基因毒性杂质控制学习资料
【医药】如何控制基因毒性杂质
01、何为基因毒性杂质基因毒性杂质(或遗传毒性杂质,Genotoxic Impurity,GTI)是指能直接或间接损害DNA,引起DNA突变、染色体断裂、DNA重组及DNA 复制过程中共价键结合或插入,导致基因突变或癌症的物质(如卤代烷烃、烷基磺酸酯类等)。
潜在基因毒性杂质(Potential Genotoxic Impurity ,PGI)结构中含有与基因毒性杂质反应活性相似的基团(如肼类、环氧化合物、N-亚硝胺类等),通常也作为基因毒性杂质来评估。
基因毒性杂质主要来源于原料药合成过程中的起始物料、中间体、试剂和反应副产物。
此外,药物在合成、储存或者制剂过程中也可能会降解产生基因毒性杂质。
除此之外,有些药物通过激活正常细胞而产生基因毒性物质导致突变,如化疗药物顺铂等。
02、何为基因毒性杂质“警示结构”由于杂质结构的多样性,一般很难进行归类,因此,在缺乏安全性数据支持的情况下,法规和指导原则采用“警示结构”用来区分普通杂质和基因毒性杂质。
所谓“警示结构”,是指杂质中的特殊基团可能与遗传物质发生化学反应,诱导基因突变或者染色体断裂,因此具有潜在的致癌风险。
对于含有警示结构的杂质,应当进行(Q)SAR预测和体内外遗传毒性和致癌性研究,或者将杂质水平控制在毒理学关注阈值(TTC)之下。
但是含有警示结构并不能说明该杂质一定具有遗传毒性,而确认有遗传毒性的物质也不一定会产生致癌作用。
杂质自身性质和结构特点会对其毒性产生抑制或调节作用。
警示结构的重要性在于它提示了可能存在的遗传毒性和致癌性,为进一步的杂质安全性评价与控制指明方向。
(关于基因毒杂质警示结构的详细信息可参考欧盟发布的警示结构《Development ofstructure alerts for the in vivo micronucleus assay in rodents》)。
03、基因毒性杂质严格控制的必要性基因毒性杂质最主要的特点是在极低浓度时即可造成人体遗传物质的损伤,导致基因突变并促使肿瘤发生。
基因毒性杂质的控制
药学评价
应该根据现有的配方选择和生产技术,提供 生产方法的合理性。申请人应该指明涉及到 的所有具有基因毒性或有致癌性的化学物质, 如所用试剂、中间体、副产品等。更进一步, 在药物活性物质中没有出现的基因毒性反应 物和有基因毒性结构(alerting structure) 的物质,都应该被考虑。实际生产中尽量避 免使用该类物质。
——基因毒性杂质磺酸盐的风险评估
临床研究发现甲磺酸酯的DNA 烷基化作用会导致诱 变效应 ,其中甲磺酸甲酯和甲磺酸乙酯已有这方面 报导,因此有理由怀疑其它低分子量磺酸(如对甲 苯磺酸)的烷基酯可能也存在着类似的毒性影响。 尽管无数据表明这些酯对人的毒性影响,然后依然 有上述基因毒性物质以杂质的形式存在于含磺酸酯 类药物活性成分的药品中的潜在风险。 EMEA/44714/2008
可接受风险的摄入量
可接受其风险的摄入量一般通用的被定义为 Threshold of Toxicological Concern (TTC) 。具 体含义为:一个“1.5ug/day”的TTC值,即相当于 每天摄入1.5ug的基因毒性杂质,被认为对于大多数 药品来说是可以接受的风险(一生中致癌的风险小 于100000分之1)。按照这个阀值,可以根据预期的 每日摄入量计算出活性药物中可接受的杂质水平。 在特定的条件下一些基因毒性杂质也可以有较高的 阈值。如接触时间比较短等,这个需要根据实际情 况再进行推算。
基因毒性杂质的控制
目录
一、基因毒性杂质的相关概念
——什么是基因毒性杂质 ——基因毒性杂质的风险 ——可接受风险的摄入量(TTC)
二、TTC值的风险评估
——有实验依据的TTC值的确认 ——无实验依据的TTC值的确认 ——含有多个基因毒性杂质的评估 ——药学评估 ——毒理学评估 ——风险评估流程 ——TTC值的应用
基因毒性杂质培训 PPT课件
对甲苯磺酸季戊酯(布洛芬): 苯:溶剂石油醚可能含有苯
右旋布洛芬中可能含有的基因毒性杂质
右旋布洛芬中合成路线
甲苯中要控制苯!
