6.图像的傅立叶变换---数字图像处理实验报告
数字图像处理实验报告

数字图像处理实验报告实验一数字图像处理编程基础一、实验目的1. 了解MATLAB图像处理工具箱;2. 掌握MATLAB的基本应用方法;3. 掌握MATLAB图像存储/图像数据类型/图像类型;4. 掌握图像文件的读/写/信息查询;5. 掌握图像显示--显示多幅图像、4种图像类型的显示方法;6. 编程实现图像类型间的转换。
二、实验内容1. 实现对图像文件的读/写/信息查询,图像显示--显示多幅图像、4种图像类型的显示方法、图像类型间的转换。
2. 运行图像处理程序,并保存处理结果图像。
三、源代码I=imread('cameraman.tif')imshow(I);subplot(221),title('图像1');imwrite('cameraman.tif')M=imread('pout.tif')imview(M)subplot(222),imshow(M);title('图像2');imread('pout.bmp')N=imread('eight.tif')imview(N)subplot(223),imshow(N);title('图像3');V=imread('circuit.tif')imview(V)subplot(224),imshow(V);title('图像4');N=imread('C:\Users\Administrator\Desktop\1.jpg')imshow(N);I=rgb2gary(GRB)[X.map]=gary2ind(N,2)RGB=ind2 rgb(X,map)[X.map]=gary2ind(I,2)I=ind2 gary(X,map)I=imread('C:\Users\dell\Desktop\111.jpg');subplot(231),imshow(I);title('原图');M=rgb2gray(I);subplot(232),imshow(M);[X,map]=gray2ind(M,100);subplot(233),imshow(X);RGB=ind2rgb(X,map);subplot(234),imshow(X);[X,map]=rbg2ind(I);subplot(235),imshow(X);四、实验效果实验二 图像几何变换实验一、实验目的1.学习几种常见的图像几何变换,并通过实验体会几何变换的效果;2.掌握图像平移、剪切、缩放、旋转、镜像等几何变换的算法原理及编程实现;3.掌握matlab 编程环境中基本的图像处理函数。
图像处理实习报告

图像处理实习报告篇一:数字图像处理实习报告目录1、图像直方图实验 (1)2、图像的傅立叶变换实验 .......................................... 23、直方图均衡化实验 .................................................. 5 4.图像空间平滑实验 .................................................. 6 5.图像空间锐化实验.................................................. 8 6、图像分割实验-.................................................... 12 7、图像分割实验二 (17)1、图像直方图实验一、实验目的1.在ENVI软件中观察图像的灰度直方图,结合图像掌握直方图的性质和应运。
2.学有余力的同学可采用自己熟悉的开发语言如matlab,IDL等自己制作图像的灰度直方图。
二、实验素材ENVI软件,图像三、实验原理灰度直方图反映的是灰度级函数,描述的是图像中该灰度级的像素个数,它是图像的重要特征之一,反映了图像灰度分布情况。
任何一张图像都对应着唯一的灰度直方图,但不同的图像可以对应相应的直方图,可以用实验来验证。
四、实验过程下图为实验步骤截图:1五、实验心得:通过本次试验学会在Envi软件中查看图像的灰度直方图,在灰度直方图上,准确的反映了图像灰度分布的情况。
2、图像的傅立叶变换实验一、实验目的理解傅立叶变换的原理和傅里叶变换的使用,掌握运用ENVI进行傅立叶变换及频率域平滑和锐化的步骤和方法。
二、实验素材2Envi 软件,图像三、实验原理傅立叶变换原理:连续:反变换:F{f(x)}?F(u)??f(x)e?j2?uxdxj?1f(x)?F?1{F(u)}??F(u))ej2?uxdu1F(u)?N离散:f(x)?反变换:x?0N?1f(x)e?j2?ux/Nj2?ux/NN?1x?0F(u)e四、实验过程:利用傅立叶变换方法进行图像异常(高频)信息提取:1、打开ENVI4.7,单击FILE菜单,在下拉菜单中选择open image file 选项,单击打开自己的图像文件。
matlab 数字图像处理实验报告(五份)

《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。
二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。
从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。
其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。
此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。
频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。
常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。
假定原图像为f(x,y),经傅立叶变换为F(u,v)。
频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。
四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\624baf9dbcc4910a.jpg');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'IMG_20170929_130307.jpg', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 196Original Image2.给定函数的累积直方图。
图像处理实验报告

实验报告实验课程名称:数字图像处理班级:学号:姓名:注:1、每个实验中各项成绩按照10分制评定,每个实验成绩为两项总和20分。
2、平均成绩取三个实验平均成绩。
2016年 4 月18日实验一 图像的二维离散傅立叶变换一、实验目的掌握图像的二维离散傅立叶变换以及性质二、实验要求1) 建立输入图像,在64⨯64的黑色图像矩阵的中心建立16⨯16的白色矩形图像点阵,形成图像文件。
对输入图像进行二维傅立叶变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上。
2) 调整输入图像中白色矩形的位置,再进行变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上,比较变换结果。
3) 调整输入图像中白色矩形的尺寸(40⨯40,4⨯4),再进行变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上,比较变换结果。
三、实验仪器设备及软件HP D538、MATLAB四、实验原理傅里叶变换作为分析数字图像的有利工具,因其可分离性、平移性、周期性和共轭对称性可以定量地方分析数字化系统,并且变换后的图像使得时间域和频域间的联系能够方便直观地解决许多问题。
实验通过MATLAB 实验该项技能。
设),(y x f 是在空间域上等间隔采样得到的M ×N 的二维离散信号,x 和y 是离散实变量,u 和v 为离散频率变量,则二维离散傅里叶变换对一般地定义为∑∑-=-=+-=1010)],(2ex p[),(1),(M x N y Nyu M xu j y x f MN v u F π,1,0=u …,M-1;y=0,1,…N-1 ∑∑-=-=+=1010)],(2ex p[),(),(M x N y Nuy M ux j v u F y x f π ,1,0=x …,M-1;y=0,1,…N-1在图像处理中,有事为了讨论上的方便,取M=N ,这样二维离散傅里叶变换对就定义为,])(2ex p[),(1),(1010∑∑-=-=+-=N x N y Nyu xu j y x f N v u F π 1,0,=v u …,N-1 ,])(2ex p[),(1),(1010∑∑-=-=+=N u N v Nvy ux j v u F N y x f π 1,0,=y x ,…,N-1 其中,]/)(2exp[N yv xu j +-π是正变换核,]/)(2exp[N vy ux j +π是反变换核。
数字图像处理实验报告

