,求点C的坐标.25.(2021•长沙模拟)定义:若函数y=x2+bx+c(c≠0)与x轴的交点A,B的横坐标为x A,x B,与y轴的交点C的纵坐标为y C,若x A,x B中至少存在一个值,满足x A=y C(或x B=y C),则称该函数为“M 函数”.如图,函数y=x2+2x﹣3与x轴的一个交点A的横坐标为﹣3,与y轴交点C的纵坐标为﹣3,满足x A=y C,则称y=x2+2x﹣3为“M函数”.(1)判断y=x2﹣4x+3是否为“M函数”,并说明理由;(2)请探究“M函数”y=x2+bx+c(c≠0)表达式中的b与c之间的关系;(3)若y=x2+bx+c是“M函数”,且∠ACB为锐角,求c的取值范围.26.(2020秋•任城区期末)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数.小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数;(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2021的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试求证:经过点A1,B1,C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.27.(2021•北仑区一模)定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.如图,抛物线C1与抛物线C2组成一个开口向上的“月牙线”,抛物线C1与抛物线C2与x轴有相同的交点M,N(点M在点N的左侧),与y轴的交点分别为A,B且点A的坐标为(0,﹣3),抛物线C2的解析式为y=mx2+4mx﹣12m,(m>0).(1)请你根据“月牙线”的定义,设计一个开口向下的“月牙线”,直接写出两条抛物线的解析式;(2)求M,N两点的坐标;(3)在第三象限内的抛物线C1上是否存在一点P,使得△PAM的面积最大?若存在,求出△PAM的面积的最大值;若不存在,说明理由.28.(2021•开福区模拟)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它们的相关函数为y=―x+1(x<0) x―1(x≥0).(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x―1 2.①当点B(m,32)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x―12的相关函数的最大值和最小值.29.(2021春•海曙区校级期末)定义:若二次函数y=ax2+bx+c(ac≠0)与x轴的两个不同交点A、B的横坐标为x A、x B,与y轴交点的纵坐标为y C,若x A、x B中至少存在一个值,满足x A=y C(或x B=y C),则称该函数为和谐函数.例如,函数y=x2+2x﹣3就是一个和谐函数.(1)判断y=x2﹣4x+3是否为和谐函数,答: (填“是”或“不是”);(2)请探究和谐函数y=ax2+bx+c表达式中的a、b、c之间的关系;(3)若y=x2+bx+c是和谐函数,当∠ACB=90°时,求出c的值;(4)若和谐函数y=x2+2x﹣3交x轴于点A、B两点,点P(0,m)是y轴正半轴上一点,当∠APB=45°时,直接写出m的值 .30.(2021春•渝北区校级月考)如图①,定义:直线l:y=mx+n(m<0,n>0)与x、y轴分别相交于A、B两点,将△AOB绕着点O逆时针旋转90°得到△COD,过点A、B、D的抛物线P叫作直线l的“纠缠抛物线”,反之,直线l叫做P的“纠缠直线”,两线“互为纠缠线”.(1)若l:y=﹣2x+2,则纠缠抛物线P的函数解析式是 .(2)判断并说明y=﹣2x+2k与y=―1kx2﹣x+2k是否“互为纠缠线”.(3)如图②,若纠缠直线l:y=﹣2x+4,纠缠抛物线P的对称轴与CD相交于点E,点F在l上,点Q 在P的对称轴上,当以点C、E、Q、F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标.。
上海中考数学新定义类型题专项训练123
![上海中考数学新定义类型题专项训练123](https://img.taocdn.com/s3/m/1813f361a6c30c2259019e75.png)
中考阅读理解类新定义类题型专项_______________[代数类]1.(本题10分)设A 是含有根式的代数式,若存在另一个不恒等于零的代数式B ,使乘积AB 不含根式,则称B 为A 的共扼根式。
(1)设A =,写出它的一个共轭根式:B =; (2)对于(1)中的A 和B ,计算:2211A B A B+++2. 将关于x 的一元二次方程02=++q px x 变形为q px x --=2,就可将2x 表示为关于x的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”.已知012=--x x ,可用“降次法”求得134--x x 的值是3. 下表是六年级学生小林的学期成绩单,由于不小心蘸上了墨水,他的数学平时成绩看不到,小林去问了数学课代表,课代表说他也不知道小林的平时成绩,但他说:“我知道老师核算学期总成绩的方法,就是期中成绩与平时成绩各占30%,而期末成绩占40%.”小林核对了语文成绩:77%3070%4080%3080=⨯+⨯+⨯,完全正确,他再核对了英语成绩,同样如课代表所说,那么按上述方法核算的话,小林的数学平时成绩是 分.[几何类]4.我们把四边形两条对角线中点的连线段称为“奇异中位线”。
现有两个全等三角形,边长分别为3cm 、4cm 、5cm 。
将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的“奇异中位线”的长不为0,那么“奇异中位线”的长是cm 。
5. 当两个圆有两个公共点,且其中一个圆的圆心在另一圆的圆时,我们称此两圆的位置关系为“相交”.如果⊙1O 、⊙2O 半径分别3和1,且两圆“相交”,那么两圆的圆心距d 的取值围是.6.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.在Rt △ABC 中,∠C =90°,若Rt △ABC 是“好玩三角形”,则tanA = .7.如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形称为“倍边三角形”,如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为.8.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt △ABC 中,∠C =90°,较短的一条直角边边长为1,如果Rt △ABC 是“有趣三角形”,那么这个三角形“有趣中线”长等于.9.我们把梯形下底与上底的差叫做梯形的底差,梯形的高与中位线的比值叫做梯形的纵横比,如果某一等腰梯形腰长为5,底差等于6,面积为24,则该等腰梯形的纵横比等于;10.三角形的三条高或其延长线相交于一点,这点称为三角形的垂心.边长为2的等边三角形的垂心到这个三角形各顶点之间的距离之和为___________.11.将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍得△AB′ C′,即如图①,∠BAB′=θ,AB B C AC n AB BC AC''''===,我们将这种变换记为[θ,n ] .如图②,在△DEF 中,∠DFE =90°,将△DEF 绕点D 旋转,作变换[60°,n ]得△DE ′F ′,如果点E 、F 、F ′恰好在同一直线上,那么n =.ABCB′C ′DE ′F ′F图① 图②12.我们假设把两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.如果Rt△ABC 是奇异三角形,在Rt△ABC 中,∠C=90°,AB =c ,AC =b ,BC =a ,且b >a ,其中,a =1,那么b =.13.我们把三角形中最大角与最小角的度数差称为该三角形的“角正度值”.如果等 腰三角形的腰长为2,“角正度值”为45°,那么该三角形的面积等于;14. 如图4-1,点P 是以r 为半径的圆O 外一点,点'P 在线段OP 上,若满足2'OP OP r ⋅=,则称点'P 是点P 关于圆O 的反演点.如图4-2,在Rt △ABO 中,90B ︒∠=,AB =2,BO =4,圆O 的半径为2,如果点'A 、'B 分别是点A 、B 关于圆O 的反演点,那么'A 'B 的长是 .15.我们把两个三角形的外心之间的距离叫做外心距.如图4,在Rt △ABC 和Rt △ACD中,︒=∠=∠90ACD ACB ,点D 在边BC 的延长线上,如果3==DC BC ,那么△ABC 和△ACD 的外心距是.16.在平面直角坐标系中,我们把半径相等且外切、连心线与直线x y =平行的两个圆,称之为“孪生圆”;已知圆A 的圆心为(3,2-)半径为2,那么圆A 的所有“孪生圆”的圆心坐标为A B C D 图417、设二次函数解析式为bx ax y +=2,若某一次函数解析式为b ax y +=,则称该一次函数为二次函数的“伴随直线”;同时称以点()b a ,为圆心,半径长为22b a +的圆为二次函数的“伴随圆”.下面给出对于二次函数nx mx y +=2及其“伴随直线”和“伴随圆”的一些结论:(1) 若该二次函数的“伴随直线”经过第二、三象限,则该二次函数的开口向上;(2) 该二次函数的“伴随直线”与坐标轴围成的三角形面积为mn 22-;(3) 若m 、n 满足关系2nm -≠,则该二次函数与其“伴随直线”一定有2个交点;(4) 该二次函数的“伴随圆”与坐标轴所围成的三角形面积为mn 2;(5) 该二次函数的“伴随圆”圆心到其“伴随直线”的距离为122+m m .以上给出的5个结论中,正确结论的序号是;18. 如果A 、B 分别是圆O 1、圆O 2上两个动点,当A 、B 两点之间距离最大时,那么这个最大距离被称为圆O 1、圆O 2的“远距”.已知,圆O 1的半径为1,圆O 2的半径为2,当两圆相交时,圆O 1、圆O 2的“远距”可能是() (A )3;(B )4;(C )5;(D )6.[函数类]1.将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形。
2023年中考数学专题《 函数中的新定义问题》试卷含答案解析
![2023年中考数学专题《 函数中的新定义问题》试卷含答案解析](https://img.taocdn.com/s3/m/2121bc9edc3383c4bb4cf7ec4afe04a1b071b025.png)
