高中数学必修5-线性规划-课件【实用课件】

合集下载

高中数学 3.3.2简单的线性规划问题课件 新人教A版必修5

高中数学 3.3.2简单的线性规划问题课件 新人教A版必修5

(1)z=x2+(y-5)2 表示可行域内任一点(x,y)到达点 M(0,5)的
距离的平方,过 M(0,5)的距离的平方,过 M 作 AC 的垂线,易知 栏

垂足 N 在 AC 上,故


MN= 1|+0-(5-+21)| 2= 32=322.
MN2=3
2
22=92,故
z
的最小值为29.
完整版ppt
完整版ppt
5
解析:作出不等式组表示的平面区域(即可行域).
(1)将 w=x+2y 变形为 y=-12x+w2,得到斜率为-12,在 y 轴上
截距为w2的一簇随 w 变化的平行直线,作过原点的直线 y=-12x,由

图 1 可知,当平移此直线过点(0,2)时,直线在 y 轴上的截距w2最大,目链

目 链

点评:由题目可获得以下主要信息:在约束条件下,
①求 z=x2+y2-10y+25=x2+(y-5)2 的最小值;②求 z=2xy++11
=2·x-y-(--121) 的取值范围.解答本题可先将目标函数变形找到它的
几何意义,再利用解析几何完知整识版求pp最t 值.
11
解析:作出可行域,如图 A(1,3),B(3,1),C(7,9).
9
把 z=2x+y 变形为 y=-2x+z,得到斜率为-2,在 y 轴上的
截距为 z,随 z 变化的一簇平行直线.
由图可以看出,当直线 z=2x+y 经过可行域上的点 A 时,截距 栏
z 最大,经过点 B 时,截距 z 最小.
目 链
解方程组x3-x+4y5+y-3=25=0,0,得 A 点坐标为(5,2).
范围是( )

高中数学新课标人教A版必修5课件线性规划

高中数学新课标人教A版必修5课件线性规划
添加文档副标题
目录
01.
02.
03.
04.
05.
06.
线性规划是一种数学优化方法,用于求解线性目标函数在满足一组线性约束条件下的最优解。
线性规划的目标函数和约束条件都是线性的,即目标函数和约束条件中的变量和常数都是线 性的。
线性规划的目标是找到一组决策变量,使得目标函数达到最大值或最小值,同时满足所有的 约束条件。
线性规划在资源分 配中的应用
资源分配问题的定 义和分类
线性规划在资源分 配问题中的求解方 法
线性规划在资源分 配问题中的实际应 用案例
投资目标:最大化投资收 益
投资约束:资金有限、风 险控制等
投资策略:分散投资、风 险对冲等
投资效果评估:投资回报 率、风险调整后收益等
运输问题:在满足一定约束条件下,寻找最优的运输方案,以最小化运输成本或最大化运输 收益
确定约束条件的类 型,如等式约束、 不等式约束等
确定约束条件的 范围,如 x1+x2≤5等
确定约束条件的 数量,如 x1+x2+x3=5等
目标函数是线性规 划的核心,需要明 确表示出要优化的 目标
目标函数通常表示 为最大化或最小化 某个线性函数
目标函数中的变量 需要与约束条件中 的变量一致
目标函数中的系数 需要是常数,不能 含有变量
线性规划是研究线性约束条件下的优化问题的数学方法
线性规划的目标是找到一组决策变量,使得目标函数达到最大值或最小值
线性规划的几何意义在于,它可以将线性规划问题转化为几何问题,通过几何图形来 直观地表示和解决问题
线性规划的几何意义可以帮助我们更好地理解和解决线性规划问题,提高解决问题的 效率和准确性

高中数学 3.3.2简单的线性规划问题课件 新人教A版必修5

高中数学 3.3.2简单的线性规划问题课件 新人教A版必修5

由图可以看出,当直线 z=2x+y 经过可行域上的点 A 时,截距

z 最大,经过点 B 时,截距 z 最小.
目 链

解方程组x3-x+4y5+y-3=25=0,0,得 A 点坐标为(5,2).
解方程组xx=-14,y+3=0,得 B 点坐标为(1,1),
所以 zmax=2×5+2=12,zmin=2×1+1=3.
3
ppt精选
栏 目 链 接
4
题型1 求线性目标函数的最值
例1
已知实数 x,y 满足不等式组:
2x-y+2≥0, 2x+3y-6≤0.
(1)求 w=x+2y 的最大值;
栏 目

(2)求 z=x-y 的最小值.