实验三、图像的傅立叶变换一、实验目的1、了解图像变换的意义和手段;2、熟悉傅里叶变换的性质;3、熟练掌握FFT变换及其应用;4、通过实验了解二维频谱的分布特点;5、通过本实验掌握利用MATLAB编程实现数字图像的傅立叶变换。
二、实验设备1、计算机;2、MATLAB软件;3、记录用的笔、纸。
4、移动式存储器(软盘、U盘等)。
三、实验原理1、应用傅立叶变换进行图像处理傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。
通过实验培养这项技能,将有助于解决大多数图像处理问题。
2、傅立叶(Fourier)变换的定义二维Fourier变换和二维离散傅立叶变换为:图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参1见相关书目,有关傅立叶变换的快速算法的程序不难找到。
实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。
四、实验步骤1、打开计算机,启动MATLAB程序;2、利用MatLab工具箱中的函数编制FFT频谱显示的函数;3、 a).调入、显示“实验一”获得的图像;图像存储格式应为“.gif”;b)对这幅图像做FFT并利用自编的函数显示其频谱;4、实现数字图像傅立叶变换的部分参考程序:I=imread(‘原图像名.gif’); %读入原图像文件imshow(I); %显示原图像fftI=fft2(I); %二维离散傅立叶变换sfftI=fftshift(fftI); %直流分量移到频谱中心RR=real(sfftI); %取傅立叶变换的实部II=imag(sfftI); %取傅立叶变换的虚部A=sqrt(RR.^2+II.^2);%计算频谱幅值A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225; %归一化figure; %设定窗口imshow(A); %显示原图像的频谱五、实验数据记录输入数字图像傅立叶变换的代码如下:I=imread(‘fengshu.gif’);imshow(I);fftI=fft2(I);sfftI=fftshift(fftI);RR=real(sfftI);II=imag(sfftI);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225;figure;imshow(A);运行以上程序原图像经傅立叶变换后的图像3实验四、图像的离散余弦变换和哈达玛变换一、实验目的1、了解图像离散余弦变换和逆变换的原理;2、理解离散余弦变换系数的特点;3、理解离散余弦变换在图像数据压缩中的应用;4、理解哈达玛变换的原理。
图像的傅里叶变换、反变换地实现

课程大作业实验报告图像傅里叶变幻、反变换的实现课程名称:数字图像处理组长:王文雄学号:200730590323 年级专业班级:07通信3班成员一:庞柱坚学号:200730590318 年级专业班级:07通信3班成员二:王弥光学号:200730590322年级专业班级:07通信3班成员三:学号:年级专业班级:07通信3班指导教师邓继忠报告提交日期2010年6月1日项目答辩日期2010年6月1日目录1. 项目要求 (4)2. 项目开发环境 (4)3. 系统分析 (4)3.1. 系统的主要功能分析 (4)3.2. 系统的关键问题及解决方法(或思路) (7)4. 系统设计 (11)4.1. 程序流程图及说明 (11)4.2. 程序主要模块(或功能)介绍 (12)4.2.1. 一维FFT 和IFFT (12)4.2.2. 二维图像FFT 和IFFT: (14)5. 实验结果与分析 (15)5.1. 实验结果 (15)5.2. 项目的创新之处 (16)5.3. 存在问题及改进设想 (17)6. 心得体会 (17)6.1. 系统开发的体会 (17)6.2. 对本门课程的改进意见或建议 (18)7. 附件一 (19)1.项目要求1.基本要求:自修教材相关内容(P52-74)或其它参考资料,在CVI下编程对尺寸为2N(N 为正整数)的图像进行FFT(快速傅里叶变换)和(快速傅里叶反变换)。
(不能利用CVI下的函数)2.题目拓展:编程实现任意大小图像的二维傅立叶的变换与反变换。
2.项目开发环境项目开发环境主要分为软件环境和硬件环境软件:Lab Windows/CVI和IMAQ_Vision for LabWindows/CVI。
Lab Windows/CVI 是美国National Instrument(简称NI)公司开发的基于C语言的虚拟仪器开发平台,适用于自动测试、自动控制、测试仪器通信、测试硬件控制、信号分析及图像处理等软件的开发。
6.图像的傅立叶变换 - 数字图像处理实验报告

