二次函数顶点式坐标公式

合集下载

数学顶点坐标公式有哪些

数学顶点坐标公式有哪些

数学顶点坐标公式有哪些顶点坐标公式:h=b/2a,k=(4ac-b²)/4a)。

公式描述:公式中(h,k)为顶点坐标,二次函数的顶点式为y=a(x-h)²+k(a≠0)。

顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k(a≠0,k为常数)。

1顶点坐标公式1.y=ax²+bx+c(a≠0)2.y=ax²(a≠0)3.y=ax²+c(a≠0)4.y=a(x-h)²(a≠0)5.y=a(x-h)²+k(a≠0)←顶点式6.y=a(x+h)²+k.7.y=a(x-x₁)(x-x₂)(a≠0)←交点式8.【-b/2a,(4ac-b²)/4a】(a≠0,k为常数,x≠h)2二次函数与抛物线顶点坐标公式二次函数顶点坐标公式一般地,自变量x和因变量y之间存在如下关系:(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0),则称y为x的二次函数。

顶点坐标(-b/2a,(4ac-b^2)/4a)(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).(3)交点式(与x轴):y=a(x-x1)(x-x2)(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点.(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).抛物线顶点坐标公式y=ax²+bx+c(a≠0)的顶点坐标公式是(-b/2a,(4ac-b²)/4a)y=ax²+bx的顶点坐标是(-b/2a,-b²/4a)相关结论过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有①x1*x2 = p^2/4 , y1*y2 = —P^2,要在直线过焦点时才能成立;②焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)^2];③(1/|FA|)+(1/|FB|)= 2/P;④若OA垂直OB则AB过定点M(2P,0);⑤焦半径:|FP|=x+p/2 (抛物线上一点P到焦点F距离等于到准线L距离);⑥弦长公式:AB=√(1+k^2)*│x2-x1│;⑦△=b^2-4ac;⑧由抛物线焦点到其切线的垂线距离,是焦点到切点的距离,与到顶点距离的比例中项;⑨标准形式的抛物线在x0,y0点的切线就是:yy0=p(x+x0)。

二次函数抛物线顶点式顶点坐标顶点式y=a(x-h)^2+k

二次函数抛物线顶点式顶点坐标顶点式y=a(x-h)^2+k

二次函数抛物线顶点式顶点坐标 顶点式:y=a(x-h)^2+k 顶点坐标:(-b/2a,(4ac-b^2)/4a) 在二次函数的图像上 顶点式:y=a(x-h)^2+k 抛物线的顶点P(h,k) 顶点坐标:对于二次函数 y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a)考点扫描 1.会用描点法画出二次函数的图象. 2.能利用图象或配方法确定抛物线的开口方向及对称轴、顶点的位置. 3.会根据已知图象上三个点的坐标求出二次函数的解析式. 4. 将一般式化为顶点式。

讲解 1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 y=ax2 y=a(x-h)2 y=a(x-h)2+k y=ax2+bx+c 顶点坐标 (0,0) (h,0) (h,k) () 对 称 轴 x=0 x=h x=h x= 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到, 当h<0时,则向左平行移动|h|个单位得到. 当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 因此,研究抛物线 y=ax2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便. 2.抛物线y=ax2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=,顶点坐标是(). 3.抛物线y=ax2+bx+c(a≠0),若a>0,当x≤时,y随x的增大而减小;当x≥时,y随x的增大而增大.若a<0,当x≤时,y随x的增大而增大;当x≥时,y随x的增大而减小. 4.抛物线y=ax2+bx+c的图象与坐标轴的交点: (1)图象与y轴一定相交,交点坐标为(0,c); (2)当△=b2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0 (a≠0)的两根.这两点间的距离AB=|x2-x1|=. 当△=0.图象与x轴只有一个交点; 当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0. 5.抛物线y=ax2+bx+c的最值:如果a>0(a<0),则当x=时,y最小(大)值=. 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax2+bx+c(a≠0). (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h) 2+k(a≠0). (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0). 7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。

二次函数顶点坐标公式是什么怎么算

二次函数顶点坐标公式是什么怎么算

二次函数顶点坐标公式是什么怎么算
二次函数的顶点坐标公式是数学中一个重要的知识点,根据二次函数解析式形式的不同,顶点的计算方法也不同。

下面是由小编编辑为大家整理的“二次函数顶点坐标公式是什么怎么算”,仅供参考,欢迎大家阅读本文。

顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k (a≠0,k为常数)顶点坐标:【-b/2a,(4ac-b²)/4a】。

