大锻件的锻造工艺

合集下载

2.3 锻造工艺解析

2.3 锻造工艺解析

机械制造工艺基础——锻压工艺
5、平锻机上模锻:
• 平锻机的主要结构与曲柄压力机相同。只因 滑块是作水平运动,故称平锻机。
机械制造工艺基础——锻压工艺
5、平锻机上模锻:
•平锻机上模锻的特点: (1)有两个分模面,可以锻出其他模锻方 法无法锻出的锻件。 (2)生产率高,400-900件/小时。 (3)锻件尺寸精确,表面粗糙度低。 (4)材料利用率达85-95%。 (5)非回转体及中心不对称的锻件较难锻 造。平锻机造价高。 (6)适合于带头部的杆类和有孔零件的模 锻成型。
机械制造工艺基础——锻压工艺
补充: 典型零件模锻工艺过程: (1)零件图纸的分析
(2)选择分模面
(3)确定锻孔
(4)确定模锻工序
(5)绘制锻件图
(6) 锻模设计
机械制造工艺基础——锻压工艺
(1)零件图纸的分析
• 汽车后闸传动杆零件,上下端面、四个大孔、 20.3孔的端面和8孔需机械加工,其余均需模 锻锻出。
机械制造工艺基础——锻压工艺
1、模锻件图的绘制:
4)锻模圆角: •所有两表面交角处都应 有圆角。一般内圆角半 径(R)应大于其外圆半 径(r)。 5)留出冲孔连皮: •锻 件 上 直 径 小 于 25mm 的孔,一般不锻出,或 只压出球形凹穴。
机械制造工艺基础——锻压工艺
1、模锻件图的绘制:
• 大于25mm的通孔,也不能直接模锻出通孔, 而必须在孔内保留一层连皮。 • 冲孔连皮的厚度s与孔径d有关,当d =30~ 80mm时,s =4~8mm。
机械制造工艺基础——锻压工艺
3.摩擦压力机上模锻
④ 摩擦压力机承受偏心载荷能力差,通 常只适用于单膛锻模进行模锻。对于形 状复杂的锻件,需要在自由锻设备或其 它设备上制坯。 •应用: 适合于中小件的小批生产。如铆钉、 螺钉、螺母、气门、齿轮和三通阀体等。

浅谈大型锻件锻造拔长新工艺

浅谈大型锻件锻造拔长新工艺

得整个锻造工作内部质量控制变得更加严格, 致使传统 的镦粗、 拔长变形锻 造工艺逐渐无法当今锻造生产要求,为此在工作中必须要采取新技术来进 行研究与分析, 以保 障锻造工作的顺利进行 。 大型锻件 锻造工艺分析 大型锻件是当今冶金、 电力、 化工 、 石油 、 交通运输等大型成套设施生产
科 学 理 论
科学
浅谈大型锻件锻造拔长新工艺
肖胜 利
( 鸡西煤矿机械有 限公 司 锻 造车间)
摘 要: 随着科学技术的 日新月异 , 国内钢铁、 能源、 石油化工生产工作 中所需要 的锻件重量、 尺寸大小、 钢锭重量都发生了显著的变动 、 明显 的上升 , 为了防止或者减 少钢 锭内部的冶金缺陷和质 量隐患, 在 大型锻件锻造 过程 中我们 有必要选 择新工艺进行 分析 , 以保证锻造工作 的顺利 进行。本文从大型 锻件锻造 工艺入 手, 针对其 问题做 出了相关的技 术分析, 以供有关 人士参考 。 关键 词: 锻件; 锻造; 钢铁
近年来 , 随着钢铁 、 能源 以及石油化工产业 的迅速 崛起 , 锻 造成在锻件 生产 的过程 中其重量不断增加 、 尺寸精确度要求 高、 钢锭质 量提升 , 这就使
2 、 扒 长 工 艺应 用 要 点
锻件厂锻造变形过程中, 由于摩擦和温度梯度 的影响, 在工具和锻坯接
触 区域 的附近总是或大或小地存在一个难变形 区。难变形区的大小与形状 对锻件 内部的变 形分布和应力状态有重要的影响, 因而影响着锻件 的质量 。
陷压实锻合 , 顺利通过超声波探伤, 对提 高大型锻件的制造水平和企业的经 济效益具有重要意义。 3 . 1 、 非金属杂质 . 非金属夹杂物主要是指原材料带来的硫化物氧化物和硅酸盐等,这些 非金属夹杂物的含量分布 与冶炼钢锭有关 , 锻造 只能使其分散 , 而不能减