布洛芬赖氨酸中可能含有的基因毒性杂质
布洛芬赖氨酸合成工艺
=
布洛芬赖氨酸水杨醛的限度问题
台湾2016年9月缺陷信及回复:
氟马西尼合成工艺
氟马西尼中N,N-二甲苯胺基因毒性
盐酸格拉司琼中可能含有的基因毒性杂质
Granisetron起始原料1-甲基吲唑-3-羧酸 中可能含有的基因毒性杂质
Granisetron起始原料氮杂壬胺可能含有的基因毒性杂质
盐酸格拉司琼中可能含有的基因毒性杂质
盐酸格拉司琼欧洲药品质量管理局(EDQM) 缺陷信
磷酸氟达拉滨中可能含有的基因毒性杂质
Fludarabine起始原料合成工艺
磷酸氟达拉滨合成工艺
氯苄
氯苄的毒性资料
The Carcinogenic Potency Database (CPDB)致癌物数据库公布的1547种致癌物质中有氯苄:
托拉塞米中可能含有的基因毒性杂质
托拉塞米起始原料合成工艺
O
O NH2 A Carbamates 氨基甲酸类
AA NN
AR Hydrazines and azo Compounds 肼和偶氮化合物
EWG
Michale-reactive Acceptors 迈克尔加成反应受体
O P
OR
O S
OR
Alkyl Esetrs of Phosphonates or Sulfonates 膦酸酯或者磺酸酯
D-(+)-樟脑磺酸乙酯
基因毒性杂质-全面信息资料
基因毒性杂质的来源
1 环境污染
工业排放、废水、废气等 对环境的污染会导致基因 毒性杂质的增加。
2 食物
食物中的农药残留、添加 剂以及食品加工过程中产 生的致癌物质都是来源之 一。
3 药物
某些药物和化学药品具有 基因毒性作用。
基因毒性杂质的检测பைடு நூலகம்法
Ames试验
一种常见的基因毒性检测方法, 通过检测细菌的突变来判断样 本的基因毒性。
基因毒性杂质的监管与控制
1
立法与标准制定
国家和国际机构制定标准,以确保基因
检测与监测
2
毒性杂质的合理监管。
建立监测体系,对食品、环境和药品中
的基因毒性杂质进行定期检测。
3
信息公开与教育
提高公众对基因毒性杂质的认知,加强 相关知识的宣传和教育。
基因毒性杂质防范和应对的策略和建 议
1 环保意识
更加重视环境保护,减少毒性杂质的排放和环境污染。
基因毒性杂质-全面信息 资料
欢迎来到基因毒性杂质全面信息资料的世界,通过本次演示,您将全面了解 基因毒性杂质的定义、分类以及对人体健康的影响。
毒性杂质的定义和分类
毒性杂质指的是那些可以对生物体细胞的遗传物质DNA产生损害的化学物质。它们可以根据其毒性的性质和 机制进行分类。
常见的基因毒性杂质及其危害
2 选择健康食品
选购来自可靠供应商的食品,避免食用过多的加工食品。
3 合理用药
按照医生的指导合理用药,避免滥用药物。
细胞培养法
将样本与细胞培养在一起,观 察是否对细胞产生损害。
基因表达分析
通过检测基因在样本中的表达, 判断是否存在基因毒性。
基因毒性杂质对人体健康的影响
基因毒性杂质-基毒、重金属资料
