二次函数的几何应用

合集下载

二次函数的应用(几何问题)

二次函数的应用(几何问题)

二次函数的应用(几何问题)一、选择题1.(2012甘肃兰州4分)二次函数y =ax 2+bx +c(a≠0)的图象如图所示,若|ax 2+bx +c|=k(k≠0)有两个不相等的实数根,则k 的取值范围是【 】A .k <-3B .k >-3C .k <3D .k >3 【答案】 D 。

【考点】二次函数的图象和性质。

【分析】根据题意得:y =|ax 2+bx +c|的图象如右图,∵|ax 2+bx +c|=k(k≠0)有两个不相等的实数根, ∴k>3。

故选D 。

二、填空题 三、解答题1. (2012天津市10分)已知抛物线y=ax 2+bx+c (0<2a <b )的顶点为P (x 0,y 0),点A (1,y A )、B (0,y B )、C (-1,y C )在该抛物线上. (Ⅰ)当a=1,b=4,c=10时,①求顶点P 的坐标;②求AB Cy y y -的值;(Ⅱ)当y 0≥0恒成立时,求AB Cy y y -的最小值.【答案】解:(Ⅰ)若a=1,b=4,c=10,此时抛物线的解析式为y=x 2+4x+10。

①∵y=x 2+4x+10=(x+2)2+6,∴抛物线的顶点坐标为P (-2,6)。

②∵点A (1,y A )、B (0,y B )、C (-1,y C )在抛物线y=x 2+4x+10上, ∴y A =15,y B =10,y C =7。

∴A B C y 15==5y y 107--。

(Ⅱ)由0<2a <b ,得0bx 12a<=--。

由题意,如图过点A 作AA 1⊥x 轴于点A 1, 则AA 1=y A ,OA 1=1。

连接BC ,过点C 作CD⊥y 轴于点D , 则BD=y B -y C ,CD=1。

过点A 作AF∥BC,交抛物线于点E (x 1,y E ),交x 轴于点F (x 2,0)。

则∠FAA 1=∠CBD。

∴Rt△AFA 1∽Rt△BCD。

∴11AA FA BD CD=,即221x yA1x yB yC 1-==--。

几何画板在二次函数y=ax2 ( a ≠0)中的应用

几何画板在二次函数y=ax2 ( a ≠0)中的应用

几何画板在二次函数y=ax2 ( a ≠0)中的应用几何画板是一种工具,它能够帮助我们更直观地理解数学概念和图形关系。

在数学教学中,几何画板的应用十分广泛,而在二次函数y=ax² ( a ≠0)中,几何画板能够帮助学生更好地理解二次函数的图像、性质和变化规律。

本文将就几何画板在二次函数中的应用进行探讨。

一、几何画板的基本原理几何画板是一种绘图工具,它由一块坚固的底板和一根可以移动的直线组成。

直线的移动会在底板上留下痕迹,通过这些痕迹可以得到各种图形。

几何画板的基本原理就是利用直线的移动和痕迹留下的规律来研究各种图形的性质和变化规律。

二、二次函数y=ax² ( a ≠0)的基本性质二次函数y=ax² (a ≠0)是常见的一种函数形式,它的图像是一个抛物线。

二次函数的图像形状、开口方向和顶点位置等性质都与参数a有关。

具体来说,当a>0时,二次函数的图像开口向上,顶点坐标为(0,0);当a<0时,二次函数的图像开口向下,顶点坐标同样为(0,0)。

三、几何画板在二次函数图像的绘制中的应用利用几何画板可以很方便地绘制二次函数的图像。

我们需要在底板上建立坐标系,然后利用直线和点的规律来绘制函数的图像。

具体操作步骤如下:1.绘制坐标系:在底板上绘制x轴和y轴,并标出刻度。

2.确定顶点坐标:对于二次函数y=ax² (a ≠0),其顶点坐标为(0,0)。

3.确定对称轴:二次函数的对称轴为x轴。

4.绘制图像:利用几何画板的移动直线来绘制二次函数的图像。

具体方法是,以顶点为中心,以对称轴为轴线,在底板上移动直线,得到二次函数的图像。

通过利用几何画板来绘制二次函数的图像,可以帮助学生更直观地理解二次函数的性质和变化规律。

通过手动绘制图像,也能够让学生更深入地理解函数的定义和图像的形成规律。

除了帮助绘制二次函数的图像外,几何画板还可以用来探究二次函数图像的性质和变化规律。

九年级数学下册《二次函数在几何方面的应用》优秀教学案例

九年级数学下册《二次函数在几何方面的应用》优秀教学案例
二、教学目标
(一)知识与技能
1.理解二次函数的基本概念,掌握二次函数的图像特征及其性质,能准确描述其开口方向、顶点、对称轴等关键信息。
2.学会运用二次函数解决几何问题,如求抛物线与直线的交点、距离、面积等,并能将其应用于解决实际问题。
3.培养学生运用数形结合思想,通过绘制图像,直观判断二次函数与几何图形的关系,提高解决问题的准确性和效率。
4.数形结合方法,提高解题效率
本案例重视数形结合方法的运用,引导学生通过观察二次函数的图像特征,直观判断几何问题的解。这种方法有助于提高学生解决问题的效率,培养他们的几何直观和空间想象能力。
5.反思与评价,促进自我提升
案例中设置了反思与评价环节,让学生在学习过程中不断总结经验,发现自身不足,从而实现自我提升。同时,多维度评价机制也有助于学生全面了解自己的学习成果,激发他们持续学习的动力。
(二)问题导向
在教学过程中,我将采用问题导向的教学策略,引导学生围绕核心问题进行探讨。设计具有启发性和挑战性的问题,鼓励学生运用所学知识,通过分析、综合、推理等思维过程解决问题。针对二次函数在几何方面的应用,可以提出如下问题:“如何求抛物线与直线的交点?”“抛物线的顶点在几何问题中有何作用?”等。问题导向的教学策略有助于培养学生主动思考、独立解决问题的能力。
3.小结反馈:收集学生的作业,了解他们在学习过程中的困惑和问题,为下一节课的教学提供参考。
五、案例亮点
1.生活情境融入,激发学习兴趣
本教学案例将生活中的实际情境融入课堂,如建筑、体育等领域中的抛物线现象,使学生在轻松愉快的氛围中感受二次函数与几何图形的结合。这种贴近生活的教学方式,有助于激发学生的学习兴趣,提高他们的学习积极性。
4.引导学生认识到数学与现实生活的紧密联系,体会数学在解决实际问题中的价值,培养他们用数学的眼光看待世界的意识。

