DWI.DTI的原理和临床应用
DTI课件
内囊后肢(皮质脊髓束, 皮质球束,皮质桥脑束) 胼胝 体 扣带回 视放射
FA 图上不能显示各神经束的走行 方向
彩色编码FA图
额桥 束 皮丘 束 外囊
内囊后肢(皮质脊髓束, 皮质球束,皮质桥脑束) 胼胝 体 扣带回 视放射 扣带回 胼胝体 内囊前肢
彩色编码的FA 图上能显示各神经束的走行方 向, 红色=左右走行,绿色=前后走行,蓝色 =上下走行
DTI的价值
DTI是目前唯一一种追踪脑白质纤维并反映其解剖连通性的
方向的磁共振成像方式。
DTI实现活体观察组织结构的完整性和连通性,利于对各种
疾病的引起的白质纤维束的损害程度及范围的判断。
DTI可用于显示脑白质内神经传导束的走行方向,实现对人
的中枢神经纤维精细成像。
DTI和DWI的异同
DTI就是一种用数学的方法来表示脑组织内水分子弥散的各项异性
均质介质中:水分子的自由运动
为各向同性,即在各个方向上的
弥散强度大小一致,弥散张量D 描述为球形,沿磁共振的三个主
坐标的特征值为 λ1=λ2=λ3
►脑白质中:由于髓鞘的阻挡,水
分子的弥散被限制在与纤维走行一 致的方向上,具有较高的各向异性, 此时弥散张量可表示为椭球形,其 特征值λ1>λ2>λ3,最大特征值对应
的方向与经过该体素的纤维束走行
平行
弥散张量成像:
MR图像的每一个体素内提供水分子扩散,3X3扩散张量D分布用高斯
Gaussian分布表示6个方向标量������ 3个正交方向������ 多个参数������ ������ ������ X、Y������ ������ ������ Z������ ������
EPI与DWI和DTI分析2
一、磁共振信号的来源不是基于SE(自旋回波序列)就是基于GRE(梯度回波序列)。
二、SE的xy平面信号(所测量用来形成图像的信号)来源是90度脉冲把Z轴的质子宏观向量“翻转”到xy平面。
GRE的xy平面信号来源是小角度(通常小于90度)脉冲把Z轴的质子宏观向量稍微倾斜,而在xy平面上通过矢量分解得到的磁场强度分向量。
三、这两种基础序列上,发展出各种各样的序列,原理就是不断添加各种附加的“条件式”磁场脉冲,修改TE和TR,从而得到想要的目的图像。
比如SE类别下发展出以下各种序列:RARE(弛豫增强快速采集)SS-RARE(单次激发RARE)HF-SS-RARE(半傅立叶采集单次激发RARE)IR(反转恢复)TIR(快速翻转恢复)而GRE类别下则有:扰相梯度回波(Spoiled GRE)稳态进动快速成像(FISP)真实稳态进动快速成像(True FISP)快速梯度回波序列(Fast GRE)PISF(梯度回波序列中的自旋回波)DESS序列CISS序列四、其中,在SE类别中FSE则是为了提高扫描成像速度而诞生的一个序列,全称为快速自旋回波成像(fast spin echo)。
在欧洲厂家飞利浦和西门子的磁共振机器中称之为TSE (tubor spin echo)。
快速SE是一个90º激励射频脉冲后跟随多个或一串180º聚焦射频脉冲,每个聚焦射频脉冲对应不同的相位编码梯度,这样必然得到一串MR回波。
这种技术被称为弛豫增强快速采集(rapid acquisition with relaxation enhancement,RARE)。
理论上,在施加了一次90度脉冲后,只要在横向弛豫完全结束前,施加足够多的180度脉冲,可以得到相应的多次回波信号。