考点1 一次函数新定义问题【例1】.定义:我们把一次函数y =kx +b (k ≠0)与正比例函数y =x 的交点称为一次函数y =kx +b (k ≠0)的“不动点”.例如求y =2x ﹣1的“不动点”:联立方程,解得,则y =2x ﹣1的“不动点”为(1,1).(1)由定义可知,一次函数y =3x +2的“不动点”为 (﹣1,﹣1) ;(2)若一次函数y =mx +n 的“不动点”为(2,n ﹣1),求m 、n 的值;(3)若直线y =kx ﹣3(k ≠0)与x 轴交于点A ,与y 轴交于点B ,且直线y =kx ﹣3上没有“不动点”,若P 点为x 轴上一个动点,使得S △ABP =3S △ABO ,求满足条件的P 点坐标.解:(1)联立,解得,∴一次函数y =3x +2的“不动点”为(﹣1,﹣1),故答案为:(﹣1,﹣1);(2)∵一次函数y =mx +n 的“不动点”为(2,n ﹣1),∴n ﹣1=2,∴n =3,∴“不动点”为(2,2),∴2=2m +3,解得m =﹣;(3)∵直线y =kx ﹣3上没有“不动点”,∴直线y =kx ﹣3与直线y =x 平行,∴k =1,例题精讲∴y=x﹣3,∴A(3,0),B(0,﹣3),设P(t,0),∴AP=|3﹣t|,∴S△ABP=×|t﹣3|×3,S△ABO=×3×3,∵S△ABP=3S△ABO,∴|t﹣3|=9,∴t=12或t=﹣6,∴P(﹣6,0)或P(12,0).变式训练【变1-1】.在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.(4)若方程|x2﹣6x|﹣a=0有四个不相等的实数根,则实数a的取值范围是 0<a<9 .解:(1)∵在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1,∴,解得,∴这个函数的表达式是y=|﹣3|﹣4;(2)∵y=|﹣3|﹣4,∴,∴函数y=x﹣7过点(2,﹣4)和点(4,﹣1);函数y=﹣x﹣1过点(0,﹣1)和点(﹣2,2),该函数的图象如图所示,性质:当x>2时,y的值随x的增大而增大;(3)由函数的图象可得,不等式的解集是:1≤x≤4;(4)由|x2﹣6x|﹣a=0得a=|x2﹣6x|,作出y=|x2﹣6x|的图象,由图象可知,要使方程|x2﹣6x|﹣a=0有四个不相等实数根,则0<a<9,故答案为:0<a<9.考点2 反比例函数新定义问题【例2】.探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数y=x+|﹣2x+6|+m性质及其应用的部分过程,请按要求完成下列各小题.x…﹣2﹣1012345…y…654a21b7…(1)写出函数关系式中m及表格中a,b的值;m= ﹣2 ,a= 3 ,b= 4 ;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象;(3)已知函数y=﹣(x﹣2)2+8的图象如图所示,结合你所画的函数图象,不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集为 x<0或x>4. .解:(1)由表格可知,点(3,1)在该函数图象上,∴将点(3,1)代入函数解析式可得:1=3+|﹣2×3+6|+m,解得:m=﹣2,∴原函数的解析式为:y=x+|﹣2x+6|﹣2;当x=1时,y=3;当x=4时,y=4;∴m=﹣2,a=3,b=4,故答案为:﹣2,3,4;(2)通过列表—描点—连线的方法作图,如图所示;(3)要求不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集,实际上求出函数y=x+|﹣2x+6|+m的图象位于函数y=﹣(x﹣2)2+8图象上方的自变量的范围,∴由图象可知,当x<0或x>4时,满足条件,故答案为:x<0或x>4.变式训练【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当AB的长最小时,称这个最小值为图形M与图形N之间的距离.例如,如图1,AB⊥l1,线段AB的长度称为点A与直线l1之间的距离,当l2∥l1时,线段AB 的长度也是l1与l2之间的距离.【应用】(1)如图2,在等腰Rt△BAC中,∠A=90°,AB=AC,点D为AB边上一点,过点D作DE∥BC交AC于点E.若AB=6,AD=4,则DE与BC之间的距离是 ;(2)如图3,已知直线l3:y=﹣x+4与双曲线C1:y=(x>0)交于A(1,m)与B两点,点A与点B之间的距离是 2 ,点O与双曲线C1之间的距离是 ;【拓展】(3)按规定,住宅小区的外延到高速路的距离不超过80m时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南﹣西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于80m.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线l4的函数表达式为y=﹣x,小区外延所在双曲线C2的函数表达式为y=(x>0),那么需要在高速路旁修建隔音屏障的长度是多少?解:(1)如图,过点D作DH⊥BC于点H,∵∠A=90°,AB=AC,∴∠B=45°,∵DH⊥BC,∴△BDH是等腰直角三角形,∴DH=BD,∵AB=6,AD=4,∴BD=AB﹣AD=6﹣4=2,∴DH=×2=;故答案为:;(2)把A(1,m)代入y=﹣x+4中,得:m=﹣1+4=3,∴A(1,3),把A(1,3)代入y=,得:3=,∴k=3,∴双曲线C1的解析式为y=,联立,得:﹣x+4=,即x2﹣4x+3=0,解得:x1=1,x2=3,∴B(3,1),∴AB==2;如图,作FG∥AB,且FG与双曲线y=只有一个交点,设直线FG的解析式为y=﹣x+b,则﹣x+b=,整理得:x2﹣bx+3=0,∴Δ=(﹣b)2﹣4×1×3=b2﹣12=0,∴b=2或b=﹣2(不符合题意,舍去),∴直线FG的解析式为y=﹣x+2,由﹣x+2=,解得:x1=x2=,∴K(,),∴OK==;故答案为:2,;(3)如图,设点S(a,b)是双曲线y=(x>0)上任意一点,且a<b,以点S 为圆心,80为半径作⊙S交l4于E,过点S作SF⊥直线l4于F,交y轴于W,SH⊥x轴于H,SG⊥y轴于G,则SG=a,SH=b,ab=2400,∵直线y=﹣x平分第二、四象限角,∴∠FOW=45°,∵∠OFW=∠SGW=90°,∴∠OWF=90°﹣45°=45°,∴∠SWG=∠OWF=45°,∴△WOF 和△SWG 是等腰直角三角形,∴SW =SG ,WF =OW ,∴SF =SW +WF =SG +OW =a +(b ﹣a )=(a +b ),∵EF====,∵OF =OW =(b ﹣a ),∴OE =(b ﹣a )+,设b ﹣a =m (m >0),则OE =m +≤=40,∴需要在高速路旁修建隔音屏障的长度=2OE =2×40=80,答:需要在高速路旁修建隔音屏障的长度是80米.考点3 二次函数新定义问题【例3】.小爱同学学习二次函数后,对函数y =﹣(|x |﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质: 函数图象关于y轴对称 ;②方程﹣(|x|﹣1)2=﹣1的解为: x=﹣2或x=0或x=2 ;③若方程﹣(|x|﹣1)2=m有四个实数根,则m的取值范围是 ﹣1<m<0 .(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象?写出平移过程,并直接写出当1<y1≤2时,自变量x的取值范围.解:(1)观察探究:①该函数的一条性质为:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则a的取值范围是﹣1<m<0.故答案为:函数图象关于y轴对称;x=﹣2或x=0或x=2;﹣1<m<0.(2)将函数y=﹣(|x|﹣1)2的图象向右平移1个单位,向上平移2个单位可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象,当1<y1≤2时,自变量x的取值范围是﹣1<x<3且x≠1,变式训练【变3-1】.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|ax2+bx+c|的图象(如图所示),下列结论正确的是( )A.图象具有对称性,对称轴是直线x=1.5B.有且只有﹣1≤x≤1时,函数值y随x值的增大而增大C.若a<0,则8a+c>0D.若a<0,则a+b≥m(am+b)(m为任意实数)解:由图象可得,图象具有对称性,对称轴是直线x==1,故选项A错误,不符合题意;当﹣1≤x≤1或x>3时,函数值y随x值的增大而增大,故选项B错误,不符合题意;∵﹣=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c<0,∴4a﹣2b+c=4a﹣2×(﹣2a)+c=4a+4a+c=8a+c<0,故选项C错误,不符合题意;∵y=ax2+bx+c开口向下,对称轴为直线x=1,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥m(am+b)+c,故选项D正确,符合题意;故选:D.【变3-2】.已知抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,交x轴于另一点B.(1)求抛物线解析式;(2)如图1,点P是BD上方抛物线上一点,连接AD,BD,PD,当BD平分∠ADP时,求P点坐标;(3)将抛物线图象绕原点O顺时针旋转90°形成如图2的“心形”图案,其中点M,N 分别是旋转前后抛物线的顶点,点E、F是旋转前后抛物线的交点.①直线EF的解析式是 y=x ;②点G、H是“心形”图案上两点且关于EF对称,则线段GH的最大值是 .解:(1)∵抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,∴,解得,∴抛物线解析式为y=﹣x2+4;(2)过点B作BE⊥x轴交DP延长线于点E,过D作DF⊥x于点F,由y=﹣x2+4,令y=0,则﹣x2+4=0,解得:x1=﹣2,x2=2,则B(2,0),∵DF=3,BF=2﹣(﹣1)=3,∴DF=BF,∴∠DBF=45°,∴∠DBE=45°,又∵DB=DB,BD平分∠ADP,∴△DAB≌△DEB(ASA),∴BA=BE,∵B(2,0),∴E(2,4),设直线DE的解析式为y=kx+b,则,解得,∴直线DE的解析式为y=x+,联立,解得或,则P(,);(3)①∵抛物线关于y轴对称,所以旋转后图形关于x轴对称,∴对于抛物线上任意一点P(a,b)关于原点旋转90°后对应点为P1(b,﹣a)在旋转后图形上,P1(b,﹣a)关于x轴对称的点P2(b,a)在旋转后图形上,∵P(a,b)与P2(b,a)关于y=x对称,∴图形2关于y=x对称,∴直线EF的解析式为y=x,故答案为:y=x;②如图,连接GH,交EF与点K,则GH=2GK,过点G作x轴的垂线,交EF于点I,∴当GK最大时,△GFE面积最大,又∵S△GFE=GI•(x E﹣x F),设G(m,﹣m2+4),则I(m,m),∴GI=y G﹣y I=﹣m2+4﹣m=﹣(m+)2+,∴当m=﹣时,△GFE面积最大,∴G(﹣,),由①可知G(﹣,)关于y=x的对称点H(,﹣),∴K(,),∴GK==,∴GH=2GK=,∴GH的最大值为,故答案为:.1.