运筹学单纯形法例题求解过程
运筹学单纯形法
只要取 x5=min{-,8/2,12}=4 就有上式成立。 x5=4时, x4=0,故决定用x5换x4 x1 =4- 1/4 x4 x5 =4-1/2 x4 +2 x3 x2 =2+1/8 x4–1/2 x3 代入得 z=14-3/2 x3 –1/8 x4 ,令x3 ,x4=0得z=14。新基可 行解为 X(3) =(4,2,0,0,4) T –为最优解,新顶点Q2 最优目标值z=14 。
§3.4 最优性检验和判别定理
线性规划解的四种可能: 1、有唯一解; 2、无穷多最优解; 3、无界解; 4、无可行解。 何时达最优解, 何种最优解?
将基本可行解X(0)和X(1)分别代入目标函数得
z z
(0)
= ∑ ci xi0
i =1 m
mቤተ መጻሕፍቲ ባይዱ
(1)
= ∑ ci [ xi0 − θ aij ] + θ ci
§3.3 从初始基可行解转换为另一基可行解
0 0 记初始基可行解为X(0),有 X ( 0 ) = (x10 x 2 L x m 0 L 0
)
Pi xi0 = b 该解满足约束方程, 即 ∑
i =1
m
(1)
非基向量可以用基向量的线性组合表示
Pj = ∑ aij Pj
i =1 m
m
(2) (3)
Pj − ∑ aij Pj = 0
从实际例子中分析单纯形法原理的基本框架为 •第一步:将LP线性规划变标准型,确定一个初始可行解 (顶点)。 •第二步:对初始基可行解最优性判别,若最优,停止;否 则转下一步。 •第三步:从初始基可行解向相邻的基可行解(顶点)转 换,且使目标值有所改善—目标函数值增加,重复第二和 第三步直到找到最优解。
运筹学
1(单纯形法)例:Min Z=-2x1-x2+x3 , s.t. 3x1+x2+x360≤x1-x2+2x310≤,x1+x2-x320≤,xj 0≥,解析:对第一、二、三个不等式添加松弛变量x4 x5 x6,则原线性问题化成标准形形式为:(略)因为B=(A4 A5 A6)是一单位矩阵,且b=(60 10 20)T>0 所以基B 是可行基,x4 x5 x6为基变量,x1 x2 x3为非基变量,基B 对应的基本可行解为检验数02>=ξ,故当前解不是最优解,A1列中有三个元素a11 a21 a31 均为正数,取min ()313212111,,a b a b a b =min ()120110360,,=10故转轴元为a21,x1为进基变量,x5为出基变量,进行旋转后得下表(略)它对应的基本可行解为x=(10 0 0 30 0 10)T,其目标函数值为Z0=-20,但,032>=ξ仍不是最优解,(以下的过程跟前面一样)最后得Z0=-35,检验向量0<ξ故为最优解。
故基本可行解x*=(15 ,5 ,0 )Tm 目标函数值为Z0=-35。
2(两阶段法)例 max z=3x1+4x2+2x3 s.t. x1+x2+x3+x430≤, 3x1+6x2+x3-2x40≤, x24≥解:化为标准形形式为min z=-3x1-4x2-2x3 s .t.分别加x5 x6 x7松弛变量,因为该线性规划的系数矩阵的系数矩阵已包含两个单位向量,就是A5=(100)T ,A6=(010)T ,第一阶段只要增加一个人工变量x8得到辅助LP 问题为min g=x8 s.t .以下略,作如下表(略),将表中第三行加到关于g 的第0行中,得到第一张单纯形表(略)按单纯形迭代,表略,第一阶段结束,得到辅助问题的一个最优解,3(对偶单纯形法)例 min 2x1+3x2+4x3, s.t. x1+2x2+x33≥ 2x1-x2+3x34≥ x1 x2 x3 0≥,解:引进非负的剩余变量x40≥,x50≥,将不等式约束化为等式约束直接利用对偶单纯形法求解,b2=- 4<b1=-3,所以x5为出基变量,由以下比值决定进基变量min(3422,----)=21a ξ=1,所以x1为进基变量,以a21为转轴元进行旋转变换得下表(略)因为b1=-1<0,所以x4为出基变量,因为min( )所以x2为进基变量,以a12为转轴得表(略)此时b>0,故原问题最优解为x*=( )T,其最优值Z0=() 4写出下面线性规划的对偶规划。
运筹学课件 单纯形法的计算步骤
例8 试用两阶段法求解线性规划问题
min z =-3x1+x2+x3
x1 2 x2 x3 11
s.t.