这当然又是一个理论上的美好设想,在实际应用中,当回波链长度不断加长是,随着采集的进行,横向矢量逐渐接近于零,可探测到的人体组织磁共振信号已经衰减到无法形成有诊断价值的图像。
DWI原理和应用
DWI原理和应用一、DWI的概念 1.定义:弥散又称扩散,是指分子从周围环境的热能中获取运动能量而使分子发生的一连串的、小的、随机的位移现象并相互碰撞,也称分子的热运动或布朗运动。
2. DWI技术就是检测扩散运动的方法之一,由于一般人体MR成像的对象是质子,主要是水分子中的质子,因此DWI 技术实际上是通过检测人体组织中水分子扩散运动受限制的方向和程度等信息间接反映组织微观结构的变化。
3. 生物组织内的水分子的扩散分为三大类:细胞外扩散,细胞内扩散,跨膜扩散,且扩散运动受到组织结构、细胞内细胞器和组织大分子的影响。
4. 影响水分子弥散的因素:膜结构的阻挡,大分子蛋白物质的吸附,微血管内流动血液的影响(?)。
5. DWI中的水分子:1)无创探测活体组织中水分子扩散的唯一方法 2)信号来源于组织中的自由水 3)结合水尽管运动受限,但仍不能产生信号 4)不同组织对自由水扩散限制程度不同 5)产生DWI对比 6)检测组织中自由水限制性扩散的程度 6. 常规DWI,主要对细胞外自由水运动敏感 T2WI基础上,施加扩散梯度,组织信号衰减 1)自由水扩散越自由=信号丢失多,DWI信号越低 2)自由水扩散越受限=信号丢失少,DWI信号越高 7. 在均匀介质中,任何方向的弥散系数都相等,这种弥散称为各向同性扩散(eg.脑脊液);在非均匀介质中,各方向的弥散系数不等,这种弥散称为各向异性扩散(eg.脑白质纤维素)。
各向异性扩散在人体组织中是普遍存在的,其中最典型的是脑白质神经纤维束。
水分子在神经纤维长轴方向上扩散运动相对自由,而在垂直于神经纤维长轴的方向上,水分子的扩散运动将明显受到细胞膜和髓鞘的限制。
二、 DWI的原理 1.以SE-EPI序列来介绍DWI的基本原理。
射频脉冲使体素内质子的相位一致,射频脉冲关闭后,由于组织的T2弛豫和主磁场不均匀将造成质子逐渐失相位,从而造成宏观横向磁化矢量的衰减。
除了上述两种因素以外,我们在某个方向上施加一个扩散梯度场,人为在该方向上制造磁场不均匀,造成体素内质子群失相位,然后在施加一个强度与持续时间完全相同的反向扩散梯度场,则会出现两种情况:在该方向上没有位移的质子不会受两次梯度场强的影响而失相位,而移动的质子因两次梯度场引起的相位变化不能相互抵消,而失相位信号衰减。
脑肿瘤的MR DWI和DTI诊断和鉴别诊断
脑肿瘤的DWI和DTI
常见脑肿瘤的DWI和DTI表现
胶质母细胞瘤vs化脓性脑脓肿
T2WI
T1WIC+
化脓性脑脓肿DWI上脓 腔显示为高信号。
DWI
胶质母细胞瘤肿瘤已液化之坏 死腔在DWI上显示为低信号。
常规MRI难于区别二者,DWI区别二者:敏感性=93.3,特 异性=90.9%,PPV=93.3,NPV=90.9,(有例外)。
ADC图
巨大中央帆腔(箭头),由于残余T2效应,出现弥散降低的假阳性 表现。在假弥散上与脑脊液信号一致。
脑肿瘤的DWI和DTI
弥散张量磁共振成像
DTI是一种用于研究中枢神经系统神经 束弥散各向异性和显示白质纤维解剖 的磁共振技术。 神经束成像术(用连续跟踪法制成) 能显示白质纤维的走行轨迹。
DTI 的 物 理
脑肿瘤的DWI和DTI
DWI高信号(低ADC值) 的脑部病变
D W I 高 信 号 病 灶(Ⅰ)
细胞毒性水肿