1、解析式为y=ax²时,顶点坐标为(0,0),抛物线关于x=0这条直线对称
2、解析式为y=a(x-h)²时,这时解析式的形式就为顶点式,顶点坐标为(h,0),抛物线关于x=h 这条直线对称
3、解析式为y=a(x-h)²+k时,这时解析式的形式就为顶点式,顶点坐标为(h,k),抛物线关于
x=h这条直线对称
4、解析式为y=ax²+bx+c时,这时解析式为二次函数通用式,顶点坐标为(-b/2a,4ac-b²/4a),抛物线关于x=-b/2a对称
y=ax^2+bx+c
y=a(x^2+bx/a+c/a)
y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)
y=a(x+b/2a)^2+c-b^2/4a
y=a(x+b/2a)^2+(4ac-b^2)/4a
对称轴x=-b/2a
顶点坐标(-b/2a,(4ac-b^2)/4a)。

初中二次函数的所有知识点

初中二次函数的所有知识点

初中二次函数知识点归纳二次函数的顶点坐标公式及推导过程二次函数的一般形式:y=ax^2+bx+c(a,b,c为常数,a≠0)二次函数的顶点式:y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)推导过程:y=ax^2+bx+cy=a(x^2+bx/a+c/a)y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)y=a(x+b/2a)^2+c-b^2/4ay=a(x+b/2a)^2+(4ac-b^2)/4a对称轴x=-b/2a顶点坐标(-b/2a,(4ac-b^2)/4a)二次函数的三种表达式二次函数的一般式为:y=ax²+bx+c(a≠0)。

二次函数的顶点式:y=a(x-h)²+k 顶点坐标为(h,k)二次函数的交点式:y=a(x-x₁)(x-x₂) 函数与图像交于(x₁,0)和(x₂,0)二次函数的性质(1)二次函数的图像是抛物线,抛物线是轴对称图形。

对称轴为直线x=-b/2a。

(2)二次项系数a决定抛物线的开口方向和大小。

(3)一次项系数b和二次项系数a共同决定对称轴的位置。

(4)常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0, c)。

二次函数与图像的关系(一)a与图像的关系1.开口方向当a>0时,开口向上。

当a<0时,开口向下,2.开口大小|a|越大,图像开口越小。

|a|越小,图像开口越大。

(二)b与图像的关系当b=0时,对称轴为y轴。

当ab>0时,对称轴在y轴左侧。

当ab<0时,对称轴在y轴右侧。

(三)c与图像的关系当c=0时,图像过原点。

当c>0时,图像与y轴正半轴相交。

当c<0时,图像与y轴负半轴相交。

二次函数的对称轴公式二次函数图像是轴对称图形。

对称轴为直线x=-b/2a。

对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。

特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。

顶点坐标公式

顶点坐标公式

顶点坐标公式
二次函数抛物线顶点式&顶点坐标
顶点式:y=a(x-h)^2+k (a≠0,k为常数,x≠h)
顶点坐标:(-b/2a),(4ac-b^2)/4a)
二次函数y=ax2;,y=a(x-h)2;,y=a(x-h)2;+k,
y=ax2;+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
y=ax2
y=a(x-h)2
y=a(x-h)2+k
y=ax2+bx+c
顶点坐标
[0,0]
[h,0]
[h,k]
[-b/2a,(4ac-b2)/4a ]
对称轴
x=0
x=h
x=h
x=-b/2a
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2;向右平行移动h个单位得到,
当h0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
当h>0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
当h0时,开口向上"当a0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x2-x1|=.
当△=0.图象与x轴只有一个交点;
当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a
5.抛物线y=ax2+bx+c的最值:如果a>0(a。

二次函数交点式顶点坐标公式

二次函数交点式顶点坐标公式

二次函数交点式顶点坐标公式
二次函数的标准形式为:y = ax^2 + bx + c,其中a、b、c为常数,a≠0。

二次函数的顶点坐标可以通过求导和配方法来求解。

一、求导法求顶点坐标:
二次函数的导函数为:
y' = 2ax + b
令导函数为0,求得x的值,即为顶点的x坐标。

2ax + b = 0
x=-b/(2a)
将x的值带入原函数,求得y的值,即为顶点的y坐标。

y=a(-b/(2a))^2+b(-b/(2a))+c
y=a(b^2/(4a^2))-b^2/(2a)+c
y=b^2/(4a)-b^2/(2a)+c
y=-b^2/(4a)+c
所以,顶点的坐标为(-b/(2a),-b^2/(4a)+c)。