对于实数a,b,定义符号max|a,b|,其意义为:当a≥b时,max|a,b|=a,当a<b时,max|a,b|=b.例如max|2,﹣1|=2,若关于x的函数y=max|2x﹣1,﹣x+5|,则该函数的最小值为( )A.B.1C.D.3解:当2x﹣1≥﹣x+5时,即x≥2,y=max|2x﹣1,﹣x+5|=2x﹣1,此时x=2时,y有最小值,最小值为2×2﹣1=3;当2x﹣1≤﹣x+5时,即x≤2,y=max|2x﹣1,﹣x+5|=﹣x+5,此时x=2时,y有最小值,最小值为﹣2+5=3;综上所述,该函数的最小值为3.故选:D.2.在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y=的图象上运动,且点A是点B的“关联点”,当线段OB最短时,点B的坐标为 (,)或(﹣,﹣) .解:设B(x,y),∵点A是点B的“关联点”,∴A(x+y,x+)∵点A在函数y=(x>0)的图象上,∴(x+y)(x+)=,即:x+y=或x+y=﹣,当点B在直线y=﹣x+上时,设直线y=﹣x+与x轴、y轴相交于点M、N,则M(1,0)、N(0,),当OB⊥MN时,线段OB最短,此时OB==,由∠NMO=60°,可得点B(,);设直线y=﹣x﹣时,同理可得点B(﹣,﹣);故答案为:(,)或(﹣,﹣).3.定义:由a,b构造的二次函数y=ax2+(a+b)x+b叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数y=ax2+(a+b)x+b的“本源函数”(a,b为常数,且a≠0).若一次函数y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,那么二次函数y=ax2﹣3x+a+1的“本源函数”是 y=﹣2x﹣1 .解:∵y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,∴ax2﹣3x+a+1=ax2+(a+b)x+b,即,解得,∴y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1,故答案为:y=﹣2x﹣1.4.在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”.例如(﹣3,﹣3)、(1,1)、(2023,2023)都是“不动点”.已知双曲线.(1)下列说法不正确的是 C .A.直线y=x的图象上有无数个“不动点”B.函数的图象上没有“不动点”C.直线y=x+1的图象上有无数个“不动点”D.函数y=x2的图象上有两个“不动点”(2)求双曲线上的“不动点”;。
中考数学专题复习《新定义问题》专项检测(含答案)
![中考数学专题复习《新定义问题》专项检测(含答案)](https://img.taocdn.com/s3/m/f2ec4c3353d380eb6294dd88d0d233d4b14e3ff6.png)
新定义问题1. 定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x ,下列式子中错误的是( )A. [x ]=x (x 为整数)B. 0≤x -[x ]<1C. [x +y ]≤[x ]+[y ]D. [n +x ]=n +[x ](n 为整数)2.对于两个不相等的实数a ,b ,我们规定符号max{a ,b }表示a ,b 中较大的数,如:max{2,4}=4.按照这个规定,方程max{x ,-x }=2x +1x的解为( )A. 1- 2B. 2- 2C. 1-2或1+ 2D. 1+2或-13.定义运算:a ⊗b =a (1-b ).下面给出了关于这种运算的几种结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③(a ⊗a )+(b ⊗b )=2ab ;④若a ⊗b =0,则a =0或b =1.其中结论正确的序号是( )A. ①④B. ①③C. ②③④D. ①②④4. 对于实数m ,n ,定义一种运算“※”:m ※n =m 2-mn -3.下列说法错误的是( )A. 0※1=-3B. 方程x ※2=0的根为x 1=-1,x 2=3C. 不等式组⎩⎪⎨⎪⎧1※t <0(-3)※t <0无解D. 函数y =x ※(-2)的顶点坐标是(1,-4)5. 用“♥”定义一种新运算.对于任意实数m ,n 和抛物线y =ax 2,当y =ax 2♥(m ,n )后都可以得到y =a (x -m )2+n .当y =2x 2♥(3,4)后都可以得到y =2(x -3)2+4.函数y =x 2♥(1,n )得到的函数如图所示,n=________. 第5题图6. 4个数a ,b ,c ,d 排列成⎪⎪⎪⎪⎪⎪⎪⎪a b c d ,我们称之为二阶行列式.规定它的运算法则为:⎪⎪⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若⎪⎪⎪⎪⎪⎪⎪⎪x +3 x -3x -3 x +3=12,则x =________.7. 新定义[a ,b ]为一次函数y =ax +b (其中a ≠0,且a ,b 为实数)的“关联数”.若“关联数”[3,m +2]所对应的一次函数是正比例函数,则关于x 的方程1x -1+1m =1的解为________.8. 对非负实数x “四舍五入”到个位的值记为x ,即当n 为非负整数..时,若n -12≤x <n +12,则x n =,如0.460,3.674==给出下列关于x 的结论: ①1.4931=; ②22x x =; ③若1142x -=,则实数x 的取值范围是9≤x <11; ④当x ≥0,m 为非负整数时,有20132013m x m x +=+;⑤x y x y +=+.其中,正确的结论有________(填写所有正确的序号). 9.如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”. 以下关于倍根方程的说法,正确的是________.(写出所有正确说法的序号)①方程x 2-x -2=0是倍根方程;②若(x -2)(mx +n )=0是倍根方程,则4m 2+5mn +n 2=0; ③若点(p ,q )在反比例函数y =2x的图象上,则关于x 的方程px 2+3x +q =0是倍根方程;④若方程ax 2+bx +c =0是倍根方程,且相异两点M (1+t ,s ),N (4-t ,s )都在抛物线y =ax 2+bx +c 上,则方程ax 2+bx +c =0的一个根为54.10.在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:若y ′=⎩⎪⎨⎪⎧y (x ≥0)-y (x <0),则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(-1,3)的“可控变点”为点(-1,-3).(1)若点(-1,-2)是一次函数y =x +3图象上点M 的“可控变点”,则点M 的坐标为________.(2)若点P 在函数y =-x 2+16(-5≤x ≤a )的图象上,其“可控变点”Q 的纵坐标y ′的取值范围是-16≤y ′≤16,则实数a 的取值范围是________. 【答案】专题四 新定义问题1. C 【解析】对于A 选项,取x =2,[2]=2,成立;对于B 选项,取x =3.5,3.5-[3.5]=3.5-3=0.5<1,成立;对于C 选项,x =2.5,y =3.5,则[x +y ]=[6]=6,[x ]+[y ]=2+3=5,6>5,故选项C 错误;对于D 选项,n =2,x =3.5, [2+3.5]=[5.5]=5,2+[3.5]=2+3=5,成立.故答案选择C.2. D 【解析】分类讨论:(1)当x >-x ,即x >0时,max{x ,-x }=x ,即x =2x +1x,∴x 2-2x -1=0,解得x 1=1-2<0(舍去),x 2=1+2;(2)当x <-x ,即x <0时,max{x ,-x }=-x ,即-x =2x +1x,∴x 2+2x +1=0,解得x 1=x 2=-1<0,符合题意.综上所述,符合题意的方程的解是1+2或-1. 3. A 【解析】合题意;B. 方程x ※2=0即为x 2-2x -3=0,解得x 1=-1,x 2=3,正确,故本选项不符合题意;C.不等式组⎩⎪⎨⎪⎧1※t <0(-3)※t <0即为⎩⎪⎨⎪⎧1-t -3<09+3t -3<0,即⎩⎪⎨⎪⎧t >-2t <-2无解,正确,故本选项不符合题意;D. 函数y =x ※(-2)即为y =x 2+2x -3=(x +1)2-4,顶点坐标为(-1,-4),错误,故本选项符合题意.5. 2 【解析】根据题意得y =x 2♥(1,n )是函数y =(x -1)2+n ;由图象得此函数的顶点坐标为(1,2),∴此函数的解析式为y =(x -1)2+2.∴n =2.6. 1 【解析】根据新定义规定的算法:⎪⎪⎪⎪⎪⎪⎪⎪x +3 x -3x -3 x +3=12,即(x +3)2-(x -3)2=12,整理得12x =12,解得x =1.7. x =53 【解析】根据“关联数”[3,m +2]所对应的一次函数是正比例函数,得到y =3x +m +2为正比例函数,即m +2=0,解得m =-2,则分式方程为1x -1-12=1,去分母得:2-(x -1)=2(x -1),去括号得:2-x +1=2x -2,解得x =53,经检验x =53是分式方程的解.8. ①③④ 【解析】9. ②③【解析】10. (-1,2);-5≤a≤4 2 【解析】(1)根据“可控变点”定义知它们的横坐标不变,∴M点的横坐标为-1.当横坐标为负数时,它们的纵坐标互为相反数.∴M(-1,2);(2)当P点的横坐标为负数时,其纵坐标的取值范围是-9≤y<16,则其“可控变点”的纵坐标为-16<y′≤9,符合-16≤y′≤16这一条件.当P点横坐标为非负数时,y′=y,因此只要y=-x2+16≥-16,即0≤x≤42,∴-5≤a≤4 2.。
2马井堂上海中考数学新定义类型题专项训练
![2马井堂上海中考数学新定义类型题专项训练](https://img.taocdn.com/s3/m/83000469ba1aa8114531d93e.png)
中考阅读理解类新定义类题型专项姓名_______________[代数类]1.(本题10分)设A 是含有根式的代数式,若存在另一个不恒等于零的代数式B ,使乘积AB 不含根式,则称B 为A 的共扼根式。
