化工原理实验之对流传热实验

合集下载

化工原理の传热实验

化工原理の传热实验

化工原理の传热实验一、实验目的1、学习传热系数的测定方法;2、学习传热膜系数及其准数联式的测定方法。

二、实验原理本实验有套管换热器4套,列管式换热器4套,首先介绍套管换热器。

套管换热器管间进饱和蒸汽,冷凝放热以加热管内的空气,实验设备如图2-2-5-1(1)所示。

传热方式为:冷凝—传导—对流 1、传热系数可用下式计算: ]/[2k m W t A qK m⋅∆⋅=(1)图2-2-5-1(1) 套管换热器示意图 式中:q ——传热速率[W] A ——传热面积[m 2] △t m —传热平均温差[K] ○1传热速率q 用下式计算: ])[(12W t t C V q p S -=ρ (2) 式中:3600/h S V V =——空气流量[m 3/s]V h ——空气流量[m 3/h]ρ——空气密度[kg/m 3],以下式计算:]/)[273(4645.031m kg t R p Pa ++=ρ (3)Pa ——大气压[mmHg]Rp ——空气流量计前表压[mmHg] t 1——空气进换热器前的温度[℃]Cp ——空气比热[K kg J ⋅/],查表或用下式计算:]/[04.01009K kg J t C m p ⋅+= (4) t m =(t 1+t 2)/2——空气进出换热器温度的平均值(℃) t 2——空气出口温度[℃]②传热平均面积A :][2m L d A m π= (5)式中:d m =传热管平均直径[m]L —传热管有效长度[m ]③传热平均温度差△t m 用逆流对数平均温差计算:T ←——T t 1——→t 2 )(),(2211t T t t T t -=∆-=∆2121ln t t t t t m ∆∆∆-∆=∆ (6) 式中:T ——蒸汽温度[℃]2、传热膜系数(给热系数)及其关联式空气在圆形直管内作强制湍流时的传热膜系数可用下面准数关联式表示:nr m e P R Nu 0α= (7)式中:N u ——努塞尔特准数R e ——雷诺准数 P r ——普兰特准数αo ——系数,经验值为0.023 m ——指数,经验值为0.8n ——指数,经验值为:流体被加热时n=0.4,流体被冷却n=0.3 为了测定传热膜系数,现对式(7)作进一步的分析:λαdNu =(8) α——空气与管壁间的传热膜系数[W/m 2·k] 本实验可近似取α=K[传热系数],也可用下式计算:)(m W i t t A q -=α (9)A i ——传热管内表面积[m 2] t W ——管壁温[℃]t m ——空气进、出口平均温度[℃] d ——管内径[m]λ——空气的导热系数[W/m ·k],查表或用下式计算:λ=0.0244+7.8×10-5t m (10) μρdu =Re (11)u ——空气在加热管内的流速[m/s]μ——空气定性温度(t m )下的粘度[pa ·s],查表或用下式计算:μ=1.72×10-5+4.8×10-8t m (12)d ,ρ——意义同上。

化工原理实验:传热实验

化工原理实验:传热实验

化工原理实验:传热实验化工传热综合实验一、实验装置的根本功能和特点本实验装置是以空气和水蒸汽为介质,对流换热的简单套管换热器和强化内管的套管换热器。

通过对本换热器的实验研究,可以掌握对流传热系数α i 的测定方法,加深对其概念和影响因素的理解。

并应用线性回归分析^p 方法,确定关联式 Nu=ARemPr0.4 中常数A 、 m 的值。

通过对管程内部插有螺旋线圈的空气-水蒸气强化套管换热器的实验研究,测定其准数关联式 Nu=BRem 中常数B 、 m 的值和强化比Nu/Nu0 ,理解强化传热的根本理论和根本方式。

实验装置的主要特点如下:1.实验操作方便,平安可靠。

2.数据稳定,强化效果明显,用图解法求得的回归式与经历公式很接近。

3.水,电的耗用小,实验费用低。

4.传热管路采用管道法兰联接,不但密封性能好,•而且拆装也很方便。

5.箱式构造,外观整洁,挪动方便。

二、强化套管换热器实验简介强化传热又被学术界称为第二代传热技术,它能减小初设计的传热面积,以减小换热器的体积和重量;进步现有换热器的换热才能;使换热器能在较低温差下工作;并且可以减少换热器的阻力以减少换热器的动力消耗,更有效地利用能和资金。

强化传热的方法有多种,本实验装置是采用在换热器内管插入螺旋线圈的方法来强化传热的。

螺旋线圈的构造图如图 1 所示,螺旋线圈由直径 3mm 以下的铜丝和钢丝按一定节距绕成。

将金属螺旋线圈插入并固定在管内,即可构成一种强化传热管。

在近壁区域,流体一面由于螺旋线圈的作用而发生旋转,一面还周期性地受到线圈的螺旋金属丝的扰动,因此可以使传热强化。

由于绕制线圈的金属丝直径很细,流体旋流强度也较弱,所以阻力较小,有利于节省能。

螺旋线圈是以线圈节距 H 与管内径 d 的比值技术参数,且长径比是影响传热效果和阻力系数的重要因素。

科学家通过实验研究总结了形式为mB Nu Re 的经历公式,其中 B 和 m 的值因螺旋丝尺寸不同而不同。

化工原理传热实验

化工原理传热实验

一、实验名称冷空气-蒸汽的对流传热实验二、实验目的(1)测定冷空气-蒸汽在套管换热器中的总传热系数K 。

(2)测定冷空气在光滑套管内的给热系数。

(3)测定冷空气在螺旋套管内的给热系数。

(4)比较冷空气在光滑套管内和螺旋套管内的传热性能,绘制Nu 与Re 之间的关系曲线。

(5)熟悉温度、流量等化工测试仪表的使用。

三、实验原理(1)冷空气-蒸汽的传热速率方程: m Q KA t =∆1212ln m t t t t t ∆-∆∆=∆∆21()v p Q q c t t ρ=-实验测得冷空气流量v q 、冷空气进出换热器的温度12t t 、;蒸汽在换热器内温度T ,可得K 。

(2)总热阻为1112211m bd d K h kd h d =++ 冷空气走管程,由于蒸汽2h 较大,k 较大,可忽略后两项,即1h K ≈。

(3)流体在圆形直管中强制对流时,'Re Pr mn Nu C =其中11h d Nu k =,Re du ρμ=,1Pr p c k μ=。

对冷空气而言,在较大温度范围内Pr 基本不变,取0.7;流体加热,0.4n =,可简化为Re mNu C =,改变流量,Re Nu 、改变,双对数坐标下作Re Nu 和关系是一条直线,拟合此直线方程,即为Re Nu 和的准数方程。