二、配方法求顶点坐标:
将二次函数的标准形式转化为顶点式:
y=a(x-h)^2+k,其中(h,k)为顶点坐标。

将二次函数的标准形式展开:
y = ax^2 + bx + c
=a(x^2+(b/a)x)+c
=a(x^2+(b/a)x+(b^2/(4a^2))-(b^2/(4a^2)))+c =a(x+b/2a)^2+c-b^2/(4a)
与顶点式对比,可得:
h=-b/(2a)
k=c-b^2/(4a)
所以,顶点的坐标为(-b/(2a),c-b^2/(4a))。

综上所述,二次函数的交点式顶点坐标公式为:顶点坐标为(-b/(2a),c-b^2/(4a))。

希望能够帮到您!。

二次函数公式:顶点式、交点式、两根式

二次函数公式:顶点式、交点式、两根式

一般地,自变量x和因变量y之间存在如下关系:(1)一般式:y=ax2+bx+c (a,b,c为常数,a0),则称y为x的二次函数。

顶点坐标(-b/2a,(4ac-b^2)/4a)(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a0)。

(3)交点式(与x轴):y=a(x-x1)(x-x2)(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a0.说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点。

(2)当抛物线y=ax2+bx+c 与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的
分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2)。

二次函数所有表达式

二次函数所有表达式

二次函数所有表达式
二次函数是一种常见的数学函数,它的一般表达式为
y=ax^2+bx+c,其中a、b、c都是常数。

除了一般表达式,二次函数还可以用其他形式来表示。

1. 顶点式:y=a(x-h)^2+k,其中(h,k)为顶点坐标。

2. 截距式:y=a(x-p)(x-q),其中p、q分别为x轴上的两个点的坐标。

3. 标准式:(x-h)^2/4p+(y-k)^2/4q=1,其中(h,k)为椭圆的中心坐标,2p为椭圆在x轴上的轴长,2q为椭圆在y轴上的轴长。

4. 参数式:x=acosθ,y=bsinθ,其中(a,b)为椭圆的长短半轴长度,θ为椭圆上某一点与x轴正方向的夹角。

了解不同的二次函数表达式,可以更方便地进行函数的转化、计算和图像绘制。

- 1 -。

二次函数的三种表示方式

二次函数的三种表示方式

二次函数的三种表示方式1.二次函数的一般式:y=ax2+bx+c(a≠0);2.二次函数的顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.①并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在下列关系:(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx+c=0的两根,所以x 1+x2=,x1x2=,即=-(x1+x2),=x1x2.所以,y=ax2+bx+c=a( )= a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论:若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法:3.二次函数的交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.。

二次函数顶点式坐标公式

二次函数顶点式坐标公式

二次函数顶点式坐标公式
二次函数的标准式为$y=ax^2+bx+c$,顶点坐标公式为:
顶点坐标$(x_1,y_1)=(\frac{-b}{2a},\frac{4ac-b^2}{4a})$。

其中,$a$、$b$、$c$分别为二次项系数、一次项系数和常数项。

从二次函数的标准式$y=ax^2+bx+c$可以推出$b^2-4ac$的式子,通常称为判别式。

当判别式的值大于0时,表明二次函数有两个不同的实根,即有两个不同的顶点;如果判别式的值等于0时,表明二次函数有一个相同的实根,即只有一个顶点;如果判别式的值小于0时,表明二次函数没有实根,即没有顶点。

知道了二次函数的标准式和判别式,就可以用顶点坐标公式来计算求出顶点坐标:
顶点坐标$(x_1,y_1)=(\frac{-b}{2a},\frac{4ac-b^2}{4a})$。

公式中,$x_1$表示横坐标,$y_1$表示纵坐标,$a$、$b$、$c$分别为二次项系数、一次项系数和常数项,当然也可以扩展到$n$次多项式的顶点坐标。

二次函数顶点坐标公式的推导过程

二次函数顶点坐标公式的推导过程

⼆次函数顶点坐标公式的推导过程 ⼆次函数顶点坐标公式的推导过程是什么呢?感兴趣的⼩伙伴快来和⼩编⼀起看看吧。

下⾯是由店铺⼩编为⼤家整理的“⼆次函数顶点坐标公式的推导过程”,仅供参考,欢迎⼤家阅读。

⼆次函数顶点坐标公式的推导过程 ⼆次函数的顶点式:y=a(x-h)^2+k k(a≠0,a、h、k为常数),顶点坐标为(h,k) 推导过程:y=ax^2+bx+cy=a(x^2+bx/a+c/a) y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2) y=a(x+b/2a)^2+c-b^2/4a y=a(x+b/2a)^2+(4ac-b^2)/4a 对称轴x=-b/2a顶点坐标(-b/2a,(4ac-b^2)/4a) 拓展阅读:⼆次函数的顶点表达式 y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k) [4] ,对称轴为直线x=h,顶点的位置特征和图像的开⼝⽅向与函数y=ax²的图像相同,当x=h时,y最⼤(⼩)值=k.有时题⺫会指出让你⽤配⽅法把⼀般式化成顶点式。