大型锻件的锻造方法

大型锻件的锻造方法

大型锻件的锻造方法主要有以下几种:
1.热锻: 通过将钢材加热至高温,然后在锤击机上进行锤击,使钢材塑性变形,从而
达到锻造的目的。

2.冷锻: 通过在室温或低温下进行锤击,使钢材塑性变形,从而达到锻造的目的。

3.深毛孔锻造: 将钢材加热至高温后,在锤击机上进行锤击,并使用特殊的锻造工具,
在锻件表面形成深毛孔结构,提高锻件的疲劳强度。

4.整体锻造: 将钢材加热至高温后,在锤击机上进行锤击,并使用特殊的锻造工具,
形成整体锻件,增强锻件的整体性。

5.压铸锻造: 通过将钢材填充到模具中,在高温下进行压力锻造,使钢材塑性变形,
从而达到锻造的目的。

这种方法适用于锻造大型、复杂形状的锻件。

6.大型锻造机锻造: 使用大型锻造机进行锻造,可以锻造出大型、复杂形状的锻件。

这种方法适用于锻造大型、重型锻件。

锻造方法的选择取决于锻件的尺寸、形状、性能要求和生产量等因素。

大型锻件的锻造一般需要专业的锻造厂进行生产,需要具备专业技术和设备。

大型Cr12MoV钢锻件的锻造工艺分析

大型Cr12MoV钢锻件的锻造工艺分析

收稿日期:2021-06-17;修回日期:2021-08-22作者简介:吕玉荣(1982—),女,山东潍坊人,讲师,主要从事金属材料的成型加工研究,E-m ai l :119081079@ 。

大型C r12M oV 钢锻件的锻造工艺分析吕玉荣文章编号:1674-9146(2021)11-083-02C r 12M oV 钢具有高硬度、高耐磨性的优点,是我国最常用的冷作模具钢之一,因此被广泛用于高精度、高负荷、高寿命的冷变形模具[1-3]。

但它的缺点也不容忽视,由于其变形抗力大,塑性变形能力差,锻造温度范围区间小,因此大型锻件的锻造工艺十分复杂,锻造时难度较大,很难保证大型锻件的质量[4-5]。

本文对大型Cr 12M oV 钢锭的锻造工艺进行了试验研究,并总结出了大型锻件的锻造要点。

1C r 12M oV 钢的化学成分及各成分作用1.1化学成分C r 12M oV 钢的化学成分见表1。

1.2各成分作用C 元素质量分数越高,硬度和耐磨性越大,而Cr 12M oV 钢的C 元素质量分数为1.45%~1.70%,属于高碳钢,因此其硬度和耐磨性都高。

Cr 元素可以增加钢的淬透性,提高其回火的稳定性,并且还会使其产生二次硬化现象。

M o 元素可以使钢的淬透性增加,同时还可以细化晶粒,从而起到细晶强化的作用。

V 元素既能细化晶粒、提高韧性,又能形成高硬度的碳化钒(V C ),从而进一步提高钢的耐磨性[6-8]。

2大型C r 12M oV 钢锻件的锻造工艺分析2.1锻前准备由于钢锭本身就存在各种不同程度的铸造缺陷,因此加热前需要清除相关缺陷,如钢锭表层的氧化皮和表面裂纹等。

采用切削加工后,还要对钢锭进行磁力探伤,保证钢锭内部不能有残留的裂纹。

2.2锻造所用钢锭选择试验所用钢锭质量及相关锻造工序、总锻比见表2。

表1C r 12M oV 钢的化学成分(%)表2锻件工序安排. All Rights Reserved.2.3锻造特点由于Cr 12M oV 钢的C 元素质量分数和C r 元素质量分数都很高,并且所含合金元素也多,因此其晶体结构比较复杂;又由于金相组织中的莱氏体脆性大,因此Cr 12M oV 钢很难进行塑性变形。

大锻件 第4部分 锻造用钢锭及铸锭技术

大锻件 第4部分 锻造用钢锭及铸锭技术

第四部分锻造用钢锭及铸锭技术一、 大型钢锭的组织结构及类型1.大型钢锭的组织结构z 激冷层:锭身表面的细小等轴晶区。

厚度仅6~8mm ;因过冷度较大,凝固速 度快,无偏析;有夹渣、气孔等缺陷。

z 柱状晶区:位于激冷层内侧;由径向呈细长的柱状晶粒组成;由于树枝状 晶沿温度梯度最大的方向生长,该方向恰为径向,因此形成了柱状晶区;其凝固速度较快,偏析较轻,夹杂物较少;厚度约50~120mm 。

z 分枝树枝晶区:从柱状晶区向内生长;主轴方向偏离柱状晶,倾斜,并出现 二次以上分枝;温差较小,固液两相区大,合金元素及杂质浓度较大。

z A 偏析区:枝状晶间存在残液,比锭内未凝固的钢液密度小,向上流动,形成A 偏析;在偏析区合金元素和杂质富集,存在较多的硫化物,易产生偏析裂纹。

z 等轴晶区:位于中心部位;温差很小,同时结晶,成等轴晶区。

钢液粘稠, 固相彼此搭桥,残液下流形成V 偏析,疏松增多。

z 沉积锥区:位于等轴晶区的底端;由顶面下落的结晶雨、熔断的枝状晶形成的自由晶组成,显示负偏析;等轴的自由晶上附着大量夹杂物,其组织疏松,且夹杂浓度很大;应切除。

z 冒口区:最后凝固的顶部;因钢液的选择性结晶,使后凝固的部分含有大量的低熔点物质,最后富集于上部中心区,其磷、硫类夹杂物多;若冒口保温不良,顶部先凝固,因无法补缩形成缩孔;质量最差,应予切除。