4 x1 2 x1
x2
2x3 3 x3 1
x1 , x2 , x3 0
0 0 -1 0 0
x2
3 5 11/5
Z0=0
Z1=15
x1
如果将x1换入基底,得 另一解,由可行域凸性 易知,有两个最优解必 有无穷多组最优解 当非基底变量的检验数 中有取零值,或检验数 中零的个数大于基变量 个数时,有无穷多解。
四、无(有)界解
max z=x1+x2 -2x1+x2 4 x1- x2 2 -3x1+x23 x1 ,x2 0
反之,若加了人工变量的问题解后最优解中仍含人工变量为 基变量,便说明原问题无可行解。例3的单纯形表格为:
Cj
3
-1
-1
0
0
-M
CB XB b
x1
x2
x3
x4
x5
x6
0 x4 1
1
-2
1
1
0
0
-M x6 13 -4
1
2
0
-1
1
-M x7 1 -2
0
[1] 0
0
0
j
3-6M M-1 3M-1 0
-M
x1 2 x2 x3 x4
11
4 2
x1 x1
x2
2
x3 x3
15单纯形法(运筹学)
1
2
3
4
X(1)= (2,3) X(2)= (4,2)
全部解: 全部解:X=α
(1) -4 0 1 -2 0
14
15
本问题无界。 本问题无界。 X2
O
X1
Z=0
16
1.5.4 初始基本可行解的求法 (一)、大M法: 一、 法 例1 : maxZ= 6X1 +4X2 2X1 +3X2 ≤ 100 4X1 +2X2 ≤ 120 X1 X1 X2 ≥0
=14
X2 ≥ 22
17
λj <0
8
(3)、 (3)、maxZ=10X1 + 12X2 3X1+4X2 ≤ 6 4X1+ X2 ≤ 2 3X1 +2X2 ≤ 3 X1 , X2 ≥0
9
10
X =(0, 3/2, 0, 1/2, 0)T Zmax=18
退化解
*
11
例:maxZ= -3/4X4+20X5 -1/2X6+6X7 X1+1/4X4 -8X5 -X6+9X7 =0 X2+1/2X4-12X5 -1/2X6+3X7 =0 X3+X6 =1 X1 … X7 ≥0 (P1 P2 P3) → (P4 P2 P3) → (P1 P2 P3) → (P4 P5 P3) → (P6 P5 P3) → (P6 P7 P3) → (P1 P7 P3)
第四节 单纯形法的计算步骤
上表中由于所有σ 上表中由于所有 j>0 ,表明已求得最优解 x1=4, x2=2, x3=0, x4=0, x5=0, x6=4, , , , , , , Z=14。 。 当确定x 为换入变量计算θ值时 值时, ◆当确定 6为换入变量计算 值时,有两个相 同的最小值: 同的最小值:2/0.5=4,8/2=4。任选其中一 , 。 个作为换出变量时, 个作为换出变量时,则下面表中另一基变 量的值将等于0,这种现象称为退化 退化。 量的值将等于 ,这种现象称为退化。含有 一个或多个基变量为0的基可行解称为 的基可行解称为退化 一个或多个基变量为 的基可行解称为退化 的基可行解。 的基可行解。
18
迭代
xB
次数
cB
x1
x2
x3
x4
x5 bi
θi
50
x1
100
0
0
0
50 0 100
1 0 0
0
0 0 1
0
1 -2 0
- 50
0 1 0
0
-1 1 1
- 50
50 50 250 -27500
2
x4 x2
σj
2010年8月
管理工程学院
18
《运筹学》 运筹学》
19
所有的检验数 σ j ≤ 0, 此基本可行解: 此基本可行解:
2010年8月
管理工程学院
5
《运筹学》 运筹学》
6
c1 … cl b b1´
⋮
c j→ cB c1
⋮
… cm … xm …0 …⋮ 0 …1 …
⋮
…cj …xj …a1j´ …⋮ a2j´ …⋮ amj´
… ck … cn … xk …xn …0 …⋮ 1 …0
运筹学 线性规划问题的单纯形法
线性规划的单纯形法
由上表可知:
S=100*X1+80*X2
约束条件:
2*X1+4*X2<=80
3*X1+1*X2<=60
X1,X2>=0
由此可以引入松弛变量:
2*X1+4*X2+k1<=80
3*X1+1*X2+k2<=60
S=100*X1+80*X2+(0)*k1+(0)*k2〃k1和k2为闲置时间不产生利润
可建表
注:Zj为Cj列的每行数分别与XI,X2,k1,k2列相乘然后加的结果(例如:0=0*2+0*3)由表可知X1所在列为最有列,所以K2退出基变组(列表下,红字部分表示交换格)
而由表可知要消去图中绿字所在行必须是图中绿字所在行-2*红字所在行。
消去后的表的情
注:此时由上表可知X2所在列是最有解,切Cj-Zj依旧为正。
所以,此时K1出基(将k1行中各数据*3/10)得到如下表:
注:由表可知此时Cj-Zj为零,如果接续下去此值将会为负所以此时由最大利润为2560即:当摩托车生产16辆,自行车生产12辆是有最大利润。
本题只是为了让和我有一样迷惑的人有一个解题案例,如若真正搞懂线性规划问题的单纯形法还得去以参考书为准。
单纯形法的计算步骤
变量作为换出变量。
L
min
bi
aik
a ik
0
单纯形法旳计算环节
Page 4
③ 用换入变量xk替代基变量中旳换出变量,得到一种新旳基。 相应新旳基能够找出一种新旳基可行解,并相应地能够画出 一种新旳单纯形表。
④ 5)反复3)、4)步直到计算结束为止。
单纯形法旳计算环节
将3化为1
换入列
j
乘
,
x2
,
x3
,
x4
0
Page 1
单纯形法旳计算环节
Page 2
2)求出线性规划旳初始基可行解,列出初始单纯形表。
j
检验数
1 c1 (c3a11 c4a21 ) 3 (0 2 0 1) 3
单纯形法旳计算环节
Page 3
3)进行最优性检验
假如表中全部检验数 止。不然继续下一步。
,j 则表0中旳基可行解就是问题旳最优解,计算停
单纯形法旳计算环节
例1.8 用单纯形法求下列线性规划旳最优解
max Z 3 x1 4 x2
2 x1 x2 40
x1
3x2
30
x1
,
x2
0
解:1)将问题化为原则型,加入松驰变量x3、x4则原则型为:
max Z 3 x1 4 x2
2 x1 x2 x3 40
x1
3x2
x4
30
x1
以
1/3 后
j
得
到
j
30 5/3 0 10 1/3 1
5/3 0
18 1
0
40
1
0
0
Page 5
bi /ai2,ai2>0
(完整word版)运筹学单纯形法
=0
σj=Cj- Zj
2
-1
1
0
0
0
1
S1
0
0
4
-5
1
-3
0
30
30/4
X1
2
1
-1
2
0
1
0
10
10/-1
S3
0
0
2
-3
0
-1
1
10
10/2
Zj
2
-2
4
0
2
0
Z=Z0=0*30+
2*10+0*10
=20
σj=Cj- Zj
0
1
-3
0
-2
0
2
S1
0
0
0
1
1
-1
-2
10
X1
2
1
0
1/2
0
s.t.