(1)设A =,写出它的一个共轭根式:B = ; (2)对于(1)中的A 和B ,计算:2211A B A B+++2. 将关于x 的一元二次方程02=++q px x 变形为q px x --=2,就可将2x 表示为关于x的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”. 已知012=--x x ,可用“降次法”求得134--x x 的值是3. 下表是六年级学生小林的学期成绩单,由于不小心蘸上了墨水,他的数学平时成绩看不到,小林去问了数学课代表,课代表说他也不知道小林的平时成绩,但他说:“我知道老师核算学期总成绩的方法,就是期中成绩与平时成绩各占30%,而期末成绩占40%.”小林核对了语文成绩:77%3070%4080%3080=⨯+⨯+⨯,完全正确,他再核对了英语成绩,同样如课代表所说,那么按上述方法核算的话,小林的数学平时成绩是 分.[几何类]4.我们把四边形两条对角线中点的连线段称为“奇异中位线”。
现有两个全等三角形,边长分别为3cm 、4cm 、5cm 。
将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的“奇异中位线”的长不为0,那么“奇异中位线”的长是 cm 。
5. 当两个圆有两个公共点,且其中一个圆的圆心在另一圆的圆内时,我们称此两圆的位置关系为“内相交”.如果⊙1O 、⊙2O 半径分别3和1,且两圆“内相交”,那么两圆的圆心距d 的取值范围是 .6.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.在Rt △ABC 中,∠C =90°,若Rt △ABC 是“好玩三角形”,则tanA = .7.如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形称为“倍边三角形”,如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为 .8.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt △ABC 中,∠C =90°,较短的一条直角边边长为1,如果Rt △ABC 是“有趣三角形”,那么这个三角形“有趣中线”长等于 .9.我们把梯形下底与上底的差叫做梯形的底差,梯形的高与中位线的比值叫做梯形的纵横比,如果某一等腰梯形腰长为5,底差等于6,面积为24,则该等腰梯形的纵横比等于 ;10.三角形的三条高或其延长线相交于一点,这点称为三角形的垂心.边长为2的等边三角形的垂心到这个三角形各顶点之间的距离之和为___________.11.将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍得△AB′ C′ ,即如图①,∠BAB′ =θ,,我们将这种变换记为[θ,n ] .如图②,在△DEF 中,∠DFE =90°,将△DEF 绕点D 旋转,作变换[60°,n ]得△DE ′F ′,如果点E 、F 、F ′恰好在同一直线上,那么n = .AB B C AC n AB BC AC ''''===ABC B′C ′DE E ′F ′F图① 图②12.我们假设把两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.如果 Rt △ABC 是奇异三角形,在Rt △ABC 中,∠C =90°,AB =c ,AC =b ,BC =a ,且b >a ,其中,a =1,那么b = .13.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等 腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于 ;14. 如图4-1,点P 是以r 为半径的圆O 外一点,点'P 在线段OP 上,若满足2'OP OP r ⋅=,则称点'P 是点P 关于圆O 的反演点.如图4-2,在Rt △ABO 中,90B ︒∠=,AB =2,BO =4,圆O 的半径为2,如果点'A 、'B 分别是点A 、B 关于圆O 的反演点,那么'A 'B 的长是 .15. 我们把两个三角形的外心之间的距离叫做外心距.如图4,在Rt △ABC 和Rt △ACD中,︒=∠=∠90ACD ACB ,点D 在边BC 的延长线上,如果3==DC BC ,那么△ABC 和△ACD 的外心距是 .16.在平面直角坐标系中,我们把半径相等且外切、连心线与直线 x y =平行的两个圆,称之为“孪生圆”;已知圆A 的圆心为(3,2-)半径为2,那么圆A 的所有“孪生圆”的圆心坐标为A BC 图417、 设二次函数解析式为bx ax y +=2,若某一次函数解析式为b ax y +=,则称该一次函数为二次函数的“伴随直线”;同时称以点()b a ,为圆心,半径长为22b a +的圆为二次函数的“伴随圆”.下面给出对于二次函数nx mx y +=2及其“伴随直线”和“伴随圆”的一些结论:(1) 若该二次函数的“伴随直线”经过第二、三象限,则该二次函数的开口向上;(2) 该二次函数的“伴随直线”与坐标轴围成的三角形面积为mn 22-;(3) 若m 、n 满足关系2nm -≠,则该二次函数与其“伴随直线”一定有2个交点;(4) 该二次函数的“伴随圆”与坐标轴所围成的三角形面积为mn 2;(5) 该二次函数的“伴随圆”圆心到其“伴随直线”的距离为122+m m .以上给出的5个结论中,正确结论的序号是 ;18. 如果A 、B 分别是圆O 1、圆O 2上两个动点,当A 、B 两点之间距离最大时,那么这个最大距离被称为圆O 1、圆O 2的“远距”.已知,圆O 1的半径为1,圆O 2的半径为2,当两圆相交时,圆O 1、圆O 2的“远距”可能是( ) (A )3; (B )4; (C )5; (D )6.[函数类]1.将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形。
2023年上海市15区中考一模数学试题知识点汇编 图形的变化,新定义含详解
![2023年上海市15区中考一模数学试题知识点汇编 图形的变化,新定义含详解](https://img.taocdn.com/s3/m/865ed772302b3169a45177232f60ddccda38e6e7.png)
2023年上海市15区中考数学一模汇编专题06图形的变化,新定义(27题)一.选择题(共1小题)1.(2022秋•徐汇区期末)阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i1=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1B.﹣1C.i D.﹣i二.填空题(共26小题)2.(2022秋•黄浦区校级期末)如图,图中提供了一种求cot15°的方法.作Rt△ABC,使∠C=90°,∠ABC=30°,再延长CB到点D,使BD=BA,联结AD,即可得∠D=15°.如果设AC=t,则可得CD=(2+)t,则cot15°=cot D==2+.用以上方法,则cot22.5°=.3.(2022秋•黄浦区校级期末)如图,已知在△ABC中,∠C=90°,BC=8,cos B=,点P是斜边AB上一点,过点P作PM⊥AB交边AC于点M,过点P作AC的平行线,与过点M作AB的平行线交于点Q.如果点Q恰好在∠ABC的平分线上,那么AP的长为.4.(2022秋•嘉定区校级期末)点A、B分别在△DEF的边DE、EF上,且∠DEF=90°,,∠EBA=45°(如图),△ABE沿直线AB翻折,翻折后的点E落在△DEF内部的点C,直线DC与边EF相交于点H,如果FH=AD,那么cot D=.5.(2022秋•徐汇区校级期末)在同一平面直角坐标系中,如果两个二次函数y1=a1(x+h1)2+k1与y2=a2(x+h2)2+k2的图象的形状相同,并且对称轴关于y轴对称,那么我们称这两个二次函数互为梦函数.如二次函数y=(x+1)2﹣1与y=(x﹣1)2+3互为梦函数,写出二次函数y=2(x+2)2+1的其中一个梦函数.6.(2022秋•徐汇区校级期末)在Rt△ABC中,∠C=90°,M为AB的中点,将Rt△ABC绕点M旋转,使点C与点B重合得到△DEB,设边BE交边CA于点N.若BC=2,AC=3,则AN=.7.(2022秋•浦东新区校级期末)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,点D是AC的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AB时,那么AE的长为.8.(2022秋•杨浦区校级期末)已知y是关于x的函数,若该函数的图象经过点P(t,﹣t),则称点P为函数图象上的“相反点”,例如:直线y=2x﹣3上存在“相反点”P(1,﹣1).若二次函数y=x2+2mx+m+2的图象上存在唯一“相反点”,则m=.9.(2022秋•杨浦区校级期末)在Rt△ABC中,∠C=90°,AB=5,,点D在斜边AB上,把△ACD沿直线CD翻折,使得点A落在同一平面内的点A'处,当A'D平行Rt△ABC的直角边时,AD的长为.10.(2022秋•浦东新区期末)如图,点E、F分别在边长为1的正方形ABCD的边AB、AD上,BE=2AE、AF=2FD,正方形A'B'C'D'的四边分别经过正方形ABCD的四个顶点,已知A'D'∥EF,那么正方形A'B'C'D'的边长是.11.(2022秋•浦东新区期末)如图,正方形ABCD的边长为5,点E是边CD上的一点,将正方形ABCD沿直线AE 翻折后,点D的对应点是点D',联结CD'交正方形ABCD的边AB于点F,如果AF=CE,那么AF的长是.12.(2022秋•闵行区期末)如图,在Rt△ABC中,∠ACB=90°,AB=9,cot A=2,点D在边AB上,点E在边AC上,将△ABC沿着折痕DE翻折后,点A恰好落在线段BC的延长线上的点P处,如果∠BPD=∠A,那么折痕DE的长为.13.(2022秋•闵行区期末)阅读:对于线段MN与点O(点O与MN不在同一直线上),如果同一平面内点P满足:射线OP与线段MN交于点Q,且=,那么称点P为点O关于线段MN的“准射点”.问题:如图,矩形ABCD中,AB=4,AD=5,点E在边AD上,且AE=2,联结BE.设点F是点A关于线段BE的“准射点”,且点F在矩形ABCD的内部或边上,如果点C与点F之间距离为d,那么d的取值范围为.14.(2022秋•徐汇区期末)如图,在等边三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,若△ABC的面积为48,则△DEF的面积为.15.(2022秋•徐汇区期末)如图,在Rt△ABC中,∠A=90°,AB=AC=2,将线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,且AD∥BC,则AD=.16.