2. 大型钢锭的类型z 普通钢锭高径比:=+dD H 2 1.8~2.5;通常,10吨以下的钢锭:2.1~2.3,10吨以上的钢锭:1.5~2;锥度:=%100-D Hd 3~4% ; 横断面为8棱角形。

大钢锭为16,24,32棱角。

z 短粗型钢锭高径比: 0.5~2;锥度: 8~12%。

高宽比减小,锥度加大有利于钢锭实现自下而上顺序凝固,易于钢水补缩,中心较密实;有利于夹杂上浮,气体外溢,减少偏析;锭身较短,钢水压力小,侧表面不易产生裂纹;锥度大,易脱模;可增加拔长锻比。

大型锻件锻造工艺过程

大型锻件锻造工艺过程

大锻件一般应用在大型机械的关键部位,由于工作环境恶劣,受力复杂多变,因此,在生产过程中对大型锻件的质量要求很高。

大锻件由钢锭直接锻造成形,生产大型锻件时,即使采用最先进的冶金技术,钢锭内部也不可避免存在微裂纹、疏松、缩孔、偏析等缺陷,严重影响锻件的质量,为了消除这些缺陷,提高锻件质量,就必须改进锻造工艺,选用合理的锻造工艺参数。

大锻件锻造不仅要满足所需零件形状和尺寸,而且重要的是破碎铸态组织、细化晶粒、均匀组织、锻合缩孔、气孔和缩松等缺陷,提高锻件内部质量。

钢锭尺寸愈大,钢锭中的缺陷也愈严重,锻造改善缺陷愈困难,进而增加了锻造难度。

在锻造过程中,镦粗和拔长是最基本的工序,也是不可缺少的工序,对于具有特殊外形的锻件来说,胎模锻造也较为常用。

一、镦粗工艺在大型锻件的自由锻生产中,镦粗是一个非常主要的变形工序。

镦粗工艺参数的合理选择,对大锻件的质量起着决定性的作用。

反复的镦拔不但可以提高坯料的锻造比,同时也可以破碎合金钢中的碳化物,达到均匀分布的目的;还可以提高锻件的横向力学性能,减小力学性能的异向性。

大型饼类锻件和宽板锻件都是以镦粗为主要变形,且镦粗的变形量很大,但是目前该类锻件的超声波探伤废品率很高,主要因为内部出现了横向内裂层缺陷,然而现行的工艺理论对此不能解释。

为此,从90年代开始,中国学者经过长时间的认真研究,从主变形区以及被动变形区理论出发,对镦粗理论进行深入研究。

提出了平板镦粗时刚塑性力学模型的拉应力理论以及静水应力力学模型的切应力理论,与此同时还进行了大量的定性物理模拟实验,并利用广义滑移线法和力学分块法来求解分析工件内部的应力状态,大量数据证明了该理论的合理性和正确性,揭示了利用普通平板镦粗圆柱体时其内部应力的分布规律,进而提出了锥形板镦粗新工艺,建立了方柱体镦粗的刚塑性力学模型。

二、拔长工艺拔长是大型轴类锻件锻造过程中必须的一道工序,也是影响锻件质量的主要工序,通过拔长工序使坯料截面积减小,长度增加,同时也起到打碎粗晶、锻合内部疏松与孔洞、细化铸态组织等作用,从而获得均质致密的高质量锻件。

大型圆饼类锻件的锻造工艺及应用

大型圆饼类锻件的锻造工艺及应用

产中, 创 造 了连续 数年 1 0 0 % 合格 率 的佳绩 。
然而 , 避免 R S T效 应 主要 是针 对 高度 尺 寸较 薄、 截 面尺 寸较 小 的一 类锻 件 而 言 。本 文将 分 别 对 薄 圆饼 、 中厚 圆饼 和厚 圆饼 三种 情况 , 全 面论述
其 锻造 工艺 方法 及应用 。
No. 6 No v e mbe r 2 01 3
《 大型铸锻件》
HEAVY CAS TI NG AND FORGI NG
大 型 圆饼 类锻 件 的锻 造 工 艺及 应 用
任 猛 王 中安 史翔 炜 邓 军 佟 景辉
( 亚洲重工集 团有 限公司 , 江苏 2 1 4 1 2 8 ) 摘要 : 大型圆饼类锻件 的产 品合格率 。曾经是该领域 的世 界难题 。自 1 9 8 8年 R S T效应 被发现 以来 , 通过 改进工艺 , 先后在 国内外生产 了数 以万计 的优质大型圆饼类锻件产品 , 取得 了巨大 的经济效益。本文介绍其 锻 造新工 艺及应用实例 。
Re n Me n g , Wa n g Z h o n g a n , S h i Xi a n g w e i , D e n g j u n , T o n g J i n g h u i
Ab s t r a c t : T h e p r o d u c t q u a l i i f e d r a t e o f h e a v y d i s k f o r g i n g s h a d b e e n a b i g p r o b l e m i n f o r g i n g i n d u s t y. S r i n c e t h e
是考 虑最 大进 砧宽度 大 约 为砧 宽 的 8 0 %左右, 乘