神经元/胶质细胞细胞毒性水肿
急性脑梗死
脑炎
早期坏死灶(未液化者) 脑病(如线粒体性脑病等)
缺氧缺血性脑病
Reys综合征
癫痫持续状态 脑外伤
透神经元性变性(Transneuronal degeneration)与兴奋性毒性有关
D W I 高 信 号 病 灶(Ⅱ)
细胞毒性水肿
轴索水肿 弥漫性轴索损伤(DAI) Wallerian变性
髓鞘内(裂)水肿(神经髓鞘细胞水肿) 早期多发性硬化症 中毒性和代谢性脑病 (包括氟和钾中毒等)
D W I 高 信 号 病 灶(Ⅲ)
DTI原理及临床应用
一、概述
DTI是在DWI基础上出现的一种MRI成像
技术, 不仅能发现常规MRI难以显示的病 变,而且能以三维方式显示神经纤维束的
走行方向,为无创性评价白质纤维束间的
联系及其病变一种成像技术。
二、DTI的原理
DTI是利用组织中水分子弥散的各向异性
来探测组织微观结构的成像方法。是一
肿瘤细胞使细胞密度增大的缘故。
利用白质内水分子扩散各向异性的原理,
二维彩色编码的DTI或三维白质束示踪影 像能直观显示脑内白质束的走行方向以
及与邻近肿瘤之间的关系,在指导神经
外科手术中有临床应用价值。
左桥小脑角 区脑膜瘤
右小脑半球 淋 巴瘤
右额叶胶质瘤
左顶叶胶质瘤
种定量显示白质纤维束的成像方法。
与DTI相关的一些概念
1、扩散系数(diffusion coefficient,DC):
表示单位时间内分子自由扩散的范围。
2、扩散敏感因子b值(b value)是反映MRI
各成像序列(如SE、FE、EPI)对扩散运动
表现的敏感程度,体现成像序列检测扩
散的能力。
(四)癫痫
DTI可显示其部分各向异性的降低、扩散
的增加以及白质纤维束的移位。
(五)精神病 精神分裂症病人白质的各向
异性降低,虽然白质的体积未见异常,
但可说明白质纤维束的完整性受损。
FA的降低发生在慢性精神分裂症病人胼
胝体压部及附近枕叶白质,全脑白质和
灰质的平均扩散值增加,这也说明慢性
3、表观扩散系数(apparent diffusion
coeffcient,ADC)描述磁共振扩散加权成
像中不同方面水分子扩散运动的速度和
DWI的临床应用
正常
急性期
低信号
亚急性期
低信号
慢性期
低信号
T2WI
FLAIR DWI ADC
正常
正常 高信号 低ADC值
高信号
高信号 高信号 低ADC值
高信号
高信号 信号逐渐 降低
高信号
低信号 低信号 高信号
ADC值逐 渐增高
1、蛛网膜囊肿 常规MRI:T1WI呈低信号,T2WI呈高信号, 与脑脊液信号相同。 DWI:蛛网膜囊肿是脑脊液被蛛网膜包围而 形成的囊袋装结构,其内细胞外水分子运动的 相对自由,故病变在DWI呈低信号,ADC值与 脑脊液信号类似。
3、ADC值与DWI信号的关系
√ADC值和DWI信号呈负指数关系 √ADC值下降,DWI像呈高信号 √特殊的:DWI像高信号不一定ADC值下降,因 为存在T2透射效应
DWI高信号
ADC低信号
DWI技术经过十几年的发展,几乎可用
于全身器官,此次着重叙述DWI在中枢神经 系统中的应用。
2、扫描序列 用于DWI的序列很多,目前常用的有: 1、自旋回波DWI(SE-DWI) 2、平面回波DWI(EPI-DWI) 3、激励回波DWI(STE-DWI) 4、稳态自由进动DWI(SSFP-DWI) 5、背景抑制全身扩散加权成像(DWIBS) 其中最常用的是EPI-DWI序列