分析:由于所给的约束条件及目标函数均为关于 x,y 的一次式,
所以此问题是简单线性规划问题,使用图解法求解.
ppt精选
5
解析:作出不等式组表示的平面区域(即可行域). (1)将 w=x+2y 变形为 y=-12x+w2,得到斜率为-12,在 y 轴上 截距为w2的一簇随 w 变化的平行直线,作过原点的直线 y=-12x,由 图 1 可知,当平移此直线过点(0,2)时,直线在 y 轴上的截距w2最大,栏目链接 最大值为 2,∴w=x+2y 的最大值为 4.也可把(0,2)代入求得 wmax =0+2×2=4.
是整数解时,常用下面的一些方法求解.
(1)平移直线法:先在可行域中画网格,再描整点,平移直线 l,

最先经过或最后经过的整点坐标就是最优解.



(2)检验优值法:当可行域中整点个数较少时,可将整点坐标逐
一代入目标函数求值,经过比较得出最优解.

人教A版高中数学必修五课件第一课时简单的线性规划问题.ppt

人教A版高中数学必修五课件第一课时简单的线性规划问题.ppt

跟踪训练2-1:(2012年高考江西卷)某农户计划种植黄 瓜和韭菜,种植面积不超过50亩,投入资金不超过54万 元,假设种植黄瓜和韭菜的产量、成本和售价如表
黄瓜 韭菜
年产量/亩
4吨 6吨
年种植成本/ 亩
1.2万元 0.9万元
每吨售价
0.55万元 0.3万元
为使一年的种植总利润(总利润=总销售收入-总种植成本)最 大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( ) (A)50,0 (B)30,20 (C)20,30 (D)0,50
跟踪训练 1-1:(2012 年高考山东卷)设变量 x,y 满足约束条件
x 2 y 2, 2x y 4, 则目标函数 z=3x-y 的取值范围是( ) 4x y 1,
(A)[- 3 ,6] 2
(C)[-1,6]
(B)[- 3 ,-1] 2
(D)[-6, 3 ] 2
解析:画出
x 2 y 2, 2x y 4, 表示的可行域如图所示阴影部分, 4x y 1,
解析:设种植黄瓜 x 亩,韭菜 y 亩,则由题意可知,
x y 50,
1.2x 0.9 y 54, 求目标函数 z=x+0.9y 的最大值.
x,
y
N*
,
根据题意画出可行域如图阴影所示. 当目标函数线l向右平移,移至点 A(30,20)处时,目标函数取得最大 值,即当黄瓜种植30亩,韭菜种植20 亩时,种植总利润最大.故选B.
x y 1 0,
x
x
y 0,
2
0,

z
的取值范围是
.
y 0,
解析:根据不等式组画出可行域为如图所示的阴影部分,
则 z=x+2y 过点(0,0),( 1 , 3 )时取得最小值和最大值, 22

高中数学必修5-线性规划-课件完美课件

高中数学必修5-线性规划-课件完美课件


x
y
y 1 0 2x 1 0
求得
x
y
0 1

C(0,1)
故 z 的最小值为 zmin=3×0-2×1=-2 故 z 范围[-2,3]
线性规划问题的解决步骤:
1、根据约束条件(不等式组)作可行域 2、对目标函数变形为y=kx+b的形式,
找截距与z的关系 3、令z=0, 先作出过原点的直线,定下直线形状 4、对直线进行平移,找出最优的点 5、联立边界直线方程,求出点坐标 6、将点坐标代入,求出最值
33
令z=0,作过原点的直线2x+3y=0, 对直线进行平移,可知直线经过M点时截距最大,z最大
由 x x 2 4 y80 得 x y 4 2 ,故 M ( 4 , 2 )
故zmax=2×4+3×2 =14(万元) 答:生产4件甲产品和2件乙产品时,获利最大, 最大利润为14万元
实战演练 (选自2010年广东高考文数)
解:设工产 厂x件 品 每, 天y 乙 生 件产 ,品 甲 每z万 天元 利, 润 则
4 x 16
4 x
y
2
12 y
8

x 4
y x
3 2y
8
x
N
x
N
y N
y N ห้องสมุดไป่ตู้
目标函数为:z=2x+3y
作出可行域为:
因为z=2x+3y,故y= 2 x z 故直线的截距最大时z最大
简单的线性规划问题
复习回顾
线性规划问题的有关概念: ·线性约束条件:
关于x、y的_一__次__不__等__式_组_
·可行域:
根据约束条件(不等式组)画出的平面区域 ·目标函数:

人教版高中数学课件第五册:线性规划

人教版高中数学课件第五册:线性规划

y
5
x-y+5=0
3
x
表示的平面区域。
x=3
线性规划
y
5
O
问题引入 有关概念
3
x

例题讲解
线性规划
问题:设z=2x+y,式中变量满足下列条件:
x 4 y 3 3 x 5 y 25 x 1
求z的最大值与最小值。
探索结论
线性规划
目标函数 (线性目标函数)
探索结论

线性规划的实际应用

应用举例之一
——纺纱厂的效益问题

应用举例之二 ——煤矿调运方案问题

应用举例之三
——其它问题
线性规划的实际应用
例1:某纺纱厂生产甲、乙两种棉纱,已 知生产甲种棉纱1吨需耗一级子棉2吨、二级 子棉1吨;生产乙种棉纱需耗一级子棉1吨、 二级子棉2吨,每1吨甲种棉纱的利润是600元, 每1吨乙种棉纱的利润是900元,工厂在生产 这两种棉纱的计划中要求消耗一级子棉不超过 300吨、二级子棉不超过250吨.甲、乙两种棉 纱应各生产多少(精确到吨),能使利润 总额最大?
线性规划的实际应用
例1:某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱 1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子 棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨 乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求 消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两 种棉纱应各生产多少(精确到吨),能使利润总额最大?
资源 一级子棉(吨) 二级子棉(吨) 利润(元)
产品 甲种棉纱 乙种棉纱 资源限额 (吨) (吨) (吨) 2 1 600 1 2 900 300 250

推荐高中数学必修5优质课件:简单的线性规划问题 精品

推荐高中数学必修5优质课件:简单的线性规划问题 精品
以u最大值=73,u最小值=0.
(2)v=x-y 5表示可行域内的点 P(x,y)到定点 D(5,0)的斜率, 由图可知,kBD 最大,kCD 最小,
又 C(3,8),B(3,-3), 所以 v 最大值=3--35=32, v 最小值=3-8 5=-4.
[类题通法] 非线性目标函数最值问题的求解方法

y x
表示点(x,y)与原点(0,0)连线的斜率;
y-b x-a
表示点(x,y)与
点(a,b)连线的斜率.这些代数式的几何意义能使所求问题得 以转化,往往是解决问题的关键.
[对点训练] 2.已知变量x,y满足约束条件
xx- ≥y1+,2≤0,
x+y-7≤0.

y x
的最
大值是________,最小值是________.
[对点训练] x-4y≤-3,
1.设 z=2x+y,变量 x、y 满足条件3x+5y≤25, x≥1,
求 z 的最大值和最小值.
[解] 作出不等式组表示的平面区域,即可行域,如图所示.把 z =2x+y 变形为 y=-2x+z,则得到斜率为-2,在 y 轴上的截距为 z, 且随 z 变化的一组
平行直线.由图可以看出,当 直线 z=2x+y 经过可行域上的点 A 时,截距 z 最大,经过点 B 时,截距 z 最小. 解方程组x3-x+4y5+y-3=250=,0, 得 A 点坐标为(5,2), 解方程组xx= -14,y+3=0, 得 B 点坐标为(1,1), ∴z 最大值=2×5+2=12,z 最小值=2×1+1=3.
[解析] 由约束条件作出可行域(如图所示),目标函数z=
y x
表示坐标(x,y)与原点(0,0)连线的斜率.由图可知,点C与O

新课标高中数学A版必修5-3.3.2简单的线性规划问题(二) 优质课件 .ppt

新课标高中数学A版必修5-3.3.2简单的线性规划问题(二) 优质课件 .ppt
由图可以看出,当直线经过可行域上的点M时, 截距2z最大,即z最大。
y
容易求得M点的坐标为 (2,2),则Zmin=3
故生产甲种、乙种肥料各 2车皮,能够产生最大利润, 最大利润为3万元。
M
x
o
11
三、练习题
某厂拟生产甲、乙两种适销产品,每件销售收入
分别为3000元、2000元,甲、乙产品都需要在A、B 两种设备上加工,在每台A、B上加工1件甲所需工时 分别为1h、2h,A、B两种设备每月有效使用台数分 别为400h和500h。如何安排生产可使收入最大?