(2022秋•青浦区校级期末)如图,在Rt△ABC中,∠ACB=90°,AC=1,tan∠CAB=2,将△ABC绕点A旋转后,点B落在AC的延长线上的点D,点C落在点E,DE与直线BC相交于点F,那么CF=.17.(2022秋•黄浦区期末)如图,在矩形ABCD中,过点D作对角线AC的垂线,垂足为E,过点E作BE的垂线,交边AD于点F,如果AB=3,BC=5,那么DF的长是.18.(2022秋•黄浦区期末)将一张直角三角形纸片沿一条直线剪开,将其分成一张三角形纸片与一张四边形纸片,如果所得四边形纸片ABCD如图5所示,其中∠A=∠C=90°,AB=7厘米,BC=9厘米,CD=2厘米,那么原来的直角三角形纸片的面积是平方厘米.19.(2022秋•徐汇区期末)在Rt△ABC中,∠B=90°,∠BAC=30°,BC=1,以AC为边在△ABC外作等边△ACD,设点E、F分别是△ABC和△ACD的重心,则两重心E与F之间的距离是.20.(2022秋•徐汇区期末)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边AB 上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A=.21.(2022秋•杨浦区期末)如图,已知在Rt△ABC中,∠C=90°,AC=BC=1,点D在边BC上,将△ABC沿直线AD翻折,使点C落在点C′处,联结AC′,直线AC′与边CB的延长线相交于点F.如果∠DAB=∠BAF,那么BF=.22.(2022秋•青浦区校级期末)如图,已知在△ABC中,∠C=90°,AB=21,,正方形DEFG的顶点G、F分别在AC、BC上,点D、E在斜边AB上,那么正方形DEFG的边长为.23.(2022秋•青浦区校级期末)新定义:有一组对角互余的凸四边形称为对余四边形,如图,已知在对余四边形ABCD中,AB=10,BC=12,CD=5,tan B=,那么边AD的长为.24.(2022秋•金山区校级期末)如果梯形的一条对角线把梯形分成的两个三角形相似,那么我们称该梯形为“优美梯形”.如果一个直角梯形是“优美梯形”,它的上底等于2,下底等于4,那么它的周长为.25.(2022秋•金山区校级期末)如图,已知在△ABC中,∠C=90°,BC=8,cos B=,点P是斜边AB上一点,过点P作PM⊥AB交边AC于点M,过点P作AC的平行线,与过点M作AB的平行线交于点Q.如果直线CQ ⊥AB,那么AP的长为.26.(2022秋•静安区期末)如图,△ABC绕点C逆时针旋转90°后得△DEC,如果点B、D、E在一直线上,且∠BDC=60°,BE=3,那么A、D两点间的距离是.27.(2022秋•静安区期末)定义:把二次函数y=a(x+m)2+n与y=﹣a(x﹣m)2﹣n(a≠0,m、n是常数)称作互为“旋转函数”.如果二次函数y=x2+bx﹣2与y=﹣x2﹣cx+c(b、c是常数)互为“旋转函数”,写出点P (b,c)的坐标.2023年上海市15区中考数学一模汇编专题06图形的变化,新定义(27题)一.选择题(共1小题)1.(2022秋•徐汇区期末)阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i1=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1B.﹣1C.i D.﹣i【分析】根据已知得出变化规律进而求出答案.【解答】解:∵i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,∴每4个数据一循环,∵2019÷4=504…3,∴i2019=i3=﹣i.故选:D.【点评】此题主要考查了新定义,正确理解题意是解题关键.二.填空题(共26小题)2.(2022秋•黄浦区校级期末)如图,图中提供了一种求cot15°的方法.作Rt△ABC,使∠C=90°,∠ABC=30°,再延长CB到点D,使BD=BA,联结AD,即可得∠D=15°.如果设AC=t,则可得CD=(2+)t,则cot15°=cot D==2+.用以上方法,则cot22.5°=+2.【分析】利用题中的方法构建一个Rt△ADC,使∠D=15°,然后利用余切的定义求解.【解答】解:作Rt△ABC,使∠C=90°,∠ABC=45°,再延长CB到点D,使BD=BA,联结AD,∵AB=BD,∴∠BAD=∠D,∵∠ABC=∠BAD+∠D,∴∠D=∠ABC=15°,设AC=t,则BC=t,AB=2t,∴CD=BC+BD=2t+t=(+2)t,在Rt△ADC中,cot D==+2,∴cot15°=+2.故答案为:+2.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.灵活应用勾股定理和锐角三角函数的定义是解决此类问题的关键.3.(2022秋•黄浦区校级期末)如图,已知在△ABC中,∠C=90°,BC=8,cos B=,点P是斜边AB上一点,过点P作PM⊥AB交边AC于点M,过点P作AC的平行线,与过点M作AB的平行线交于点Q.如果点Q恰好在∠ABC的平分线上,那么AP的长为.【分析】根据直角三角形的边角关系可求出AB,AC,再根据相似三角形,用含有AP的代数式表示MC、NC、MN,再根据角平分线的定义以及等腰三角形的判定得出BN=NQ,进而列方程求出AP即可.【解答】解:在△ABC中,∠C=90°,BC=8,cos B=,∴AB==10,AC==6,∵PM⊥AB,∴∠APM=90°=∠C,∵∠A=∠A,∴△APM∽△ACB,∴==,设AP=3x,则PM=4x,AM=5x,∴MC=6﹣5x,∵MN∥AB,∴==,∴CN=8﹣x,MN=10﹣x,∵BQ平分∠ABC,MN∥AB,∴∠QBN=∠BQN,∴NQ=BN=BC﹣CN=x,∵MN∥AB,PQ∥AC,∴四边形APQM是平行四边形,∴QM=AP=3x,∴MN=NQ+MQ=x+3x=x,∴x=10﹣x,解得x=,∴AP=3x=,故答案为:.【点评】本题考查直角三角形的边角关系,角平分线的定义,相似三角形的判定和性质以及平行四边形的性质,掌握直角三角形的边角关系以及相似三角形的判定和性质是解决问题的前提,用含有AP的代数式表示MC、NC、MN是正确解答的关键.4.(2022秋•嘉定区校级期末)点A、B分别在△DEF的边DE、EF上,且∠DEF=90°,,∠EBA=45°(如图),△ABE沿直线AB翻折,翻折后的点E落在△DEF内部的点C,直线DC与边EF相交于点H,如果FH=AD,那么cot D=.【分析】根据题意和翻折的性质可得△ABE是等腰直角三角形,△ABC是等腰直角三角形,所以AC∥BE,得==,设AC=AE=2x,则HE=3x,AD=4x,所以FE=7x,DE=6x,然后根据锐角三角函数即可解决问题.【解答】解:如图所示:∵∠DEF=90°,∠EBA=45°,∴△ABE是等腰直角三角形,∴AE=BE,∵△ABE沿直线AB翻折,翻折后的点E落在△DEF内部的点C,∴△ABC是等腰直角三角形,∴AC∥BE,∴==,∵FH=AD,设AC=AE=2x,则HE=3x,AD=4x,∴FE=7x,DE=6x,∴=,∴cot D==.故答案为:.【点评】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质.5.(2022秋•徐汇区校级期末)在同一平面直角坐标系中,如果两个二次函数y1=a1(x+h1)2+k1与y2=a2(x+h2)2+k2的图象的形状相同,并且对称轴关于y轴对称,那么我们称这两个二次函数互为梦函数.如二次函数y=(x+1)2﹣1与y=(x﹣1)2+3互为梦函数,写出二次函数y=2(x+2)2+1的其中一个梦函数y=2(x﹣2)2+2(答案为不唯一).【分析】由一对梦函数的图象的形状相同,并且对称铀关于y轴对称,可|a1|=a2,h1与h2互为相反数;【解答】解:二次函数y=2(x+2)2+1的一个梦函数是y=2(x﹣2)2+2;故答案为:y=2(x﹣2)2+2(答案为不唯一).【点评】本题主要考查的是二次函数的图象与几何变换,得出变换的规律是解题的关键.6.(2022秋•徐汇区校级期末)在Rt△ABC中,∠C=90°,M为AB的中点,将Rt△ABC绕点M旋转,使点C与点B重合得到△DEB,设边BE交边CA于点N.若BC=2,AC=3,则AN=.【分析】根据旋转的性质用同一个未知数表示出有关的边,根据勾股定理列方程计算.【解答】解:∵MA=MB=ME,∴∠ABE=∠E,又∵∠E=∠A,∴∠ABE=∠A,∴AN=NB,设CN=x,则AN=NB=3﹣x,在Rt△CAN中,AN2=AC2+CN2,即(3﹣x)2=4+x2,解得x=,即CN=.∴AN=3﹣=故答案为:.【点评】本题考查旋转变换,等腰三角形的判定和性质等知识,根据旋转的性质得到对应角和对应边之间的关系是解题的关键.7.(2022秋•浦东新区校级期末)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,点D是AC的中点,点E 在边AB上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AB时,那么AE的长为或.【分析】分两种情形分别求解,作DF⊥AB于F.证明△AFD∽△ACB,由相似三角形的性质及勾股定理可求出答案.【解答】解:如图,作DF⊥AB于F.在Rt△ACB中,BC===6,∵∠DAF=∠BAC,∠AFD=∠C=90°,∴△AFD∽△ACB,∴,∴,∴DF=,AF=,∵A′E⊥AB,∴∠AEA′=90°,由翻折不变性可知:∠AED=45°,∴EF=DF=,∴AE=A′E=+=,如图,作DF⊥AB于F,当EA′⊥AB时,同法可得AE=A'E==.故答案为:或.【点评】本题考查翻折变换,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.(2022秋•杨浦区校级期末)已知y是关于x的函数,若该函数的图象经过点P(t,﹣t),则称点P为函数图象上的“相反点”,例如:直线y=2x﹣3上存在“相反点”P(1,﹣1).若二次函数y=x2+2mx+m+2的图象上存在唯一“相反点”,则m=.【分析】将P(t,﹣t)代入y=x2+2mx+m+2中得t2+2mt+m+2=﹣t,即t2+(2m+1)t+m+2=0,将二次函数y=x2+2mx+m+2的图象上存在唯一“相反点”,转化为方程有两个相等的实数根,Δ=0,求解即可.【解答】解:将P(t,﹣t)代入y=x2+2mx+m+2中,得t2+2mt+m+2=﹣t,即t2+(2m+1)t+m+2=0,∵二次函数y=x2+2mx+m+2的图象上存在唯一“相反点”,∴方程有两个相等的实数根,∴Δ=(2m+1)2﹣4×1×(m+2)=0,解得,故答案为:.【点评】本题考查了二次函数、一元二次方程根的判别式,解题的关键是将函数问题转化为方程问题.9.(2022秋•杨浦区校级期末)在Rt△ABC中,∠C=90°,AB=5,,点D在斜边AB上,把△ACD沿直线CD翻折,使得点A落在同一平面内的点A'处,当A'D平行Rt△ABC的直角边时,AD的长为1或3.