1、超急性期(<6h) 病理表现:由于急性缺血缺氧,钠-钾泵功能 失调,水分子从细胞外进入细胞内产生细胞毒 性水肿,使水分子弥散受限。 常规MRI表现:常规MRI未见明显异常信号 DWI表现:DWI上呈高信号,ADC值下降。
弥散加权成像DWI原理和临床应用PPT
多模态成像融合
将DWI与其他成像技术(如 MRI、CT等)进行融合,实现 多模态成像,提供更全面的医 学影像信息。
个性化治疗
结合基因检测等手段,根据个 体差异制定个性化治疗方案, 提高治疗效果。
普及推广
随着DWI技术的不断完善和应 用效果的验证,其在临床上的 应用将得到更广泛的推广和普
DWI可以区分肿瘤组织和正常组 织,有助于精确测量肿瘤体积,
评估肿瘤缩小或增大的情况。
脑卒中治疗效果评估
在脑卒中治疗过程中,DWI可 以监测脑组织中水分子扩散的 变化,评估缺血或梗塞区的大
小和范围。
通过DWI,可以观察脑卒中 后脑水肿的情况,判断病情
的严重程度和预后。
DWI可以评估溶栓或取栓治疗 的效果,指导后续治疗措施。
弥散加权成像DWI原理和临 床应用
汇报人:WI在临床诊断中的应用 • DWI在治疗效果评估中的应用 • DWI的局限性及未来展望 • 结论
01
DWI原理介绍
弥散概念
弥散是指水分子的随机热运动,即分子的随机位移。在活体 组织中,水分子的弥散运动受到细胞内外屏障的限制,因此 ,水分子在组织中的弥散程度可以反映组织微观结构的特点 。
DWI图像解读
DWI图像可以显示组织中水分子的扩散 运动情况,通过观察图像中信号的强度
和分布,可以对组织结构进行评估。
DWI图像的信号强度与组织的弥散系数 成反比关系,即弥散系数越低,DWI图
像的信号强度越高。因此,通过观察 DWI图像的信号强度可以判断组织结构
的特征,如肿瘤、炎症、梗死等。
DWI图像还可以通过扩散张量成像( DTI)技术进行更深入的分析,以评估
及。
感谢您的观看
dtidwi]dti(弥散张量成像)简介及原理
[DTI/DWI]DTI(弥散张量成像)简介及原理磁共振弥散张量成像技术是利用水分子的弥散各向异性进行成像,可用于脑白质纤维研究,常用扫描技术包括单次激发平面回波成像(EPI),线阵扫描弥散成像, 导航自旋回波弥散加权成像(LSDI),半傅立叶探测单发射快速自旋回波成像等.每种成像技术各有其优缺点,EPI扫描时间短,图像信噪比高,但存在化学位移伪影、磁敏感性伪影、几何变形;LSDI精确度高,几乎无伪影及变形,但扫描时间过长;导航自旋回波弥散加权成像运动伪影少,但扫描时间长;半傅立叶探测单发射快速自旋回波成像扫描时间短,但图像模糊.综合比较,单次激发平面回波成像是用于临床研究较适宜的方法.(引自%26lt;%26lt;医学影像学杂志%26gt;%26gt;2006年04期王海燕, 赵斌, 于富华) 1827 Robert Brown 首次发现弥散现象1950 Hanh 从理论上提出用自旋回波测量水分子弥散过程的方法1985 Taylor 和Bushel 首次实现磁共振弥散成像1986 Denis LeBihan 首次将磁共振弥散成像应用于活体1990 Michael Moseley 发现弥散成像在早期脑缺血诊断中的价值1996 首次实现人脑弥散张量成像1999首次实现人脊髓弥散张量成像一、弥散张量成像的基本原理弥散张量成像(DTI)是利用弥散加权成像技术改进和发展的一项新技术,弥散张量不是平面过程,以三维立体角度分解,量化了弥散各向异性的信号数据,使组织微结构更加精细显示,弥散需要用张量显示,扫描应用多个梯度场方向,现用6-55个方向。