0.06 0.06

174xx174y yFra bibliotek6 6
x 0
x 0
y 0
y 0
目标函数为:z=28x+21y
作出二元一次不等式组所表示的平面区域,即可行域
4
标函数z=28x+21y 变形为
它表示斜率为 4
3
随z变化的一组平行直
线系
6/7 y
2
二、例题
例5、营养学家指出,成人良好的日常饮食应该至少 提供0.075kg的碳水化合物,0.06kg的蛋白质, 0.06kg的脂肪,1kg食物A含有0.105kg碳水化合 物,0.07kg蛋白质,0.14kg脂肪,花费28元;而 1食物B含有0.105kg碳水化合物,0.14kg蛋白质, 0.07kg脂肪,花费21元。为了满足营养专家指出的 日常饮食要求,同时使花费最低,需要同时食用食物 A和食物B多少kg?

x

1 7
得M点的坐标为:


y

4 7
所以zmin=28x+21y=16
由此可知,每天食用食物A143g,食物B约 571g,能够满足日常饮食要求,又使花费最低, 最低成本为16元。

高中数学北师大版必修5 简单线性规划 课件(38张)

高中数学北师大版必修5 简单线性规划 课件(38张)
4.2
简单线性规划
4.3 简单线性规划的应用• 学习导航1.了解可行域、可行解、约束条件、线性约束条 件、目标函数、线性目标函数、最优解等概念. 学习 2.掌握线性规划问题的求解过程,特别是确定 目标 最优解的方法.(重点) 3.会从实际情境中抽象出一些简单的线性规划 问题.(难点) 求目标函数的最值,必须先准确地作出线性可行 学法 域,再作出目标函数对应的直线,然后根据题意 指导 确定取得最优解的点,进而求出目标函数的最值.
求线性目标函数的最值
2y≤x, 设 z= 2x+ y 中的变量 x,y 满足条件x+ y≤ 1, y≥-1, 求 z 的最大值和最小值. (链接教材 P101 例 6、 P103 例 7)
2y≤x, [解 ] 约束条件为x+ y≤ 1, y≥- 1, 作出可行域,如图所示的阴影部分.
视台的广告收费标准分别为500元/分钟和200元/分钟,规
定甲、乙两个电视台为该公司所做的每分钟广告,能给公 司带来的收益分别为0.3万元和0.2万元.问该公司如何分 配在甲、乙两个电视台的广告时间,才能使公司的收益最 大,最大收益是多少万元?
(链接教材P105例9)
[解 ] (1)模型建立. 设该公司在甲电视台和乙电视台做广告的时间分别为 x 分 钟和 y 分钟,总收益为 z 元, x+ y≤ 300, 由题意得约束条件为500x+200y≤90 000, x≥0, y≥ 0. 目标函数为 z= 3 000x+2 000y. (2)模型求解. x+ y≤ 300, 二元一次不等式组等价于5x+ 2y≤ 900, x≥0, y≥ 0.
作出二元一次不等式组所表示的平面区域, 即可行域. 如图, 3 z 把 z= 3 000x+2 000y 变形为 y=- x+ , 得到斜率为- 2 2 000 3 z ,在 y 轴上的截距为 的一组平行直线. 2 2 000

高中数学)必修5-课件--线性规划课件

高中数学)必修5-课件--线性规划课件

甲种产品 乙种产品 现有库存
A种原料 4 1 10
B种原料 18 15 66
利润 1 0.5
解:设x、y分别为计划生产甲、乙两种
y
混合肥料的吨数,于是满足以下条件:
4 x+y 10 18x+15y 66 x 0 y 0
x
o
解:设生产甲种肥料xt、乙种肥料yt,能够产生利润 Z万元。目标函数为Z=x+0.5y,可行域如图:
一、引例:
1、已知x、y满足的条件,求x、y满足的区域: 并求z=2x+y的最大值,
y x
y -1
解析:
Z=2x+y变形为y=-2x+z, 它表示斜率为-2,在y轴上的截距 为z的一组直线系。
y
由图可以看出,当直线经过可行域上
的点C时,截距z最大。
x 可知z要求最大值,即直线经过C点时。
把Z=x+0.5y变形为y=-2x+2z,它表示斜率为 -2,在y轴上的截距为2z的一组直线系。
由图可以看出,当直线经过可行域上的点M时, 截距2z最大,即z最大。
y
容易求得M点的坐标为 (2,2),则Zmin=3
故生产甲种、乙种肥料各 2吨,能够产生最大利润, 最大利润为3万元。
M x
o
A
求得A(1.5,2.5),
B(-2,-1),则
oC B
x Zmax=17,Zmin=-11。
思考:(1)若求z=5x+3y的最大值?
(2)若求z=5x-3y的最大值?
3、已知
x y 2 0

x

y-4
0
2x-y 5 0
求 (1)z=x+2y-4的最大值;
(2)z=x2+y2-10y+25的最小值;