5x1+6x2-4x3-4x4+S1=20
3x1-3x2+2x3+8x4+S2=25
4x1-2x2+x3+3x4+S3=10
x1,x2,x3,x4,S1,S2,S3>=0
迭代次数
基变量
CB
(Ci)
X1
X2
X3
X4
S1
S2
S3
b
比值
bi/aij
6
2
10
8
0
0
0
0
S1
0
5
6
-4
-4
1
0
0
20
运筹学1-4单纯形法计算步骤ppt课件
x4
θ
0 x3 21 1 3 1 0 7
0 x4 4 -1 1 0 1 4
cj-zj
3900
0 x3 9 4 0 1 -3
9 x2 4 -1 1 0 1
cj-zj
12 0 0 -9
第19页
cj
3900
CB XB b
x1
x2
x3
x4
θ
0 x3 21 1 3 1 0 7
0 x4 4 -1 1 0 1 4
1 -1 0 1 -
1100
所以把x3换出为非基变量,x2为换入变量即新的基变量。
第29页
cj
CB XB b
0
x3 4
0
x4 2
cj-zj
1
x2 4
1100
x1
x2
x3
x4
θ
-2 1 1 0 4
1 -1 0 1 -
1100
-2 1 1 0
第30页
cj
CB XB b
0
x3 4
0
x4 2
cj-zj
1
θ
0
0 90/1
1
0 75/2
0
1 80/2
0
0
-1/2 0 21
1/2 0 75
-1
1
5
-3 0
2
-5/2
1
-1/2
-1
1
第12页
cj
6
5
0
CB
XB
b
x1
x2
x3
0
x3
90
1
3
1
0
x4
75
2
1
0
运筹学 第二章线性规划 第三讲 单纯形法
[1] 1 2 -1↑
1 0 0 0
1 0 0 0
1 -1 -2 1
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
5→ 6 21
5 1 11
5 6 21/2
表中λj≥0( j=1,2,…,5), 所以最优解为X=(0,5,0,1,11 )T , 最 优值 Z=2x1-2x2-x4=-2×5-1=-11。
大值,因此原问题只要有可行解,新的线性规划问
题的最优解中人工变量的取值一定为0, 这种方
法称为大M单纯形法(简称大M法)。
2.5 单纯形法 Simplex Method
Chapter 1 线性规划 Linear Programming
大M法中加入人工变量后新的线性规划问题为
max Z’=c1x1+c2x2+…+cnxn –Mxn+1 – … –Mxn+m
【解】首先将数学模型化为标准形式
2.5 单纯形法 Simplex Method
Chapter 1 线性规划 Linear Programming
max Z 3x1 2 x 2 x3
式中x4,x5为松弛变量,x5可 4 x1 3x 2 x3 x 4 4 作为一个基变量,第一、三 x x 2 x x 10 约束中分别加入人工变量x6 、 1 2 3 5 x7 , 目 标 函 数 中 加 入 2 x1 2 x 2 x3 1 ―Mx6―Mx7一项,得到人工 x j 0, j 1,2,,5 变量单纯形法数学模型
0 0 1
Z=2 x1 2 x2 (6 x1 x2 ) 6 x1 x2
运筹学01.10单纯形法的算法步骤
运筹学
Operations Research
§1.10
over
2011-3-10
18
取初始可行基B = ( P3 , P4 ) = I 2
无上界.▌
2011-3-10
5
运筹学
Operations Research
例3 利用单纯形法求解线性规划问题:
+ 2 x3 max z = 3 x1 s. t. 2 x1 + x 2 =4 x1 + x3 = 6 x1 , x 2 , x3 ≥ 0
x2
解:取初始可行基
B = ( P1 , P2 , P3 ) = I 3
2011-3-10
10
运筹学
Operations Research
2011-3-10
11
运筹学
Operations Research
至此,返回到第一张单纯形表,出现“循环”. 1976年,R. G. Bland提出Bland规则:枢轴列往前取,枢轴行 往上取.