【分析】如图,当A'D∥BC,根据平行线的性质得到∠A′DB=∠B,根据折叠的性质得到A′D=AD,∠A′=∠A,根据三角形的面积公式得到,由相似三角形的性质即可得到结论;如图2,当A'D∥AC,根据折叠的性质得到AD=A′D,AC=A′C,∠ACD=∠A′CD,根据平行线的性质得到∠A′DC=∠ACD,于是得到∠A′DC=∠A′CD,推出A′D=A′C,于是得到AD=AC=8.【解答】解:Rt△ABC中,∠C=90°,AB=5,,∴AC=3,,①如图,当A'D∥BC,∴∠A′DB=∠B,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴A′D=AD,∴∠A′=∠A,∴∠A′+∠A′DB=90°,∴A′C⊥AB,∴,∴,∵A'D∥BC,∴△A′DE∽△CBE,∴,即,∴A′D=1,∴AD=1;②如图,当A'D∥AC,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴AD=A′D,AC=A′C,∠ACD=∠A′CD,∵∠A′DC=∠ACD,∴∠A′DC=∠A′CD,∴A′D=A′C,∴AD=AC=3,综上所述:AD的长为:1或3,故答案为:1或3.【点评】本题考查了翻折变换﹣折叠问题,直角三角形的性质,熟练掌握折叠的性质是解题的关键.10.(2022秋•浦东新区期末)如图,点E、F分别在边长为1的正方形ABCD的边AB、AD上,BE=2AE、AF=2FD,正方形A'B'C'D'的四边分别经过正方形ABCD的四个顶点,已知A'D'∥EF,那么正方形A'B'C'D'的边长是.【分析】通过证明△AEF∽△A'AB,可求AA'的长,同理可求AD'的长,即可求解.【解答】解:∵BE=2AE、AF=2FD,AB=AD=1,∴BE=,AE=,AF=,DF=,∴EF==,∵A'D'∥EF,∴∠A'AB=∠AEF,又∵∠A'=∠EAF=90°,∴△AEF∽△A'AB,∴,∴AA'==,同理可求:AD'=,∴A'D'=,∴正方形A'B'C'D'的边长为,故答案为:.【点评】本题考查了正方形的性质,相似三角形的判定和性质,证明三角形相似是解题的关键.11.(2022秋•浦东新区期末)如图,正方形ABCD的边长为5,点E是边CD上的一点,将正方形ABCD沿直线AE 翻折后,点D的对应点是点D',联结CD'交正方形ABCD的边AB于点F,如果AF=CE,那么AF的长是.【分析】根据翻折的性质得AE⊥DD′,DE=D′E,可得∠EDD′=∠ED′D,证明四边形AECF是平行四边形,则AF=CE,AE∥CF,可得CF⊥DD′,根据等角的余角相等可得∠ED′C=∠D′CE,则D′E=CE=DE,即可求解.【解答】解:如图:连接DD′,由翻折得AE⊥DD′,DE=D′E,∴∠EDD′=∠ED′D,∵四边形ABCD是正方形,∴AB∥CD,∵AF=CE,∴四边形AECF是平行四边形,∴AF=CE,AE∥CF,∴CF⊥DD′,∴∠EDD′+∠D′CE=∠ED′D+ED′C=90°,∴∠ED′C=∠D′CE,∴D′E=CE=DE,∵正方形ABCD的边长为5,∴CE=CD=AB=,∴AF=,故答案为:.【点评】本题是考查了翻折变换的性质、正方形的性质、等腰三角形的判定和性质,平行四边形的判定与性质等知识,解决问题的关键是作辅助线,构造直角三角形解决问题.12.(2022秋•闵行区期末)如图,在Rt△ABC中,∠ACB=90°,AB=9,cot A=2,点D在边AB上,点E在边AC上,将△ABC沿着折痕DE翻折后,点A恰好落在线段BC的延长线上的点P处,如果∠BPD=∠A,那么折痕DE的长为2.【分析】先求出∠ADE=45°,由等腰直角三角形的性质可得DE=DH,由锐角三角函数可求DH的长,即可求解.【解答】解:如图,过点E作EH⊥AB于H,∵将△ABC沿着折痕DE翻折,∴AD=DP,∠ADE=∠PDE,∵∠BPD=∠A,∠A+∠B=90°,∴∠BPD+∠B=90°,∴∠BDP=90°=∠ADP,∴∠ADE=45°,∵EH⊥AB,∴∠DEH=∠EDH=45°,∴DH=EH,∴DE=DH,∵cot A=2==cot∠BPD=,∴AH=2HE,DP=2BD,∴AD=DP=3DH,∴BD=DH,∵AB=9=BD+AD=DH+3DH,∴DH=2,∴DE=2,故答案为:2.【点评】本题考查了翻折变换,锐角三角函数,等腰直角三角形的性质,添加恰当辅助线构造直角三角形是解题的关键.13.(2022秋•闵行区期末)阅读:对于线段MN与点O(点O与MN不在同一直线上),如果同一平面内点P满足:射线OP与线段MN交于点Q,且=,那么称点P为点O关于线段MN的“准射点”.问题:如图,矩形ABCD中,AB=4,AD=5,点E在边AD上,且AE=2,联结BE.设点F是点A关于线段BE的“准射点”,且点F在矩形ABCD的内部或边上,如果点C与点F之间距离为d,那么d的取值范围为≤d≤.【分析】设AF交BE于点Q,根据点F是点A关于线段BE的“准射点”,可得=,所以AQ=FQ,过点F作GH∥BE交AD,BC于点G,H,根据平行线分线段成比例定理可得AE=EG=2,AQ′=Q′F′,所以点F在线段GH上,连接CG,根据勾股定理求出CG的长,可得点F在AD上时与点G重合,此时CG的长即为d的最大值,过点C作CM⊥GH于点M,根据三角形面积求出CM的长,此时CM的长即为d的最小值,进而可得d的取值范围.【解答】解:如图,设AF交BE于点Q,∵点F是点A关于线段BE的“准射点”,∴=,∴AQ=FQ,过点F作GH∥BE交AD,BC于点G,H,∴AE=EG=2,AQ′=Q′F′,∴点F在线段GH上,连接CG,∵DG=AD﹣AG=5﹣4=1,CD=AB=4,∴CG===,过点C作CM⊥GH于点M,∵EG∥BH,BE∥GH,∴四边形BHGE是平行四边形,∴BH=EG=2,∴HC=BC﹣BH=5﹣2=3,∵BE=HG===2,∴S△GHC=HG•CM=CH•DC,∴2CM=3×4,∴CM=,∵点F在矩形ABCD的内部或边上,点C与点F之间距离为d,∴d的取值范围为≤d≤.故答案为:≤d≤.【点评】本题考查了相似三角形的判定与性质,平行线分线段成比例定理,勾股定理,平行四边形的判定与性质,矩形的性质,三角形面积,解决本题的关键是熟知垂线段最短.14.(2022秋•徐汇区期末)如图,在等边三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,若△ABC的面积为48,则△DEF的面积为16.【分析】利用等边三角形的性质可得∠A=∠B=∠C=60°,根据垂直定义可得∠AFE=∠BDF=∠DEC=90°,从而利用直角三角形的两个锐角互余可得∠AEF=∠BFD=∠EDC=30°,然后利用平角定义可得∠DFE=∠FDE=∠DEF=60°,从而可得△DFE是等边三角形,进而可得DF=EF,△ABC∽△DEF,最后在Rt△BDF和Rt△AFE中,利用含30度角的直角三角形的性质可得AF:DF:BF=1::2,从而可得=,进而利用相似三角形的性质,进行计算即可解答.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠AFE=∠BDF=∠DEC=90°,∴∠AEF=90°﹣∠A=30°,∠BFD=90°﹣∠B=30°,∠EDC=90°﹣∠C=30°,∴∠DFE=180°﹣∠AFE﹣∠BFD=60°,∠FDE=180°﹣∠BDF﹣∠EDC=60°,∠DEF=180°﹣∠DEC﹣∠AEF=60°,∴∠DFE=∠FDE=∠DEF=60°,∴△DFE是等边三角形,∴DF=EF,△ABC∽△DEF,在Rt△BDF和Rt△AFE中,∠BFD=∠AEF==30°,∴BD:DF:BF=1::2,AF:EF=1:,∴AF:DF:BF=1::2,∴=,∵△ABC∽△DEF,∴=()2=()2=,∵△ABC的面积为48,∴△DEF的面积=16,故答案为:16.【点评】本题考查了相似三角形的判定与性质,等边三角形的性质,熟练掌握相似三角形的判定与性质是解题的关键.15.(2022秋•徐汇区期末)如图,在Rt△ABC中,∠A=90°,AB=AC=2,将线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,且AD∥BC,则AD=或.【分析】根据要求画出图形,分两种情形分别解直角三角形求出BE,BF即可解决问题.【解答】解:满足条件的点D和D′如图所示,作AF⊥BC于F,DE⊥BC于E.则四边形AFED是矩形.∴AF=DE,∠DEB=90°,∵AB=AC,∠BAC=90°,AF⊥BC,∴BF=CF,∴AF=BC,∵BC=BD,AF=DE,∴DE=BD,∴∠DBE=30°,∵BD=BD′,∴∠BDD′=∠BD′D=30°,∴∠D′B′D=120°,∴∠D′BC=∠D′BD+∠DBE=120°+30°=150°,∴满足条件的α的值为30°或150°.∵AB=AC=2,∴BC=2,∴AF=BF=DE=,∴BE=DE=,∴AD=,AD′=2﹣()=.故答案为:或.【点评】本题考查旋转变换,等腰直角三角形的性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题.16.(2022秋•青浦区校级期末)如图,在Rt△ABC中,∠ACB=90°,AC=1,tan∠CAB=2,将△ABC绕点A旋转后,点B落在AC的延长线上的点D,点C落在点E,DE与直线BC相交于点F,那么CF=.【分析】根据已知条件得到BC=AC•tan∠CAB=2,根据勾股定理得到AB==,根据旋转的性质得到AD=AB=,∠D=∠B,根据三角函数的定义即可得到结论.【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,AC=1,tan∠CAB=2,∴BC=AC•tan∠CAB=2,∴AB==,∵将△ABC绕点A旋转后,点B落在AC的延长线上的点D,∴AD=AB=,∠D=∠B,∵AC=1,∴CD=﹣1,∵∠FCD=∠ACB=90°,∴tan D=tan∠CAB==2,∴CF=,故答案为:.【点评】本题考查了旋转的性质,解直角三角形,正确的画出图形是解题的关键.17.(2022秋•黄浦区期末)如图,在矩形ABCD中,过点D作对角线AC的垂线,垂足为E,过点E作BE的垂线,交边AD于点F,如果AB=3,BC=5,那么DF的长是.【分析】利用矩形的性质求出AC,利用三角形的面积、勾股定理求出DE、CE的长,再利用等角的余角相等说明∠BAE=∠ADE、∠AEB=∠DEF,得△DEF∽△BEA,最后利用相似三角形的性质得结论.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠ADC=90°,AB=CD=3,BC=AD=5,AB∥CD,∴AC===.∵S△ADC=AD•CD=AC•DE,∴DE=.∵DE⊥AC,∴CE===.∴AE=AC﹣CE=.∵AB∥CD,∴∠BAE=∠DCA.∵∠DCA+∠CDE=∠CDE+∠ADE=90°,∴∠BAE=∠ADE.∵BE⊥FE,DE⊥AC,∴∠FEA+∠AEB=∠DEF+∠FEA=90°.