高中数学人教A版·必修5:简单线性规划的应用(74张PPT)

高中数学人教A版·必修5:简单线性规划的应用(74张PPT)

化为求最值即可.
[解]
设公司在甲电视台和乙电视台做广告的时间分
别为x分钟和y分钟,总收益为z元,由题意得 x+y≤300 500x+200y≤90 000 x≥0 y≥0.
目标函数为z=3 000x+2 000y.
x+y≤300 5x+2y≤900 二元一次不等式组等价于 x≥0 y≥0. 作出二元一次不等式组所表示的平面区域,即可行 域,如上图.
[点评]
(1)解线性规划应用题,关键是正确来自实际问题中抽象出不等式组,并正确作出可行域,再由线性目标 函数作出一组平行线考察最优解. (2)线性规划问题中条件往往较多,可借助表格梳理条 件及其关系.
变式训练1 某企业拟用集装箱,托运甲、乙两种产 品,甲种产品每件体积为5m3,重量为2吨,运出后,可获 利润10万元;乙种产品每件体积为4m3,重量为5吨,运出 后,可获利润20万元,集装箱的容积为24m3,最多载重13 吨,如何装箱可获得最大利润?
新知初探
1.实际问题中线性规划的类型 (1)给定一定数量的人力、物力资源,问怎样运用这 些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任 务耗费的人力、物力资源最少.
2.线性规划解决的常见问题 (1)物资调配问题; (2)产品安排问题; (3)合理下料问题; (4)产品配方问题; (5)方案设计问题.
类型二 [例2]
求最小值的实际应用题 某人承揽一项业务,需做文字标牌4个,绘画
标牌5个.现有两种规格的原料,甲种规格每张3m2,可做 文字标牌1个,绘画标牌2个;乙种规格每张2m2,可做文 字标牌2个,绘画标牌1个,求两种规格的原料各用多少 张,才能使得总用料面积最小. [分析] 可先设出变量,建立目标函数和约束条件,

高中数学人教A版必修5线性规划PPT全文课件

高中数学人教A版必修5线性规划PPT全文课件

解法2:∵-1≤a+b≤1------① 1≤a-2 b≤3-----②
∴-2≤2a+2 b≤2------③ -3≤2 b-a≤-1 ------④
∴②+③得:-1/3≤a≤5/3 ①+④得:-4/3≤b≤0
∴-13/3≤a+3 b≤5/3
想一想
问题二:线性规划与不等式的性质
1、已知:-1≤a+b≤1,1≤a-2b≤3,求a+3b的取
线性规划
问题二:线性规划与不等式的性质
1、已知:-1≤a+b≤1,1≤a-2b≤3,求a+3b的取值 范围。
解法1:由待定系数法: 设 a+3b=m(a+b)+n(a-2 b) =(m+n)a+(m-2n)b ∴m+n=1,m-2n=3 m=5/3 ,n=-2/3
∴ a+3b=5/3×(a+b)-2/3×(a-2 b) ∵-1≤a+b≤1,1≤a-2 b≤3 ∴-11/3≤a+3 b≤1
③你能否设计一个目标函数,使得其取最优解的情况有无穷多个? ④ 请你分别设计目标函数,使得最值点分别在A、B、C处取得? ⑤ (课后思考题)若目标函数是z=x2+y2 ,你知道其几何意义吗?
你能否借助其几何意义求得zmin和zmax?
如果是 z
高中数学【人教A版必修】5线性规划P PT全文 课件【 完美课 件】
解 : 设 { 2xy a则 { x (a b)/3
xy b
y (2b a)/3
ab60
a,b的约束条件为: a2b60
b20
上述不等式表示的平面区 域如右图:
S1[4(2)](42)6 2

人教A版高二数学必修五第三章3.3.2 第2课时 简单线性规划教学课件 (共13张PPT)