计算机与信息工程学院验证性实验报告一、实验目的1了解图像变换的意义和手段;2熟悉傅立叶变换的基本性质; 3熟练掌握FFT 变换方法及应用; 4通过实验了解二维频谱的分布特点;5通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。
6评价人眼对图像幅频特性和相频特性的敏感度。
二、实验原理1 应用傅立叶变换进行图像处理傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。
通过实验培养这项技能,将有助于解决大多数图像处理问题。
对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。
2 傅立叶(Fourier )变换的定义对于二维信号,二维Fourier 变换定义为:2()(,)(,)j ux uy F u v f x y e dxdy π∞∞-+-∞-∞=⎰⎰逆变换:2()(,)(,)j ux uy f x y F u v e dudv π∞∞+-∞-∞=⎰⎰二维离散傅立叶变换为:112()001(,)(,)i k N N j mn N Ni k F m n f i k eNπ---+===∑∑逆变换:112()001(,)(,)i k N N j mn N Nm n f i k F m n eNπ--+===∑∑图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。
实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。
3利用MATLAB软件实现数字图像傅立叶变换的程序:I=imread(‘原图像名.gif’);%读入原图像文件imshow(I); %显示原图像fftI=fft2(I); %二维离散傅立叶变换sfftI=fftshift(fftI); %直流分量移到频谱中心RR=real(sfftI); %取傅立叶变换的实部II=imag(sfftI); %取傅立叶变换的虚部A=sqrt(RR.^2+II.^2); %计算频谱幅值A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225 %归一化figure; %设定窗口imshow(A); %显示原图像的频谱三、实验步骤1.将图像内容读入内存;2.用Fourier变换算法,对图像作二维Fourier变换;3.将其幅度谱进行搬移,在图像中心显示;4.用Fourier系数的幅度进行Fourier反变换;5.用Fourier系数的相位进行Fourier反变换;6.比较4、5的结果,评价人眼对图像幅频特性和相频特性的敏感度。
数字图像处理实验报告

数字图像处理实验报告班级:学号:姓名:实验一DTF变换与余弦变换一、实验内容:用Matlab对某幅图像进行图像的离散付里叶变换、离散余弦变换二、实验目的:1. 掌握傅立叶变换2. 理解频域变换的通用公式3. 掌握离散余弦变换三、实验原理:f=imread(C:\);F=fft2(f);F=fft2(f,P,Q);S=abs(F);Fc=fftshift(F);S2=log(1+abs(Fc));F=ifftshift(Fc);F=ifft2(F);F=real(ifft2(F));dct2f()/idct2()imshow四、源程序:%傅里叶变换clear all;clc;x=imread('C:\Users\K\Desktop\matlab experiment\windows.jpg');y=imread('C:\Users\K\Desktop\matlab experiment\windows1.jpg');subplot(3,2,1);imshow(x);title('x 原图');subplot(3,2,2);imshow(y);title('y 原图');% 傅里叶变换qf=fft2(double(x));lf=fft2(double(y));%取幅度和相位qf1=abs(qf);qf2=angle(qf);lf1=abs(lf);lf2=angle(lf);%进行重建qfr=qf1.*cos(qf2)+qf1.*sin(qf2).*i;lfr=lf1.*cos(lf2)+lf1.*sin(lf2).*i;xr=uint8(abs(ifft2(qfr)));yr=uint8(abs(ifft2(lfr)));subplot(3,2,3);imshow(xr,[]);title('x幅谱与相谱重建'); subplot(3,2,4);imshow(yr,[]);title('y幅谱与相谱重建'); qfrm=qf1.*cos(lf2)+qf1.*sin(lf2).*i;lfrm=lf1.*cos(qf2)+lf1.*sin(qf2).*i;xr1=uint8(abs(ifft2(qfrm)));yr1=uint8(abs(ifft2(lfrm)));subplot(3,2,5);imshow(xr1,[]);title('x幅谱与y相谱重建'); subplot(3,2,6);imshow(yr1,[]);title('y幅谱与x相谱重建');%余弦变换x1=rgb2gray(x);y1=rgb2gray(y);figure(2);subplot(3,2,1);imshow(x1);title('x 原图');subplot(3,2,2);imshow(y1);title('y 原图');dctxchange=dct2(x1);dctychange=dct2(y1);subplot(3,2,3);imshow(log(abs(dctxchange)),[]);title('x图余弦变换幅频');subplot(3,2,4);imshow(log(abs(dctychange)),[]);title('y图余弦变换幅频');subplot(3,2,5);imshow(log(angle(dctxchange)),[]);title('x图余弦变换相频');subplot(3,2,6);imshow(log(angle(dctychange)),[]);title('y图余弦变换相频');%重建dctxchange1=abs(dctxchange);dctxchange2=angle(dctxchange);dctychange1=abs(dctychange);dctychange2=angle(dctychange);figure(2)dctxchanger=dctxchange1.*cos(dctxchange2)+dctxchange1.*sin(dctxch ange2).*i;dctychanger=dctychange1.*cos(dctychange2)+dctychange1.*sin(dctych ange2).*i;dctxchanger=uint8(abs(idct2(dctxchanger)));dctychanger=uint8(abs(idct2(dctychanger)));subplot(221);imshow(dctxchanger,[]);title('x幅谱与相谱重建');subplot(222);imshow(dctychanger,[]);title('y幅谱与相谱重建');dctxchanger=dctxchange1.*cos(dctychange2)+dctxchange1.*sin(dctych ange2).*i;dctychanger=dctychange1.*cos(dctxchange2)+dctychange1.*sin(dctxchange2).*i;dctxchanger1=uint8(abs(idct2(dctxchanger)));dctychanger1=uint8(abs(idct2(dctychanger)));subplot(223);imshow(dctxchanger1,[]);title('x幅谱与y相谱重建');subplot(224);imshow(dctychanger1,[]);title('y幅谱与x相谱重建');五、实验结果:实验二图像点操作一、实验内容:用Matlab对某幅图像进行反变换、对数变换、指数变换、分段线性变换二、实验目的:理解并掌握图像点运算处理三、实验原理:为了突出感兴趣的目标或灰度区间 相对抑制那些不感兴趣的目标或灰度区间常采用分段线性变换法。
数字图像处理实验报告.doc