遗传毒性杂质遗传毒性:泛指各种因素(物理、化学因素)与细胞或生物体的遗传物质发生作用而产生的毒性。
1、致突变性:与DNA相互作用产生直接潜在的影响,使基因突变(bacteria reverse mutation(Ames)试验)2、致癌性:具有致癌可能或倾向(需要长期研究!)3、警示结构特征:一些特殊的结构单元具有与遗传物质发生化学反应的能力,会诱导基因突变或者导致染色体重排或断裂,具有潜在的致癌风险。
遗传毒性物质:在很低的浓度下即可诱导基因突变以及染色体的断裂和重排,因此具有潜在的致癌性。
EMA通告(1)、具体事项:1、哪些品种中会出现甲磺酸酯(或甲磺酸烷基酯)。
特别是甲磺酸盐等形式的API或其合成中用到甲磺酸的API,甲磺酸烷基酯-甲磺酸甲酯、乙酯、其它低级醇酯,应认定为潜在杂质。
2、羟乙基磺酸盐、苯磺酸盐、对甲苯磺酸盐的API。
应说明类似物质磺酸烷基酯或芳基酯污染的危险。
3、限度要求:无其它毒性数据时,这些高风险杂质应依据TTC设定限度。
1.5μg÷以g为单位的最大日剂量得ppm限度。
4、法律依据:EP专论要求凡以甲磺酸盐和羟乙基磺酸盐形式存在的API,均应在其生产过程中采取以下安全措施:必须对生产工艺进行评估以确定家磺酸烷基酯(羟乙基磺酸烷基酯)形成的可能,特别是反应溶媒含低级醇的时候,很可能会出现这些杂质。
必需时需对生产工艺进行验证以说明在成品中未检出这类杂质。
(2)、落实措施:1、API生产是否涉及在甲磺酸(羟乙基磺酸盐、苯磺酸盐、对甲苯磺酸等低分子量磺酸)或相应酰氯存在下,使用甲醇、乙醇、正丙醇、异丙醇等低级脂肪醇(如甲醇、乙醇、正丙醇、异丙醇等)。
2、对相应酯形成的可能性是否降到最低。
3、是否有有效的清除精制步骤。
设备清洗-是否设计的低级脂肪醇的使用(方法,TTC限度)?起始物料(低分子量磺酸盐或酰氯)中是否控制了其低级脂肪醇酯(方法,TTC限度)?当被磺酸酯或相关物质污染的磺酸用于API合成时能否保证其中潜在的遗传毒性杂质不超过TTC?应考虑各种烷基或芳基磺酸酯杂质累积的风险。
(完整版)基因毒性杂质的评估与控制
杂质 来源
降解杂质
加速试验、长期试验、光降 解、强制降解试验
环境污染
三、基因毒性杂质识别
工艺杂质
实际杂质
潜在杂质
API中实际观察到>ICH Q3A 报告限(0.05%)工艺杂质
1)合成API过程:起始物料,中间体,化学试剂 2)风险评估可能带入API中的,存在于起始物料,中间体中已识别 的杂质,以及合理机理预测产生的副产物(对于工艺早期杂质携带 入API的风险可忽略,但要提供基于风险论证的表明哪步后应该评估 杂质的潜在突变性) 3)对后工艺引入的起始物料,评价起始物料合成最后一步的潜在基 因毒性杂质
2018年
华海药业生产的缬沙坦原料药中含有微量基因毒性杂质N,N-二甲 基亚硝胺(NDMA),缬沙坦及其相关制剂从欧洲、美国和中国市 场被召回。
2018年
印度Torrent制药生产的缬沙坦片剂中也检测出含有NDMA,该公司 也从美国市场上自愿召回了14批相关药品。
二、相关概念
何为基因毒性杂质?