四、实验装置图及主要设备(包括名称、型号、规格)(1)实验装置示意图如下图所示(冷空气走管程):图1 对流传热实验装置示意图1-涡轮流量计;2,3,7,10-球阀;4,5,8,9,11,12,14,15,18,19-温度传感器;6-冷凝水收集杯;13-蒸汽发生器;16-闸阀;17-消音器;20-风机;1#,2#-换热器(2) 设备及仪表。

设备:风机、蒸汽发生器、普通套管换热器、螺旋套管换热器、消音器。

仪表:气体涡轮流量计、差压变送器、温度变送器、温度控制器、无纸记录仪、液位计。

五、实验步骤(1)熟悉传热实验装置及仪表使用,检查设备,做好实验操作准备。

化工原理——传热实验NP

化工原理——传热实验NP

一、实验课程名称:化工原理二、实验项目名称:空气-蒸汽对流给热系数测定 三、实验目的和要求:1、 了解间壁式传热元件,掌握给热系数测定的实验方法。

2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。

3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。

四、实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。

实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。

如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。

达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。

固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t t t t t t t t t W W W W m W -----=- (4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。

热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T ln t T t T t -----=∆ (4-4)δ TT W t Wt图4-1间壁式传热过程示意图当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。

化工原理实验报告(传热)

化工原理实验报告(传热)

化工原理实验报告(传热)
实验名称:传热实验
实验目的:掌握传热原理,测定传热系数。

实验原理:传热是指热能从物体的高温区域传递到物体的低温区域的过程。

传热方式
主要有三种,分别是传导、对流和辐射。

传导是指物质内部由高温区传递热量到低温区的过程。

传导的速率与传导材料的种类、厚度、温度差等因素有关。

对流是指由于物流的运动而引起的热量传递过程。

对流的速率与流动速度、流动形式
等因素有关。

辐射是指物体之间通过电磁波传递热量的过程。

辐射的速率与物体温度、表面特性等
因素有关。

实验仪器:传热实验装置、数显恒温槽、数显搅拌器、功率调节器、电热水壶、测温仪、电阻丝、保温材料等。

实验步骤:
1、将传热实验装置放入数显恒温槽内,开启电源,将温度恒定在80℃左右。

2、将试样加热,使其温度达到与恒温槽内温度一致。

3、将试样放入传热实验装置中,开始实验。

4、在实验过程中,保持搅拌器的匀速转动,确保传热速率的稳定。

5、记录实验数据,计算传热系数。

实验结果:
本实验测定的传热系数为:λ=10.2 W/m•K
通过本次实验,我们掌握了传热原理和测定传热系数的方法,同时也了解了传导、对
流和辐射三种传热方式的特点及其影响因素。

实验结果表明,传热系数是物体传热速率的
量化表示,对于不同的物体和温度差,传热系数是不同的,因此在具体实际应用中需要根
据实际情况进行调整。

对流给热系数测定实验

对流给热系数测定实验

物理化学实验报告实验名称:对流给热系数测定实验学院:化学工程学院专业:化学工程与工艺班级:姓名:学号指导教师:日期:一、实验目的1、掌握传热膜系数的测定方法;2、通过实验,掌握确定传热膜系数准数关联式中的系数A和指数m的方法;3、通过实验提高对传热膜系数准数关联式的理解,并分析影响传热膜系数的因素,了解工程上强化传热的措施。

二、实验原理对流传热的核心问题是求算传热膜系数,当流体无相变时对流传热准数关联式的一般形式为:Nu=A×Re m×Pr n×Gr p (4-1)对于强制湍流而言,Gr准数可以忽略,故Nu=A×Re m×Pr n(4-2) 本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n和系数A。

用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。

本实验可简化上式,即取n=0.4(流体被加热)。

这样,上式即变为单变量方程,在两边取对数,即得到直线方程:lg(Nu/Pr0.4)=lgA + mlgRe (4-3)在双对数坐标纸上作图,找出直线斜率,即为方程的指数m。

在直线上任取一点的函数值代入方程中,则可得到系数A,即:A=Nu/(Pr0.4×Re m) (4-4) 用图解法,根据实验点确定直线位置有一定的人为性。

而用最小二乘法回归,可以得到最佳关联结果。

应用微机,对多变量方程进行一次回归,就能同时得到A、m、n。

对于方程的关联,首先要有Nu、Re、Pr的数据组。

其准数定义式分别为:Nu=αd/λ,Re=duρ/μ,Pr=Cpμ/λ实验中改变空气的流量以改变Re准数的值。

根据定性温度(空气进、出口温度的算术平均值)计算对应的Pr准数值。

同时,由牛顿冷却定律,求出不同流速下的传热膜系数α值进而算得Nu准数值。

牛顿冷却定律:Q=α×A×△t m (4-5)(tw-t1)-(tw-t2)△t m =ln(tw-t1)/(tw-t2)式中:α—传热膜系数,[W/(m2×℃)];Q—传热量,[W];A—总传热面积,[m2];△t m—管壁温度与管内流体温度的对数平均温差,[℃];tw—蒸汽平均温差,[℃]。

化工原理实验之对流传热实验

化工原理实验之对流传热实验

化工原理实验之对流传热实验————————————————————————————————作者:————————————————————————————————日期:ﻩ化工原理实验报告之传热实验学院学生姓名专业学号年级二Ο一五 年 十一月一、实验目的1.测定冷空气—热蒸汽在套管换热器中的总传热系数K; 2.测定空气或水在圆直管内强制对流给热系数;3.测定冷空气在不同的流量时,Nu 与Re 之间的关系曲线,拟合准数方程。

二、实验原理(1)冷空气-热蒸汽系统的传热速率方程为m t KA Q ∆=)ln(2121t t t t t m ∆∆∆-∆=∆,11t T t -=∆,22t T t -=∆ )(21t t C V Q p -=ρ式中,Q —单位时间内的传热量,W ;A —热蒸汽与冷空气之间的传热面积,2m ,dl A π=; m t ∆—热蒸汽与冷空气之间的平均温差,℃或K K —总传热系数,)℃/(2⋅m W ;d —换热器内管的内直径,d =20m m l —换热器长度,l =1.3m ;V —冷空气流量,s m /3;pC 、ρ—冷空气密度,3/m kg 空气比热,kg J /;21t t 、—冷空气进出换热器的温度,℃; T —热蒸汽的温度,℃。

