高等数学同济第七版上册课后答案

合集下载

高等数学同济大学数学系第七版上册第七章课后答案

高等数学同济大学数学系第七版上册第七章课后答案
微分方程课后习题答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等

高等数学同济大学数学系第七版上册

高等数学同济大学数学系第七版上册

高等数学(同济人学数学系-第七版)上册高等数学(同济大学数学系第七版)上册第三章:微分屮值定理与导数的应用课后习题答案微分中值定理&I.脸证罗尔定理对= Insin x任区间[于打]上的止确性.证函数/(x)=lnsinx^[y^]匕连续•在(卡•乎)内可导■又4f)= ,nsin 6 =,n \ /(T)= ,n,in T=,n T*即4才)唧认卜灯⑷在[:・丫]上満足罗尔定理条件•山罗尔定理®至少仔任T・(H(:、罟卜仙'(§)"•乂 JS二瓷令厂(丫)“得""T +于(w = 0. = 1 ・ ± 2 .・•・)・ JR 兀=0 w(? •普)・IM比罗尔定理对函数尸Insin x任区叫亍'寻]上是正确的•& 2.脸证拉格制日中值定理对函敎y・4』-5/u 2在区何[0,1]上的正确性.it 匪数/(尤)=4“・5/在区河卫・1上连缤■金(0.1)內叫导,故/(・丫)在0」上满足拉格朗H中值定理条件,从而至少存在一点f e(0J).使门小斗护二仝严“又•由八° =12^2 - 10f 4 I =0 olUlf =^~^G(0J) JM此拉俗阴H屮值定理对函敗y=4八5P r・2徃区何0」;上是正确的."i"及化X)’ + cos X在IX间|o,y]j;验让柯內中值定理的正确性.证旳数"+0*在区1叫0,;]上连续皿(0.;)內可品.M住卩•寸)内=1 -MOX ZO.故.心)屮(兀)满足柯两中值定理条件•从而至55/ 1.高等数学(同济人学数学系•第七版)上册55/ 2.高等数学(同济人学数学系•第七版)上册55/ 3.高等数学(同济大学数学系-第七版)上册.55/ 4.高等数学(同济人学数学系•第七版)上册.55/ 5.高等数学(同济人学数学系-第七版)上册86 一、《离等数学》(第七版)上冊习趣全解55 / 6.高等数学(同济人学数学系•第七版)上册件;)"(0)"(目1 -0 cos £ T . 1 - HI1 {T"14Z n = 0,得 go = 2arclan -一~ . 1*1 0 < < 丨•故 C = 2arckm j 4 ^ * | € (。

同济大学《高等数学》第七版上、下册答案(详解),DOC

同济大学《高等数学》第七版上、下册答案(详解),DOC
(4)2 12 (7 z)2 32 52 (2 z)2
解得 z 14
9
即所求点为 M(0,0,14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形. 8. 验证: (a b) c a (b c) .
3 i 14
1 j 14
2 k.
14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余弦.
解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
练习 5-2
练习 5-3
练习 5-4
总习题五
练习 6-2
练习 6-3
(2) s 22 (3)2 (4)2 29
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.