基因毒性杂质,也称遗传毒性杂质,通常指较低水平可直接造成DNA损伤,进而导致DNA突变, 因此可能引发癌症的DNA反应性物质。
EMA
2006年颁布《基因毒性杂质限度指南》
2010年发布《遗传毒性杂质限度指导 原则问答》 ◆为限制新活性物质中的基因毒性杂 质提供了解决问题的框架和具体方案。
◆新药必须进行基因毒性杂质分析
◆对于现有药品,不强制进行基因毒 性杂质分析评估
◆对已上市产品进行化学合成变更或 仿制药上市前,需对合成路线、过程 控制、杂质概括评价并与现有产品对 比,以确定未引入新的或更高水平的 基因毒性杂质
降解杂质
长 期 稳 定 性 试 验 , API 中 观 察 到>ICH Q3A报告限降解产物
基因毒性杂质培训PPT演示幻灯片
32
甲磺酸伊马替尼中可能含有的基因毒性杂质
33
伊马胺:
甲磺酸伊马替尼起始原料合成工艺
伊马酸:
34
甲磺酸伊马替尼合成工艺
35
米力农中可能含有的基因毒性杂质
36
米力农起始原料合成工艺
米力农起始原料有4-甲基吡啶、乙酰氯、原甲酸三乙酯以及氰乙酰胺,目前没有这几个起始原料的合成工艺。
62
布洛芬合成路线
63
布洛芬中具有结构警示的杂质
3-氯-2,2-二甲基-1-丙醇
64
布洛芬中基因毒性杂质的讨论
2-氯丙酸 3-氯-2,2-二甲基-1-丙醇 1,3-二氯-2,2-二甲基丙烷
对甲苯磺酸季戊酯(布洛芬):
苯:溶剂石油醚可能含有苯
65
右旋布洛芬中可能含有的基因毒性杂质
66
右旋布洛芬中合成路线
27
醋酸阿比特龙中可能含有的基因毒性杂质
28
醋酸阿比特龙加拿大缺陷信1/1(2018.5)
29
Continued!
30
醋酸阿比特龙起始原料合成工艺
3-吡啶硼酸合成工艺: 31
醋酸阿比特龙合成工艺
Mesityl oxide is a by-product which is originated from the aldol condensation of acetone to give diacetone alcohol 丙酮缩合成二丙酮醇,二丙酮醇脱水生成异亚丙基丙 酮 (2ppm):
23
甲溴后马托品起始原料扁桃酸的合成路线
24
甲溴后马托品起始原料托品醇的合成路线 见前述!
25
甲溴后马托品的合成路线
基因毒性杂质控制
2
因毒性杂质检测技术。
研究制定更有效的基因毒性杂质控制策
略,减少其对人体健康的潜在危害。
3
教育和宣传
加强公众对基因毒性杂质问题的认识, 提高风险意识,并促进相关领域的交流 和合作。
基因毒性杂质对健康的影响
基因毒性杂质的长期暴露可能导致诸多健康问题,包括癌症、生殖问题和遗 传突变等。因此,控制和管理这些杂质对人体健康至关重要。
科学家使用显微镜来观察细胞和 基因毒性物质之间的相互环境样本中存在着复杂的混合物,使得基因毒性杂质的检测和控制变得困难。
2 影响难以预测
不同基因毒性杂质对不同个体的影响各不相同,因此控制策略难以确定。
3 长期效应
一些基因毒性杂质对人体的影响可能需要长时间才能显现,给控制工作带来挑战。
芳香胺类化合物 (Aromatic Amines)
这些化合物常用于染料和塑 料制造中,可导致诸如膀胱 癌等严重健康问题。
基因毒性杂质的检测方法
试管实验
在实验室中,科学家使用试管等 工具来鉴定和分析样本中的基因 毒性杂质。
DNA测序
通过检测DNA序列的改变来确定 基因毒性杂质对基因组的影响。
显微镜观察
基因毒性杂质控制
基因毒性杂质控制在生物领域中扮演着重要角色。本演示将介绍其背景、重 要性以及对健康的影响。
常见基因毒性杂质
多环芳烃 (PAHs)
PAHs是常见的基因毒性杂质, 可通过燃烧、柴油排放和烟 草烟雾中获得。
硝基多环芳烃 (NPAHs)
NPAHs通常存在于排放源的 烟雾中,与许多疾病的发展 有关。
行业对基因毒性杂质控制的要求
食品和饮料
强调对原材料和成品的基因毒 性杂质控制,确保产品安全。
基因(遗传)毒性杂质资料-上传