∴∠AEB=∠DEF.∴△DEF∽△BEA.∴==.∴DF=×3=.故答案为:.【点评】本题主要考查了相似三角形,掌握相似三角形的性质与判定、三角形的内角和定理及勾股定理是解决本题的关键.18.(2022秋•黄浦区期末)将一张直角三角形纸片沿一条直线剪开,将其分成一张三角形纸片与一张四边形纸片,如果所得四边形纸片ABCD如图5所示,其中∠A=∠C=90°,AB=7厘米,BC=9厘米,CD=2厘米,那么原来的直角三角形纸片的面积是54或平方厘米.【分析】分两种情况讨论,由勾股定理求出AD长,由三角形面积公式求出四边形ABCD的面积,由相似三角形的性质,即可解决问题.【解答】解:(1)分别延长CD,BA交于M,连接BD,设△MBC的面积是S(cm2),∵∠C=∠DAB=90°,∴DC2+BC2=AB2+AD2=BD2,∴22+92=72+AD2,∴AD=6(cm),∴△ADB的面积=AD•AB=×6×7=21(cm2),△DCB的面积=DC•BC=×2×9=9(cm2),∴四边形ABCD的面积=21+9=30(cm2),∴△DMA的面积=(S﹣30)(cm2),∵∠M=∠M,∠MAD=∠MCB,∴△MDA∽△MBC,∴===,∴=,∴S=54(cm2).(2)分别延长AD,BC交于N,设△NAB的面积是S′(cm2),由(1)知四边形ABCD的面积=30(cm2),∵∠N=∠N,∠NCD=∠A=90°,∴△NCD∽△NAB,∴===,∴=,∴S′=(cm2),∴原来的直角三角形纸片的面积是54cm2或cm2.故答案为:54或.【点评】本题考查相似三角形的应用,关键是应用相似三角形的性质,分两种情况讨论.19.(2022秋•徐汇区期末)在Rt△ABC中,∠B=90°,∠BAC=30°,BC=1,以AC为边在△ABC外作等边△ACD,设点E、F分别是△ABC和△ACD的重心,则两重心E与F之间的距离是.【分析】取AC中点O,连接OB、OD、BD、EF.根据含30度角的直角三角形的性质求出AC=2BC=2,利用勾股定理得出AB=,根据等边三角形的性质得出CD=AD=AC=2,∠CAD=60°,那么∠BAD=∠BAC+∠CAD=90°,利用勾股定理求出BD=.然后证明△EOF∽△BOD,得出EF=BD=.【解答】解:如图,取AC中点O,连接OB、OD、BD、EF.在Rt△ABC中,∠B=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB===,∵△ACD是等边三角形,∴CD=AD=AC=2,∴∠CAD=60°,∴∠BAD=∠BAC+∠CAD=90°,∴BD===.∵点E、F分别是△ABC和△ACD的重心,∴==,又∠EOF=∠BOD,∴△EOF∽△BOD,∴===,∴EF=BD=.故答案为:.【点评】本题考查了相似三角形的判定与性质,含30度角的直角三角形的性质,等边三角形的性质,三角形重心的定义与性质,掌握重心到顶点的距离与重心到对边中点的距离之比为2:1是解题的关键.20.(2022秋•徐汇区期末)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边AB 上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A=或.【分析】分两种情形分别求解,作DF⊥AB于F,连接AA′.想办法求出AE,利用等腰直角三角形的性质求出AA′即可.【解答】解:如图,作DF⊥AB于F,连接AA′.在Rt△ACB中,BC==6,∵∠DAF=∠BAC,∠AFD=∠C=90°,∴△AFD∽△ACB,∴==,∴==,∴DF=,AF=,∵A′E⊥AB,∴∠AEA′=90°,由翻折不变性可知:∠AED=45°,∴EF=DF=,∴AE=A′E=+=,∴AA′=,如图,作DF⊥AB于F,当EA′⊥AB时,同法可得AE=﹣=,AA′=AE=.故答案为或.【点评】本题考查翻折变换,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.21.(2022秋•杨浦区期末)如图,已知在Rt△ABC中,∠C=90°,AC=BC=1,点D在边BC上,将△ABC沿直线AD翻折,使点C落在点C′处,联结AC′,直线AC′与边CB的延长线相交于点F.如果∠DAB=∠BAF,那么BF=﹣1.【分析】在Rt△ABC中,∠C=90°,AC=BC=1,得到∠CAB=∠ABC=45°,由△ADC′是将△ABC沿直线AD翻折得到的,求出∠CAD=∠C′AD,于是得到∠ABF=135°,求得∠F=30°,根据直角三角形的性质即可得到结果.【解答】解:∵在Rt△ABC中,∠C=90°,AC=BC=1,∴∠CAB=∠ABC=45°,∵△ADC′是将△ABC沿直线AD翻折得到的,∴∠CAD=∠C′AD,∵∠DAB=∠BAF,∴∠BAD=∠DAC=∠BAC=15°,∵∠ABF=135°,∴∠F=30°,∴CF==,∴BF=CF﹣BC=﹣1,故答案为:﹣1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,锐角三角函数,正确的作出图形是解题的关键.22.(2022秋•青浦区校级期末)如图,已知在△ABC中,∠C=90°,AB=21,,正方形DEFG的顶点G、F分别在AC、BC上,点D、E在斜边AB上,那么正方形DEFG的边长为6.【分析】根据AB=21,,结合勾股定理求出AC和BC的长度,过点C作CM⊥AB于点M,交GF于点N,根据相似三角形高的比等于相似比即可进行解答.【解答】解:∵∠C=90°,,∴,设BC=x,则AC=2x,∵AB=21,∴根据勾股定理可得:BC2+AC2=AB2,即x2+(2x)2=212,解得:,(舍),∴,,过点C作CM⊥AB于点M,交GF于点N,∵CM⊥AB,∴CM⋅AB=AC⋅BC,即,解得:,∵四边形DEFG为正方形,∴GF∥DE,即GF∥AB,∴∠CGF=∠A,∠CFG=∠B,∴△CGF∽△CAB,设正方形DEFG边长为y,∵CM⊥AB,GD⊥AB,GF∥AB,∴CN⊥GF,MN=GD=y,∴,即,∴,解得:y=6,∴正方形DEFG的边长为6.故答案为:6.【点评】本题考查的是相似三角形的判定和性质、正方形的性质、勾股定理和解直角三角形等知识;正确作出辅助线、灵活运用相似三角形的判定定理和性质定理是解题的关键.23.(2022秋•青浦区校级期末)新定义:有一组对角互余的凸四边形称为对余四边形,如图,已知在对余四边形ABCD中,AB=10,BC=12,CD=5,tan B=,那么边AD的长为9.【分析】如图,过点A作AH⊥BC于H,过点C作CE⊥AD于E,连接AC.解直角三角形求出AE,DE即可解决问题【解答】解:如图,过点A作AH⊥BC于H,过点C作CE⊥AD于E,连接AC.在Rt△ABH中,tan B==,∴可以假设AH=3k,BH=4k,则AB=5k=10,∴k=2,∴AH=6,BH=8,∵BC=12,∴CH=BC﹣BH=12﹣8=4,∴AC===2,∵∠B+∠D=90°,∠D+∠ECD=90°,∴∠ECD=∠B,在Rt△CED中,tan∠ECD==,∵CD=5,∴DE=3,CE=4,∴AE===6,∴AD=AE+DE=9.故答案为:9.【点评】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.24.(2022秋•金山区校级期末)如果梯形的一条对角线把梯形分成的两个三角形相似,那么我们称该梯形为“优美梯形”.如果一个直角梯形是“优美梯形”,它的上底等于2,下底等于4,那么它的周长为8+2.【分析】过D作DE⊥BC于E,根据矩形的性质得到BE=AD=2,求得BD=CD,根据相似三角形的性质即可得到结论.【解答】解:如图,过D作DE⊥BC于E,∵梯形是直角梯形,∴∠A=∠ABC=∠DEB=90°,∴四边形ABED是矩形,∴BE=AD=2,∵BC=4,∴CE=BE=2,∴BD=CD,∵梯形的一条对角线把梯形分成的两个三角形相似,∴△ABD∽△DBC,∴=,∴==1,∴AB=AD=2,∴BD=CD=AD=2,∴它的周长为2+2+4+2=8+2,故答案为:8+2.【点评】本题考查了相似三角形的判定和性质,直角梯形,熟练掌握相似三角形的判定和性质是解题的关键,25.(2022秋•金山区校级期末)如图,已知在△ABC中,∠C=90°,BC=8,cos B=,点P是斜边AB上一点,过点P作PM⊥AB交边AC于点M,过点P作AC的平行线,与过点M作AB的平行线交于点Q.如果直线CQ ⊥AB,那么AP的长为.【分析】如图,设AP=m.证明AP=MQ=m,根据cos∠A=cos∠CMQ=,构建方程求解.【解答】解:如图,设AP=m.∵PQ∥ACMQ∥AB,∴四边形APQM是平行四边形,∠A=∠CMN,∴AP=MQ=m,在△ABC中,∠C=90°,BC=8,cos B=,∴AB==10,AC==6,∵PM⊥AB,∴AM=P A÷cos A=m,∴CM=AC﹣AM=6﹣m,∵CQ⊥AB,AB∥MN,∴CQ⊥MN,∴cos∠CMQ=cos A==,∴=,∴m=,经检验m=是分式方程的解,∴AP=.故答案为:.【点评】本题考查直解直角三角形,平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.26.(2022秋•静安区期末)如图,△ABC绕点C逆时针旋转90°后得△DEC,如果点B、D、E在一直线上,且∠BDC=60°,BE=3,那么A、D两点间的距离是.【分析】过点C作CF⊥BE于F,由旋转的性质得出∠ACD=∠BCE=90°,AC=CD,BC=CE,由直角三角形的性质可得出答案.【解答】解:过点C作CF⊥BE于F,∵△ABC绕点C逆时针旋转90°后得△DEC,∴∠ACD=∠BCE=90°,AC=CD,BC=CE,∴CF=BE=,∵∠BDC=60°,∴∠FCD=30°,∴DF=CF=,∴CD=2DF=,∴AD=CD==,故答案为:.【点评】本题考查了旋转的性质,等腰直角三角形的性质,熟练掌握旋转的性质是解题的关键.27.(2022秋•静安区期末)定义:把二次函数y=a(x+m)2+n与y=﹣a(x﹣m)2﹣n(a≠0,m、n是常数)称作互为“旋转函数”.如果二次函数y=x2+bx﹣2与y=﹣x2﹣cx+c(b、c是常数)互为“旋转函数”,写出点P(b,c)的坐标(﹣,2).【分析】根据旋转函数的定义得到:,从而解得b=﹣,c=2.【解答】解:根据题意得,解得.∴点P的坐标为(﹣,2),故答案为:(﹣,2).【点评】本题考查了二次函数的图象与系数的关系,二次函数图象与几何变换,正确理解新定义是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考阅读理解类新定义类题型专项姓名_______________[代数类]1.(本题10分)设A 是含有根式的代数式,若存在另一个不恒等于零的代数式B ,使乘积AB 不含根式,则称B 为A 的共扼根式。