二次函数的几何应用教案道客巴巴

二次函数的几何应用教案道客巴巴

二次函数的几何应用教案道客巴巴
二次函数是数学中非常重要的一个概念,它在几何中有着广泛
的应用。

下面我将从几何图形的性质、实际问题的建模等方面来详
细解释二次函数的几何应用。

首先,二次函数在几何中常常与抛物线相关联。

抛物线是二次
函数的图像,它的几何特征包括顶点、焦点、直径、对称轴等。


过学习二次函数,我们可以深入理解抛物线的性质,比如开口方向、开口大小、顶点坐标等。

这些性质在解决与抛物线相关的几何问题
时非常有用,比如确定抛物线的焦点和直径、求解抛物线与直线的
交点等。

其次,二次函数还可以用来建立实际问题的数学模型。

例如,
抛物线的形状可以用来描述抛射物的运动轨迹,这在物理学和工程
学中有着广泛的应用。

通过二次函数建立的模型,我们可以计算抛
射物的最大高度、飞行时间、落地点等信息,这对于设计弹道导弹、射击运动员的训练等具有重要意义。

此外,二次函数还可以用来解决与面积和体积相关的几何问题。

比如,通过二次函数的图像,我们可以求解封闭图形的面积,或者
利用二次函数建立立体图形的体积模型。

这些都是二次函数在几何中的重要应用之一。

总之,二次函数在几何中有着广泛的应用,它不仅可以帮助我们理解抛物线的性质,还可以用来解决实际问题并建立数学模型。

通过深入学习二次函数的几何应用,我们可以更好地理解数学与现实世界的联系,提高数学建模和解决实际问题的能力。

希望这些内容能够对你有所帮助。

1.4二次函数的应用(第1课时)(同步课件)-2024-2025学年九年级数学上册同步课堂(浙教版)

1.4二次函数的应用(第1课时)(同步课件)-2024-2025学年九年级数学上册同步课堂(浙教版)

1.4 二次函数的应用第1课时 几何图形的面积问题数学(浙教版)九年级 上册第1章二次函数学习目标1.学会分析实际问题中的二次函数关系;2.学会用二次函数表示几何图形中的关系,并用来求实际问题中的最大值与最小值;导入新课问题1:从地面竖直向上抛出一小球,小球的高度 h (单位:m )与小球的运动时间 t (单位:s )之间的关系式是 h= 30t - 5t 2(0≤t ≤6).小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?t/sh/mO1234562040h= 30t - 5t2解决思路:通过图象可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是这个函数的图象的最高点.也就是说,当t 取顶点的横坐标时,这个函数有最大值.思考:如何求二次函数的顶点坐标呢?知识点一 二次函数的实际应用——几何图形面积问题由于抛物线 y = ax 2+ bx + c 的顶点是最低(高)点,当 时,二次函数 y = ax 2+ bx + c有最小(大)值思考:如何求出二次函数 y = ax 2+ bx + c 的最小(大)值?二次函数的顶点式可以很直观地看出最大值或最小值当 时小球运动的时间是 3s 时,小球最高.小球运动中的最大高度是 45 m.t/sh/m O 1234562040h= 30t - 5t2我们来求一下问题1:例用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?1.矩形面积公式是什么?2.如何用l表示另一边?3.面积S的函数关系式是什么?l30-lS=l(30-l),即S=-l2+30l (0<l<30).S=l(30-l),即S=-l2+30l (0<l<30).因此,当时,S有最大值,也就是说,当l是15m时,场地的面积S最大.归纳总结二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值;3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.典例精析【例1】某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为28m,则当能建成的饲养室总占地面积最大时,中间隔开的墙长是( )米.A.4B.5C.6D.8【详解】解:设中间隔开的墙长为x m,能建成的饲养室总占地的面积为Sm2,根据题意得,S=x×(28+2-3x)=-3(x-5)2+75,-3<0,有最大值,∴当x=5时,S取得最大值,故选:B.【点睛】本题考查了二次函数的应用,根据题意列出函数关系式是解题的关键.练一练1.如图,某跑道的周长为400m 且两端为半圆形,要使矩形内部操场的面积最大,直线跑道AB 段的长应为.【详解】解:设矩形直线跑道AB=xcm ,矩形面积为ycm 2,由题意得: y=400−2ᵆᵰ·ᵆ=−2ᵰ(ᵆ−100)2+20000ᵰ∵−2ᵰ<0,∴当x=100时,y 最大,即直线跑道长应为100m .故答案为:100m2.如图,一块矩形区域ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为18米(篱笆的厚度忽略不计),求当矩形ABCD 的面积最大时AB 的长.【详解】解:设AB=x 米,矩形的面积设为y (平方米),则AB+EF+CD=3x ,∴AD=BC=18−3ᵆ2.∴y=x·18−3ᵆ2=−32ᵆ2+9ᵆ.由于二次项系数小于0,所以y 有最大值,∴当AB=x=-ᵄ2ᵄ=3时,函数y 取得最大值.∴当AB=3米时,矩形ABCD 的面积最大.1.如图,要围一个矩形菜园ABCD,共中一边AD是墙,且AD的长不能超过26m,其余的三边AB,BC,CD用篱笆,且这三边的和为40m.有下列结论:①AB的长可以为6m;②AB的长有两个不同的值满足菜园ABCD的面积为192m2;③菜园ABCD面积的最大值为200m2.其中,正确结论的个数是( )A.0B.1C.2D.3【详解】设AB的长为xm,矩形ABCD的面积为ym2,则BC的长为(40-2x)m,由题意得y=x(40-2x)=-2x2+40x=-2(x-10)2+200,其中0<40-2x≤26,即7≤x<20,①AB的长不可以为6m,原说法错误;③菜园ABCD面积的最大值为200m2,原说法正确;②当y=-2(x-10)2+200=192时,解得x=8或x=12,∴AB的长有两个不同的值满足菜园ABCD面积为192m2,说法正确;综上,正确结论的个数是2个,故选:C.2.把一根长4a的铁丝分成两段,每一段弯曲成一个正方形,面积和最小是( )A.ᵄ2B.ᵄ2�C.ᵄ22D.ᵄ243.如图,某学校拟建一块矩形花圃,打算一边利用学校现有的墙(墙足够长),其余三边除门外用栅栏围成,栅栏总长度为38m ,门宽为2m .这个矩形花圃的最大面积是.【详解】解:设花圃的长为x,面积为y,则y 关于x 的函数表达式为:y=12(38+2−��ᵆ)ᵆ=−12ᵆ2+20ᵆ=−12(x-20)2+200又∵38+2-x>0,x≥22≤x<404.如图,小明想用长16米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD,则矩形ABCD的最大面积是平方米.【详解】解:设AB=x米,矩形ABCD的面积为S,则BC=(16-2x)米,∴S=x(16-2x)=2x2+16x=-2(x-4)2+32即矩形ABCD的最大面积为32平方米故答案为:32.5.用一段长为24m 的篱笆围成一个一边靠墙的矩形养鸡场,若墙长10m ,则这个养鸡场最大面积为 m 2.【详解】设养鸡场长为x 米,则宽为12(24−��ᵆ)米,面积为S 平方米,根据题意得:S=x×12(24−ᵆ)=−12ᵆ2+12ᵆ,(0<x≤10),∵二次函数图象对称轴为:直线x=12,开口向下,∴ 当0<x≤10时,S 随x 的增大而增大,∴当x=10时,S 取得最大值为70.故答案是:70.6.如图所示,矩形花圃ABCD的一边利用足够长的墙,另三边用总长为32米的篱笆围成.设AB边的长为x米,矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x为何值时,S有最大值?并求出最大值.【详解】(1)∵AB边长为xm,四边形为矩形,且剩余三边长总和为32m,∴BC边长为(32-2x)m,∴S=AB·BC=x(32-2x)=-2x2+32x;(2)函数化为顶点式,即得S=-2(x-8)2+128,可知x=8时,S有最大值128m2.【点睛】此题考查了二次函数的实际应用,根据简单等量关系解决问题,二次函数化为顶点式即可得到函数最值,正确理解题意列得函数解析式是解题的关键.7.如图,嘉嘉欲借助院子里的一面长15m的墙,想用长为40m的网绳围成一个矩形ABCD给奶奶养鸡,怎样使矩形ABCD的面积最大呢?同学淇淇帮她解决了这个问题.淇淇的思路是:设BC的边长为xcm,矩形ABCD的面积为Sm2,不考虑其他因素,请帮他们回答下列问题:(1)求S与x的函数关系式,直接写出x的取值范围;(2)x为何值时,矩形ABCD的面积最大?【详解】(1)解:S=x(40−��ᵆ2)=-12ᵆ2+20ᵆ,ᵆ的取值范围为0< ᵆ�≤15;(2)解:∵S=-12ᵆ2+20ᵆ ,-12<0,∴当x=-20−1=20时,S 有最大值,当x <20时,S 随x 的增大而增大,而0<x≤15,∴x=15时,S 有最大值,即矩形ABCD 的面积最大.课堂小结二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值,3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.谢谢~。