锻造工艺

锻造工艺

第一章,锻造用材料准备1`锻造是金属塑性成形工艺的一种,属于体积成形技术. 锻造就是要使金属由一种形态在无切削的情况下变形为另一种形态的过程,通常需要大型设备。

2`为什么要锻造改善组织性能;提高材料利用率。

3`模锻根据使用的设备:锤上模锻——模锻锤./螺旋压力机上模锻——螺旋压力机./锻压机上模锻——模锻压力机、平锻机、模锻液压机等4`锻造生产流程:备料—加热—锻造—热处理—清理—校正—质检5`优势:锻件的力学性能高/ 模锻具有较高的生产效率/可提高材料利用率不足:工艺难度大/工作条件差/对环境有一定的影响6锻造用原材料从材质上分黑色金属/有色金属有色金属:铝合金镁合金铜及其合金钛合金镍合金等..从形态上分:钢锭(大型锻件)/轧材、挤压棒材和锻坯(中小型锻件).7锻造用钢锭8钢锭的内部缺陷(1)偏析:各处的成分、杂质分布不均匀(2)夹杂:冶炼中氧化物、硫化物、硅酸盐等非金属夹杂外来夹杂物(3)气体:钢锭中的有害气体(氢、氧等)(4)气泡:主要分布在钢锭的冒口、底部及中心部位(5)缩孔:在最后凝固的冒口区,由于冷凝结晶时没有钢液补充而形成孔洞性缺陷组织,同时含有大量杂质。

(6)疏松:主要集中在钢锭中心部位,产生的原因与缩孔相同,它使钢锭组织致密度降低。

9晶粒度:用于描述晶粒大小的参数,常用的是1~8级。

常用的表示方法:8级的晶粒实际平均长度0.0196mm。

1级的晶粒实际平均长度0.222mm。

单位体积的晶粒数目(ZV)单位面积内的晶粒数目(ZS)晶粒的平均线长度(或直径)10下料方法剪切下料是一种普遍采用的方法(专用剪床、曲柄压力机、液压机、锻锤)优点:(a)效率高、操作简单(b)断口无金属损耗、模具费用低(c)对设备要求低缺点:(a)坯料局部被压扁(b)端面不平整(c)剪断面常有毛刺和裂缝(d)下料不准确锯切法(圆盘锯、弓形据、带锯)优点:(a)下料长度准确(b)端面平整缺点:(a)生产效率低(b)锯口有材料损耗切割法(利用气割器或普通焊枪,把坯料局部加热至熔化温度,逐步使之熔断。

锻造工艺介绍

锻造工艺介绍

锻造工艺介绍锻造是利用锻压机械对金属坯料施加压力,使其产生塑性变形,以获得具有一定机械性能、一定形状和尺寸的锻件的加工方法。

锻造和冲压同属塑性加工性质,统称锻压。

锻造是机械制造中常用的成形方法。

通过锻造能消除金属的铸态疏松、焊合孔洞,锻件的机械性能一般优于同样材料的铸件。

机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。

锻造按坯料在加工时的温度可分为冷锻和热锻。

冷锻一般是在室温下加工,热锻是在高于坯料金属的再结晶温度上加工。

有时还将处于加热状态,但温度不超过再结晶温度时进行的锻造称为温锻。

不过这种划分在生产中并不完全统一。

钢的再结晶温度约为460℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。

锻造按成形方法则可分为自由锻、模锻、冷镦、径向锻造、挤压、成形轧制、辊锻、辗扩等。

坯料在压力下产生的变形基本不受外部限制的称自由锻,也称开式锻造;其他锻造方法的坯料变形都受到模具的限制,称为闭模式锻造。

成形轧制、辊锻、辗扩等的成形工具与坯料之间有相对的旋转运动,对坯料进行逐点、渐近的加压和成形,故又称为旋转锻造。

锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、铜、钛等及其合金。

材料的原始状态有棒料、铸锭、金属粉末和液态金属。

一般的中小型锻件都用圆形或方形棒料作为坯料。

棒料的晶粒组织和机械性能均匀、良好,形状和尺寸准确,表面质量好,便于组织批量生产。

只要合理控制加热温度和变形条件,不需要大的锻造变形就能锻出性能优良的锻件。

铸锭仅用于大型锻件。

铸锭是铸态组织,有较大的柱状晶和疏松的中心。

因此必须通过大的塑性变形,将柱状晶破碎为细晶粒,将疏松压实,才能获得优良的金属组织和机械性能。

经压制和烧结成的粉末冶金预制坯,在热态下经无飞边模锻可制成粉末锻件。

锻件粉末接近于一般模锻件的密度,具有良好的机械性能,并且精度高,可减少后续的切削加工。

锻造工艺的流程和注意事项

锻造工艺的流程和注意事项

一、变形温度钢的开端再结晶温度约为727℃,但普遍选用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。