数字图像处理试验报告实验二:数字图像的空间滤波和频域滤波姓名: XX学号: 2XXXXXXX实验日期:2017年4月26日1. 实验目的1. 掌握图像滤波的基本定义及目的。
2. 理解空间域滤波的基本原理及方法。
3. 掌握进行图像的空域滤波的方法。
4. 掌握傅立叶变换及逆变换的基本原理方法。
5. 理解频域滤波的基本原理及方法。
6. 掌握进行图像的频域滤波的方法。
2. 实验内容与要求1. 平滑空间滤波:1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。
2)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。
3)使用函数 imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’ replicate ’、’ symmetric ’、’ circular ’)进行低通滤波,显示处理后的图像。
4) 运用 for 循环,将加有椒盐噪声的图像进行10 次, 20 次均值滤波,查看其特点, 显示均值处理后的图像(提示 : 利用 fspecial 函数的’ average ’类型生成均值滤波器)。
5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。
6)自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。
2.锐化空间滤波1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 81;1,1, 1]对其进行滤波。
2) 编写函数 w = genlaplacian(n) ,自动产生任一奇数尺寸n 的拉普拉斯算子,如 5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]3) 分别采用5×5,9×9,15×15 和 25×25 大小的拉普拉斯算子对blurry_moon.tif进行锐化滤波,并利用式 g(x, y)2 f (x, y) 完成图像的锐化增强,观察其有何f (x, y)不同,要求在同一窗口中显示。
数字图像处理及MATLAB实现实验四——图像变换

数字图像处理及MATLAB实现实验四——图像变换1.图像的傅⾥叶变换⼀(平移性质)傅⾥叶变换的平移性质表明了函数与⼀个指数项相乘等于将变换后的空域中⼼移到新的位置,并且平移不改变频谱的幅值。
I=imread('1.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));I=imread('2.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));I=imread('3.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));实验结果符合傅⾥叶变换平移性质2.图像的傅⾥叶变换⼆(旋转性质)%构造原始图像I=zeros(256,256);I(88:168,124:132)=1; %图像范围是256*256,前⼀值是纵向⽐,后⼀值是横向⽐imshow(I)%求原始图像的傅⾥叶频谱J=fft2(I);F=abs(J);J1=fftshift(F);figureimshow(J1,[550])%对原始图像进⾏旋转J=imrotate(I,90,'bilinear','crop');figureimshow(J)%求旋转后图像的傅⾥叶频谱J=fft2(I);F=abs(J);J2=fftshift(F);figureimshow(J2,[550])3.图像的离散余弦变换⼀%对cameraman.tif⽂件计算⼆维DCT变换RGB=imread('cameraman.tif');figure(1)imshow(RGB)I=rgb2gray(RGB);%真彩⾊图像转换成灰度图像J=dct2(I);%计算⼆维DCT变换figure(2)imshow(log(abs(J)),[])%图像⼤部分能量集中在左上⾓处figure(3);J(abs(J)<10)=0;%把变换矩阵中⼩于10的值置换为0,然后⽤idct2重构图像K=idct2(J)/255;imshow(K)4.图像的离散余弦变换⼆% I=imread('1.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% I=imread('2.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% I=imread('3.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% %构造原始图像% I=zeros(256,256);% I(88:168,124:132)=1; %图像范围是256*256,前⼀值是纵向⽐,后⼀值是横向⽐% imshow(I)% %求原始图像的傅⾥叶频谱% J=fft2(I);% F=abs(J);% J1=fftshift(F);figure% imshow(J1,[550])% %对原始图像进⾏旋转% J=imrotate(I,90,'bilinear','crop');% figure% imshow(J)% %求旋转后图像的傅⾥叶频谱% J=fft2(I);% F=abs(J);% J2=fftshift(F);figure% imshow(J2,[550])% %对cameraman.tif⽂件计算⼆维DCT变换% RGB=imread('cameraman.tif');% figure(1)% imshow(RGB)% I=rgb2gray(RGB);% %真彩⾊图像转换成灰度图像% J=dct2(I);% %计算⼆维DCT变换% figure(2)% imshow(log(abs(J)),[])% %图像⼤部分能量集中在左上⾓处% figure(3);% J(abs(J)<10)=0;% %把变换矩阵中⼩于10的值置换为0,然后⽤idct2重构图像% K=idct2(J)/255;% imshow(K)RGB=imread('cameraman.tif');I=rgb2gray(RGB);I=im2double(I); %转换图像矩阵为双精度型T=dctmtx(8); %产⽣⼆维DCT变换矩阵%矩阵T及其转置T'是DCT函数P1*X*P2的参数B=blkproc(I,[88],'P1*x*P2',T,T');maxk1=[ 1111000011100000110000001000000000000000000000000000000000000000 ]; %⼆值掩模,⽤来压缩DCT系数B2=blkproc(B,[88],'P1.*x',mask1); %只保留DCT变换的10个系数I2=blkproc(B2,[88],'P1*x*P2',T',T); %重构图像figure,imshow(T);figure,imshow(B2);figure,imshow(I2);RGB=imread('cameraman.tif');I=rgb2gray(RGB);I=im2double(I); %转换图像矩阵为双精度型T=dctmtx(8); %产⽣⼆维DCT变换矩阵%矩阵T及其转置T'是DCT函数P1*X*P2的参数B=blkproc(I,[88],'P1*x*P2',T,T');maxk1=[ 1111000011100000100000000000000000000000000000000000000000000000 ]; %⼆值掩模,⽤来压缩DCT系数B2=blkproc(B,[88],'P1.*x',mask1); %只保留DCT变换的10个系数I2=blkproc(B2,[88],'P1*x*P2',T',T); %重构图像figure,imshow(T);figure,imshow(B2);figure,imshow(I2);5.图像的哈达玛变换cr=0.5;I=imread('cameraman.tif');I=im2double(I)/255; %将读⼊的unit8类型的RGB图像I转换为double类型的数据figure(1),imshow(I);%显⽰%求图像⼤⼩[m_I,n_I]=size(I); %提取矩阵I的⾏列数,m_I为I的⾏数,n_I为I的列数sizi=8;snum=64;%分块处理t=hadamard(sizi) %⽣成8*8的哈达码矩阵hdcoe=blkproc(I,[sizi sizi],'P1*x*P2',t,t');%将图⽚分成8*8像素块进⾏哈达码变换%重新排列系数CE=im2col(hdcoe,[sizi,sizi],'distinct');%将矩阵hdcode分为8*8互不重叠的⼦矩阵,再将每个⼦矩阵作为CE的⼀列[Y Ind]=sort(CE); %对CE进⾏升序排序%舍去⽅差较⼩的系数,保留原系数的⼆分之⼀,即32个系数[m,n]=size(CE);%提取矩阵CE的⾏列数,m为CE的⾏数,n为CE的列数snum=snum-snum*cr;for i=1:nCE(Ind(1:snum),i)=0;end%重建图像re_hdcoe=col2im(CE,[sizi,sizi],[m_I,n_I],'distinct');%将矩阵的列重新组织到块中re_I=blkproc(re_hdcoe,[sizi sizi],'P1*x*P2',t',t);%进⾏反哈达码变换,得到压缩后的图像re_I=double(re_I)/64; %转换为double类型的数据figure(2);imshow(re_I);%计算原始图像和压缩后图像的误差error=I.^2-re_I.^2;MSE=sum(error(:))/prod(size(re_I));。
数字图像处理实验报告