考点08 二次函数实际应用问题的7大类型-原卷版 2023-2024学年九年级数学考点归纳与解题策略

考点08 二次函数实际应用问题的7大类型-原卷版 2023-2024学年九年级数学考点归纳与解题策略

考点08 二次函数实际应用问题的7大类型1 围栏篱笆图形类问题的解决方法几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.面积的最值问题应设图形的一边长为自变量,所求面积为函数,建立二次函数的模型,利用二次函数有关知识求得最值,要注意函数自变量的取值范围.一般涉及到矩形等四边形问题,把图形的面积公式掌握,把需要用到的边和高等用未知数表示,即可表示出面积问题的二次函数的关系式,通过最值问题的解决方法,即可求出最值等问题,注意自变量的取值范围问题。

2 图形运动问题的解决思路此类问题一般具体分析动点所在位置,位置不同,所求的结果也不一样,一般把每一段的解析式求出来,根据解析式判断函数类型,从而判断图像形状。

3 拱桥问题的解决方法◆1、建立二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.◆2、建立二次函数模型解决实际问题的一般步骤:(1)根据题意建立适当的平面直角坐标系;(2)把已知条件转化为点的坐标;(3)合理设出函数解析式;(4)利用待定系数法求出函数解析式;(5)根据求得的解析式进一步分析、判断并进行有关的计算.4 销售问题◆1、销售问题中的数量关系:销售利润=销售收入﹣成本;销售总利润=销售量×单价利润◆2、求解最大利润问题的一般步骤:(1)建立利润与价格之间的函数关系式:运用“总利润 = 单件利润×总销量”或“总利润 = 总售价 - 总成本”;(2)结合实际意义,确定自变量的取值范围;(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.◆3、在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.5 投球问题的解决方法此类问题一般需要建立平面直角坐标系,设定好每个点的坐标,分析好题目中的每句话的含义是解决这类问题的关键,有排球、足球、高尔夫球、篮球等,首先根据已知条件确定设定的解析式形式,求出解析式,再根据题意了解问题所求的实质是什么求出即可。

二次函数的解析几何性质及其应用

二次函数的解析几何性质及其应用

二次函数的解析几何性质及其应用二次函数是数学中常见的一种函数形式,其解析几何性质和应用广泛而深入。

本文将从几何性质和应用两个方面进行阐述。

一、二次函数的解析几何性质1. 函数图像的特征二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数且a≠0。