运筹学
Operations Research
§1.10 单纯形法的算法步骤 1.10
Simplex Method
2011-3-10
1
运筹学
算法步骤:
Operations Research
2011-3-10
2
运筹学
Operations Research
例1 利用单纯形法求解线性规划问题:
max z = 50 x1 + 100 x2 s. t. x1 + x2 ≤ 300 2 x1 + x2 ≤ 400 x2 ≤ 250 x1 , x2 ≥ 0
运筹学单纯形法例题求解过程
运筹学单纯形法例题求解过程摘要:一、运筹学单纯形法概述二、单纯形法求解步骤1.确定基变量和初始基本可行解2.编制初始单纯形表3.判断基本可行解是否为最优解4.迭代求解最优解三、例题求解过程1.题目描述2.化为标准型3.建立初始单纯形表4.迭代计算四、总结正文:一、运筹学单纯形法概述运筹学单纯形法是一种求解线性规划问题的方法,它的主要思想是通过不断迭代,逐步优化基变量的值,从而求得问题的最优解。
单纯形法可以有效地解决具有如下特点的问题:目标函数线性,约束条件线性,变量非负。
二、单纯形法求解步骤1.确定基变量和初始基本可行解在求解线性规划问题时,首先需要确定基变量,即在约束条件方程组中,选择一部分变量作为基变量,用于表示其他变量。
通过寻找或构造单位矩阵的方法,可以确定基变量,从而求出初始基本可行解。
2.编制初始单纯形表基于初始基本可行解和线性规划模型提供的信息,可以编制初始单纯形表。
单纯形表包含了基变量、非基变量、目标函数系数、约束条件系数和检验数等信息,用于描述问题的基本情况。
3.判断基本可行解是否为最优解通过检验数cj-zj 来判断基本可行解是否为最优解。
如果所有非基变量的检验数cj-zj<0,说明已经达到最优解,计算停止。
如果存在cj-zj>0,但所有cj-zj>0 所在列对应的所有aij<0,说明无最优解,计算停止。
如果至少存在一个cj-zj>0,并且所对应的所有j 列中至少有一个aij>0,说明没有达到最优解,需要继续迭代求解。
4.迭代求解最优解在迭代过程中,首先需要确定换入变量,即选择最大检验数对应的非基变量。
然后,利用特定公式计算出换出变量,即在基变量中选择一个与换入变量对应的变量进行替换。
接着,生成新的单纯形表,将换入变量和换出变量进行置换后,调整新基变量对应的矩阵为单位矩阵。
最后,重新计算检验数和目标函数值,返回第二步,直至找到最优解。
三、例题求解过程假设有一个线性规划问题,目标函数为MINfx1x2Mx4Mx6,约束条件为:3x1 + 4x2 ≤ 122x1 + 3x2 ≤ 10x1, x2 ≥ 0首先,将约束条件化为标准型:3x1 + 4x2 + s1 = 122x1 + 3x2 + s2 = 10x1, x2 ≥ 0然后,建立初始单纯形表:| 基变量| 非基变量| 目标函数系数| 约束条件系数| 检验数| ---------------------------------------------------------------------行1 | x1 | s1 | -3 | -4 | -12 |行2 | x2 | s2 | -4 | -3 | -10 |行3 | x1 | x2 | 0 | 0 | 0 | 行4 | s1 | x2 | 0 | 3 | 0 | 行5 | s2 | x1 | 0 | 2 | 0 | 根据初始单纯形表,可以得到初始基本可行解为:x1 = 0, x2 = 0接下来,判断基本可行解是否为最优解:c1 = -12, c2 = -10, c3 = 0, c4 = 0, c5 = 0由于c3、c4 和c5 都小于等于0,所以基本可行解不是最优解,需要继续迭代求解。
运筹学一般单纯形法
1
0 0 0 1
0
1 0 0 0
0
0 1 0 -2
3
6 2 →
Cj-Zj
0
2
0
4
x4
x2 →
8
15
3 P1
10 P2
0 P3
0 P4
θi
注
3
-1
4
5
1
0
0
1
段 1 cj-zj
cj ↓ 0 0
→
0
3
10
0
0
基
x3 x4 →
b
24 15
P1
3 -1 3
P2
4 5 10
P3
1 0 0
P4
0 1 0
θi
注
步骤4.2:判断
(1)若所有检验数均≤0时,即得到最优解和 最优值; (2)若检验数存在正值,继续下一步。
3
0 3 1 3
2
(1) 4 0 0
0
0 0 1 0
1
0 0 0 1
0
1 0 -2 -2
6
2 →
Cj-Zj
0 2 0
4
x2
→
2
0
1
0
0
1
Cj-Zj
Cj 段 ↓
→ 基
0 b
3 P1
4 P2
0 P3
0 P4
0 Qi P5 注
0
1 0 0
x3
x4 x5 → x3
6
12 2 0 2
1
3 0 3 1
2
2 (1) 4 0
用主元列对应的变量(入基变量/调入变量)代替之,进入 下一段。
运筹学-单纯形法1课件
例2:
cj CB XB 0 x3 0 x4
σj 0 X3 1 x1
σj
maxZ x 1 x 2
s.t.