二、坯料根据坯料的移动办法,锻造可分为自由锻、镦粗、揉捏、模锻、闭式模锻、闭式镦锻。

1、自由锻。

运用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以取得所需锻件,首要有手工锻造和机械锻造两种。

2、模锻。

模锻又分为开式模锻和闭式模锻.金属坯料在具有必定形揉捏等等。

3、闭式模锻和闭式镦锻因为没有飞边,材料的运用率就高。

用一道工序或几道工序就可能完结复杂锻件的精加工。

因为没有飞边,锻件的受力面积就削减,所需求的荷载也削减。

可是,应留意不能使坯料完全遭到约束,为此要严厉操控坯料的体积,操控锻模的相对方位和对锻件进行丈量,努力削减锻模的磨损。

三、锻模根据锻模的运动办法,锻造又可分为摆辗、摆旋锻、辊锻、楔横轧、辗环和斜轧等办法。

摆辗、摆旋锻和辗环也可用精锻加工。

为了进步锻一样的旋转锻造也是局部成形的,它的优点是与锻件尺度比较,锻造力较小情况下也可完结形成。

包含自由锻在内的这种锻造办法,加工时资料从模具面邻近向自由外表扩展,因此,很难确保精度,所以,将锻模的运动方向和旋锻工序用计算机操控,就可用较低的锻造力取得形状复杂、精度高的产品,例如出产品种多、尺度大的汽轮机叶片等锻件。

锻造设备的模具运动与自由度是不一致的,根据下死点变形约束特点,锻造设备可分为下述四种办法:1、约束锻造力办法:油压直接驱动滑块的油压机。

2、准冲程约束办法:油压驱动曲柄连杆安排的油压机。

3、冲程约束办法:曲柄、连杆和楔安排驱动滑块的机械式压力机。

4、能量约束办法:运用螺旋安排的螺旋和磨擦压力机。

重型航空模锻液压机进行热试为了取得高的精度应留意防止下死点处过载,操控速度和模具方位。

因为这些都会对锻件公役、形状精度和锻模寿数有影响。

别的,为了保持精度,还应留意调整滑块导轨间隙、确保刚度,调整下死点和运用补助传动设备等措施。

Cr12MoV钢大型锻件的锻造工艺

Cr12MoV钢大型锻件的锻造工艺

Cr12MoV钢大型锻件的锻造工艺I. 引言A. 研究背景B. 研究目的和意义II. Cr12MoV钢大型锻件的材料特性A. Cr12MoV钢的化学成分和性能B. 钢锭的质量要求C. 锻件的成形难度和要求III. Cr12MoV钢大型锻件的锻造工艺A. 预处理工艺1. 钢锭的加热和热处理2. 模具和汽锤的准备B. 锻造工艺1. 非等径锻造2. 等径锻造C. 冷却和回火处理IV. Cr12MoV钢大型锻件的质量控制A. 锻件表面质量检测B. 内部质量检测C. 化学成分和机械性能检测V. Cr12MoV钢大型锻件的应用前景和发展方向A. 应用领域B. 现阶段面临的挑战和问题C. 未来发展趋势和方向VI. 结论A. 研究成果总结B. 研究意义和贡献C. 进一步研究和发展方向注: Cr12MoV是一种特殊钢,用于锻造大型锻件,这种钢的化学成分、机械性能和材料特性都需要纳入考虑,进行科学的生产和制造,才能获得高质量的锻件。