实验通过测量热蒸汽的流量V,热蒸汽进、出换热器的温度T 1和T 2 (由于热蒸汽温度恒定,故可直接使用热蒸汽在中间段的温度作为T),冷空气进出换热器的温度t 1和t2,即可测定K 。

(2)热蒸汽与冷空气的传热过程由热蒸汽对壁面的对流传热、间壁的固体热传导和壁面对冷空气的对流传热三种传热组成,其总热阻为:2211111d h d d bd h K m ++=λ 其中,21h h 、—热空气,冷空气的给热系数,)℃/(⋅m W ;21d d d m 、、—内管的内径、内外径的对数平均值、外径,m ; λ—内管材质的导热系数,)℃/(⋅m W 。

在大流量情况下,冷空气在夹套换热器壳程中处于强制湍流状态,h2较大,221d h d 值较小;λ较大,md dλ1值较小,可忽略,即 1h K ≈(3)流体在圆形直管中作强制对流时对管壁的给热系数关联式为n m C Nu Pr Re '=。

整理化工原理实验之对流传热实验

整理化工原理实验之对流传热实验

整理人 尼克化工原理实验之对流传热实验化工原理实验指导书化工原理教研室2014年编制目录实验一流动过程综合实验 (4)实验二过滤实验 (11)实验三传热实验(水-水蒸汽、空气-水蒸汽给热系数测定和传热综合实验) (15)传热实验一水-水蒸汽给热系数测定 (15)传热实验二空气-水蒸汽给热系数测定 (20)传热实验三传热综合(空气和水蒸汽)实验 (23)实验四吸收与解吸综合实验 (29)实验五精馏实验 (34)实验六萃取实验(填料萃取塔、振动筛板萃取塔) (39)萃取实验一填料萃取塔 (39)萃取实验二振动筛板萃取塔 (44)实验七干燥实验(洞道干燥、流化床干燥) (48)干燥实验一洞道干燥 (48)干燥实验二流化床干燥 (52)附件:《化工原理实验》教学大纲????????????实验一流动过程综合实验1 实验目的(1)掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。

(2)识别组成管路的各种管件、阀门的结构、使用方法和性能。

(3)学习压差计、流量计的使用方法。

(4)学习光滑直管和粗糙直管的摩擦系数λ与雷诺准数Re的测量方法,并验证流体处于不同流动类型时的λ与Re二者间的关系。

(5)测定流体流经管件、阀门时的局部阻力系数ξ。

(6)分别测定文丘里流量计流量标定曲线(流量-压差关系)及流量系数和雷诺数之间的关系曲线(C-Re关系)。

(7)了解离心泵的结构、操作方法,掌握离心泵特性曲线测定方法,掌握离心泵管路特性曲线的测定方法,加深对离心泵性能的理解。

2 基本原理2.1 直管摩擦系数λ与雷诺数Re的测定对于不可压缩流体在水平等直径直管内作定态流动,根据伯努利方程有:(1.1)(1.1)式中:h f—压头损失,J/kg;L—两测压点间直管长度,m;d—直管内径,m;λ—摩擦阻力系数;u—流体流速,m/s;ΔP f—直管阻力引起的压降,N/m2;ρ—流体密度,kg/m3。

将(1.1)式经适当变形,可以得到摩擦系数的表达式,即:(1.2)雷诺准数定义式如下:(1.3)(1.2)式中:µ—流体粘度,Pa.s。

化工传热实验原理

化工传热实验原理

化工传热实验原理传热是化工过程中常见的一个重要环节,它对于提高化工过程的效率和安全性具有至关重要的作用。

为了更好地理解和应用传热原理,化工传热实验成为了不可或缺的一部分。

本文将介绍化工传热实验的原理和一些常用的实验方法。

一、传热的基本原理传热是指热量从高温区域转移到低温区域的过程。

在化工过程中,常用的传热方式有三种:导热、对流和辐射。

1.1 导热导热是固体物质传热的一种方式,它是通过固体内部或不同固体间的分子振动或电子传递热量的过程。

导热的传热速率与固体的导热系数、温度差和传热距离有关。

1.2 对流对流是液体或气体传热的一种方式,它是通过流体中分子传递热量的过程。

对流传热可以分为自然对流和强制对流两种形式。

自然对流是指由密度差引起的上升和下降运动,如热水的循环。

而强制对流是外力(如泵、风扇)的作用引起的流动,如风冷却器中的空气流动。

1.3 辐射辐射是通过电磁波传递热量的一种方式,它可以在真空中传播。

所有物体都会发出热辐射,辐射的传热速率与物体的温度和表面特性有关。

二、化工传热实验方法为了研究和验证传热原理,并评估传热过程的特性,化工传热实验采用了多种方法。

下面将介绍一些常见的化工传热实验方法。

2.1 热传导实验热传导实验用于测量材料的导热性能以及探究传热过程中的热阻和热导。

实验中,通常采用热平衡法或热电偶法来测量热传导系数。

热平衡法通过测量材料两端的温度差来计算导热系数,而热电偶法则通过在材料中插入热电偶进行温度测量,从而计算导热系数。

2.2 对流传热实验对流传热实验用于研究流体的传热特性以及传热系数。

常见的对流传热实验包括采用垂直圆柱体或水平管道来测量流体的对流传热系数。

实验中,通过改变流体的流速、温度差以及材料的几何形状等因素,可以得到不同条件下的传热系数。

2.3 辐射传热实验辐射传热实验用于研究物体的辐射传热特性以及辐射传热率。

常见的辐射传热实验包括黑体辐射实验和灰体辐射实验。

实验中,通过测量物体的辐射率、温度差以及表面属性等因素,可以得到物体的辐射传热系数。

(化工原理实验)传热实验

(化工原理实验)传热实验

系统漏热
实验操作误差
实验系统可能存在漏热现象,导致热量损 失,从而影响实验结果的准确性。
实验操作过程中的人为因素,如操作不规 范、记录数据不准确等,也可能引入误差 。
减小误差方法
选择高精度测量设备
使用高精度温度传感器和测量设备,提高温 度测量的准确性。
加强系统保温措施
对实验系统采取良好的保温措施,减少热量 损失,降低漏热对实验结果的影响。
确保实验装置密封良好,防止热量散 失;保持热流体和冷流体的流量稳定, 以获得准确的实验结果。
实验流程
启动加热器,使热流体循环流动;启动冷却 器,使冷流体循环流动;记录热流体和冷流 体的进出口温度;计算传热系数并分析结果 。
02
实验操作与步骤
实验准备工作
熟悉实验装置
了解传热实验装置的结构、 功能和使用方法,包括加 热器、冷却器、温度计、 流量计等。
冷却操作
在加热过程中,适时打开冷却 器对传热介质进行冷却,以控 制实验过程中的温度波动。
数据记录
在实验过程中,定时记录温度 、流量等关键参数的变化情况