例:已知⼆次函数y的顶点(1,2)和另⼀任意点(3,10),求y的解析式。

解:设y=a(x-1)²+2,把(3,10)代⼊上式,解得y=2(x-1)²+2。

注意:与点在平⾯直⾓坐标系中的平移不同,⼆次函数平移后的顶点式中,h>0时,h越⼤,图像的对称轴离y轴越远,且在x轴正⽅向上,不能因h前是负号就简单地认为是向左平移。

具体可分为下⾯⼏种情况: 当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平⾏移动h个单位得到; 当h>0时,y=a(x+h)²的图像可由抛物线y=ax²向左平⾏移动h个单位得到;当h>0,k>0时,将抛物线y=ax²向右平⾏移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图像; 当h>0,k>0时,将抛物线y=ax²向左平⾏移动h个单位,再向下移动k个单位,就可以得到y=a(x+h)²-k的图像; 当h<0,k>0时,将抛物线y=ax²向左平⾏移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图像; 当h<0,k<0时,将抛物线y=ax²向左平⾏移动|h|个单位,再向上移动|k|个单位可得到y=a(x-h)²+k的图像。

两点式的顶点坐标

两点式的顶点坐标
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]。
交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线]。
当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可以转化为两根式y=a(x-x1)(x-x2)。
二次函数的三种表达式如下:
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)。
两点式Байду номын сангаас顶点坐标
二次函数的顶点公式为:y=a(x-h)^2+k。
二次函数的基本表示形式为y=ax^2+bx+c,其中a、b、c为常数,且a≠0),二次函数的图像是一条对称轴与y轴平行或者重合于y轴的抛物线。
任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上。当k=0时,抛物线a(x-h)2的顶点在x轴上。当h=0且k=0时,抛物线y=ax2的顶点在原点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数顶点式坐标公式
顶点式坐标公式为y=a(x-h)^2+k,其中(h,k)表示二次函数的顶点的坐标。

为了推导二次函数顶点式坐标公式,首先我们需要将一般形式的二次函数转化为顶点式坐标公式。

步骤1:将一般形式的二次函数y=ax^2+bx+c写成完全平方的形式。

在一般形式中,我们可以通过配方法将二次项的系数a提取出来,即y=a(x^2+(b/a)x)+c。

然后,我们将括号内的完全平方形式写为(x+(b/2a))^2,即
y=a(x+(b/2a))^2+c-(b^2/4a)。

步骤2:通过移项将表达式转化为顶点式坐标公式。

现在,我们将上式右侧的两项合并为常数k,即k=c-(b^2/4a)。

我们可以将x+(b/2a)看作是一个新的变量,记为u=x+(b/2a)。

则y=a(u^2)+k。

因此,我们得到了二次函数顶点式坐标公式y=a(x-h)^2+k,其中h=-b/2a,k=c-(b^2/4a)。

这表示二次函数的顶点在坐标(h,k)处。

顶点式坐标公式的解释如下:
1.顶点的横坐标x坐标为-h,其中h为一次项系数b与二次项系数a 的比值的负数。

它满足h=-b/2a,表示顶点横坐标在x=-b/2a处。

2.顶点的纵坐标y坐标为k,其中k为常数c减去(b^2/4a)。

它满足
k=c-(b^2/4a),表示顶点纵坐标为c-(b^2/4a)。

顶点式坐标公式的应用:
1.找到二次函数的顶点坐标,以便画出函数的图像。

2.通过顶点坐标,确定二次函数在x轴上的对称轴。

3.分析二次函数的开口方向(凸向上还是凸向下):当a>0时,开口
向上;当a<0时,开口向下。

4.根据顶点坐标,确定二次函数在x轴上的最值。

当二次函数开口向
上时,顶点是二次函数的最小值;当二次函数开口向下时,顶点是二次函
数的最大值。

总之,二次函数顶点式坐标公式是一种便于分析和计算二次函数的顶
点位置的方法。

通过这个公式,我们可以简单地找到二次函数的顶点坐标,并利用它来解决各种相关问题。

相关文档
最新文档