DTI:弥散具有方向依靠性,分子向各个方向弥散的距离不相等,则成为各向异性(anistrophic)。
而DWI则为水分子弥散的方向相一致,即相同性。
弥散张量成像的原理:在完全均质的溶质中,分子向各方向的运动是相等的,此种弥散方式为各向同性(isotrophic),其向量分布轨迹成一球形,而另一种弥散是在非均一状态中,分子向各方向运动具有方向依靠性,分子向各方向弥散的距离不相等,称为各向异性(anisotrophic),其向量分布轨迹成一椭圆形。
DWI基本原理及其在脑部疾病中的应用幻灯片
•
较小的b值得到的图像信噪比较高,但对水分子扩散运动的检
测不明高,而且组织信号的衰减受其它运动的影响比较大,如组织血
流灌注造成的水分子运动等,这些运动模式相对水分子的扩散运动来
说要明显的多。
DWI图像的影响因素——b值
•
在b值较低时,由于受血流灌注等因素的影响,所测得的ADC
值偏高,而且b值越小,测得的ADC值越偏高。
DWI提供真实描述组织水分子扩散相对速度的图象对比。
与传统的MR技术不同,它主要依赖于水分子的运动而不依 赖于自旋质子密度、T1或T2。
是目前唯一能够检测活体组织内水分子扩散运动的无创性 方法。
原理
扩散(diffusion)的概念
扩散(diffusion)是指分子热能激发而使分子 发生一种微观、随机的平移运动并相互碰撞,也称分 子的热运动或布朗运动。
• DWI信号强度的数学公式可以表达为: SDW ∝ r (exp[-TE/T2])×exp(-b∙D)
SDW为DWI信号强度;r是质子密度;D是水分子的扩散系数
• DWI的信号强度主要取决于组织内水分子的扩散系数(D) 和T2以及扩散敏感梯度因子b值。
DWI图像的影响因素——b值
•
b值为0时,DWI图像近似T2加权图像。
Apparent diffusion coefficient
“表观”:为组织内许多复杂过程的平均测量
ADC是不同方向的分子弥散运动的速度和范围, 反映水分子移动的自由度
ADC值主要根据DWI图像上的信号强度的变化 来计算,由两幅不同b值(0,1000)的图像计 算得出:ADC=ln(S2/S1)/(b1-b2)
DWI 和ADC的图像对比
• 一般情况下,ADC图主要反映水分子扩散的幅度, 其黑白度往往与DWI相反。
DWI基本原理及其在脑部疾病中的应用
当前存在问题和挑战剖析
图像分辨率与信噪比
当前DWI技术仍面临图像分辨率和信 噪比的挑战,尤其是在低场强MRI系
统中。
扫描时间与运动伪影
较长的扫描时间和头部运动可能导致 图像伪影,影响DWI图像的准确性和
可靠性。
标准化与可重复性
DWI技术的标准化和可重复性仍需进 一步提高,以便在不同中心和不同设
。
癫痫
02
DWI可用于检测癫痫患者脑内的异常放电区域,为手术治疗提
供定位依据。
帕金森病
03
DWI可用于评估帕金森病患者黑质-纹状体通路的受损情况,为
疾病诊断和治疗提供重要信息。
04
DWI技术进展与新兴应用
高分辨率DWI技术发展现状
高场强MRI技术
利用更高场强的MRI扫描仪,提 高DWI的空间分辨率和信噪比, 实现更精细的脑部结构成像。
DWI能够反映组织微观结构的改变, 特别是在脑部疾病中,如脑梗死、脑 肿瘤等,能够提供重要的诊断信息。
DWI信号产生与检测