数据记录与处理
数据整理
将实验过程中记录的数据进行整理, 包括温度、流量等参数的变化曲线和 数值表格。
数据分析
根据整理的数据,分析传热实验过程 中的传热效率、热损失等关键指标。
准备实验材料
根据实验要求准备所需的 传热介质(如水、油等) 和实验样品。
检查实验设备
确保实验设备的完好和正 常运行,如检查加热器的 加热功率、冷却器的冷却 效果等。
实验操作过程
安装实验装置
按照实验要求正确安装传热实验装置 ,包括加热器、冷却器、温度计、流
量计等,确保装置密封良好。

化工原理实验传热实验报告

化工原理实验传热实验报告

化工原理实验传热实验报告化工原理实验传热实验报告一、引言传热是化工过程中不可或缺的环节,对于提高反应速率和产品质量具有重要意义。

为了研究传热现象,我们进行了一系列的实验。

本实验旨在通过传热实验,探究传热的基本原理和影响因素,为化工过程的优化提供理论依据。

二、实验目的1. 了解传热的基本原理和传热方式;2. 掌握传热实验的基本方法和技巧;3. 分析传热过程中的影响因素。

三、实验原理1. 传热方式传热主要有三种方式:传导、对流和辐射。

传导是通过物质内部的分子传递热量,对流是通过流体的运动传递热量,辐射是通过电磁波传递热量。

2. 传热方程传热过程可以用传热方程来描述,常见的传热方程有热传导方程、牛顿冷却定律和斯特藩-玻尔兹曼定律。

热传导方程描述了传导过程中的热量传递,牛顿冷却定律描述了对流过程中的热量传递,斯特藩-玻尔兹曼定律描述了辐射过程中的热量传递。

3. 传热系数传热系数是描述传热能力的物理量,它与传热介质的性质和传热过程中的条件有关。

传热系数越大,传热能力越强。

四、实验装置和步骤1. 实验装置本实验采用了传热实验装置,包括传热试验台、传热介质、传热表面、传热源和传热计等。

2. 实验步骤(1)将传热试验台接通电源,使传热源加热。

(2)调节传热介质的流量和温度。

(3)通过传热计测量传热过程中的温度变化。

(4)记录实验数据,并进行数据处理和分析。

五、实验结果与分析通过实验测得的数据,我们可以计算传热系数和传热速率,进而分析传热过程中的影响因素。

1. 传热系数传热系数与传热介质的性质、传热表面的形状和条件有关。

通过实验数据的处理,我们可以计算得到传热系数,并与理论值进行比较,从而评估传热实验的准确性和可靠性。

2. 传热速率传热速率是描述传热过程中热量传递的快慢程度的物理量。

通过实验数据的处理,我们可以计算得到传热速率,并分析传热过程中的传热效率和能耗。

六、实验总结通过本次传热实验,我们深入了解了传热的基本原理和传热方式,掌握了传热实验的基本方法和技巧。

传热实验(化工原理实验)

传热实验(化工原理实验)

传热实验一、实验目的1、熟悉套管换热器、列管换热器的结构及操作方法;2、通过对套管换热器空气-水蒸汽传热性能的实验研究,掌握对流传热系数的测定方法;3、确定套管传热管强化前后内管中空气的强制湍流换热关联式,并比较强化传热前后的效果;4、通过对列管换热器传热性能实验研究,掌握总传热系数K 的测定方法,并对变换面积前后换热性能进行比较。

二、实验原理1、普通套管换热器传热系数测定及准数关联式的确定:(1)对流传热系数i α的测定:对流传热系数i α可以根据牛顿冷却定律,通过实验来测定。

i i i mQ S t α=⨯⨯∆(1)i i m iQ t S α=∆⨯(2)式中:i α—管内流体对流传热系数,W/(m 2·℃);i Q —管内传热速率,W ;i S —管内换热面积,m 2;m t ∆—壁面与主流体间的温度差,℃。

平均温度差由下式确定:m w t t t∆=-(3)式中:t —冷流体的入口、出口平均温度,℃;w t —壁面平均温度,℃。

因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,w t 用来表示,由于管外使用蒸汽,所以w t 近似等于热流体的平均温度。

管内换热面积:i i iS d L π=(4)式中:i d —内管管内径,m ;i L —传热管测量段的实际长度,m 。

由热量衡算式:21()i i pi i i Q W c t t =-(5)其中质量流量由下式求得:3600i i i V W ρ=(6)式中:i V —冷流体在套管内的平均体积流量,m 3/h ;pi c —冷流体的定压比热,kJ/(kg·℃);i ρ—冷流体的密度,kg/m 3;pi c 和i ρ可根据定性温度查得,122i i m t t t +=为m 冷流体进出口平均温度;1i t 、2i t 、w t 、i V 可采取一定的测量手段得到。

(2)对流传热系数准数关联式的实验确定:流体在管内作强制湍流,被加热状态,准数关联式的形式为:m ni i i Nu ARe Pr =(7)其中:i i i i d Nu αλ=,i i i i i u d Re ρμ=,pi i i ic Pr μλ=。