数字图像处理实验报告实验一数字图像的获取一、实验目的1、了解图像的实际获取过程。
2、巩固图像空间分辨率和灰度级分辨率、邻域等重要概念。
3、熟练掌握图像读、写、显示、类型转换等matlab函数的用法。
二、实验内容1、读取一幅彩色图像,将该彩色图像转化为灰度图像,再将灰度图像转化为索引图像并显示所有图像。
2、编程实现空间分辨率变化的效果。
三、实验原理1、图像读、写、显示I=imread(‘image.jpg’)Imview(I)Imshow(I)Imwrite(I,’wodeimage.jpg’)2、图像类型转换I=mat2gray(A,[amin,amax]);按指定的取值区间[amin,amax]将数据矩阵A转化为灰度图像I,amin对应灰度0,amax对应1,也可以不指定该区间。
[x,map]=gray2ind(I,n);按指定的灰度级n将灰度图像转化为索引图像,n默认为64I=ind2gray(x,map);索引图像转化为灰度图像I=grb2gray(RGB);真彩色图像转化为灰度图像[x,map]=rgb2ind(RGB);真彩色图像转化为索引图像RGB=ind2rgb(x,map);索引图像转化为真彩色图像BW=im2bw(I,level);将灰度图像转化为二值图像,level取值在[0,1]之间BW=im2bw(x,map,level);将索引图像转化为二值图像,level取值在[0,1]之间BW=im2bw(RGB,level);将真彩色图像转化为二值图像,level取值在[0,1]之间四、实验代码及结果1、in=imread('peppers.png');i=rgb2gray(in);[x,map]=gray2ind(i,128);subplot(131),imshow(in)subplot(132),imshow(i)subplot(133),imshow(x),colormap(map)2、%空间分辨率变化的效果clc,close all,cleari=imread('cameraman.tif');i=imresize(i,[256,256]);i1=i(1:2:end,1:2:end);[m1,n1]=size(i)i2=i1(1:2:end,1:2:end);[m2,n2]=size(i2)i3=i2(1:2:end,1:2:end);[m3,n3]=size(i3)subplot(221),imshow(i),xlabel('256x256')subplot(222),imshow(i1),xlabel('128x128')subplot(223),imshow(i2),xlabel('64x64')subplot(224),imshow(i3),xlabel('32x32')256 x 256128 x 12864 x 6432 x 32实验二图像的几何变换一、实验目的掌握图像的基本几何变换的方法1、图像的平移2、图像的旋转二、实验内容练习用matalb 命令实现图像的平移、旋转操作1、.编写实现图像平移的函数2、用imread 命令从你的硬盘读取一幅256×256灰度图;3、调用平移函数,将256×256灰度图平移100行200列,在同一个窗口中显示平移前和平移后的图像。
图像的傅里叶变换实验报告