对于二次函数的图像,其形状为抛物线,具体形状取决于a的正负和大小。

当a>0时,抛物线开口朝上,图像在y轴上方开口;当a<0时,抛物线开口朝下,图像在y轴下方开口。

b和c分别决定了抛物线在x轴方向的平移和y轴方向的平移。

2. 对称性二次函数的图像具有关于直线x = -b/2a的对称性。

这意味着,如果点(x1, y1)在图像上,那么点(x2, y2) = (2(-b/2a)-x1, y1)也在图像上。

这个性质可以通过函数的导数推导得出。

3. 零点和顶点二次函数的零点即为方程f(x) = 0的解,也就是抛物线与x轴的交点。

根据二次函数的解的公式,可以求得零点的坐标。

而二次函数的顶点则是抛物线的最高点(当a<0时)或最低点(当a>0时),其坐标为(-b/2a, f(-b/2a))。

二、二次函数的应用1. 物理学中的抛物线运动抛物线运动是物体在重力作用下的运动轨迹。

由于重力加速度的存在,物体在垂直方向上的运动满足二次函数的形式。

通过分析物体的抛物线轨迹,可以计算出其运动的高度、时间、速度等重要参数。

2. 金融学中的成本和收益分析在金融学中,二次函数常被用于成本和收益的分析。

例如,某公司的生产成本可以表示为二次函数,通过求解该函数的最小值点,可以确定最低成本的生产量。

同样地,某产品的销售收益也可以表示为二次函数,通过求解该函数的最大值点,可以确定最大收益的销售量。

3. 工程学中的曲线设计在工程学中,二次函数常被用于曲线的设计。

例如,公路的水平曲线和立交桥的拱形设计都可以通过二次函数来描述。

通过调整二次函数的参数,可以使得曲线满足工程要求,达到良好的设计效果。

二次函数在几何问题中的应用解析

二次函数在几何问题中的应用解析

二次函数在几何问题中的应用解析二次函数是一种常见的数学函数形式,它在几何问题中扮演了重要的角色。

本文将探讨二次函数在几何问题中的应用,并对其解析进行分析。

1. 抛物线的性质抛物线是二次函数的图像,其标准形式为y = ax² + bx + c。

在几何中,抛物线具有以下性质:- 对称轴:抛物线的对称轴是一个垂直于x轴的直线,过抛物线的顶点。

对称轴的方程可以通过求抛物线的顶点坐标得到。

- 顶点:抛物线的顶点是曲线的最高点或最低点,可以通过求导数等方法求得。

- 开口方向:抛物线的开口方向由二次项的系数决定。

若a>0,则抛物线开口向上;若a<0,则抛物线开口向下。

- 零点:抛物线与x轴的交点称为零点,可以通过解方程求得。

2. 抛物线在几何中的应用抛物线在几何问题中的应用广泛,以下是其中几个典型的应用示例。

2.1 求解最值问题抛物线的顶点即为其最值点,可通过二次函数的最值性质求解几何问题。

例如,在确定水平距离为d的情况下,求抛物线y = ax² + bx + c的最大值或最小值。

我们可以通过求导数找到使得导数为0的x坐标,再代入函数得到对应的y坐标。

2.2 确定几何形状抛物线的开口方向可以用来确定几何形状。

若抛物线开口向上,则形状类似一个U;若开口向下,则形状类似一个倒置的U。

这在建模物体的运动轨迹、桥梁设计等问题中有广泛的应用。

2.3 优化问题二次函数可以被用于解决优化问题。

例如,当我们需要绘制一个围起来面积最大的矩形时,可以通过分析矩形的边长与面积的关系,建立二次函数模型,并通过求解最值问题得到最大面积。

3. 示例分析假设有一块长为L的铁板,要制作一个没有顶盖的长方体盒子,使得盒子的体积最大。

设长方体的底边宽度为x,高度为h,由此可以得到体积函数V(x) = x( L - 2x )h。

我们可以通过建立函数模型并求解最值问题来解决这个几何问题。

对于函数V(x),我们首先计算其导数V'(x),然后令导数为0,解得x = L/4。

2024中考备考热点05 二次函数的图象及简单应用(8大题型+满分技巧+限时分层检测)

2024中考备考热点05 二次函数的图象及简单应用(8大题型+满分技巧+限时分层检测)

热点05 二次函数的图象及简单应用中考数学中《二次函数的图象及简单应用》部分主要考向分为五类:一、二次函数图象与性质(每年1道,3~4分)二、二次函数图象与系数的关系(每年1题,3~4份)三、二次函数与一元二次方程(每年1~2道,4~8分)四、二次函数的简单应用(每年1题,6~10分)二次函数是初中数学三中函数中知识点和性质最多的一个函数,也是中考数学中的重点和难点,考简答题时经常在二次函数的几何背景下,和其他几何图形一起出成压轴题;也经常出应用题利用二次函数的增减性考察问题的最值。

此外,二次函数的性质、二次函数与系数的关系、二次函数上点的坐标特征也是中考中经常考到的考点,都需要大家准确记忆二次函数的对应考点。

只有熟悉掌握二次函数的一系列考点,才能在遇到对应问题时及时提取有用信息来应对。

考向一:二次函数图象与性质【题型1 二次函数的图象与性质】满分技巧1. 对于二次函数y =ax 2+bx +c (a ≠0)的图象:形状:抛物线; 对称轴:直线ab x 2-=;顶点坐标:)442(2a b ac a b --,; 2、抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须在确定a 的正负后,附加一定的自变量x 取值范围;3、当a>0,抛物线开口向上,函数有最小值;当a<0,抛物线开口向下,函数有最大值;而函数的最值都是定点坐标的纵坐标。

1.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是()A.对称轴为直线x=﹣2B.顶点坐标为(2,3)C.函数的最大值是﹣3D.函数的最小值是﹣33.(2023•陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【题型2 二次函数图象上点的坐标特征】满分技巧牢记一句话,“点在图象上,点的坐标符合其对应解析式”,然后,和哪个几何图形结合,多想与之结合的几何图形的性质1.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣42.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是()A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)3.(2023•十堰)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y=x2+4x ﹣1上,若y1=y2=y3,x1<x2<x3,则x1+x2+x3的取值范围是()A.﹣12<x1+x2+x3<﹣9B.﹣8<x1+x2+x3<﹣6C.﹣9<x1+x2+x3<0D.﹣6<x1+x2+x3<1【题型3 二次函数图象与几何变换】满分技巧1、二次函数的几何变化,多考察其平移规律,对应方法是:①将一般式转化为顶点式;②根据口诀“左加右减,上加下减”去变化。

几何画板在二次函数y=ax2 ( a ≠0)中的应用

几何画板在二次函数y=ax2 ( a ≠0)中的应用

几何画板在二次函数y=ax2 ( a ≠0)中的应用
一、几何画板在二次函数图像的绘制中的应用
几何画板是一种可以结合数学运算和图形绘制的数学教学工具。

在二次函数y=ax^2 (a ≠0)中,使用几何画板可以帮助学生直观地了解二次函数的图像特点。

通过几何画板,学生可以通过直观的图形绘制,更好地理解二次函数的开口方向、顶点坐标、对称轴等特点。

几何画板可以使学生更加直观地感受到二次函数图像的变化规律,有助于培养学生的
数学思维和图形观察能力。

在实际生活中,二次函数的应用场景也是非常广泛的。

通过几何画板的应用,学生可
以更加直观地感受到二次函数在现实生活中的应用意义。

二次函数可以描述抛物线的运动
轨迹,可以应用在物体的抛射运动、天体运行等方面,而几何画板可以帮助学生通过图形
观察和比较,更加直观地感受到这些应用场景的特点和规律。