人教A版高二数学必修五第三章3.3.2 第2课时 简单线性规划教学课件 (共13张PPT)
x 2y 8 (k 1 ) 2
z x 3y(k 1 ) 3
x=4 l0:x3y0
目标函数 z=x+3y
四、课后思索、提升认识
课后思考1:
若把前述问题中的线性目标函数改为:z=x+2y, 那么利润的最大值是多少?最优解是否唯一?
课后思考2: 若市场需要发生改变,生产一件甲产品可获
利3万元,而生产一件乙产品亏损1万元,那么前 述问题中如何安排生产才会获得最大利润?
M(4,2)
由图可得,当直线 y 2 x z
33
经过点M(4,2)时,zmax=14
0
4
8x
X+2y=8
2X+3y=0
答 : 当 日 生 产 甲 产 品 4 件 、 乙 产 品 2 件 时 , 工 厂 可 获 得 最 大 利 润 1 4 万 元
三项注意:
1.为 什 么 移 : z=2x+3yy=-3 2x+3 z,这 是 斜 率 k=-3 2,
3.3.2 简单线性规划问题
一.创设情境, 提出问题:
20年后的你,坐在宽敞的办公室里,思考着 如何安排公司的生产,你会考虑什么?1.计划可 行;2.资源最优;3.效益最大……今天,我们就 从一个如何安排生产可获最大收益的应用问题开 始探索这类问题的处理方法!
问题导入:
问题探究:某工厂用A,B两种配件生产甲,乙两种产
品,每生产一件甲种产品使用4个A配件耗时1h,每生产一件 乙种产品使用4个B配件耗时2h,该厂每天最多可从配件厂 获得16个A配件和12个B配件,按每天工作8小时计算
(1)该厂所有可能的日生产安排是什么?
(2)若生产一件甲产品获利2万元,生产一件乙产品 获利3万元,采取哪种生产安排利润最大?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答:截第一种钢板 3张,第二种钢板 9张;
或截第一种 4张,第二种 8张,总张数最小,为 12 张
作业:
1、
x 若实数 x、y满足
y x
4 y
2
y 3
(1)求 y 的取值范围 x
(2)求 z 2x y的最大值和最小值
2、学案P22页例1的第(3)问
1.价格变动会调节生产规模,价格降 低,则企 业限产 2.促进提高提高劳动生产率,企业技 术更新 、加强 管理就 是要个 别劳动 生产率 3.促使企业生产适销对路的高质量产 品。企 业进行 市场调 研,重 新进行 产品定 位,不 断提高 产品质 量等措 施 4.价格变动影响人们的消费需求。降 价促使 消费者 将台式 电脑更 换为笔 记本电 脑 5.坚持贯彻民族平等、民族团结、各 民族共 同繁荣 的基本 原则。 党和国 家正确 领导、 扶持, 全国各 族人民 特别是 对口省 市的大 力援疆 ,促进 了新疆 的全面 和快速 发展。 6.第二次工业革命中科带动技术和生 产的发 展,引 起人们 对科的 重视; 相对论 的提出 是科领 域的重 大革命 ;观测 结果证 实了爱 因斯坦 的理论 ;大战 结束有 利于相 对论传 播。
,
x 0且xN
y 0且yN
目标函数z为 x y
A B
M(18 ,39 )
55
附近的整点:
A(3,4) B(4,8)
调整优值法
由 z x y得 y z x x z
可知,直线截距越小,
z 越小
先令 z 0 , 作过原点的直线 y x
再对直线进行平移,可
知,
当直线经过点 M 时截距最小, z 最小
钢板类型
规格类型 A规格 B规格 C规格
第一种钢板
2
1
1
第二种钢板
1
2
3
今需要 A、B、C 三种规格的成品分别为 15、18、27 块,问 各截这两种钢板多少张可得所需的三种规格成品,且使所用钢板 张数最少?
解:设截第一种钢板x张,第二种钢板y张,使用 的总钢板数为z张,则
2x y 15
xx
2y18 3y 27
题型一:实际应用的最优问题
例(课本87-88页)某工厂用A、B两种配件生产甲、乙两种产品, 每生产一件甲产品需要4个A配件,耗时1h; 每生产一件乙产品需要4个B配件,耗时2h; 该厂每天最多从配件厂获得16个A配件和12个B配件, 而且每天工作时长为不能超过8小时; 若每件甲产品获利2万元,每件乙产品获利3万元, 问每天分别生产甲、乙产品多每天的获利达到最大?
解:设工产 厂x件 品 每, 天y 乙 生 件产 ,品 甲 每z万 天元 利, 润 则
4 x 16
4 x
y
2
12 y
8