2x 1 x1
x2 x2
100 50
x1,x2 0
1
1
00
bi x1 x2 x3 x4
100 -2 1
1
0
50 [ 1 ] -1 0 1
11
0
0
200 0 -1 1 2
50 1 -1 0 1
唯一最优解;
• a4<0,a5<0, a6≥0
无穷多最优解;
• a6≥0,a4≤0, a5≤0, a4=0或a5=0
无界;
• a6≥0,a5>0,a2≤0, a3≤0
无可行解;
• a4≤0,a5≤0, x4或x2为人工变量, a6≥0 ;
非最优,继续换基: X3换入,x2换出
• x1为人工变量, a6>0 • a4>0,a4>a5;a6/a1>2→a1>0
0 -M -M
x5 x6 x7 θ
0 0 04 -1 1 0 1
0 0 13
-M 0 0 x2入, x6出
1 -1 0 1 -1 1 0 -
3 -3 1 1
3M -1/2
0 1/2
-4M 0 1/2 -1/2 0 1/3 -1/2 1/6
x1入, x7出 9 3/2
3/2 -M-3/2 -M+1/2 x3入, x1出
28.09.2024
11
练习: 列出初始单纯形表,并求解第2小题 的最优解
P55,2.2(1) 2.
28.09.2024
12
单纯形表
(参考资料)运筹学单纯形法例题
1
1
= 40
0
1
0
x4
30
1
[3]
0
σ
(1) j
=cj
− CB
⋅ Pj
3
4
0
30
1
= 10
3
0
0
x3
30
5 3
0
1
1
−
3
4
x2
10
1 3
1
0
1 3
σ
(2) j
=cj
− CB
⋅ Pj
5
4
0
0
−
3
3
这时,非基变量的检验数 σ1
=
5 3
,σ 4
=
−
4 3
,其中 σ 1
>
0
,所以该基可行解不是最优解。
(7)接下来,我们的任务就是找另一个基可行解。即转回到步骤(5)。
然不想干,怎么办呢?为了计算简便,我们期待 B2 = [P3 ,P 2 ] = I ,目前我们只是期待而已。
3
4
0
0
CB
XB
b
x1
x2
x3
x4
bi aik
40
0
x3
40
2
1
1
= 40
0
1
0
x4
30
1
[3]
0
σ
(1) j
=cj
− CB
⋅ Pj
3
4
0
0
x3
0
1
4
x2
1
0
1
30 = 10
3
0
第3页共9页
运筹学单纯形法例题求解过程
运筹学单纯形法求解过程运筹学单纯形法是一种常用的线性规划问题求解方法,它通过迭代计算求解问题的最优解。
在本文中,我们将以一个例题来介绍单纯形法的求解过程。
问题描述假设有一个生产企业需要在两个工厂A和B中生产产品X和Y,企业的目标是以最小的成本满足产品的需求。
已知每个工厂每天的产量以及生产不同产品的成本如下表所示:工厂产量限制X产品成本Y产品成本A 6 5 4B 4 2 3同时,产品的需求量为:•X产品需求量为5•Y产品需求量为4现在,我们的目标是最小化生产成本。
构建线性规划模型首先,我们需要将问题转化为线性规划模型。
根据题目要求,我们可以定义以下变量:•x1:工厂A生产的X产品数量•x2:工厂A生产的Y产品数量•x3:工厂B生产的X产品数量•x4:工厂B生产的Y产品数量则我们的目标是最小化成本,即最小化目标函数:Z=5x1+4x2+2x3+3x4需要满足以下约束条件:•工厂A产量限制:x1+x2≤6•工厂B产量限制:x3+x4≤4•产品X需求量:x1+x3≥5•产品Y需求量:x2+x4≥4同时,对变量的取值有非负约束条件:x1,x2,x3,x4≥0单纯形表格接下来,我们将构建单纯形表格来进行求解。