化工原理传热实验报告

化工原理传热实验报告

化工原理传热实验报告实验目的,通过传热实验,掌握传热原理,了解传热过程中的热阻和传热系数的测定方法,掌握传热表面积的计算方法。

一、实验原理。

传热是指热量从一个物体传递到另一个物体的过程。

在传热过程中,热量的传递方式有对流、传导和辐射三种。

本实验主要研究对流传热。

二、实验仪器和设备。

1. 传热实验装置。

2. 温度计。

3. 计时器。

4. 水槽。

5. 水泵。

三、实验步骤。

1. 将水加热至一定温度,保持恒温。

2. 将试验管装入传热实验装置中,打开水泵,使水流通过试验管。

3. 记录试验管的进口和出口水温,以及进口和出口水的流量。

4. 根据实验数据计算出传热系数和传热表面积。

四、实验数据处理。

1. 根据实验数据计算出传热系数和传热表面积。

2. 绘制传热系数与雷诺数的关系曲线。

五、实验结果分析。

根据实验结果,我们可以得出传热系数与雷诺数呈线性关系,传热系数随雷诺数的增大而增大。

传热表面积的计算结果与实际情况相符合。

六、实验结论。

通过本次传热实验,我们深入了解了传热原理,掌握了传热系数和传热表面积的计算方法,提高了实验操作能力和数据处理能力。

七、实验总结。

传热实验是化工原理课程中的重要实践环节,通过实验操作,我们不仅学到了理论知识,更加深了对传热原理的理解。

在今后的学习和工作中,我们将继续努力,不断提高自己的实验能力和科研能力。

通过本次传热实验,我们对传热原理有了更深入的了解,掌握了传热系数和传热表面积的计算方法,提高了实验操作能力和数据处理能力。

希望通过这篇实验报告,能够对大家有所帮助,也希望大家能够在今后的学习和工作中继续努力,不断提高自己的实验能力和科研能力。

化工原理实验传热实验报告

化工原理实验传热实验报告

化工原理实验传热实验报告实验目的:了解传热的基本原理,掌握传热实验的基本方法和操作技能。

实验仪器与材料: 1. 传热试验装置:包括加热器、冷却器、测温设备等。

2.测量工具:温度计、计时器、称量器等。

3. 实验样品:可以是固体、液体或气体。

实验原理:传热是物体之间由于温度差引起的热量传递现象。

传热可以通过三种方式进行:导热、对流和辐射。

1.导热:导热是通过物体内部的分子碰撞实现的热量传递方式。

热量从高温区域传递到低温区域,速度与温度差和材料导热系数有关。

2.对流:对流是通过流体的流动来实现的热量传递方式。

热量可以通过流体的对流传递到其他物体或流体中,速度与流体的流动速度、流体的性质以及流动的距离有关。

3.辐射:辐射是通过电磁波传递热量的方式。

热辐射不需要通过介质传递,可以在真空中传播。

热辐射的强度与物体的温度和表面特性有关。

实验步骤:步骤一:准备工作 1. 确定实验所需的传热试验装置和材料,并检查其是否完好。

2. 准备实验所需的测量工具和实验样品。

3. 对实验装置进行清洁和消毒,确保实验结果的准确性。

步骤二:导热实验 1. 将传热试验装置中的加热器加热到一定温度。

2. 在加热器的一侧放置一个固体样品,并用温度计测量其初始温度。

3. 记录固体样品的温度随时间的变化,并绘制温度-时间曲线。

4. 根据温度-时间曲线,计算固体样品的导热速率和导热系数。

步骤三:对流实验 1. 在传热试验装置中加入一定量的流体样品。

2. 将加热器加热到一定温度,并用温度计测量流体样品的初始温度。

3. 在冷却器的另一侧,用冷却水冷却流体样品,并用温度计测量冷却后的温度。

4. 记录流体样品的温度随时间的变化,并绘制温度-时间曲线。

5. 根据温度-时间曲线,计算流体样品的对流传热速率。

步骤四:辐射实验 1. 将传热试验装置中的加热器加热到一定温度。

2. 在加热器的一侧放置一个辐射源,并用温度计测量其初始温度。

3. 在辐射源的另一侧,放置一个辐射接收器,并用温度计测量接收器的初始温度。

化工原理实验报告传热

化工原理实验报告传热

实验名称:传热膜系数测定实验实验日期:2023年X月X日实验地点:化工实验教学中心实验目的:1. 理解传热的基本原理,包括热传导、对流传热和辐射传热。

2. 掌握传热膜系数的测定方法及其影响因素。

3. 熟悉传热实验装置的操作与使用。

4. 提高实验数据处理和分析能力。

实验原理:传热是指热量从高温区域传递到低温区域的过程。

传热的基本方式有三种:热传导、对流传热和辐射传热。

1. 热传导:热量通过固体材料从高温区域传递到低温区域。

傅里叶定律描述了热传导的规律,即热传导速率与温度梯度成正比,与材料的导热系数和截面积成正比。

2. 对流传热:热量通过流体(如空气、水)从高温区域传递到低温区域。

牛顿冷却定律描述了对流传热的规律,即对流传热速率与传热系数、温差和传热面积成正比。

3. 辐射传热:热量通过电磁波从高温区域传递到低温区域。

四次方定律描述了辐射传热的规律,即辐射传热速率与物体表面温度的四次方成正比。

本实验主要研究对流传热,即流体(如空气)在管道内流动时,与管道壁面之间的热量交换。

实验装置与仪器:1. 套管换热器2. 热电偶3. 数据采集与控制软件4. 计算器实验步骤:1. 将套管换热器安装好,并连接好热电偶和传感器。

2. 调节加热器,使管道内流体温度达到预定值。

3. 打开风机,使流体在管道内流动。

4. 采集流体进出口温度、管道壁面温度等数据。

5. 利用数据采集与控制软件对数据进行处理和分析。

实验结果与分析:1. 传热膜系数的测定:根据实验数据,计算出传热膜系数。

2. 影响传热膜系数的因素:分析流体流速、温度、管道直径等因素对传热膜系数的影响。

3. 强化传热的途径:探讨如何通过改变流体流速、增加管道表面积、使用高效传热材料等方法来提高传热效率。

实验结论:1. 通过本实验,掌握了传热的基本原理和传热膜系数的测定方法。

2. 理解了影响传热膜系数的因素,并提出了强化传热的途径。

3. 提高了实验数据处理和分析能力。

实验总结:本实验是一次成功的传热实验,通过实验,我们对传热的基本原理和传热膜系数的测定方法有了更深入的了解。

化工原理 (二)对流传热系数电子教案

化工原理 (二)对流传热系数电子教案
6
一、实验原理
(4)传热面的形状、大小和位置
不同的壁面形状、尺寸影响流型;会造成边界层分离, 产生旋涡,增加湍动,使α增大。 (1)形状 形状:比如管、板、管束等; 形状 (2)大小 大小:比如管径和管长等;D/L越小,湍动程度越小 D/L 大小 (3)位置 位置:比如管子得排列方式 位置 对于一种类型的传热面常用一个对对流传热系数有决定 性影响的特性尺寸L来表示其大小。
23
八、思考题
1.实验过程中,蒸汽温度改变对实验结果有什么影响? 如何保持蒸汽温度恒定? 2.本实验中,空气与蒸汽流径能否改变?这样安排的 优点是什么? 3.实验过程中,如何判断传热达到稳定? 4.蒸汽冷凝过程中不凝性气体存在对实验结果会有什 么影响?应采取什么措施解决?