通过几何画板的应用,学生
可以更加深入地理解二次函数在实际生活中的意义,从而提升数学教育的实际效果和社会
意义。

几何画板在二次函数y=ax^2 (a ≠0)中的应用具有非常重要的意义和价值。

通过几何画板的应用,学生可以更加直观地感受到二次函数的图像特点和性质,从而更好地理解
和掌握二次函数的相关知识。

几何画板也可以帮助学生更加直观地解答二次函数相关的习题,提高解题的效率和准确率。

通过几何画板的应用,可以使二次函数的教学更加生动有趣,有助于提升学生对数学学习的兴趣和积极性。

在数学教育中,应积极推广几何画板的
应用,使之成为教学的有力辅助工具,提升数学教育的实际效果和社会意义。

2023中考数学专题训练:二次函数的实际应用-几何问题

2023中考数学专题训练:二次函数的实际应用-几何问题

2023中考数学专题训练:二次函数的实际应用-几何问题1.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.2.学校要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为16米的篱笆恰好围成(如图所示).设矩形的一边AB的长为x米(要求AB<AD),矩形ABCD 的面积为S平方米.(1)求S与x之间的函数关系式,并直接写出自变量x的取值范围;(2)要想使花圃的面积最大,AB边的长应为多少米?花圃的面积是多少?3.如图,小亮父亲想用长80m的栅栏.再借助房屋的外墙围成一个矩形的羊圈ABCD,已知房屋外墙长50m,设矩形ABCD的边AB=xm,面积为Sm2.(1)用x的代数式表示BC的长;(2)写出S与x之间的函数表达式,并写出x的取值范围;(3)当AB,BC分别为多少米时,羊圈的面积最大?最大值是多少?4.如图,墙壁EF长24米,需要借助墙壁围成一个矩形花园ABCD,现有围栏48米,设AB长x 米.(1)若AD为y米,直接写出y关于x的函数表达式及其自变量x的取值范围;(2)AB长为多少米时,这个花园的面积最大,并求出这个最大值.5.某农场拟建三间矩形牛饲养室,饲养室的一面全部靠现有墙(墙长为40m),饲养室之间用一道用建筑材料做的墙隔开(如图).已知计划中的建筑材料可建围墙的总长为60m,设三间饲养室合计长x(m),总占地面积为y(m2).(1)求y关于x的函数表达式和自变量的取值范围.(2)x为何值时,三间饲养室占地总面积最大?最大为多少?6.如图1,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)与x轴交于A、B两点(点A 在点B左侧),与y轴交于点C.(1)若A(-1,0),B (3,0),C(0,-3)①求抛物线的解析式;②若点P为x轴上一点,点Q为抛物线上一点,△CPQ是以CQ为斜边的等腰直角三角形,求出点P的坐标;(2)如图2,若直线y=bx+t(t>c)与抛物线交于点M、点N(点M在对称轴左侧).直线AM交y轴于点E,直线AN交y轴于点D.试说明点C是线段DE的中点.7.某农场准备围建一个矩形养鸡场,其中一边靠墙(墙的长度为15米),其余部分用篱笆围成,在墙所对的边留一道1米宽的门,已知篱笆的总长度为23米.(1)设图中AB(与墙垂直的边)长为x米,则AD的长为米(请用含x的代数式表示);(2)若整个鸡场的总面积为y米2,求y的最大值.8.某小区计划建一个矩形花圃,花圃的一边利用长为a的墙,另三边用总长为79米的篱笆围成,围成的花圃是如图所示的矩形ABCD,并在BC边上留有一扇1米宽的门.设AD边的长为x米,矩形花圃的面积为S平方米.(1)求S与x之间的函数关系式.(2)若墙长a=30米,求S的最大值.9.某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.10.某单位为响应市“创建全国文明城市”的号召,不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并求出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)当矩形ABCD空地的面积最大时,利用的墙长是多少m;并求此时的最大面积.11.某社区决定把一块长为50m、宽30m的矩形空地建为居民健身广场,设计方案如图所示,阴影区域为绿化区(四块绿化区均为大小、形状都相同的矩形),空白区域为活动区,且四周的四个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.(1)求y与x的函数表达式并求出自变量x的取值范围,(2)求活动区最大面积.12.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?13.如图,在正方形ABCD中,AB=4,E为BC上一点,F为CD上一点,且AE=AF.设△AEF的面积为y,CE=x.(1)求y关于x的函数表达式.(2)当△AEF为正三角形时,求△AEF的面积.14.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求△P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当△P的半径为1时,若△P与以上(2)中所得函数图象相交于点C、D,其中交点D (m,n)在点C的右侧,请利用图②,求cos△APD的大小.15.如图,小亮父亲想用长为80m的栅栏,再借助房屋的外墙围成一个矩形羊圈ABCD,已知房屋外墙长50m,设矩形ABCD的边AB=xm,面积为Sm2.(1)写出S与x之间的关系式,并指出x的取值范围;(2)当AB,BC分别为多少米时,羊圈的面积最大?最大面积是多少?16.如图,抛物线y=ax2- 43x+c与x轴交于A、B两点,与y轴交于C点,连结AC,已知B(-1,0),且抛物线经过点D(2,-2)。