首先,我们将目标函数和约束条件转化为等式形式,引入人工变量以使得所有约束条件均为“≤”形式。
转化后的模型如下:目标函数:Z=5x1+4x2+2x3+3x4+Mx5+Mx6约束条件:x1+x2+x5=6x3+x4+x6=4x1+x3−x7=5x2+x4−x8= 4其中,M为充分大的正数。
根据以上模型,构建初始单纯形表格如下:基变量x1x2x3x4x5x6x7x8基变量列解x5 1 1 0 0 1 0 0 0 x5 6x60 0 1 1 0 1 0 0 x6 4x7 1 0 1 0 0 0 -1 0 x7 5x80 1 0 1 0 0 0 -1 x8 4Z-5 -4 -2 -3 0 0 0 0 目标函数行0单纯形法的迭代过程根据初始单纯形表格,我们可以使用单纯形法进行迭代计算。
单纯形法基本原理及实例演示
③计算各非基变量xj的检验数j=Cj-CBPj ′,若所有j≤0,则问题已得
到最优解,停止计算,否则转入下步。
④在大于0的检验数中,若某个k所对应的系数列向量Pk≤0,则此问
题是无界解,停止计算,否则转入下步。
⑤根据max{j|j>0}=k原则,确定xk为换入变量(进基变量),再按 规则计算:=min{bi/aik| aik>0}=bl/ aik 确定xBl为换出变量。建 立新的单纯形表,此时基变量中xk取代了xBl的位置。
⑥以aik为主元素进行迭代,把xk所对应的列向量变为单位列向量,即 aik变为1,同列中其它元素为0,转第③ 步。
线性规划的例子
max z 4x1 3x2 2x1 2x2 1600 5x1 2.5x2 2500 x1 400 x1, x2 0
线性规划--标准化
● 引入变量:s1,s2,s3
检验系数区
Z=CBB-1b
初始单纯形表
迭代 基变 次数 量
CB
x1
x2
s1
s2
s3
50 100 0 0 0
比值
b bi ai 2
1 Zj=CBNj j cj zj
Z=CBB-1b
初始单纯形表
基
迭代 次数
变
CB
x1
X2
s1
s2 S3
量
50 100 0 0 0
比值
b bi ai 2
1 1 1 0 0 300
C向量
max z 50 100 0 0
CB
CN
x1
x2
0•
1 1 1
1 0 0
0 1 0
运筹学1-4单纯型法的计算步骤
2 X1 1 3 X2 2
Z8
1 0 -1 4/3 -1/3 0 1 2 -1/3 1/3 0 0 -1 -5/3 -1/3
从最优表可知: 该LP的
最优解是X*=(1, 2, 0, 0, 0)T 相应的目标函数最优值是Zmax=8
表格单纯形法求解步骤
第一步:将LP化为标准型,并加以整理。
引入适当的松驰变量、剩余变量和人工变量 ,使约束条件化为等式,并且约束方程组的系数 阵中有一个单位阵。
(这一步计算机可自动完成)
确定初始可行基,写出初始基本可行解
第二步:最优性检验
计算检验数,检查: 所有检验数是否≤ 0?
是——结束,写出最优解和目标函数最优值; 还有正检验数——检查相应系数列≤ 0?
是——结束,该LP无“有限最优解”! 不属于上述两种情况,转入下一步—基变换。
确定是停止迭代还是转入基变换?
0 1 0
0
0
1
0
0
0
1 c1 c2
0 a1,m1 a1,m2 0 a2,m1 a2,m2
1 a a m,m1 m,m2 cm cm1 cm2
a1,n b1
a2,n
b2
am,n bm
cn 0
-Z,x1,…,xm所对应的系数 列向量构成一个基
用矩阵的初等行变换将该基变成单位阵,这时
c1, c2 , , cm 变成0,相应的增广矩
第四步:判断检验数、入基、出基变量。 …….