x 4
y x
3 2y
8
x
N
x
N
y N
y N
目标函数为:z=2x+3y
作出可行域为:
因为z=2x+3y,故y= 2 x z 故直线的截距最大时z最大
可行域为: 答:为该儿童分别预订4个单位的午餐,3个单位的晚餐,此花的费用最少为22元.
作业: 1、课本P91第2题 2、学案P22页例1的第(3)问 3、预习:课本P89-P90 例6
题型二 最优整数解问题
例2 要将两种大小不同的钢板截成A、B、C三种规格,每
张钢板可同时截得三种规格的小钢板的块数如下表所示:
简单的线性规划问题
复习回顾
线性规划问题的有关概念: ·线性约束条件:
关于x、y的_一__次__不__等__式_组_
·可行域:
根据约束条件(不等式组)画出的平面区域 ·目标函数:
要求最大值或最小值的式子 ·线性规划问题:
在 线性约束 条件下,求目标函数的最值问题.
实质:在可行域内找一个点,使得点的坐标代进去,

x
y

y 1 0 2x 1 0
求得
x
y
0 1

C(0,1)
故 z 的最小值为 zmin=3×0-2×1=-2 故 z 范围[-2,3]
线性规划问题的解决步骤:
1、根据约束条件(不等式组)作可行域 2、对目标函数变形为y=kx+b的形式,
找截距与z的关系 3、令z=0, 先作出过原点的直线,定下直线形状 4、对直线进行平移,找出最优的点 5、联立边界直线方程,求出点坐标 6、将点坐标代入,求出最值
线性规划在实际中的应用
——生活中的最优化问题
解应用题的步骤:
1、设 2、列:列线性约束条件(即x、y满足的不等式组)
目标函数(要求最值的式子) 3、画:画可行域、需要平移的目标直线,找出最优的 (画两条:一条是过原点的,一条是平移的最终位置,都用虚线) 4、解:联立方程,求交点(最优点)的坐标 5、求:将交点坐标代入式子,算出最值 6、答
33
令z=0,作过原点的直线2x+3y=0, 对直线进行平移,可知直线经过M点时截距最大,z最大
由 x x 2 4 y80 得 x y 4 2 ,故 M ( 4 , 2 )
故zmax=2×4+3×2 =14(万元) 答:生产4件甲产品和2件乙产品时,获利最大, 最大利润为14万元
实战演练 (选自2010年广东高考文数)

2 x
x
3
y y
15 27
,
求得
x
y
18
5 , 故 M ( 18 ,39 )
39
55
5
又 x 、 y只能取正整数,
所以,找离点 M 最接近并且在区域里的
正整数,得 A ( 3,9), B ( 4,8)
将 A ( 3,9)代入得 z 3 9 12
将 B ( 4,8)代入得 z 4 8 12
式子取得最值
x y 1 0
[例]

x,y
满足约束条件
y
y
2x 1 0 x 1 0
(1)求目标函数 z=2x+y 的最大值;
(2)求目标函数 z=3x-y 的取值范围;
[解] 作出可行域如图
(1)z=2x+y 变形为 y=-2x+z,
可知直线的截距越大,z 越大。
令 z=0,作过原点的直线 y= -2x,
对直线进行平移,可知平移到 A 点时,截距最大,z 最大

y
y
x x
1 1
0 0
求得
x y
1 0
,故
A(1,0)
故 z 的最大值为 zmax =2×1+0=2
x y 1 0
[例]

x,y
满足约束条件
y y
2x 1 0 x 1 0
(1)求目标函数 z=2x+y 的最大值;
(2)求目标函数 z=3x-y 的取值范围;
[解] (2)z=3x-y 变形为 y=3x-z,可知直线的截距越小,z 越大。
令 z=0,作过原点的直线 y= 3x,
对直线进行平移,可知平移到 A 点时,截距最小,z 最大

y x
x y
1 1
0 0
求得
x y
1 0
,故
A(1,0)
故 z 的最大值为 zmax =3×1-2×0=3
同理,当直线平移到 C 点时,截距最大,z 最小
相关文档
最新文档