二次函数在几何图形中的应用

二次函数在几何图形中的应用

15 7 r r 1 1 设窗户的面积为 S,则 S= π r2+2ry= π r2+2r× =-3.5r2+7.5r, 2 2 4
因为-3.5<0,所以 S 有最大值。 -(7.5)2 7.5 当 r=- ≈1.07(m)时,S 最大值= ≈4.02(m2)。 2×(-3.5) 4×(-3.5) 即当半径约为 1.07m 时,窗户通过的光线最多,此时窗户的面积约为 4.02m2。 点拨:二次函数与几何图形相结合时,往往题目并未明确表示二次函数的关系式,二 次函数的关系式可能隐藏在几何图形中,这时我们需要根据题中所给的信息设出自变量和 函数,推导出函数关系式,再求出相应最值。 三、 二次函数与几何图形的实际应用 首先,能够根据几何图形的特点建立二次函数模型。其次,会利用二次函数解决与几 何图形相关的实际应用问题。建立三角形或四边形的面积与边长之间的二次函数关系时, 关键是找出三角形或四边形的高,用面积公式建立二次函数关系,当所给几何图形的边长 与高之间的关系不明显时,常常把几何图形分割成三角形或四边形,或利用等积式将问题 转化。 例题 3 某水渠的横截面呈抛物线形,水面的宽度为 AB(单位:米),现以 AB 所在
二次函数在几何图形中的应用 一、 二次函数与三角形的综合应用 在三角形或一般四边形中,通常设一边为自变量,用自变量表示这条边上的高,则其 面积是这一边长的二次函数。 例题 1 如图所示,有一块直角三角形的铁板,要在其内部作一个长方形 ABCD,其中 ) B. 3m C. 2m D. 5 m 2
AB 和 BC 分别在两直角边上, 设 AB=x m, 长方形的面积为 y m2, 要使长方形的面积最大, 其边长 x 应为( A. 4m
料总长(图中所有黑线的长度和)为 15m.当半圆的半径等于多少时,窗户通过的光线最 多?(结果精确到 0.01m)此时,窗户的面积是多少?(精确到 0.01m2)

二次函数初中数学教学中的二次函数与应用

二次函数初中数学教学中的二次函数与应用

二次函数初中数学教学中的二次函数与应用二次函数是数学中的一个重要概念。

在初中数学教学中,学生通常会学习到二次函数及其应用。

本文将对二次函数在初中数学教学中的教学方法和应用进行论述。

一、二次函数的基本概念二次函数是指函数的定义域为实数集,且可以表示为f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a≠0。

其中a决定了抛物线的开口方向,b决定了抛物线的位置,c决定了抛物线在y轴上的截距。

二、二次函数图像的性质1. 开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 顶点坐标:抛物线的顶点坐标为(-b/2a, f(-b/2a))。

3. 对称轴:抛物线的对称轴为直线x=-b/2a。

4. 零点:即抛物线与x轴的交点,可通过求解ax^2 + bx + c = 0的根来得到。

三、二次函数的图像与应用1. 二次函数图像的观察与分析:学生可以通过观察二次函数图像的特点,来分析函数的性质。

比如,当抛物线开口向上时,函数的值随着自变量的增大而增大;当抛物线开口向下时,函数的值随着自变量的增大而减小。

同时,可以通过顶点坐标和对称轴的特点,帮助学生更好地理解和掌握二次函数的图像。

2. 二次函数在几何问题中的应用:二次函数在几何问题中有着广泛的应用。

比如,可以利用二次函数的性质来分析抛物线的高度、最大值、最小值等问题。

同时,可以通过建立二次函数模型,解决与抛物线相关的实际问题,如抛物线的轨迹、碗碟的形状等。

举例:小明站在一个高度为10米的建筑物上往下扔一个物体,假设物体的下落轨迹为抛物线。

已知小明所站的位置为抛物线的顶点,求此抛物线的方程,并分析物体落地的位置。

解答:由题意可知,小明所站的位置为抛物线的顶点,设小明所站的位置为点A,抛物线与地面的交点为点B,则AB的距离为10米。

设抛物线的方程为f(x) = ax^2 + bx + c。

由于顶点的横坐标即为对称轴的横坐标,所以顶点的横坐标为0,即b/2a = 0,解得b=0。

二次函数的应用ppt课件

二次函数的应用ppt课件

②根据题意,得绿化区的宽为
= (x-20)(m),
∴y=100×60-4x(x-20).又 ∵28≤100-2x≤52,∴24≤x≤36. 即 y 与 x 的函数关系式及 x 的取值范围为 y=-4x2+80x+6 000 (24≤x≤36);
-7-
2.4 二次函数的应用
(2)y=-4x2+80x+6 000=-4(x-10)2+6 400. ∵a=-4<0,抛物线的开口向下,对称轴为直线 x= 10. 当 24≤x≤36 时,y 随 x 的增大而减小, ∴ 当 x=24 时,y 最大=5 616,即停车场的面积 y 的最大值为 5 616 m2; (3)设费用为 w. 由题意,得 w=100(-4x2+80x+6 000)+50×4x(x- 20)=-200(x-10)2 +620 000, ∴ 当 w=540 000 时,解得 x1=-10,x2=30. ∵24≤x≤36,∴30≤x≤36,且 x 为整数, ∴ 共有 7 种建造方案. 题型解法:本题是确定函数表达式及利用函数的性质设计工程方案的问题. 解题过程中应理解:(1)工程总造价是绿化区造价和停车场造价两部分的和; (2)根据投资额得出方程,结合图象的性质求出完成工程任务的所有方案.
(1)解决此类问题的关键是建立恰当的平面直角坐标系; 注意事项
(2)根据题目特点,设出最容易求解的函数表达式形式
-9-
2.4 二次函数的应用
典题精析 例 1 赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系, 其函数的关系式为 y=- x2,当水面离桥拱顶的高度 DO 是 4 m 时,水面宽 度 AB 为 ( ) A. -20 m B. 10 m C. 20 m D. -10 m

二次函数在几何方面应用

二次函数在几何方面应用

二次函数函数在几何方面的应用一、考点链接1.点A ()o y x ,0在函数c bx ax y ++=2的图像上.则有 .2. 求函数b kx y +=与x 轴的交点横坐标,即令 ,解方程 ;与y 轴的交点纵坐标,即令 ,求y 值3. 求一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像的交点,解方程组 .4.二次函数c bx ax y ++=2通过配方可得, ⑴ 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当时,有最 (“大”或“小”)值是 ;⑵ 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当时,有最 (“大”或“小”)值是 .5. 每件商品的利润P = - ;商品的总利润Q = × .6. 函数图像的移动规律: 若把一次函数解析式写成y=k (x+0)+b 、二次函数的解析式写成y=a (x+h )2+k 的形式,则用下面后的口诀“左224()24b ac b y a x a a -=++0a >x =y 0a <x =y右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。

7. 二次函数c bx ax y ++=2的图像特征与c b a ,,及的符号的确定. 二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点, 它们确定图象现;开口、大小由a 断,c 与Y 轴来相见,b 的符号较特别,符号与a 相关联;顶点位置先找见,Y 轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。