计算机科学与技术系实验报告专业名称计算机科学与技术 _____课程名称数字图像处理项目名称Matlab 语言、图像的傅里叶变换班级14 计科2班_________学号23 _____________姓名 _______ 卢爱胜______________同组人员张佳佳、王世兜、张跃文_________实验日期 ________________、实验目的与要求:(简述本次实验要求达到的目的,涉及到的相关知识点,实验的具体要求。
)实验目的:1 了解图像变换的意义和手段;2 熟悉傅立叶变换的基本性质;3 熟练掌握FFT 变换方法及应用;4 通过实验了解二维频谱的分布特点;5通过本实验掌握利用MATLABS程实现数字图像的傅立叶变换。
6 评价人眼对图像幅频特性和相频特性的敏感度。
实验要求:应用傅立叶变换进行图像处理傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。
通过实验培养这项技能,将有助于解决大多数图像处理问题。
对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。
二、实验内容(根据本次实验项目的具体任务和要求,完成相关内容,可包括:实验目的、算法原理、实验仪器、设备选型及连线图、算法描述或流程图、源代码、实验运行步骤、关键技术分析、测试数据与实验结果、其他 )1. 傅立叶( Fourier )变换的定义对于二维信号,二维Fourier 变换定义为:F (u, v) f (x,y)e j2 (ux uy)dxdy逆变换:f (x, y) F (u,v)e j2 (ux uy)dudv二维离散傅立叶变换为:clc;clear alll=imread('Fig0707(a)(Original).'); imshow(l); %title(' 原始图像')fftl=fft2(l); sfftl=fftshift(fftl);RR=real(sfftl); ll=imag(sfftl);% % %%% % 读入原图像文件 显示原图像 二维离散傅立叶变换 直流分量移到频谱中心 取傅立叶变换的实部 取傅立叶变换的虚部 计算频谱幅值A=sqrt(RR.A2+ll.A2); A=(A-mi n(mi n( A)))/(max(max(A))-mi n(mi n( A)))*225;%figure; %imshow(A); %title(' 原始图像的频谱')f1=ifft2(A); %设定窗口 显示原图像的频谱 Fourier 系数的幅度进行 Fourier 系数的相位进行 归一化 Fourier 反变换 Fourier 反变换;d N 1N 1 j2 (m 丄 n 上) F(m, n) —f(i,k)e N NN i o k o 逆变换: d N 1N 1 j2 (m 丄 nl)f(i,k) 1F(m, n)e N NN m 0 n 0 图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到 傅立叶变换的芯片,可以实时实现傅立叶变换。
数字图像处理的傅里叶变换

数字图像处理的傅里叶变换1.课程设计目的和意义(1)了解图像变换的意义和手段(2)熟悉傅里叶变换的基本性质(3)热练掌握FFT的方法反应用(4)通过本实验掌握利用MATLAB编程实现数字图像的傅里叶变换通过本次课程设计,掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解决问题等方法,养成良好的学习习惯。
扩展理论知识,培养综合设计能力。
2.课程设计内容(1)熟悉并掌握傅立叶变换(2)了解傅立叶变换在图像处理中的应用(3)通过实验了解二维频谱的分布特点(4)用MATLAB实现傅立叶变换仿真3.课程设计背景与基本原理傅里叶变换是可分离和正交变换中的一个特例,对图像的傅里叶变换将图像从图像空间变换到频率空间,从而可利用傅里叶频谱特性进行图像处理。
从20世纪60年代傅里叶变换的快速算法提出来以后,傅里叶变换在信号处理和图像处理中都得到了广泛的使用。
3.1课程设计背景数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
3.2傅里叶变换(1)应用傅里叶变换进行数字图像处理数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。
20世纪20年代,图像处理首次得到应用。
20世纪60年代中期,随电子计算机的发展得到普遍应用。
60年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。
利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。
数字图像处理主要研究以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种方法对图像进行复原和增强;对图像进行分割、描述和识别等。
数字图像处理实验报告

数字图像处理试验报告实验二:数字图像的空间滤波与频域滤波姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日1、实验目的1、掌握图像滤波的基本定义及目的。
2、理解空间域滤波的基本原理及方法。
3、掌握进行图像的空域滤波的方法。
4、掌握傅立叶变换及逆变换的基本原理方法。
5、理解频域滤波的基本原理及方法。
6、掌握进行图像的频域滤波的方法。
2、实验内容与要求1、平滑空间滤波:1) 读出一幅图像,给这幅图像分别加入椒盐噪声与高斯噪声后并与前一张图显示在同一图像窗口中。
2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果, 要求在同一窗口中显示。
3) 使用函数 imfilter 时, 分别采用不同的填充方法( 或边界选项, 如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。
4) 运用for 循环,将加有椒盐噪声的图像进行10 次,20 次均值滤波,查瞧其特点, 显示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。
5) 对加入椒盐噪声的图像分别采用均值滤波法,与中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。
6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。
2、锐化空间滤波1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]对其进行滤波。
2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]3) 分别采用5×5,9×9,15×15与25×25大小的拉普拉斯算子对blurry_moon、tiff (x, y) -∇2 f (x, y) 完成图像的锐化增强,观察其有何进行锐化滤波,并利用式g(x, y) =不同,要求在同一窗口中显示。
数字图像处理实验报告