高等数学同济第七版上册课后习题答案

高等数学同济第七版上册课后习题答案

习题1-11.求下列函数的自然定义域:(1)1(3)(5)sin (7)arcsin(3);(9)ln(1);y y x y y x y x ====-=+211(2);1(4);(6)tan(1);1(8)arctan ;(10).xe y xy y x y xy e =-==+=+=解:2(1)3203x x +≥⇒≥-,即定义域为2,3⎡⎫-+∞⎪⎢⎣⎭2(2)101,x x -≠⇒≠±查看全部文档,请关注微信公众号:高校课后习题即定义域为(,1)(1,1)(1,)-∞-⋃-⋃+∞(3)0x ≠且2100x x -≥⇒≠且1x ≤即定义域为[)(]1,00,1-⋃2(4)402x x ->⇒<即定义域为(2,2)-(5)0,x ≥即定义域为[)0,+∞(6)1(),2x k k Z ππ+≠+∈即定义域为1(1,2x x R x k k Z π⎧⎫∈≠+-∈⎨⎬⎩⎭且(7)3124,x x -≤⇒≤≤即定义域为[]2,4(8)30x -≥且0x ≠,即定义域为(](,0)0,3-∞⋃(9)101x x +>⇒>-即定义域为(1,)-+∞(10)0,x ≠即定义域为(,0)(0,)-∞⋃+∞2.下列各题中,函数()f x 和()g x是否相同?为什么?222(1)()lg ,()2lg (2)(),()(3)()()(4)()1,()sec tan f x x g x x f x x g x f x g x f x g x x x========-解:(1)不同,因为定义域不同(2)不同,因为对应法则不同,,0(),0x x g x x x ≥⎧==⎨-<⎩(3)相同,因为定义域,对应法则均相同(4)不同,因为定义域不同3.设sin ,3()0,3x x x x πϕπ⎧<⎪⎪=⎨⎪≥⎪⎩求(),((),(2),644πππϕϕϕϕ--并指出函数()y x ϕ=的图形解:1()sin ,()sin 66244()sin(),(2)0,44ππππϕϕππϕϕ====-=-=-=()y x ϕ=的图形如图11-所示4.试证下列函数在指定区间内的单调性:(1);1(2)ln ,(0,)xy xy x x =-=++∞证明:1(1)()1,(,1)11x y f x x x===-+-∞--设121x x <<,因为212112()()0(1)(1)x x f x f x x x --=>--所以21()(),f x f x >即()f x 在(,1)-∞内单调增加(2)()ln ,(0,)y f x x x ==++∞设120x x <<,因为221211()()ln 0x f x f x x x x -=-+>所以21()()f x f x >即()f x 在(0,)+∞内单调增加5.设()f x 为定义在(,)l l -内的奇函数,若()f x 在(0,)l 内单调增加,证明()f x 在(,0)l -内也单调增加证明:设120l x x -<<<,则210x x l<-<-<由()f x 是奇函数,得2121()()()()f x f x f x f x -=-+-因为()f x 在(0,)l 内单调增加,所以12()()0f x f x --->即()f x 在(,0)l -内也单调增加6.设下面所考虑的函数都是定义在区间(,)l l -上的。

高等数学同济第七版上册课后答案

高等数学同济第七版上册课后答案

高等数学同济第七版上册课后习题答案L 求下列函数的自然定义域: ⑴ y = J3K +2; ⑶ y =—Vi- x 2;X (5) y=sin(7)y = arcsin(x-3); (9)jV = ln(x + l);解:(1)3AI + 2>0=>X >-23(2)1 -厂工 0 = JCH ±1, 即定义域为(-8, -1) U (-1/)D (1, +8) (3)/ = 0且1一/之0=4工0且产仔1 即定义域为[-1R)D(0,1](2)y = 1 - JC (4);y -1 , A /4-JT (6)y = tan(x +1); (8)J=V3-x + arctanJL; x(10)y = e e\,即定义域为「一 2,+0?(4)4-犬>。

二>卜|<2即定义域为(—2,2)(5)x2 0,即定义域为[0, +oc)71(6)x +1 / kjr + 一 (% £Z), \ 2 1即定义域为x xe R^x^(k+ )兀一1k eZ(7)|x-3|< 1= 2 WxW 4,即定义域为[2,4](8)3—冗2 0且4工0,即定义域为(一8,0) u(0,3](9)x + 1 >0=>x> -1 即定义域为(-1,+8) (10)工工0,即定义域为(一双0) u (0, +oo)2,下列各题中,函数/(x)和g(x)是否相同?为什么?(1)/U) = 1g g(x) =21gx(2)/U) = x, g(x)=岳(3)/(%) = #(f-丁), g(x) =(4)/(x) = l,g(x) =sec'x — tarrx解;(1)不同,因为定义域不同((2)不同,因为对应法则不同,g(M= 1—= x.x>0< 0(3)相同,因为定义域,对应法则均相同(4)不同,因为定义域不同匹斗|斗<3 .设a“)=\ 兀3州花一11 3求0(二),夕(巴),旗一土),0(-2),并指出函数y = Q(x)的图形6 4 41 /乃、, 7T yfl二?,以 4)= sin 耳=~^,0(_Z)= sin(--)l = =0,44 | 2(l)y=(2)y = x + In x,(0, +oo)证明:,匹、 .匹%)=sm%解:4 .试证下列函数在指定区间内的单调X \-xx 1⑴尸/W = ---- -- = T+ -- --- ,(一00』)1-x 1-x设X] <工2 < 1,因为/%)—/区)=“七方 ,〉0 (—Xi) >U1 2所以/(X2 )> /(&),即/(X)在(一8,1)内单调增加(2) y - /(x) = x + In x,(0, +8)设0<»<彳2,因为 /U) -/u) = X - x+ In 当二。