24
4
一、实验原理
影响因素: 影响因素:
(1)间壁传热由对流传热-导热-对流传热三 间壁传热由对流传热-导热-对流传热三 传热 个过程组成。 个过程组成。 同一管壁界面上的温度以折线表示, (2)同一管壁界面上的温度以折线表示,且逐 步下降,其层流内层热阻最大, 步下降,其层流内层热阻最大,因而温降 也最大。 也最大。 (3)对流传热是由层流内层的导热和层流外层 相对位移和 的统称。 的流体质点作相对位移 传热混合的统称 的流体质点作相对位移和传热混合的统称。 为简化处理, (4)为简化处理,对流传热作为通过厚度δ +的 传热边界层的导热处理。 传热边界层的导热处理。必须指出是不存 在的,为了处理问题而假设的。 在的,为了处理问题而假设的。
(5)是否发生相变
主要有蒸汽冷凝和液体沸腾。一般情况下,有相变化时对 流传热系数较大。
7
一、实验原理
4、获得给热系数的方法
解析法:对所考察的流场建立动量传递、 ① 解析法 :对所考察的流场建立动量传递 、 热量传递的衡算 方程和速率方程, 方程和速率方程,在少数简单的情况下可以联立求解流场的温 度分布和壁面热流密度, 度分布和壁面热流密度,然后将所得结果改写成牛顿冷却定律 的形式,获得给热系数的理论计算式。 的形式,获得给热系数的理论计算式。这是对流给热过程的解 析解。这是一个复杂的过程,一般用于理论讨论。 析解。这是一个复杂的过程,一般用于理论讨论。 数学模型法: ② 数学模型法 : 对给热过程作出简化的物理模型和数学描述 用实验检验或修正模型,确定模型参数。 ,用实验检验或修正模型,确定模型参数。 因次分析法:将影响给热的因素无因次化, ③ 因次分析法 : 将影响给热的因素无因次化 ,通过实验决定 无因次准数之间的关系。这是理论指导下的实验研究方法, 无因次准数之间的关系。这是理论指导下的实验研究方法,在 对流给热中广为使用。 对流给热中广为使用。 实验法:对少数复杂的对流给热过程适用。 ④ 实验法:对少数复杂的对流给热过程适用。

对流传热实验报告doc

对流传热实验报告doc

对流传热实验报告篇一:对流传热实验报告太原理工大学化工原理实验报告实验名称:对流传热系数的测定一、实验预习(30分)1.实验装置预习(10分)_____年____月____日指导教师______(签字)成绩2.实验仿真预习(10分)_____年____月____日指导教师______(签字)成绩3.预习报告(10分)指导教师______(签字)成绩(1)实验目的(2)实验原理(3)实验装置与流程:将本实验的主要设备、仪器和仪表等按编号顺序添入图下面的相应位置:10对流传热实验装置流程图1. 2.3. 4. 5.6. 7. 8.9. 10. 11. 12. 13.(4)简述实验所需测定参数及其测定方法:(5)实验操作要点:二、实验操作及原始数据表(30分)指导教师______(签字)成绩三、数据处理结果(10分)篇二:化工原理实验报告(传热)北京化工大学化工原理实验报告传热膜系数测定实验院(部):化学工程学院专业:化学工程与工艺班姓名:江海洋 XX011136同组人员:王彬刘玥波方郡实验名称:传热膜系数测定实验实验日期:XX.11.28传热膜系数测定实验一、摘要本实验以套管换热器为研究对象,以冷空气及热蒸汽为介质,冷空气走黄铜管内,即管程,热蒸汽走环隙,即壳程,研究热蒸汽与冷空气之间的传热过程。

通过测得的一系列温度及孔板压降数值,分别求得正常条件和加入静态混合器后的强化条件下的对流传热膜系数α及Nu,做出lg (Nu/Pr0.4)~lgRe的图像,分析出传热膜系数准数关联式Nu=ARemPr0.4中的A和m值。

关键词:对流传热 Nu Pr Re α A 二、实验目的1、掌握传热膜系数α及传热系数K的测定方法;2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m、n的方法;3、通过实验提高对准数关系式的理解,并分析影响α的因素,了解工程上强化传热的措施。

三、实验原理黄铜管内走冷空气,管外走100℃的热蒸汽,壁内侧热阻1/α远远大于壁阻、垢阻及外侧热阻,因此研究传热的关键问题是测算α,当流体无相变时对流传热准数关系式的一般形式为:Nu?A?Rem?PrnGrp 对于强制湍流有: Nu?ARemPrn用图解法对多变量方程进行关联,要对不同变量Re和Pr分别回归。

四川大学化工实验报告对流传热实验

四川大学化工实验报告对流传热实验

四川大学化工原理实验报告学院:化学工程学院专业:化学工程与工艺班号:153080302:胡垒学号:38 实验日期: 2017年 6月 5日指导老师:吴t ——孔板流量计前空气温度,℃,可取t=t 1;空气的流量由 1/4喷嘴流量计测量,合并常数后,空气的体积流量可由(11)式计算11ρRC V = (11)式中:C 0——合并整理的流量系数,其值为C0=0.001233; R ——喷嘴流量计的压差计示值,mmH 2O 。

V 1——空气的体积流量,m 3/s 。

四.实验装置图及主要设备(包括名称、型号、规格) (1)实验装置示意图。

冷空气通过风机进入套管换热器管程,蒸汽发生器通过电加热使水汽化产生蒸汽,蒸汽进入换热器的壳程加热管程的冷空气、蒸汽和冷空气通过套管换热器管壁进行热量交换。

对流传热装置示意图如图所示。

(2)仪器及仪表。

设备:风机、蒸汽发生器、普通套管换热器、螺旋套管换热器、消音器。

仪表:气体涡旋流量计、压差变送器、温度变送器、温度控制器、无纸记录仪、液位计。

五.实验操作步骤1.实验前的准备(1)向电加热釜加水至液位计上端红线处。

(2)检查空气流量旁路调节阀是否全开。

73752.550.185844.63645387421.567094350.8313108736488.5197535.9740345983452.10.185845.19566723396.83441747.2570730233529.9911333.4444961293151.850.185845.11703357370.434368344.1901042530571.462531.273959131028.151.650.185844.99689202342.722036440.9933869827711.5514929.01159729112551.450.185845.05638326312.632156337.3449264924654.4052426.42953043122251.450.185844.89801451281.909292533.7937623821695.8766123.9163215713 20.351.350.185845.04823363262.632625331.3779956620019.3770522.20664944普通套管换热器螺旋套管换热器十.实验思考题1.与流体的物流性质有关,比如流速、密度、粘度、管径、导热系数等。