数字图像处理实验报告重庆邮电⼤学《数字图像处理》课程上机实验学院⽣物信息学院专业⽣物医学⼯程班级 0611302姓名李霞学号 2013211957实验⼀MATLAB数字图像处理初步⼀、实验⽬的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。
2.熟练掌握在MATLAB中如何读取图像。
3.掌握如何利⽤MATLAB来获取图像的⼤⼩、颜⾊、⾼度、宽度等等相关信息。
4.掌握如何在MATLAB中按照指定要求存储⼀幅图像的⽅法。
5.图像间如何转化。
⼆、实验原理及知识点1、数字图像的表⽰和类别⼀幅图像可以被定义为⼀个⼆维函数f(x,y),其中x和y是空间(平⾯)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。
灰度是⽤来表⽰⿊⽩图像亮度的⼀个术语,⽽彩⾊图像是由单个⼆维图像组合形成的。
例如,在RGB彩⾊系统中,⼀幅彩⾊图像是由三幅独⽴的分量图像(红、绿、蓝)组成的。
因此,许多为⿊⽩图像处理开发的技术适⽤于彩⾊图像处理,⽅法是分别处理三副独⽴的分量图像即可。
图像关于x和y坐标以及振幅连续。
要将这样的⼀幅图像转化为数字形式,就要求数字化坐标和振幅。
将坐标值数字化成为取样;将振幅数字化成为量化。
采样和量化的过程如图1所⽰。
因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。
作为MATLAB基本数据类型的数值数组本⾝⼗分适于表达图像,矩阵的元素和图像的像素之间有着⼗分⾃然的对应关系。
根据图像数据矩阵解释⽅法的不同,MA TLAB把其处理为4类:亮度图像(Intensity images)⼆值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像⼀幅亮度图像是⼀个数据矩阵,其归⼀化的取值表⽰亮度。
若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。
若图像是double类,则像素取值就是浮点数。
数字图像处理实验报告5

实验四:数字图像的频域滤波
1.实验目的
1.掌握傅立叶变换及逆变换的基本原理方法。
2.理解频域滤波的基本原理及方法。
3.掌握进行图像的频域滤波的方法。
2.实验基本原理
1.频域增强
频域增强是利用图像变换方法将原来的图像空间中的图像以某种形式转换到其他空间中,然后利用该空间的特有性质方便地进行图像处理,最后再转换回原来的图像空间中,从而得到处理后的图像。
频域增强的主要步骤是:
选择变换方法,将输入图像变换到频域空间。
在频域空间中,根据处理目的设计一个转移函数,并进行处理。
将所得结果用反变换得到增强的图像。
常用的频域增强方法有低通滤波和高通滤波。
2.高通滤波
由于图像中的细节部分与其高频分量相对应,所以高通滤波可以对图像进行锐化处理。
高通滤波与低通滤波相反,它是高频分量顺利通过,使低频分量受到削弱。
高通滤波器和低通滤波器相似,其转移函数分别为:
1)理想高通滤波器(IHPF)
2)巴特沃斯高通滤波器(BLPF)
3)指数型高通滤波器(ELPF)
图像经过高通滤波处理后,会丢失许多低频信息,所以图像的平滑区基本上会消失。
所以,可以采用高频加强滤波来弥补。
高频加强滤波就是在设计滤波传递函数时,加上一
个大于0小于1的常数c,即:
H′(u,v) =H(u,v)+c
3.实验内容与要求
1.频域高通滤波
1)设计理想高通滤波器或巴特沃斯高通滤波器或高斯高通滤波器,截至频率自选。
2)读出一幅图像,采用设计的滤波器对其进行滤波,滤波后再做反变换,观察不同的
截止频率下采用高通滤波器得到的图像与原图像的区别。
数字图像处理实验报告

实验一、图像的显示与格式变换1、实验目的1)熟悉常用的图像文件格式与格式转换;2)熟悉图像矩阵的显示方法(灰度、索引、黑白、彩色);3)熟悉图像矩阵的格式转换2、实验内容练习图像读写命令imread和imwrite并进行图像文件格式间的转换。
特别是索引图像与1,4,8,16比特图像的存储与转换。
3、实验步骤a.用图像读命令(imread)从你的硬盘中读取图像(cameramen.tif);b.用图像显示功能(imshow)将刚读入的图像显示在一图像窗中;c.显示颜色条功能(colorbar)在图像的左边画一条颜色亮度显示条;d.用(imfinfo)功能得到(gray.bmp)图像的相关信息;e.用(colormap )获取当前图像的调色板,观察调色板中的颜色设置;f.用(getimage)功能从坐标轴取得当前图像数据;g.用(imagesc)功能显示图像从64-128的灰度值;h. 用(immovie)功能将一个4-D 图像创建多帧索引图的电影动画;i. 用(warp)功能将图像('testpat1.tif)显示到纹理映射柱面;思考:怎样让(cameraman.tif)图像如下图一样显示?四.实验结果及代码a.代码:>>X=imread(‘cameraman.tif’)b.代码:>>y=imshow(X)显示的图像为:c、代码:>>I = colorbar('cameraman.tif')H=imshow('cameraman.tif')显示的图像为d、代码:>>info=imfinfo(‘gray.bmp')显示结果为:Filename: [1x71 char]FileModDate: '16-Apr-2010 11:23:52'FileSize: 107786Format: 'bmp'FormatV ersion: 'V ersion 3 (Microsoft Windows 3.x)'Width: 409Height: 259BitDepth: 8ColorType: 'indexed'FormatSignature: 'BM'NumColormapEntries: 256Colormap: [256x3 double]RedMask: []GreenMask: []BlueMask: []ImageDataOffset: 1078BitmapHeaderSize: 40NumPlanes: 1CompressionType: 'none'BitmapSize: 106708HorzResolution: 0V ertResolution: 0NumColorsUsed: 0NumImportantColors: 0e、代码:>>x=imread(‘256.bmp’)color1=colormap %获取当前图象的调色板image (x)info=imfinfo(’256.bmp’)color2=info.Colormap %注意观察调色板有多少种颜色colormap(color2)f、代码:>>I=getimageg、代码:>> imagesc(x,[64 128])h、代码:>> load mri;mov = immovie(D,map); movie(mov,3)显示图像为:i.源代码:>>[x,y,z]=cylinder;I= imread('testpat1.tif');warp(x,y,z,I),图像显示为:思考:代码:>>X=inread('cameramen.tif');Y=[X X];[x,-y,z]=cylinder;I=imread(Y);warp(x,y,z,I)显示图像为:实验二、图像增强一、实验目的1.理解图像直方图的含义;2.了解直方图的应用;3.掌握直方图均衡化的实现方法。
北航数字图象处理实验报告