(1)设A =,写出它的一个共轭根式:B =; (2)对于(1)中的A 和B ,计算:2211A B A B+++2. 将关于x 的一元二次方程02=++q px x 变形为q px x --=2,就可将2x 表示为关于x的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”.已知012=--x x ,可用“降次法”求得134--x x 的值是3. 下表是六年级学生小林的学期成绩单,由于不小心蘸上了墨水,他的数学平时成绩看不到,小林去问了数学课代表,课代表说他也不知道小林的平时成绩,但他说:“我知道老师核算学期总成绩的方法,就是期中成绩与平时成绩各占30%,而期末成绩占40%.”小林核对了语文成绩:77%3070%4080%3080=⨯+⨯+⨯,完全正确,他再核对了英语成绩,同样如课代表所说,那么按上述方法核算的话,小林的数学平时成绩是 分.[几何类]4.我们把四边形两条对角线中点的连线段称为“奇异中位线”。
现有两个全等三角形,边长分别为3cm 、4cm 、5cm 。
将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的“奇异中位线”的长不为0,那么“奇异中位线”的长是cm 。
5. 当两个圆有两个公共点,且其中一个圆的圆心在另一圆的圆内时,我们称此两圆的位置关系为“内相交”.如果⊙1O 、⊙2O 半径分别3和1,且两圆“内相交”,那么两圆的圆心距d 的取值范围是.6.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.在Rt △ABC 中,∠C =90°,若Rt △ABC 是“好玩三角形”,则tanA = .7.如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形称为“倍边三角形”,如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为.8.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt △ABC 中,∠C =90°,较短的一条直角边边长为1,如果Rt △ABC 是“有趣三角形”,那么这个三角形“有趣中线”长等于.9.我们把梯形下底与上底的差叫做梯形的底差,梯形的高与中位线的比值叫做梯形的纵横比,如果某一等腰梯形腰长为5,底差等于6,面积为24,则该等腰梯形的纵横比等于;10.三角形的三条高或其延长线相交于一点,这点称为三角形的垂心.边长为2的等边三角形的垂心到这个三角形各顶点之间的距离之和为___________. 11.将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍得△AB′ C′,即如图①,∠BAB′=θ,AB B C AC n AB BC AC''''===,我们将这种变换记为[θ,n ] .如图②,在△DEF中,∠DFE =90°,将△DEF 绕点D 旋转,作变换[60°,n ]得△DE ′F ′,如果点E 、F 、F ′恰好在同一直线上,那么n =.12.我们假设把两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.如果Rt △ABCABCB′C ′DE E ′F ′F图① 图②是奇异三角形,在Rt △ABC 中,∠C =90°,AB =c ,AC =b ,BC =a ,且b >a ,其中,a =1,那么b =.13.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等 腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于;14. 如图4-1,点P 是以r 为半径的圆O 外一点,点'P 在线段OP 上,若满足2'OP OP r ⋅=,则称点'P 是点P 关于圆O 的反演点.如图4-2,在Rt △ABO 中,90B ︒∠=,AB =2,BO =4,圆O 的半径为2,如果点'A 、'B 分别是点A 、B 关于圆O 的反演点,那么'A 'B 的长是 .15.我们把两个三角形的外心之间的距离叫做外心距.如图4,在Rt △ABC 和Rt △ACD中,︒=∠=∠90ACD ACB ,点D 在边BC 的延长线上,如果3==DC BC ,那么△ABC 和△ACD 的外心距是.16.在平面直角坐标系中,我们把半径相等且外切、连心线与直线x y =平行的两个圆,称之为“孪生圆”;已知圆A 的圆心为(3,2-)半径为2,那么圆A 的所有“孪生圆”的圆心坐标为17、设二次函数解析式为bx ax y +=2,若某一次函数解析式为b ax y +=,则称该一次函A BC D 图4数为二次函数的“伴随直线”;同时称以点()b a ,为圆心,半径长为22b a +的圆为二次函数的“伴随圆”.下面给出对于二次函数nx mx y +=2及其“伴随直线”和“伴随圆”的一些结论:(1) 若该二次函数的“伴随直线”经过第二、三象限,则该二次函数的开口向上;(2) 该二次函数的“伴随直线”与坐标轴围成的三角形面积为mn 22-;(3) 若m 、n 满足关系2nm -≠,则该二次函数与其“伴随直线”一定有2个交点;(4) 该二次函数的“伴随圆”与坐标轴所围成的三角形面积为mn 2;(5) 该二次函数的“伴随圆”圆心到其“伴随直线”的距离为122+m m .以上给出的5个结论中,正确结论的序号是;18. 如果A 、B 分别是圆O 1、圆O 2上两个动点,当A 、B 两点之间距离最大时,那么这个最大距离被称为圆O 1、圆O 2的“远距”.已知,圆O 1的半径为1,圆O 2的半径为2,当两圆相交时,圆O 1、圆O 2的“远距”可能是() (A )3; (B )4; (C )5; (D )6.[函数类]1.将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形。
例如,图中的一次函数图像与x 、y 轴分别交于点A 、B ,则△ABO 为此一次函数的坐标三角形。
一次函数443y x =-+的坐标三角形的周长是_.2.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换: ①),(y x f =(2+x ,y ).如)1,1(f =)1,3(;②),(y x g =),(y x --,如)2,2(g =)2,2(--. 按照以上变换有:))1,1((f g =)1,3(g =)1,3(--,那么))4,3((-g f 等于.3. 若实数x 、y 满足:y x >,则称:x 比y 远离0. 如图,已知A 、B 、C 、D 、E 五点在数轴上对应的实数分别是a 、b 、c 、d 、e. 若从这五个数中随机选一个数,则这个数比其它数都远离0的概率是.4.如图5-1,对于平面上不大于90︒的MON ∠,我们给出如下定义:如果点P 在MON ∠的内部,作PE OM ⊥,PF ON ⊥,垂足分别为点E 、F ,那么称PE PF +的值为点P 相对于MON ∠的“点角距离”,记为(),d P MON ∠.如图5-2,在平面直角坐标系xOy 中,点P 在第一象限内,且点P 的横坐标比纵坐标大1,对于xOy ∠,满足(),d P xOy ∠=5,点P 的坐标是.5.定义[,,]a b c 为函数2y ax bx c =++的“特征数”.如:函数232y x x =+-的“特征数”是[1,3,2]-,函数4y x =-+的“特征数”是[0,1,4]-.如果将“特征数”是[2,0,4]的函数图像向下平移3个单位,得到一个新函数图像,那么这个新函数的解析式是.6.请阅读下列内容:我们在平面直角坐标系中画出抛物线12+=x y 和双曲线xy 2=,如图所示,利用两图像的交点个数和位置来确定方程xx 212=+有一个正实数根,这种方法称为利用函数图像判断方程根的情况.请用图像法判断方程()xx 2432=+--的根的情况(填写根的个数及正负).7.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为223y x x =--,AB 为半圆的直径,则这个“果圆”被y 轴截得的弦CD 的长为 .第6题图e -110c b a ENF OPM 图5-18.对于平面直角坐标系xOy 中的点P (a ,b ),若点P '的坐标为(b a ka b k++,)(其中k 为常数,且0k ≠),则称点P '为点P 的“k 属派生点”.例如:P (1,4)的“2属派生点”为P '(41+21+42⨯,),即P '(3,6).若点P 的“k 属派生点”P '的坐标为(3,3),请写出一个符合条件的点P 的坐标:.9.对于函数()2b ax y +=,我们称[a ,b ]为这个函数的特征数.如果一个函数()2b ax y +=的特征数为[2,-5],那么这个函数图像与x 轴的交点坐标为.10. 当2=x 时,不论k 取任何实数,函数3)2(+-=x k y 的值为3,所以直线3)2(+-=x k y一定经过定点(2,3);同样,直线2)3(++-=x x k y 一定经过的定点为.11.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为 .20、我们都知道,当某直线的解析式为()0≠+=m n mx y ,则该直线的斜率为m .如图2, 在平面直角坐标系xOy 中,以O 为圆心、r 为半径的圆交x 轴正半轴于点A ,直线()0>=k kx y 与圆O 分别交于B 、C 两点.连接AB 、AC1k ()01≠k 、直线AC 的斜率为2k ()02≠k ,则=⋅21k k13、将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”,例如圆的直径就是它的“面径”。
已知等边三角形的边长为2,则它的“面径”长可以是____________(写出2个)14. 我们把两个三角形的中心之间的距离叫做重心距,在同一平面内有两个边长相等的等边三角形,如果当它们的一边重合时重心距为2,那么当它们的一对角成对顶角时重心距为________________\14、 一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是2244x x y y ==-⎧⎧⎨⎨==-⎩⎩或,试写出一个符合要求的方程组______________(只需写一个);16、当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.17、一个函数的图像关于y 轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数24y x bx =+-是“偶函数”,该函数的图像与x 轴交于点A 和点B ,顶点为P ,那么△ABP 的面积是 .18、如果将点(-b ,-a )称为点(a ,b )的“反称点”,那么点(a ,b )也是点(-b ,-a )的“反称点”,此时,称点(a ,b )和点(-b ,-a )是互为“反称点”。