化工原理实验之传热试验

化工原理实验之传热试验

化工原理实验之传热试验传热试验是化工原理实验中具有重要意义的一项实验,试验目的是研究传热现象,了解传热规律,以及对传热理论进行实际检验。

本次实验主要包括对传热现象进行观察、测量传热速率和传热系数、验证传热公式等内容。

一. 实验原理1.传热基本原理传热是指物质内部或不同物质之间由于温度差而造成的能量传递现象。

传热方式主要有三种:传导、对流和辐射。

传导是指热量沿着物体内部的分子间传递,是热量在不需要物质的输送下传递的一种方式。

对流是指热量通过流体的对流传递,是热量通过可流动的物质实现的传递。

辐射是指热能通过电磁波的形式传播,是热量不需要介质的传递。

2.传热系数的定义传热系数是描述物质之间传热的一个参数。

它体现了传热时热量流动速率和温度差之间的比例关系,通常用W/m2·K或kcal/h·m2·K来表示。

传热系数取决于具体的传热方式、传热介质以及传热表面的性质等,因此无法精确确定,需要通过实验的方法进行测量。

3.传热计算公式传热计算公式是用来计算传热速率或传热系数的公式,基于传热规律进行推导,常见的有牛顿冷却定律、斯特凡—波尔兹曼定律、傅里叶定律等。

二. 实验器材本次实验所需的器材包括传热试验装置、恒温水槽、电热膜、狭缝式温度计等。

三. 实验步骤1.打开仪器的电源,使恒温水槽内的水温恒定在设定值。

2.将试验装置放入恒温水槽中,调整好试验装置和热源之间的距离。

3.测量试验装置与水温之间的温度差。

4.将电热膜接通电源,记录下电热膜的功率大小。

5.运用实验数据计算出试验装置的传热速率和传热系数。

四. 实验结果通过实验测量,并利用公式计算,得出试验结果如下:试验装置与水温之间的温度差为8℃,电热膜的功率为176W,故传热速率为1408W。

根据实际测量数据,计算得出传热系数为87.13W/m2·K。

本次传热试验的主要目的在于了解传热现象及其规律,测量传热速率和传热系数以及验证传热公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理实验之对流传热实验化工原理实验报告之传热实验学院学生姓名专业学号年级二Ο一五年十一月一、实验目的1.测定冷空气—热蒸汽在套管换热器中的总传热系数K;2.测定空气或水在圆直管内强制对流给热系数;3.测定冷空气在不同的流量时,Nu与Re之间的关系曲线,拟合准数方程。

二、实验原理(1)冷空气-热蒸汽系统的传热速率方程为mt KA Q ∆= )ln(2121t t t t t m ∆∆∆-∆=∆,11t T t-=∆,22t T t -=∆)(21t t C V Q p -=ρ式中,Q —单位时间内的传热量,W ;A —热蒸汽与冷空气之间的传热面积,2m ,dl A π=; m t ∆—热蒸汽与冷空气之间的平均温差,℃或K K —总传热系数,)℃/(2⋅m W ; d —换热器内管的内直径,d =20mm l —换热器长度,l =1.3m ;V —冷空气流量,s m /3;pC 、ρ—冷空气密度,3/m kg 空气比热,kg J /;21t t 、—冷空气进出换热器的温度,℃; T —热蒸汽的温度,℃。

实验通过测量热蒸汽的流量V ,热蒸汽进、出换热器的温度T 1和T 2 (由于热蒸汽温度恒定,故可直接使用热蒸汽在中间段的温度作为T ),冷空气进出换热器的温度t 1和t 2,即可测定K 。

(2)热蒸汽与冷空气的传热过程由热蒸汽对壁面的对流传热、间壁的固体热传导和壁面对冷空气的对流传热三种传热组成,其总热阻为:2211111d h d d bd h K m ++=λ 其中,21h h 、—热空气,冷空气的给热系数,)℃/(⋅m W ;21d d d m 、、—内管的内径、内外径的对数平均值、外径,m ; λ—内管材质的导热系数,)℃/(⋅m W 。

在大流量情况下,冷空气在夹套换热器壳程中处于强制湍流状态,h2较大,221d h d 值较小;λ较大,md dλ1值较小,可忽略,即 1h K ≈(3)流体在圆形直管中作强制对流时对管壁的给热系数关联式为n m C Nu Pr Re '=。

式中:Nu —努塞尔准数,11λdh Nu =,1λ—空气的导热系数,)℃/(2⋅m W ;Re —雷诺准数,μρdu =Re ,—热蒸汽在管内的流速,s m /;Pr —普兰特准数,1Pr λμP C =;μ—热蒸汽的黏度,s Pa ⋅。

u对冷空气而言,在温度范围较大的情况下,Pr基本不变,n为常数,则上式可简化为:mC PrC'=。

=,式中nCNu Re实验中改变冷空气的流量,热蒸汽和冷空气两流体间的平衡将发生变化,与之对应的两个准数Re、Nu也随之改变,进而可在双对数坐标下作出Re与Nu的关系是一直线。

拟合出此直线方程,即为Re 与Nu的准数方程。

三、实验流程与实验装置图蒸汽发生器将水转化为蒸汽,并加热冷空气,空气和蒸汽通过套管换热器进行热量交换。

实验装置以及流程示意图如下:四、实验操作步骤1、熟悉传热实验流程及仪表使用,检查设备,做好运转实验操作准备。

2、启动控制箱总电源,然后启动蒸汽釜开关电源,烧水产生蒸汽,同时对管道系统预热。

3、预热期间作出数据记录表,观察设备型号,熟悉实验流程及装置的操作方法,掌握待测参数的具体意义及在数据处理中的应用方法。

4、观察管道上的温度计,待到两根换热器上的六个温度计示数均上升至93℃以上时,准备开启风机。

(等待温度升高的同时需要不时对换热器排放冷凝水使其温度较为快速的上升。

排水的同时注意不要让水溅出滴在下方的涡轮流量计上。

)4、开启上球阀,关闭下球阀,将闸阀开到最大,启动风机电钮。

此时记录最大流量,然后调节闸阀到最小,待流量稳定后读出最小流量,将最小流量与最大流量之间等分为五个流量间隔共计六个流量,从最小流量开始,待系统稳定3分钟到5分钟后,依次从控制箱显示器上读取空气流量、从相应温度计上读取蒸汽温度、空气进出口温度并记录数据,一直测到最大流量附近处,共计测量六次,完成测量换热器1的数据采集。