第一章:引言锻造是金属加工中一项重要的工艺,通过锻造可以改变金属材料的形状和性质,制造出符合特定要求的零部件和机械设备。

Cr12MoV钢是一种高性能的特殊钢,常用于制造大型锻件,具有良好的机械性能和耐磨、耐腐蚀性能,广泛应用于航空、航天、化工等领域。

对于Cr12MoV钢的大型锻件,其锻造工艺和质量控制是非常关键的,对于生产效率、产品质量和工业安全均有重要影响。

本文将对Cr12MoV钢大型锻件的锻造工艺进行研究,探讨材料特性、锻造工艺和质量控制等相关内容,希望为相关领域的工程师和研究人员提供参考。

第二章:Cr12MoV钢大型锻件的材料特性本章主要介绍Cr12MoV钢的化学成分和性能、钢锭的质量要求、锻件的成形难度和要求。

1. Cr12MoV钢的化学成分和性能Cr12MoV钢是一种铬钼钒高速工具钢,主要成分为C、Cr、Mo和V等。

根据生产的不同工艺和设备,其成分和性能略有不同,且不同批次的产品也存在冷热裂纹和变异等质量问题。

金属锻造工艺流程

金属锻造工艺流程

金属锻造工艺流程金属锻造是一种古老而重要的金属加工工艺,通过对金属坯料施加压力,使其产生塑性变形,从而获得具有一定形状、尺寸和性能的锻件。

金属锻造工艺在制造业中有着广泛的应用,从汽车零部件到航空航天部件,从机械工具到医疗器械,都离不开锻造工艺的支持。

接下来,让我们详细了解一下金属锻造的工艺流程。

一、原材料准备金属锻造的第一步是准备原材料。

通常使用的原材料包括各种钢材、铝材、铜材等。

这些原材料需要具有良好的塑性和可锻性,以确保在锻造过程中能够顺利变形。

在选择原材料时,需要考虑锻件的用途、工作环境和性能要求等因素。

例如,对于承受高强度和高磨损的锻件,通常会选择高强度合金钢作为原材料;而对于一些要求具有良好导电性和导热性的锻件,则会选择铜材或铝材。

原材料在进入锻造车间之前,还需要进行检验和预处理。

检验的内容包括化学成分分析、力学性能测试、外观检查等,以确保原材料的质量符合要求。

预处理则包括去除表面的氧化皮、油污和杂质,以及对原材料进行切割和下料,使其达到合适的尺寸和形状。

二、加热加热是金属锻造过程中的一个重要环节。

通过加热,可以提高金属的塑性,降低变形抗力,从而使锻造过程更加容易进行。

加热的温度和时间需要根据原材料的种类、尺寸和锻造工艺的要求来确定。

一般来说,加热温度应控制在金属的再结晶温度以上,但不能过高,以免引起金属的过热或过烧。

过热会导致金属的晶粒粗大,降低力学性能;过烧则会使金属的晶界熔化,造成废品。

常用的加热方法有火焰加热、电加热和感应加热等。

火焰加热是一种传统的加热方法,使用燃料燃烧产生的火焰来加热金属。

这种方法加热速度较慢,温度控制不够精确,但设备简单,成本较低。

电加热则是通过电阻丝或电极产生的热量来加热金属,具有加热速度快、温度控制精确的优点,但设备成本较高。

感应加热是利用电磁感应原理,使金属内部产生涡流而发热,具有加热效率高、节能环保的特点,但对设备的要求也较高。

三、锻造锻造是金属锻造工艺的核心环节,包括自由锻造和模型锻造两种方式。

锻造工艺的流程和注意事项

锻造工艺的流程和注意事项

变形温度钢的开端再结晶温度约为727℃,但普遍选用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。

二、坯料根据坯料的移动办法,锻造可分为自由锻、镦粗、揉捏、模锻、闭式模锻、闭式镦锻。

1、自由锻。

运用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以取得所需锻件,首要有手工锻造和机械锻造两种。

2、模锻。

模锻又分为开式模锻和闭式模锻.金属坯料在具有必定形状的锻模膛内受压变形而取得锻件,又可分为冷镦、辊锻、径向造和揉捏等等。

3、闭式模锻和闭式镦锻因为没有飞边,材料的运用率就高。

用一道工序或几道工序就可能完结复杂锻件的精加工。

因为没有飞边,锻件的受力面积就削减,所需求的荷载也削减。

可是,应留意不能使坯料完全遭到约束,为此要严厉操控坯料的体积,操控锻模的相对方位和对锻件进行丈量,努力削减锻模的磨损。

三、锻模根据锻模的运动办法,锻造又可分为摆辗、摆旋锻、辊锻、楔横轧、辗环和斜轧等办法。

摆辗、摆旋锻和辗环也可用精锻加工。

为了进步资料的运用率,辊锻和横轧可用作细长资料的前道工序加工。

与自由锻一样的旋转锻造也是局部成形的,它的优点是与锻件尺度比较,锻造力较小情况下也可完结形成。

包含自由锻在内的这种锻造办法,加工时资料从模具面邻近向自由外表扩展,因此,很难确保精度,所以,将锻模的运动方向和旋锻工序用计算机操控,就可用较低的锻造力取得形状复杂、精度高的产品,例如出产品种多、尺度大的汽轮机叶片等锻件。