高等数学同济第7版上册习题答案

高等数学同济第7版上册习题答案

高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案

高等数学同济大学数学系第七版上册

高等数学同济大学数学系第七版上册

高等数学(同济人学数学系-第七版)上册高等数学(同济大学数学系第七版)上册第三章:微分屮值定理与导数的应用课后习题答案微分中值定理&I.脸证罗尔定理对= Insin x任区间[于打]上的止确性.证函数/(x)=lnsinx^[y^]匕连续•在(卡•乎)内可导■又4f)= ,nsin 6 =,n \ /(T)= ,n,in T=,n T*即4才)唧认卜灯⑷在[:・丫]上満足罗尔定理条件•山罗尔定理®至少仔任T・(H(:、罟卜仙'(§)"•乂 JS二瓷令厂(丫)“得""T +于(w = 0. = 1 ・ ± 2 .・•・)・ JR 兀=0 w(? •普)・IM比罗尔定理对函数尸Insin x任区叫亍'寻]上是正确的•& 2.脸证拉格制日中值定理对函敎y・4』-5/u 2在区何[0,1]上的正确性.it 匪数/(尤)=4“・5/在区河卫・1上连缤■金(0.1)內叫导,故/(・丫)在0」上满足拉格朗H中值定理条件,从而至少存在一点f e(0J).使门小斗护二仝严“又•由八° =12^2 - 10f 4 I =0 olUlf =^~^G(0J) JM此拉俗阴H屮值定理对函敗y=4八5P r・2徃区何0」;上是正确的."i"及化X)’ + cos X在IX间|o,y]j;验让柯內中值定理的正确性.证旳数"+0*在区1叫0,;]上连续皿(0.;)內可品.M住卩•寸)内=1 -MOX ZO.故.心)屮(兀)满足柯两中值定理条件•从而至55/ 1.高等数学(同济人学数学系•第七版)上册55/ 2.高等数学(同济人学数学系•第七版)上册55/ 3.高等数学(同济大学数学系-第七版)上册.55/ 4.高等数学(同济人学数学系•第七版)上册.55/ 5.高等数学(同济人学数学系-第七版)上册86 一、《离等数学》(第七版)上冊习趣全解55 / 6.高等数学(同济人学数学系•第七版)上册件;)"(0)"(目1 -0 cos £ T . 1 - HI1 {T"14Z n = 0,得 go = 2arclan -一~ . 1*1 0 < < 丨•故 C = 2arckm j 4 ^ * | € (。

同济大学高等数学第七版上下册答案详解

同济大学高等数学第七版上下册答案详解
同济大学高等数学第七版上下册答案详解
练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9
练习1-10
总习题一
练习2-1
练习2-2
练习2-3
练习2-4
练习2-5
总习题二
练习3-1
练习3-2
练习3-3
练习3-4
练习3-5
练习3-6
x
( 2)
2
(2 1)
1
(1 1)
1
(1 )
y
0
+
+
+
0
+
y
+
+
+
0
0
+
yf(x)

17/5
极小值

6/5
拐点

2
拐点

x
0
(0 1)
1
y
+
+
0
-
-
-
y
0
-
-
-
0
+
yf(x)
0
拐点

极大值

拐点

x
1
y
+
+
+
0
-
-
-
y
+
0
-
-
-
0
+
yf(x)

拐点

1
极大值

拐点

x
( 1)
-1

高等数学(同济第七版)课后答案解析

高等数学(同济第七版)课后答案解析
解当0i时.s(t)二!F.
当I V,w2时,s(!)=I - y(2-/)2=一£f2+ 2/-1 ,
当/>2HhS(f) =1.