5、重复以上步骤,采集换热器2的实验数据。

6、实验数据采集完后,将所得数据交于指导老师处查看,经指导老师同意后,关机离开实验室。

五、实验数据记录设备号:传热实验装置CR-013;换热器类型:普通套管换热器换热器尺寸:管径5.225⨯φ; 管长m 3.1序号)/(3h m q v蒸汽温度)℃(T冷空气进口温度)℃(1t冷空气出口温度)℃(2t1 26.7 98.7 24.1 68.2 2 33.0 99.2 24.0 67.73 39.5 99.0 24.6 67.24 46.1 98.8 26.2 67.15 52.7 98.7 29.0 67.7 655.897.630.267.4设备号:传热实验装置CR-013;换热器类型:螺旋套管换热器 换热器尺寸:管径5.225⨯φ; 管长m 3.1;螺纹深度1mm ;螺纹中心距3mm序号)/(3h m q v蒸汽温度)℃(T冷空气进口温度)℃(1t冷空气出口温度)℃(2t1 19.9 99.3 19.8 65.52 26.4 99.5 20.3 66.5 3 32.9 99.3 21.2 67.24 39.4 99.5 22.8 68.2 5 46.1 99.4 24.9 68.96 52.899.228.570.1六、典型计算(以普通套管换热器的第一组实验数据为例) 原始数据v q =26.7h m /3,蒸汽温度T =98.7℃,冷空气进口温度1t =24.1℃,出口温度2t 68.2℃。

计算原理公式:m t KA Q ∆==)(21t t C V Q p -=ρ。

(1)计算总传热系数K 空气进出口平均温度为221t t +=46.15℃, 查表得到该温度附近处空气的密度为 1.0933/m kg ,定压热容)/(017.1K kg kJ C p ⋅=。

则)(21t t C q Q p v -⋅⋅⋅=空气空气ρ=360010017.1093.17.263⨯⨯⨯=363.57w 计算换热面积:21021.03.1025.0m dl A =⨯⨯==ππ计算m t ∆:℃306.49)2.687.98()1.247.98(ln )2.687.98()1.247.98()ln()()()ln(21212121=-----=-----=∆∆∆-∆=∆t T t T t T t T t t t t t m 则:)℃/(221.72306.491021.057.3632⋅=⨯=∆⋅=m W t A Q K m (2)计算Re 和Nu 空气进出口平均温度为221t t +=46.15℃,查表得到该温度附近处空气的黏度s Pa ⋅⨯=-51096.1μ,导热系数)/(10826.22K m W ⋅⨯=-λ。

根据公式μρdu =Re 计算s m d q A q u v v /608.23360002.047.264122=⨯⨯⨯=⨯==ππ 则15.263301096.1093.1608.2302.0Re 5=⨯⨯⨯==-μρdu由前文实验原理部分说明得:K h ≈1,Re则112.5110826.202.0221.72211=⨯⨯==-λdh Nu同理可求得其他组的数据,需要特别说明得是,螺旋管的传热面积计算与普通管不同,这里以螺旋管第一组数据为例计算:21858.03.1025.082.182.1m dl A =⨯⨯⨯=⨯=ππ关于螺旋管的其他计算均与普通管相同,参照上述计算方法可以得到螺旋管的相应数据结果。

整理得下表: 普通套管换热器序号流量 )/(3h m q v 传热速率 )(W Q 平均温差 ℃)(m t ∆ 总传热系数))/((2K m W K ⋅ 给热系数 ))/((21K m W h ⋅1 26.7 1308.853 49.306 72.221 72.221 26330.150 51.112 2 33.0 1603.011 50.220 86.842 86.842 32542.883 61.459 3 39.5 1870.457 50.118 101.537 101.537 38952.844 71.859 4 46.1 2095.875 49.357 115.527 115.527 45461.421 81.760 5 52.7 2267.058 47.765 129.129 129.129 51969.997 91.386 655.8 2307.375 46.338135.474135.47455027.056 95.877螺旋套管换热器NuRe序号流量 )/(3h m q v 传热速率 )(W Q 平均温差 ℃)(m t ∆ 总传热系数))/((2K m W K ⋅ 给热系数 ))/((21K m W h ⋅1 19.9 1039.173 53.432 29.073 29.073 19624.344 20.575 2 26.4 1393.684 52.772 39.479 39.479 26034.306 27.940 3 32.9 1729.308 51.736 49.967 49.967 32444.268 35.362 4 39.4 1988.352 50.654 58.679 58.679 38854.230 41.528 5 46.1 2254.731 49.268 68.411 68.411 45461.421 48.416 652.8 2441.565 46.86277.88377.88352068.612 55.119由实验所得数据做出两个管Re 与Nu 的关系曲线,如下图所示:10310410510N uReNu图一 普通套管换热器Re 与Nu 的关系曲线10uN103104105Re图二螺旋套管换热器Re与Nu的关系曲线七、实验结果分析与讨论1、实验结果分析:在本次实验中,我们对普通套管换热器以及螺旋管换热器在蒸汽-冷空气流体系统下的传热性能及相关参数进行了实验测定。

从最终所得实验数据中可以发现,两种换热器的共同点在于在相近流量条件下,两者的平均温差相近,最终的Re-Nu关系曲线都是一条直线。

然而,普通管换热器的的温差,传热速率,都明显小于螺旋管换热器,同时传热系数也高于螺纹管,造成这一现象的主要原因是螺纹管换热器的传热面积平均为普通管的1.82倍,于是导致温差较大,从而传热速率较大,但是由于系统存在热量损失,所以在传热速率以及面积同时增长的情况下给热系数反而较普通管低。

综上,可以得到普通套管换热器与螺旋套管换热器的Re-Nu 关系曲线大致相同。

流体在管内呈强制湍流状态时两参数符合对数线性相关,在Re 为20000-50000范围,7.0Pr ≈,6502.03.1==d l >60时,)(Pr Re 027.033.08.0wNu μμ=,由此可以推算出管壁壁温,再推算出间壁的导热系数k 。

相关文档
最新文档