2021年人造卫星基本原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人造卫星的基本原理

欧阳光明(2021.03.07)

参考、摘录自——王冈曹振国《人造卫星原理》

一、关于椭圆轨道

在地球引力的作用下,要使物体环绕地球作圆周运动,那么必须使得物体的速度达到第一宇宙速度。如果卫星所需的向心力恰好和其所受万有引力相等,则它将作圆周运动。若其所需向心力大于地球引力,这是物体的运动轨迹就变成椭圆轨道了。物体的速度比环绕速度(作圆周运动时的速度)大得越多,椭圆轨道就越“扁长”,直到达到第二宇宙速度,物体便沿抛物线轨道飞出地球引力场之外。

因为发射卫星和飞船时,入轨点的速度控制不可能绝对精确,速度大小的微小偏离,和速度方向与当地的地球水平方向间的微小偏差,都会使航天器的轨道不是圆形二是椭圆形,椭圆扁率取决于入轨点的速度大小和方向。

a——椭圆的半长轴b——椭圆的半短轴>11.2km/s-抛物线

双曲线

c

e ——偏心率 a c

e =

P e ——近地点 A p ——远地点

P ——半通径)1(22

e a a b P -==Y w

f ——真近点角,近地点和远地点之间连线与卫星向径之间的夹角

E ——偏近点角

只要知道了卫星运行的椭圆轨道的几个主要参数:a ,e 等,卫星在椭圆轨道上任一点(r )处的速度就可以计算出来:

)12(a r v -=μ 其中2μ=GM (地心万有引力常数)

椭圆轨道上任一点处的向径r 为:)cos 1(E e a r -=

近地点向径:)1(e a r p -=

远地点向径:)1(e a r A +=

所以,近地点r 最小,卫星速度最大e e a v -+⋅=112μ

远地点r 最大,卫星速度最小e e

a v +-⋅

=112μ 卫星或飞船入轨点处的速度,通常就是近地点的速度,这个速度一般要比当地的环绕速度要大;而椭圆轨道上远地点速度则比当地的环绕速度要小。

A

圆形轨道可以看成椭圆轨道的特殊情况。即a=b=r ,所以 又因为r g r 2

μ=,所以:2

1

0)(r R R g r g v r ⋅=⋅= 这就是运行轨道的环绕速度公式。

三、人造卫星的轨道参数(轨道根数)

对于人造地球卫星轨道的形状、大小、在空间的方位以及卫星在特定时刻所处的位置,人们通常用一些特殊的量来描述,这些“量”被称为“轨道参数”,最常用的是经典轨道常数,即开普勒轨道常数,用来描述在空间中的卫星的轨道。可以用这些常数递推出卫星在过去或将来的位置。有以下六个:

1.轨道倾角 i ——赤道平面与卫星轨道平面间的夹角

2.升交点赤经Ω——从春分点(以地球为中心观察:太阳从南半球王北半球运动时,跟地球赤道平面相交的点)到卫星升交点(卫星由南半球往北半球穿过赤道平面的那一点,反之为降交点)的经度。

3.近地点幅角ω——地心与升交点连线 和 地心与近地点连线 间的夹角

4.椭圆半长轴a

5.椭圆偏心率e

6.卫星通过近地点的时刻t

前5个参数实际描述了3个问题:轨道平面在空间中的方位;椭圆轨道在轨道平面中的取向(长轴指向);椭圆轨道的形状和大小。

四、人造卫星的周期

由开普勒第三定律可知:运行周期的长短与半长轴有关,与半短轴无关 即:GM a T 2

2

2π= 大致可以这样说:

距地面高度180~500km 运行周期约90分钟

距地面高度1 万 km 运行周期约6小时

距地面高度3.6万 km 运行周期约24小时

运行周期为24小时的卫星叫“同步卫星”

相对地面静止(运转方向和地球自转方向相同,轨道在赤道上空)的同步卫星叫“地球同步卫星”

五、人造卫星的寿命

在地球的外层空间,即使气体分子极其稀少,仍然会对卫星的运行形成阻力,使它不断降低运行高度,以至最终进入稠密大气层销毁。所以,简单的说,轨道越高,真空度越高,卫星的运行寿命也就越长。(有效寿命——工作时间还受星上设备元件等影响,所以,卫星真正实用的时间多这几年,少者只有几天甚至更少)

六、人造卫星的常用轨道

1.圆轨道(用于把人造天体作为空间观测站、基准点和中继站的场合——侦查、气象、地球资源勘测、测地、导航、通信等)

要把人造卫星发射到圆轨道,必须同时满足两个条件

(1) 速度正好等于入轨点处的当地环绕速度

(2) 速度方向同入轨点处的地平线平行

如果,入轨点的速度大于该点环绕速度,卫星将进入椭圆轨道,入轨点成为近地点;

100km,进入大气层,就会导致发射失败。

入轨点

下,无论速度方向片上还是偏下,近地点都将低于入轨点,方向偏得越多,低得就越多,导致发射失败的危险就越大。

2

入轨点的高度取近地点高度,也就是人造卫星在近地点入轨发射比较方便。

根据轨道的近地点和远地点的要求计算入轨速度。

3.地球同步轨道(零倾角,高度为35 800km,最适合地面远距离通话、电视转播等通信卫星和导弹预警卫星)

地球同步卫星的发射比一般圆轨道和椭圆轨道要复杂,其发射过程可分为三步。

(1)运载火箭将卫星送入初始轨道(地高度,轨道平面和赤道面有倾角,一般在200km左右),

(2) 当卫星经过赤道时,运载火箭再次工作,使其加速,进

入一个远地点为35800km 的椭圆轨道——转移轨道(非

常扁,与赤道平面有倾角),并与火箭分离

(3) 当卫星正好穿过赤道平面时,由卫星上的远地点发动机

调整卫星的速度,再次加速并同时调整方向(由于发动

机推力所增加的速度与卫星原有速度合成),使速度正

好等于地球同步卫星所需环绕速度,就可以使卫星进入

地球同步轨道了

4.极地轨道(优点是覆盖全球,侦查、导航、气象、测地、地球资源勘测等应用大倾角的轨道和极地轨道)

七、失重的环境

长期的星际航行,必须在运周飞船上创造人工重力。例如,把飞船做成环形,让它绕中心旋转,在环的外壁上的人和物受到的力就相当于人工重力。

如果假定每分钟转N 次,环的直径为D ,这时,环外壁处的线速度为︒=60N

D v π 向心加速度为:222)602(2)60(2N D ND D R v a ππ===(若D =60m ,N =6即

可和地面上相似)

八、人造卫星的发射

这种发射方式是不现实的:沿水平方向发射,一下子给卫星一个第一宇宙速度。原因有三:空气阻力太大,火箭会在严酷的气动力加热条件下被烧为灰烬;不可能有这样的运输工具;目前,第一

相关文档
最新文档