/>2.
Q 16.求联系华氏温度(用F表示)和扱氏温度(用C表示)的转换公式.并求
(1)90叩的等价摄氏温度和-5 °C的等价华氏温度:
(2)是否存在一个温度值.使华氏温度汁和摄氏温度汁的读数是样的?如果存在,那么该温度值是多少?
xi
所以/(存)>/(%),即/(W在(0, + ao)内单调增加.
公5・设/U)为定义在(-/./)内的荷函数.若/(X)在(01)内单调増加,证明/(#)在(-L0)内也单凋増加.
证设-/<X, <X2<0,则0< “2 <-A,</,由/(、)是哉函数,從/g)V(X|)=-/(-知)+f(-旳)■因为/Xx)在(OJ)内单调増加.所以y(-X!)-/(-x2)>0.从而/(旳)>/(旳),即/(X〉在《・"0)内也単调增加.
解设尸.其中叽/,均为常数.
因为〃=32。相当于。=。。/ =212。相当于C= 100°.所以
7 "*=槌
故〃=1.80+32或C=扌(F-32).
(1)F=90°. C =刑90-32)52.2。.
C=-5。,F= 1.Xx(-5)+32= 23°.
(2)设温度値,符合题意.则有
/ = 1.8/ +32,I =-40.
尸銘EC
> =
y=•<>«< w
y=cotZ;
y=arcfiin lx I C1;
G2.卜列各题中,函数/(x)和g(x)是否相同?为什么”⑴/U) =lg/,g⑴=21gx;

同济大学高等数学第7版上册课后习题答案

同济大学高等数学第7版上册课后习题答案

资料来源:墨水多学习网(),转载请注明! 第4页
资料来源:墨水多学习网(),转载请注明! 第5页
资料来源:墨水多学习网(),转载请注明! 第6页
资料来源:墨水多学习网(),转载请注明! 第7页
资料来源:墨水多学习网(),转载请注明! 第8页
资料来源:墨水多学习网(),转载请注明! 第9页
资料来源:墨水多学习网(),转载请注明! 第10页
资料来源:墨水多学习网(),转载请注明! 第11页
资料来源:墨水多学习网(),转载请注明! 第12页
资料来源:墨水多学习网(),转载请注明! 第14页
笔记和课后习题含考研真题详解同济大学数学系高等数学第7版上册资料来源
同济大学数Байду номын сангаас系《高等数学》(第7版)(上册)
笔记和课后习题(含考研真题)详解
资料来源:墨水多学习网(),转载请注明! 第2页
资料来源:墨水多学习网(),转载请注明! 第3页

高等数学同济大学第七版上册答案

高等数学同济大学第七版上册答案

高等数学同济大学第七版上册答案选择题:1. 在平面直角坐标系中,异于原点的一组直线的斜率之积为 -1,则这组直线的方程分别是()A. y = x, y = -xB. y = x, y = 1/2xC. y = x, y = 2xD. y = -x, y = -1/2x2. 若函数 y = f(x) 具有二阶导数,且有 f''(x) > 0,则函数 y = f(x)A. 在 x = 0 处取得极大值B. 在 x = 0 处取得最小值C. 在 x = 0 处取得拐点D. 无法确定3. 一阶行列式 |a b| = -3, |c d| = 2,行列式 |A| = |2a c| + |2b d| 的值为A. 1B. 2C. 3D. 44. 某圆锥的高为 12cm,底面直径为 8cm,底面圆的半径为 4cm,则该圆锥的侧面积为A. 48π cm^2B. 32π cm^2C. 16π cm^2D. 8π cm^25. 如果一组 n 个数据的算术平均值为 x¯,它们的总和为 S,那么这组数据中至少有一个数据小于或等于A. x¯-S/nB. x¯-(S/n-1)/nC. x¯-(S/n+1)/nD. x¯+S/n填空题:1. 设函数 y = x^3 - 3x + 2,则它的导数 y' = _________2. 将 x = 1/2e^(t/2) 代入 y = (x + 1)e^x,则 y = _________3. 设 2sin x - 3cos x = 5,则tan(x + π/6) = _________解答题:1. 求函数 f(x) = x^3 - 3x + 2 的单调增区间和单调减区间。