DWI信号的产生依赖于水分子的扩散运动。在核磁共振成像 中,通过对组织施加特定的扩散敏感梯度,使得水分子的扩 散运动对信号产生影响。
检测DWI信号需要使用特定的脉冲序列和参数设置,以获取 扩散加权图像。常用的脉冲序列包括自旋回波序列和梯度回 波序列等。
扩散敏感梯度设置
扩散敏感梯度是DWI中的关键参数之一,用于测量水分子的扩散运动。通过设置 不同的扩散敏感梯度强度和持续时间,可以获取不同扩散加权程度的图像。
扩散敏感梯度的设置需要考虑到组织的特性和病变的特点,以达到最佳的成像效 果。
水分子扩散特性描述
磁共振成像技术及其临床应用
心血管系统疾病诊断
01
02
03
04
冠心病、心肌梗塞等心脏疾病 的诊断和鉴别诊断
心脏瓣膜病、心肌病等心脏结 构和功能异常的评估
血管狭窄、闭塞等血管病变的 定位和程度评估
心脏肿瘤、心包积液等心脏占 位性病变的诊断和鉴别诊断
肿瘤筛查与评估
肺癌、肝癌、肾癌等恶性肿瘤的早期筛查和诊断 肿瘤复发和转移的监测
定量测量组织的机械特性,如硬度和弹性等 ,用于评估肝脏、乳腺等器官的病变情况。
03 磁共振成像技术 临床应用范围
神经系统疾病诊断
01
脑梗塞、脑出血等脑血 管疾病的早期诊断和鉴 别诊断
02
脑肿瘤、脊髓肿瘤等颅 内占位性病变的定位和 定性诊断
03
癫痫、帕金森病等神经 退行性疾病的评估和病 情监测
04
新技术发展趋势及挑战应对
新技术介绍
01
介绍当前磁共振成像领域的新技术,如超高场磁共振、功能磁
共振、定量磁共振等。
新技术挑战
02
分析新技术在临床应用中面临的挑战,如成本、安全性、普及
度等问题。
应对策略
03
提出针对新技术挑战的应对策略,如加强技术研发、降低成本
、提高普及度等。
06 总结与展望
磁共振成像技术发展历程回顾
参数设置
根据扫描序列和患者情况设置合适的 扫描参数,包括层厚、层间距、FOV 、矩阵等。同时需注意优化扫描时间 ,以减少患者不适和运动伪影。
图像后处理技巧
图像调整
对原始图像进行必要的调 整,如窗宽窗位调整、对 比度增强等,以更好地显 示病变。
图像重建
根据需要进行多平面重建 、最大密度投影等后处理 操作,以提供更多诊断信 息。
DWI原理及临床应用
T2WI
常规DWI
ADC
1
2
3
图1~3:左枕部长T2信号(囊性)病变,由于T2透过效应,在常 规DWI上呈明显高信号,但ADC伪彩图示扩散稍加快。
一 、正常人群脑组织的ADC值
两侧大脑半球相同部位ADC值无统计学差异。 卢 洁,李坤成.中国医学影像技术,2003,19(8):975-977
卢 洁,李坤成.中国医学影像技术,2003,19(8):975-977
28
ADC-脑梗死的演变过程
1W
2W
3W
4W
ADC值下降
ADC值升高
急性脑梗死(3)
• DWI高信号机制:
– 脑梗死病生 – 细胞源性水肿(数秒)
正常脑组织水分子布朗运动 细胞内水肿水分子运动受限
– 血管源性水肿(数小时-数天, 无弥散受限)
DWI在脑梗死中的演变
急性、超急性期脑梗死: 脑动脉阻塞后,缺血中 心区脑组织严重缺血,数分钟内出现不可逆损伤, 即细胞毒性水肿。DWI能超早期(发病30min) 发现严重缺血中心区,在常规DWI上呈明显高信 号,ADC图示弥散明显受限。 ADC值演变:5-10d ADC值逐渐接近正常, DWI 高信号;10d –数月, ADC值大于正常, DWI信 号降低。
二、DWI高信号病变的鉴别诊断
DWI弥散受限原因