三、表格单纯形法:
1、 初始单纯形表的建立 (1)表格结构:
Cj 2 3 3 0 0
CB
XB
b xj
x1 x2 x3 x4 x5
j
0 X4
3
运筹学单纯形法的例题
x1 + 3x2 + x3
=7
s.t. 4x1 + 2x2 -x4+x5 =9
x1, x2 , x3 , x4 , x5 ≥0
基是谁? x3,x5 x5的检验数为0
请它出基,逼它取值为0.
13
---精品---
17.10.2020
练习㈡. 单纯形表
两行,几列? 少一列?
填入第一个约束的数据.
14
---精品---
x3
x4
bi
比
00
1 0 77 0 1 9 9/4
000
00
x3
x4
bi
比
00
1 -0.25 4.75
0 0.25 2.25
019
0 -1 17.10.2020
练习㈡用图解法和单纯形法求
如下线性规划问题的最优解:
Max s.t.
4zxxx1=11+4+, x321xxx2+22≤≥≥x2790
可行域在直线 x1+3x2=7之下__
Max z =4 x1+x2+0x3+0x4-Mx5
x1 + 3x2 + x3
=7
s.t. 4x1 + 2x2 -x4+x5=9
基再是引谁进?一这 理x个1个?, “x“2 人,-”x如工3 ,何变x4处, x5≥ 0
量”1x2 5
---精品---
17.10.2020
练习㈡.用单纯形法
Max z =4x1+x2+0x3+0x4-Mx5
改CB列,__0_换为_4__.
8
---精品---
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学单纯形法例题求解过程
(原创版)
目录
一、运筹学单纯形法的基本概念
二、运筹学单纯形法的求解步骤
1.确定基变量和初始基本可行解
2.编制初始单纯形表
3.判断基本可行解是否为最优解
4.迭代求解下一个使目标函数更优的基本可行解
5.重新计算机会费用和检验数
三、运筹学单纯形法的应用实例
正文
一、运筹学单纯形法的基本概念
运筹学单纯形法是一种求解线性规划问题的方法,它是基于数学和统计学的理论基础,通过逐步优化算法,寻找线性规划问题中最优解的一种方法。
线性规划问题是指在一定约束条件下,寻求目标函数的最小值或最大值的问题。
而单纯形法是线性规划问题中最常用的求解方法之一,它通过迭代计算,不断优化基变量,从而得到问题的最优解。
二、运筹学单纯形法的求解步骤
1.确定基变量和初始基本可行解
在求解线性规划问题时,首先需要确定问题的基变量,即在所有变量中选择若干个变量作为基变量。
基变量的选取可以通过寻找单位矩阵的方法来确定。
确定基变量后,可以求出初始基本可行解,即满足所有约束条件的变量值组合。
2.编制初始单纯形表
根据初始基本可行解和线性规划模型提供的信息,可以编制初始单纯形表。
单纯形表是一个包含基变量、非基变量、目标函数系数、约束条件常数项和检验数等元素的矩阵表。
3.判断基本可行解是否为最优解
在求解过程中,需要判断基本可行解是否为最优解。
这可以通过检验数来进行。
检验数是指非基变量与对应约束条件的乘积,如果所有非基变量的检验数都小于等于 0,说明已经达到最优解。
否则,需要继续迭代求解。
4.迭代求解下一个使目标函数更优的基本可行解
如果基本可行解不是最优解,需要通过迭代求解来寻找下一个使目标函数更优的基本可行解。
迭代过程中,需要确定换入变量和换出变量,然后根据换入变量和换出变量生成新的单纯形表,并重新计算机会费用和检验数。
5.重新计算机会费用和检验数
在迭代过程中,需要重新计算机会费用和检验数,以便判断新的基本可行解是否更优。
如果新的基本可行解的检验数满足条件,说明已经找到最优解,可以结束迭代求解过程。
否则,需要继续迭代求解。
三、运筹学单纯形法的应用实例
在实际应用中,运筹学单纯形法可以用于解决各种线性规划问题,例如资源分配问题、物流运输问题、生产计划问题等。