锻造设备的模具运动与自由度是不一致的,根据下死点变形约束特点,锻造设备可分为下述四种办法:1、约束锻造力办法:油压直接驱动滑块的油压机。

2、准冲程约束办法:油压驱动曲柄连杆安排的油压机。

3、冲程约束办法:曲柄、连杆和楔安排驱动滑块的机械式压力机。

4、能量约束办法:运用螺旋安排的螺旋和磨擦压力机。

重型航空模锻液压机进行热试为了取得高的精度应留意防止下死点处过载,操控速度和模具方位。

因为这些都会对锻件公役、形状精度和锻模寿数有影响。

锻造工艺包括哪些内容

锻造工艺包括哪些内容

锻造工艺包括哪些内容锻造是利用锻压机械对金属坯料施加压力,使其产生塑性变形,以获得具有一定机械性能、一定形状和尺寸的锻件的加工方法。

锻造和冲压同属塑性加工性质,统称锻压。

锻造是机械制造中常用的成形方法。

通过锻造能消除金属的铸态疏松、焊合孔洞,锻件的机械性能一般优于同样材料的铸件。

机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。

锻造按坯料在加工时的温度可分为冷锻和热锻。

冷锻一般是在室温下加工,热锻是在高于坯料金属的再结晶温度上加工。

有时还将处于加热状态,但温度不超过再结晶温度时进行的锻造称为温锻。

不过这种划分在生产中并不完全统一。

钢的再结晶温度约为460℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。

锻造按成形方法则可分为自由锻、模锻、冷镦、径向锻造、挤压、成形轧制、辊锻、辗扩等。

坯料在压力下产生的变形基本不受外部限制的称自由锻,也称开式锻造;其他锻造方法的坯料变形都受到模具的限制,称为闭模式锻造。

成形轧制、辊锻、辗扩等的成形工具与坯料之间有相对的旋转运动,对坯料进行逐点、渐近的加压和成形,故又称为旋转锻造。

锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、铜、钛等及其合金。

材料的原始状态有棒料、铸锭、金属粉末和液态金属。

一般的中小型锻件都用圆形或方形棒料作为坯料。

棒料的晶粒组织和机械性能均匀、良好,形状和尺寸准确,表面质量好,便于组织批量生产。

只要合理控制加热温度和变形条件,不需要大的锻造变形就能锻出性能优良的锻件。

铸锭仅用于大型锻件。

铸锭是铸态组织,有较大的柱状晶和疏松的中心。

因此必须通过大的塑性变形,将柱状晶破碎为细晶粒,将疏松压实,才能获得优良的金属组织和机械性能。

经压制和烧结成的粉末冶金预制坯,在热态下经无飞边模锻可制成粉末锻件。

锻件粉末接近于一般模锻件的密度,具有良好的机械性能,并且精度高,可减少后续的切削加工。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大锻件的锻造工艺
大锻件通常由大铸锭直接锻压成形。

大铸锭内部通常存在严重的偏析、缩孔、夹杂与晶粒粗大等铸造缺陷,且随着大锻件的规格不断增大,铸造缺陷越来越严重。

因此,改形与改性是大锻件锻造的两大关键任务。

大锻件一般采用自由锻成形。

根据锻造方式的不同,大锻件的自由锻工艺分为镦粗和拔长两类。

镦粗
镦粗是使坯料高度减小、横截面积增加的锻造工艺。

除了饼类锻件的成形主要应用镦粗工序之外,许多重要轴类锻件的成形也常采用镦粗工序。

镦粗的主要目的是增大坯料横截面积,提高拔长的锻造比,改善锻件的横向力学性能和减少力学性能的异向性。

镦粗方法有普通平砧镦粗、凹形砧镦粗、锥形板镦粗与M形板镦粗等。

Array 1.普通平砧镦粗
普通平砧面镦粗是最早采用的镦粗工艺。

传统的理论认为,镦粗过程中锻件中心点处于三向压应力状态,镦粗有利于压实心部孔隙缺陷,且不会在心部产生新的裂纹缺陷。

但是在实际生产中却发现,大型饼类锻件在经历大变形量的普通平砧镦粗工艺后,超声波探伤不合格率仍较高,主要原因是其内部出现横向裂纹缺陷。

显然,普通平站镦粗过程中锻件中心部位并不是一直处于三向压应力状态。

为此,从主动和被动塑形变形区等概念出发,于20世纪90年代初提出了普通平站镦粗圆柱体的两个新理论——刚塑性力学模型的拉应力理论和静水应力力学模型的切应力理论。

采用有限元数值模拟的方法,定量地分析了普通平站徽粗过程中圆柱体中心点部位应力场的演变规律,结果表明,原始高径比大于1.6的圆柱体毛坯中心点在镦粗过程中出现了两向拉应力状态,随着压下率的增大,圆柱体毛坯中心点的拉应力先增大后减小,并达到临界压下率时拉应力转变为压应力,且该临界压下率随着原始高径比的减小而减小。