每日最大剂量 报告限度
鉴定限度
Qualification Threshold* 毒性限度
≤2g /天
0.05%
0.10%或者每天 0.15%或者每天
摄入量1.0mg 摄入量1.0mg
(取最小值)
(取最小值)
>2g /天
0.03% 0.05%
0.05%
/cber/gdlns/ichq3a.pdf
N-Methylols N-亚甲基醇
N-Nitrosamines N-亚硝基胺
Nitro compounds 硝基化合物
O
A
A
Epoxides 环氧丙烷
H N
A
A
Aziridines 氮丙啶类
O O C (S)
(S) N
Halogen
Propiolactones 环丙酯
N or S Mustards β卤代乙胺
Group 3:Heteroatomic Groups(含杂原子化合物)
A N
A
Aminoaryls and alkylated aminoaryls 芳香胺和烷基取代的芳酰胺
O
O NH2 A Carbamates 氨基甲酸类
AA NN
AR Hydrazines and azo Compounds 肼和偶氮化合物
Class4:AlertRelated to parent
第4类:具有警示结构、与API有关、基因毒性(突 变性)未知的杂质
Class5: No Alerts
第5类:没有警示结构,没有基因毒性(突变性)的 杂质
Group1:Aromatic Groups(芳香族化合物):
OH N
A
A NA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N-Acylated aminorryls N-酰化氨基苯
Aza-aryl N-oxides 氮杂芳基N-氧化物
Group 2:Alkyl and Aryl Groups(烷烃和环烷烃类化合物)
O AH
OH N AAຫໍສະໝຸດ NO N AAA NO2
Aldehydes 醛
N-Methylols N-亚甲基醇
N-Nitrosamines N-亚硝基胺
文献:STIVARGA® regorafenib tablets 40mg PRODUCT MONOGRAPH 第36页
3、举例如下
例2: 恩杂鲁胺 • FDA审查资料列出三个有警示结构杂质的化学名和基因毒性的实验
代号,但没有提供实验结果; • 日本的公开资料中则有实验代号和结果; • 通过对比实验代号的一致性,获知这几个杂质的试验结果为阴性。
例1:瑞戈非尼(Regorafenib)
加拿大审评报告中,一个中间体Ames结果阳性,大鼠肝慧星致突变试验确立NOEL(无反应剂量 水平),提示每日最大摄入该杂质为0.0027mg/kg,如果体重按50kg计,则摄入量为 0.0027×50=0.135mg;瑞戈非尼日最大用量为160mg,故可推测其标准中该杂质限度为 0.0027×50kg/160=0.084%,即840ppm。(显著大于基于TTC水平的约9ppm限度)
分类
定义
建议的控制方法
1 已知的有致突变致癌性物质
化合物特定限度或以下
已知有致突变性但致癌性未知 2 的物质(细菌突变试验阳性, TTC限度或以下
无啮齿动物致癌数据)
TTC限度或以下;或进行细菌致
3
含警示结构的物质,与API结构 突变性试验。
无关,无致突变性数据
如果无致突变性=第5类;
如果有致突变性=第2类。
质量管理部 分析三室 2016年6月
1
基因毒性杂质的定义
2
ICH M7介绍
3
基因毒性杂质的控制
4
当前需要关注的一些方面
EMEA、FDA及ICH均相继发布了关于遗传毒性 和致癌性杂质相关的指导原则。
原料药及制剂杂质评估
(Drug substance and drug product impurity assessment M7 第4页 )
上述条件满足分类3。
结论:按一般杂质控制。
需充分检索和对比文献后,确定控制策略!