若求对称轴位置, 符号反,一般、顶点、交点式,不同表达能互换。

注意:当x=1时,y=a+b+c ;当x=-1时,y=a-b+c 。

若a+b+c >0,即x=1时,y >0;若a-b+c >0,即x=-1时,y >0。

8.函数的综合应用⑴利用一次函数图像解决求一次方程、一次不等式的解、比较大小等问题。

二次函数应用-几何图形的最大面积问题精品PPT课件

二次函数应用-几何图形的最大面积问题精品PPT课件
∵a<0, ∴抛物线开口向下 C
Q1cm/秒B
∴ 当P、Q同时运动2秒后ΔPBQ的面积y最大 最大面积是C,AD⊥BC, BC=160cm ,AD=120cm,
(1)设矩形EFGH的长HG=y,宽HE=x,确定y与x的函 数关系式;
(2)当x为何值时,矩形EFGH的面积S最大?
最 值。
2。有取值范围的在端点或顶点处取最值。
自学教材20页 “动脑筋”
例1:如图,在一面靠墙的空地上用长为24米 的篱笆,围成中间隔有两道篱笆的长方形花 圃,设花圃的宽AB为x米,面积为S平方米。 (1)求S与x的函数关系式及自变量的取值范围。
(2)当x取何值时所围成的花圃面积最大,
最大值是多少?
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
(四)课堂小结
1. 对于面积最值问题应该设图形一边长为自 变量,所求面积为函数建立二次函数的模型, 利用二次函数有关知识求得最值,要注意函数 的自变量的取值范围。
2. 用函数知识求解实际问题,需要把实际问 题转化为数学问题再建立函数模型求解,解要 符合实际题意,要注意数与形结合。
1.在一幅长60 cm,宽40 cm的矩形风景画的四周 镶一条金色纸边,制成一幅矩形挂图,如图所示, 如果要使整个挂图的面积是y cm2,设金色纸边 的宽度为x cm,那么y关于x的函数是( ) A.y=(60+2x)(40+2x)
(一)思前想后
1.二次函数y=ax2+bx+c(a≠0)的顶点坐标、 对称轴和最值
2.(1)求函数y=x2+2x-3的最值。 (2)求函数y=x2+2x-3 (0≤x ≤ 3)

二次函数与几何应用

二次函数与几何应用

二次函数与几何应用一、二次函数的定义与性质二次函数是指函数的表达式为f(x) = ax^2 + bx + c,其中a、b、c为常数且a ≠ 0。

二次函数是一种重要的数学函数,在几何学中有广泛的应用。

1. 定义与图像特点二次函数的图像通常呈现为一条开口朝上或朝下的抛物线。

当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

图像的对称轴为x = -b/2a,顶点坐标为V(-b/2a, f(-b/2a))。

2. 零点与根的关系二次函数的零点即为函数f(x) = 0的解,即满足ax^2 + bx + c = 0的x值。

零点与二次函数的根的关系为:当函数有两个不同的实根时,抛物线与x轴相交于两个不同的点;当函数只有一个实根时,抛物线与x 轴相切于一个点;当函数没有实根时,抛物线不与x轴相交。

二、几何应用二次函数在几何学中有多种应用,下面分别进行介绍。

1. 抛物线的应用抛物线是二次函数的图像,它在几何学中广泛应用于诸多问题的求解。

比如,在物理学中,抛物线可以用于描述抛体运动的轨迹。

当一个物体做抛体运动时,在重力的作用下,它沿着抛物线的轨迹运动。

抛物线方程可以帮助我们计算运动物体在不同时间和位置的速度、加速度等信息。

2. 最值问题二次函数可以用来解决最值问题,即找出函数在一定范围内的最大值或最小值。

抛物线的对称轴和顶点是解决最值问题的重要工具。

通过求二次函数的导数,找到导数为0的点,即可确定函数的极值点。

通过对极值点的讨论,可以确定函数的最大值或最小值。

3. 面积计算二次函数与几何图形的面积计算也有密切关联。

例如,在计算梯形或三角形的面积时,可以利用二次函数的图像。

将二次函数与x轴围成的图形,可以通过积分的方法计算其面积。

4. 曲线和直线的交点二次函数可以与直线相交于一个或两个点,这个交点的坐标可以通过联立方程求解得到。

这在几何学中经常用于求解二次函数与直线的交点坐标。

5. 平移与缩放对二次函数进行平移和缩放也是几何应用的一部分。

二次函数在几何中的应用

二次函数在几何中的应用

二次函数在几何中的应用二次函数是一种常见的函数形式,其数学表达式为y=ax²+bx+c,其中a、b、c代表常数,a≠0。

二次函数在数学中有重要的应用,同样也广泛应用于几何学中。

本文将探讨二次函数在几何中的应用,并通过实例解释其具体用途。

一、二次函数与平面几何中的抛物线二次函数的图像是抛物线,而抛物线是几何学中的重要概念之一。

通过研究二次函数的图像,我们可以了解抛物线的特征,并在几何问题中应用这些特征。

1. 确定抛物线的开口方向:二次函数中的a值决定了抛物线开口的方向。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