➢细胞毒性水肿(急性脑梗死) ➢细胞密度增加(淋巴瘤、髓母细胞瘤、原
始外胚层肿瘤) ➢组织粘性增加(脓肿、表皮样囊肿) ➢兴奋性脑损伤(谷氨酸)
ADC
• 表观弥散系数(Apparent diffusion coefficient, ADC) • 缺氧脑组织水分子由细胞外转移到细胞内 • 急性脑梗死DWI高信号,而ADC降低
弥散磁共振成像和弥散张量成像的关系
弥散磁共振成像和弥散张量成像的关系弥散磁共振成像(DWI)和弥散张量成像(DTI)这两个词一听就让人觉得有点儿高深莫测,仿佛一下子被丢进了一个医学的迷宫。
不过呢,别急,今天我们就一起来聊聊这两个看似难懂的东西,轻松搞懂它们之间的关系。
得说说弥散磁共振成像(DWI)到底是个什么玩意儿。
简单来说,它是通过磁共振扫描来观察水分子在组织里是怎么“弯弯绕绕”地动的。
你可以想象水分子就像是小小的“快递员”,它们在身体各个部位搬运各种物质,而它们的运动轨迹,特别是运动的方向和速度,就能告诉我们很多有用的信息。
比如,在脑部扫描时,DWI就能告诉我们有没有哪里出现了问题,比如脑中风的症状就是水分子的运动变慢了。
所以,DWI的主要作用就是通过观察水分子的运动情况,帮我们找出身体里潜在的问题。
简而言之,DWI让我们看到的是“水分子跑得快不快”的情况。
可是,DWI只能告诉我们水分子的运动情况,没法给我们太多关于运动方向的细节。
这就是弥散张量成像(DTI)登场的时候了。
DTI可是比DWI更厉害的小伙伴。
DTI 不仅能告诉我们水分子运动的速度,还能告诉我们它们是往哪个方向运动的。
想象一下,你现在站在一条宽阔的街道上,DWI就像是告诉你人群是走得快还是慢,而DTI则能告诉你人群是往左走还是往右走,甚至是是不是有些人停下来在原地转圈。
听起来是不是很酷?DTI的原理也就这么简单:通过观察水分子在不同方向上的扩散情况,我们就能得知水分子更倾向于在哪个方向上运动。
脑白质的纤维走向、神经通路的方向,DTI都能帮我们精准揭示。
这两个技术虽然看似不同,但其实它们是“亲戚”关系。
DWI是DTI的基础,DTI是DWI的“升级版”。
DWI就像是一个简单的速写,它快速告诉你问题在哪,而DTI则像是精细的画作,告诉你问题的细节。
两者结合在一起,就能为我们提供更全面、更准确的信息。
比如在脑部疾病的诊断上,DWI可以告诉医生脑部是否有梗塞,DTI则能进一步分析大脑内的神经纤维是否受损,帮助我们更好地判断病情。
dtidwi]dti(弥散张量成像)简介及原理
[DTI/DWI]DTI(弥散张量成像)简介及原理磁共振弥散张量成像技术是利用水分子的弥散各向异性进行成像,可用于脑白质纤维研究,常用扫描技术包括单次激发平面回波成像(EPI),线阵扫描弥散成像, 导航自旋回波弥散加权成像(LSDI),半傅立叶探测单发射快速自旋回波成像等.每种成像技术各有其优缺点,EPI扫描时间短,图像信噪比高,但存在化学位移伪影、磁敏感性伪影、几何变形;LSDI精确度高,几乎无伪影及变形,但扫描时间过长;导航自旋回波弥散加权成像运动伪影少,但扫描时间长;半傅立叶探测单发射快速自旋回波成像扫描时间短,但图像模糊.综合比较,单次激发平面回波成像是用于临床研究较适宜的方法.