对于原始髙径比为2.33 的圆柱体而言,该临界压下率为35%,对应的锻件瞬时高径比为1.129。

因此,开坯时,压下率应该大于40%,但是每次压下率应该在材料容许的塑性范围之内。

所以,圆柱体毛坯的原始高径比最好为2〜2. 2。

普通平砧
镦粗过程中,锻件高径比小于1时,锻件心部易产生“夹馅饼”缺陷,或称RST效应。

2.凹形砧镦粗
凹形砧面镦粗法包括球形砧、碟形砧等镦粗工艺,是在普通砧面镦粗的基础上发展起来的。

相对于普通平砧激粗,凹形砧镦粗法可以提高镦粗过程中圆柱体毛坯内部的静水压力,避免产生拉应力以防止产生新裂纹。

因此,可以增强锻合心部缺陷的能力。

但是,靠近球形砧和碟形砧附近会出现范围较大的难变形区,致使该区域内铸态组织难以破碎,晶粒无法细化,空洞难以闭合.
3.锥形板镦粗
锥形板缴粗方法首先由罗昊在实际生产中总结出来。

后来,刘助柏和王连东对其进行了力学分析。

锥形板镦粗方法有利于消除圆柱体端部的变形死区,并由于消除了由端部变形死区而引起的径向拉应力,增大了镦粗过程中轴线附近的静水应力;但是,锥形板镦粗使得锻件沿轴线方向变形量减小,因此,不能作为消除孔隙缺陷的主要锻造方法。

4.M形板镦粗
M形板镦粗是综合利用了球形板产生的三向压应力和锥形板有效消除难变形区的优点而设计的锻造方法。

M形板镦粗能够大大减少难变形区体积,使锻件变形更均匀,增大锻件内部变形程度,有利于锻合内部孔隙缺陷。

拔长
拔长是大锻件最主要的变形工序,许多缺陷均需在拔长过程中消除。

传统的拔长工艺只考虑锻件内轴向应力,而忽略了横向应力。

因而,传统的拔长工艺参数只包括站宽比(砧宽比是指锻件平站拔长时锻件变形区长度与高度的比值)与压下率。

一般认为,上下平砧拔长矩形截面大锻件时砧宽比在0.5〜0.8比较合适,砧宽比小于0.5时锻坯心部轴向应力为拉应力且心部变形程度较小,易产生横向裂纹且不易消除缺陷;砧宽比大于1时易产生表面裂纹和角裂,并且拔长效率较低。

Array传统的平砧拔长方法主要有WHF锻造法、SUF锻造法与TER锻造法, 这些方法的共同特点是大站宽比和大压下率,其优点是能有效
消除坯料心部的孔隙缺陷、细化晶粒,缺点是锻造载荷高,需要大吨位的液压机。

刘助柏发现传统的锻造理论只关注锻造过程中的轴向应力,而忽略了横向应力,提出了同时考虑轴向应力与横向应力的LZ法。

LZ 锻造法的实质是同时控制砧宽比和料宽比(料宽比是指锻件平砧拔长时锻件变形区宽度与高度的比值)的成形方法。

对料宽比加以控制是为了避免锻件心部出现横向拉应力。

刘助柏指出,平砧拔长矩形截面毛坯,要实现毛坯中心无轴向与横向拉应力作用,应控制砧宽比不小于0.8,料宽比为0.85〜1.18。

梁晨通过有限元数值模拟的方法发现,实现毛坯中心无拉应力需要砧宽比、料宽比及压下率三者的合理匹配。

采用上平砧下平台的锻造方法主要有FM法、新FM法、FML法与 JTS法。

其中FM法是20世纪70年代日本学者河合正吉和佐藤一木根据滑移线理论的解析结果,提出的无曼内斯曼效应的锻造方法。

由于FM法上平砧和下平台不对称,下平台对锻件的摩擦阻力较大,变形由上到下逐步进行,使拉应力移到变形体与下平台接触面附近,增加了心部的压应力和变形。

刘助柏在FM法的基础上提出增加料宽比的控制,使锻件心部不产生横向拉应力的锻造方法一新FM法。

FML法与JTS法实际上均是纵向布砧的锻造方法,它们之间的区别在于JTS法锻造前使锻坯外壳急冷至终锻温度,在表面形成一层硬壳,这层硬壳在锻造中如同模锻中的锻模一样,使变形集中在锻件心部,增加心部的压实效果。

FM法、新FM法、FML法与JTS法的优点是能实现利用较小锻比和较低压机吨位锻合孔隙,缺点是容易造成轴线偏移。

KD法是中国第一重型机械集团公司于1966年在WHF法基础上提出的高温扩散加热与宽砧大压下率的锻造方法。

1975年,改为采用135°的上下宽V形砧。

KD法的优点是能在锻件心部产生大的静水压力和变形量,有利于锻合锻件心部孔隙缺陷;缺点是所适用的坯料尺寸受到限制,需要经常换砧,增加了火次和工具投人,而且宽砧和大压下率也要求有较高吨位的锻造设备。

AVO法是用不对称的上下V形砧对八角形锻坯进行拔长的方法。

其优点是由于上下砧不对称在心部产生较大的剪切变形,增大了心部的变形量,有利于一定程度地消除缺陷;缺点是工艺不合理易导致锻件轴线弯曲和缺陷外移,影响大锻件的使用性能。

相关文档
最新文档