4、基因毒性杂质(分类1、2和3)的限度
(Risk characterization M7 第7页)
(1)基于TTC的控制
一般为长期用药(>10年)、杂质无致癌性数据(分类2和3); 杂质控制水平为1.5μg/日;
(2)特定限度控制策略
2、致癌风险控制水平TTC
❖ TTC是一个假设性概念,控制肿瘤发生风险水平为 1:100000,即十万分之一;
❖ 基于平均每日1.5μg的摄入水平,且终生(以70年计)暴露; ❖ 是指累积剂量,摄入总量:
1.5 μg/day x×70×365 days=38.3 mg 赖祖亮@小木虫
3、举例如下:
① 合成工艺杂质:
起始物料、中间体中检出的杂质;(杂质谱分析!) 从起始物料至成品整个路线中可能的反应副产物;(杂质谱分析!) 长路线早期的部分杂质或许可以忽略;(反应步骤!) 基于风险角度提供依据说明工艺路线中哪个节点后的杂质应作致突变性
评价;(反应步骤!) 工艺后期步骤使用的起始物料,应对该起始物料最后一步合成涉及的基
因毒性杂质进行评估。(反应步骤!)
② 降解杂质
实际检出杂质:长期稳定性及制剂过程中检出的报告限度以上杂质(ICH Q3A/B );
潜在杂质:加速试验及光照试验检出的鉴定限以上杂质,长期未确认。
Group1:Aromatic Groups(芳香族化合物):
OH N
A
A NA
O
N+ _ O
N-Hydroxyaryls N-羟基苯胺
A N
A
Aminoaryls and alkylated aminoaryls 芳香胺和烷基取代的芳酰胺
O
O NH2 A
Carbamates 氨基甲酸类
AA
NN
A
R
Hydrazines and azo Compounds 肼和偶氮化合物
EWG
Michale-reactive Acceptors 迈克尔加成反应受体
Nitro compounds 硝基化合物
O
A
A
Epoxides 环氧丙烷
H N
A
A
Aziridines 氮丙啶类
O O C (S)
(S) N
Halogen
Propiolactones 环丙酯
N or S Mustards β卤代乙胺
Group 3:Heteroatomic Groups(含杂原子化合物)
所含警示结构与活性成份(API)
4
相同,或与已证实无基因毒性 原料药结构相关化合物的警示
按一般杂质控制
结构相同
5
无警示结构,或有充分的数据 证明其警示结构无致突变性
按一般杂质控制
TTC仅适用于分类2和3,分类1应采用杂质特定限度,一般不用TTC; 分类2杂质还分类3可单用杂质进行细菌致突变试验(Ames),如为阴性则解除对警示结构的关注,无
需进一步评估基因毒性;
可进一步进行体内(in vovo)致突变试验,根据结果制定杂质的特定限度。
1、毒理学关注阈值(a threshold of toxicological concern;TTC)
未作研究(毒理学方面)的化学物质可接受的摄入水平,基于 TTC水平控制下,致癌或其他毒性风险可以忽略。 原料药及制剂致突变杂质TTC值:1.5μg/日。 强致癌性物质(cohort of concern)如黄曲霉素类似物、N亚硝基和烷基-偶氮氧化物除外,这类化合物可接受的限度应显 著降低。
O P
OR
O S
OR
Alkyl Esetrs of Phosphonates or Sulfonates 膦酸酯或者磺酸酯
Halogen
A Halogen
Halo-alkenes 卤代烯烃
Primary Halides 烷烃和环烷烃卤代物
A为烷烃基、芳香基或H;EWG为吸电子取代基,如氰基、羰基或酯基等。 基因毒性的警示结构不只限于以上所列,进一步了解可参见: 马磊,马玉楠等.遗传毒性杂质的警示结构 .中国新药杂志 ,2014,23(18) :2106~11