(引自%26lt;%26lt;医学影像学杂志%26gt;%26gt;2006年04期王海燕, 赵斌, 于富华) 1827 Robert Brown 首次发现弥散现象1950 Hanh 从理论上提出用自旋回波测量水分子弥散过程的方法1985 Taylor 和Bushel 首次实现磁共振弥散成像1986 Denis LeBihan 首次将磁共振弥散成像应用于活体1990 Michael Moseley 发现弥散成像在早期脑缺血诊断中的价值1996 首次实现人脑弥散张量成像1999首次实现人脊髓弥散张量成像一、弥散张量成像的基本原理弥散张量成像(DTI)是利用弥散加权成像技术改进和发展的一项新技术,弥散张量不是平面过程,以三维立体角度分解,量化了弥散各向异性的信号数据,使组织微结构更加精细显示,弥散需要用张量显示,扫描应用多个梯度场方向,现用6-55个方向。
DTI:弥散具有方向依靠性,分子向各个方向弥散的距离不相等,则成为各向异性(anistrophic)。
而DWI则为水分子弥散的方向相一致,即相同性。
弥散张量成像的原理:在完全均质的溶质中,分子向各方向的运动是相等的,此种弥散方式为各向同性(isotrophic),其向量分布轨迹成一球形,而另一种弥散是在非均一状态中,分子向各方向运动具有方向依靠性,分子向各方向弥散的距离不相等,称为各向异性(anisotrophic),其向量分布轨迹成一椭圆形。
dwi序列的原理及应用
DWI序列的原理及应用1. DWI序列简介DWI(Diffusion-Weighted Imaging)序列是一种采用磁共振成像(MRI)技术检测分子扩散的方法。
它利用水分子的扩散运动提供有关生物组织微观结构和组织区域功能活动的信息。
DWI序列可以通过测量水分子在组织中扩散的程度来定量评估组织的微观结构和水分子的流动状态。
2. DWI序列的原理DWI序列的原理是利用梯度磁场脉冲对水分子进行标记,通过测量该标记水分子在空间中的移动情况进行成像。
在DWI序列中,采用了一组梯度脉冲,将水分子沿不同方向推动,然后通过成像技术测量水分子的扩散运动。
根据不同的梯度方向,可以获取一系列的DWI图像。
3. DWI序列的应用DWI序列在医学影像学中有着广泛的应用。
以下是一些常见的应用领域:3.1 脑部成像DWI序列可用于评估脑部组织的健康状况。
通过测量水分子在脑组织中的扩散情况,可以检测到脑缺血、脑梗塞等疾病。
此外,DWI序列还可以用于评估肿瘤的侵袭性、脑肿瘤的诊断和治疗等。
3.2 肝脏成像DWI序列可以用于评估肝脏组织的健康状态。
由于肝脏组织中存在着各种病理变化,如肝癌、肝纤维化等,通过测量水分子在肝脏组织中的扩散情况,可以提供有关这些病理变化的信息。
利用DWI序列还可以评估肝脏移植术后的功能状态。
3.3 前列腺成像DWI序列在前列腺成像中也有重要的应用。
前列腺癌是男性常见的恶性肿瘤之一,采用DWI序列可以提供有关前列腺癌的定量信息,辅助医生进行诊断和治疗。
3.4 乳腺成像DWI序列在乳腺成像中的应用越来越受到重视。
乳腺癌是女性最常见的恶性肿瘤之一,利用DWI序列可以提供乳腺肿瘤的定量信息,有助于早期发现和诊断。
3.5 过程监控DWI序列广泛应用于过程监控领域。
例如,在肿瘤治疗过程中,可以通过DWI序列评估治疗效果;在脑卒中患者的治疗过程中,可以评估患者的神经恢复情况。
4. DWI序列的优势和局限性4.1 优势•DWI序列对于检测组织的微观结构和功能状态具有高度敏感性,并且成像速度快。
DWIDTI的原理和临床应用PPT19页
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
Байду номын сангаас