因此,通过给定二次函数的a值,我们可以直观地确定抛物线的开口方向。

2. 确定抛物线的顶点坐标:二次函数的顶点坐标即为抛物线的顶点坐标。

抛物线的顶点是图像的最高点或最低点,也是抛物线的对称轴上的点。

通过求解二次函数的顶点坐标,我们可以确定抛物线的位置,进而解决涉及抛物线的几何问题。

3. 确定抛物线与坐标轴的交点:二次函数与坐标轴的交点即为抛物线与x轴和y轴的交点。

通过求解二次函数与坐标轴的交点,我们可以进一步确定抛物线的形状,从而应用于解决几何问题。

二、二次函数与立体几何中的应用除了在平面几何中的应用外,二次函数也在立体几何中发挥着重要的作用。

以下将介绍二次函数在立体几何中的两个具体应用。

1. 求解抛物面的性质:抛物面是由二次函数生成的曲面。

在立体几何中,我们常常需要求解抛物面的性质,例如确定抛物面的方程、确定抛物面的焦点和准线等。

通过应用二次函数的性质,我们可以轻松地解决这些问题。

2. 确定旋转体的体积:旋转体是指由某条曲线绕某条轴旋转一周而形成的立体。

通过应用二次函数的性质,我们可以确定旋转体的体积。

具体而言,旋转体的体积等于曲线沿轴旋转一周所围成的面积乘以旋转一周的角度。

通过计算二次函数所确定的曲线的面积,并乘以旋转角度,我们可以准确地计算旋转体的体积。

北师版九年级数学下册课件 第二章 二次函数 二次函数的应用 第1课时 二次函数在几何及生活中的应用

北师版九年级数学下册课件 第二章 二次函数 二次函数的应用 第1课时 二次函数在几何及生活中的应用

7
4
4
4
6 7
)2+9 7
,∵0<x<172
,∴当 x=67
时,S 最大值=97
>1.05,∴与例题比较,改变窗
户形状后窗户透光面积的最大值变大了
6-1-1-1-1
解:(1)由已知可得 AD=
2
=5
,则 S=AB·AD=1×5
=5
(m2)
2
4
44
(2)设
AB=x
m,则
6-3x
AD=
-12x
=(3-7
x) m.∵x>0,3-7
x>0,∴0<x
2
4
4
<12 .设窗户透光面积为 S m2,则 S=AB·AD=x(3-7 x)=-7 x2+3x=-7 (x-
这个例题的答案是:当窗户半圆的半径约为 0.35 m 时,透光面积最大值约为 1.05 m2. 我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图②,材料 总长仍为 6 m,利用图③,解答下列问题: (1)若 AB 为 1 m,求此时窗户的透光面积; (2)与例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算 说明.
A.第 8 秒 B.第 10 秒 C.第 12 秒 D.第 15 秒
9.将一条长为 20 cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一 25
个正方形,则这两个正方形面积之和的最小值是___2_____cm2.
10.(2022·甘肃)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小 球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度 h(单位:m)与飞行 时间 t(单位:s)之间具有函数关系:h=-5t2+20t,则当小球飞行高度达到最高时,飞 行时间 t=___2___s.

二次函数在几何中的应用

二次函数在几何中的应用

二次函数在几何中的应用二次函数是一种重要的数学函数,它在几何学中有着广泛的应用。

从抛物线的形状到曲线光滑的特性,二次函数在描述自然界中的曲线和形状方面发挥着重要的作用。

本文将探讨二次函数在几何中的应用,并通过一些具体的例子来阐述。

1. 平移和缩放二次函数中的平移和缩放操作对于修改几何图形的形状和位置是非常重要的。

平移是指通过改变二次函数的常数项来使整个图形在平面上移动。

缩放则是通过改变二次函数的系数来改变图形的大小。

举个例子,考虑函数y = ax^2,其中a是非零常数。

当a>1时,抛物线的开口向上,图形比标准的抛物线更加“尖锐”,而当0<a<1时,抛物线的开口向下,图像则更加“扁平”。

这些变化可以通过改变a的值来实现。

2. 曲线的焦点焦点是指在平面上到给定曲线上的所有点的距离相等的点。

对于二次函数而言,它的图形是一个抛物线。

这个抛物线的焦点是该二次函数的一个重要几何特性。

具体来说,对于二次函数y = ax^2 + bx + c,焦点的x坐标可以通过公式x = -b/(2a)来计算,而y坐标则是函数在该点的函数值。

通过求解焦点,我们可以更好地理解二次函数的几何特性。

3. 最值问题二次函数在几何中的应用还可以涉及到最值问题。

由于二次函数的抛物线形状,它可以帮助我们确定图形的最大值和最小值。

举个例子,考虑函数y = ax^2 + bx + c,其中a>0。

这个函数对应着一个开口向上的抛物线。

由于抛物线的性质,我们可以通过函数的顶点(即最值点)来找到函数的最小值。

4. 几何图形的求解除了以上提到的常见应用,二次函数还能够帮助我们求解几何图形的性质和问题。

例如,通过解二次方程可以计算出两个抛物线的交点,这对于确定图形的交点、重叠部分或者切线非常有用。

同时,利用二次函数的图形性质,我们还可以计算出图形的切线方程和切点位置,为几何问题的求解提供了数学工具。

总结:二次函数在几何中扮演着至关重要的角色,通过平移和缩放,我们可以修改图形的形状和尺寸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的几何应用
1.(2011•安顺)正方形ABCD边长为1,E、F、G、H分别为边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设小正方形EFGH的面积为y,AE=x.则y关于x的函数图象大致是()
A、B、C、D、
2.(2011山东日照)正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM=时,四边形ABCN的面积最大.
3.(2011江苏淮安)如图,已知二次函数y= -x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.
(1)求此二次函数关系式和点B的坐标;
(2)在x轴的正半轴上是否存在点P,使得△P AB是以AB为底的等腰三角形?若存在,求出点P的坐标;若
不存在,请说明理由.
4.(2011江苏连云港)如图,抛物线212
y x x a =
-+与x 轴交于A ,B 两点,与y 轴交于点C ,其顶点在直线y =-2x 上. (1)求a 的值; (2)求A,B 两点的坐标;
(3)以AC ,CB 为一组邻边作□ABCD ,则点D 关于x 轴的对称点D´是否在该抛物线上?请说明理由.
5. (2011•江苏宿迁)如图,在边长为2的正方形ABCD 中,P 为AB 的中点,Q 为边CD 上一动点,设DQ=t (0≤t≤2),线段PQ 的垂直平分线分别交边AD 、BC 于点M 、N ,过Q 作QE ⊥AB 于点E ,过M 作MF ⊥BC 于点F .
(1)当t≠1时,求证:△PEQ ≌△NFM ;
(2)顺次连接P 、M 、Q 、N ,设四边形PMQN 的面积为S ,求出S 与自变量t 之间的函数关系式,并求S 的最小值.
6.(2011湖北潜江)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(—3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
(1)直接填写:a=,b=,顶点C的坐标为;
(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.
7.(2011浙江嘉兴)已知直线y=kx+3(k<0)分别交x轴.y轴于A.B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.(1)当k=﹣1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
①直接写出t=1秒时C.Q两点的坐标;
②若以Q.C.A为顶点的三角形与△AOB相似,求t的值.
(2)当
3
4
k=-时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2),
①求CD的长;
②设△COD的OC边上的高为h,当t为何值时,h的值最大?。

相关文档
最新文档