数字图像处理实验报告实验二图像变换实验1.实验目的学会对图像进行傅立叶等变换,在频谱上对图像进行分析,增进对图像频域上的感性认识,并用图像变换进行压缩。
2.实验容对Lena或cameraman图像进行傅立叶、离散余弦、哈达玛变换。
在频域,对比他们的变换后系数矩阵的频谱情况,进一步,通过逆变换观察不同变换下的图像重建质量情况。
3. 实验要求实验采用获取的图像,为灰度图像,该图像每象素由8比特表示。
具体要求如下:(1)输入图像采用实验1所获取的图像(Lena、Cameraman);(2)对图像进行傅立叶变换、获得变换后的系数矩阵;(3)将傅立叶变换后系数矩阵的频谱用图像输出,观察频谱;(4)通过设定门限,将系数矩阵中95%的(小值)系数置为0,对图像进行反变换,获得逆变换后图像;(5)观察逆变换后图像质量,并比较原始图像与逆变后的峰值信噪比(PSNR)。
(6)对输入图像进行离散余弦、哈达玛变换,重复步骤1-5;(7)比较三种变换的频谱情况、以及逆变换后图像的质量(PSNR)。
4. 实验结果1. DFT的源程序及结果J=imread('10021033.bmp');P=fft2(J);for i=0:size(P,1)-1for j=1:size(P,2)G(i*size(P,2)+j)=P(i+1,j);endendQ=sort(G);for i=1:size(Q,2)if (i<size(Q,2)*0.95 && i+1>=size(Q,2)*0.95)t=Q(i);endendG(abs(G)<t)=0;for n=0:size(P,1)-1for m=1:size(P,2)W(n+1,m)= G(n*size(P,2)+m);endendf2=ifft2(W);f3=uint8(f2);axes(handles.axes2);imshow(f3)axes(handles.axes1);imshow(J)psnr1=psnr(J,f3);set(handles.text3,'string',psnr1);2. DCT的源程序及结果J=imread('10021033.bmp');P=dct2(J);for i=0:size(P,1)-1for j=1:size(P,2)G(i*size(P,2)+j)=P(i+1,j);endendQ=sort(G);for i=1:size(Q,2)if (i<size(Q,2)*0.95 && i+1>=size(Q,2)*0.95)t=Q(i);endendG(abs(G)<t)=0;for n=0:size(P,1)-1for m=1:size(P,2)endendf2=idct2(W);f3=uint8(f2);axes(handles.axes2);imshow(f3)axes(handles.axes1);imshow(J)psnr1=psnr(J,f3);set(handles.text3,'string',psnr1);3.哈达玛变换的源程序及结果J=imread('cat.jpg');J=rgb2gray(J);P=hadamard(512)*(im2double(J))*hadamard(512);for i=0:size(P,1)-1for j=1:size(P,2)G(i*size(P,2)+j)=P(i+1,j);endendQ=sort(G);for i=1:size(Q,2)if (i<size(Q,2)*0.5 && i+1>=size(Q,2)*0.5)t=Q(i);endendG(abs(G)<t)=0;for n=0:size(P,1)-1for m=1:size(P,2)endendf2=inv(hadamard(512))*W*inv(hadamard(512));mm1=max(max(f2));mn1=min(min(f2));f2=255+255/(mm1-mn1)*(f2-mm1);f3=uint8(f2);axes(handles.axes2);imshow(f3)axes(handles.axes1);imshow(J)psnr1=psnr(J,f3);set(handles.text3,'string',psnr1);3实验三图像复原实验1.实验目的利用反向滤波和维纳滤波进行降质图像复原,比较不同参数选择对复原结果的影响。
数字图像处理实验报告

目录实验一:数字图像的基本处理操作 (2)1。
1:实验目的 (2)1。
2:实验任务和要求 (2)1.3:实验步骤和结果 (2)1。
4:结果分析 (6)实验二:图像的灰度变换和直方图变换 (7)2.1:实验目的 (7)2.2:实验任务和要求 (7)2。
3:实验步骤和结果 (7)2。
4:结果分析 (11)实验三:图像的平滑处理 (12)3.1:实验目的 (12)3。
2:实验任务和要求 (12)3。
3:实验步骤和结果 (12)3。
4:结果分析 (16)实验四:图像的锐化处理 (17)4.1:实验目的 (17)4.2:实验任务和要求 (17)4。
3:实验步骤和结果 (17)4.4:结果分析 (19)实验一:数字图像的基本处理操作1.1:实验目的1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用;2、实现图像的读取、显示、代数运算和简单变换。
3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。
1。
2:实验任务和要求1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。
2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题.3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。
4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的对应关系。
1.3:实验步骤和结果1.对实验任务1的实现代码如下:a=imread(’d:\tp.jpg’);i=rgb2gray(a);I=im2bw(a,0。
5);subplot(1,3,1);imshow(a);title('原图像');subplot(1,3,2);imshow(i);title(’灰度图像’);subplot(1,3,3);imshow(I);title('二值图像’);subplot(1,3,1);imshow(a);title('原图像');结果如图1。