2. 已知 f(x) = sin x + cos x,求 f'(x) 和 f''(x)。

3. 已知一物体沿直线运动的速度为 v(t) = e^(2t-1) (m/s),起点位于原点,求物体在 t = 0 到 t = 1 上的位移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题1-10
1.证明方程x5-3x=1至少有一个根介于1和2之间.
证明设f(x)=x5-3x-1,则f(x)是闭区间[1, 2]上的连续函数.
因为f(1)=-3,f(2)=25,f(1)f(2)<0,所以由零点定理,在(1, 2)内至少有一点ξ(1<ξ<2),使f(ξ)=0,即x=ξ是方程x5-3x=1的介于1和2之间的根.
因此方程x5-3x=1至少有一个根介于1和2之间.
2.证明方程x=a sin x+b,其中a>0,b>0,至少有一个正根,并且它不超过a+b.
证明设f(x)=a sin x+b-x,则f(x)是[0,a+b]上的连续函数.
f(0)=b,f(a+b)=a sin (a+b)+b-(a+b)=a[sin(a+b)-1]≤0.
若f(a+b)=0,则说明x=a+b就是方程x=a sin x+b的一个不超过a+b的根;
若f(a+b)<0,则f(0)f(a+b)<0,由零点定理,至少存在一点ξ∈(0,a+b),使f(ξ)=0,这说明x=ξ也是方程x=a sin x+b的一个不超过a+b的根.
总之,方程x=a sin x+b至少有一个正根,并且它不超过a+b.
3.设函数f(x)对于闭区间[a,b]上的任意两点x、y,恒有
|f(x)-f(y)|≤L|x-y|,其中L为正常数,且f(a)⋅f(b)<0.证明:至少有一点ξ∈(a,b),使得f(ξ)=0.
证明设x0为(a,b)内任意一点.因为
0||lim |)()(|lim 0000
0=-≤-≤→→x x L x f x f x x x x , 所以 0|)()(|lim 00
=-→x f x f x x , 即 )()(lim 00
x f x f x x =→. 因此f (x )在(a , b )内连续.
同理可证f (x )在点a 处左连续, 在点b 处右连续, 所以f (x )在[a , b ]上连续.
因为f (x )在[a , b ]上连续, 且f (a )⋅f (b )<0, 由零点定理, 至少有一点ξ∈(a , b ), 使得f (ξ)=0.
4. 若f (x )在[a , b ]上连续, a <x 1<x 2< ⋅ ⋅ ⋅ <x n <b , 则在[x 1, x n ]上至少有一点ξ, 使
n
x f x f x f f n )( )()()(21+⋅⋅⋅++=ξ. 证明 显然f (x )在[x 1, x n ]上也连续. 设M 和m 分别是f (x )在
[x 1, x n ]上的最大值和最小值.
因为x i ∈[x 1, x n ](1≤ i ≤n ), 所以有m ≤f (x i )≤M , 从而有 M n x f x f x f m n n ⋅≤+⋅⋅⋅++≤⋅)( )()(21,
M n
x f x f x f m n ≤+⋅⋅⋅++≤)( )()(21. 由介值定理推论, 在[x 1, x n ]上至少有一点ξ . 使
n
x f x f x f f n )( )()()(21+⋅⋅⋅++=ξ. 5. 证明: 若f (x )在(-∞, +∞)内连续, 且)(lim x f x ∞
→存在, 则f (x )必在(-∞, +∞)内有界.
证明 令A x f x =∞
→)(lim , 则对于给定的ε >0, 存在X >0, 只要|x |>X , 就有
|f (x )-A |<ε , 即A -ε<f (x )<A +ε .
又由于f (x )在闭区间[-X , X ]上连续, 根据有界性定理, 存在M >0, 使|f (x )|≤M , x ∈[-X , X ].
取N =max{M , |A -ε|, |A +ε|}, 则|f (x )|≤N , x ∈(-∞, +∞), 即f (x )在(-∞, +∞)内有界.
6. 在什么条件下, (a , b )内的连续函数f (x )为一致连续?。

相关文档
最新文档