初三圆经典真题及答案详解.

合集下载

初三数学圆试题答案及解析

初三数学圆试题答案及解析

初三数学圆试题答案及解析1.已知⊙O的周长为9π,当PO= 时,点P在⊙O上.【答案】4.5【解析】根据圆上点,圆内点和圆外点到圆心的距离与圆的半径的大小关系,可以确定点P的位置.解:∵⊙O的周长为9π,∴⊙O的半径为4.5,∵圆上点到圆心的距离等于半径,所以当PO=4.5时,P点在圆上.故答案为:4.5.点评:本题考查的是点与圆的位置关系,把点到圆心的距离与圆的半径进行大小比较,得到点与圆的位置关系.2.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= .【答案】1+【解析】连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为:1+.点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.3.△ABC中,∠C=90°,AC=5,BC=8,以C为圆心,r为半径作圆,使点A在圆内,点B在圆外,则半径r的取值范围为.【答案】5<r<8【解析】当点A在圆内时点A到点C的距离小于圆的半径,点B在圆外时点B到圆心的距离应该大于圆的半径,据此可以得到半径的取值范围.解:当点A在圆内时点A到点C的距离小于圆的半径,即:r>5;点B在圆外时点B到圆心的距离应该大于圆的半径,即:r<8;故答案为:5<r<8点评:本题考查了点与圆的位置关系,解题的关键是明确半径的大小与位置关系的关系.4.在△ABC中,∠ACB=90°.AC=2cm,BC=4cm,CM是斜边中线,以C为圆心以cm长为半径画圆,则A、B、M三点在圆的外是,在圆上的是.【答案】点B,点M【解析】先求出AB的长,根据直角三角形斜边上的中线等于斜边的一半,求得CM的长;再由点与圆的位置关系,确定出点三点与⊙C的位置关系.解:∵∠ACB=90°,AC=2cm,BC=4cm,∴AB==2,∵CM是中线,∴CM=AB=,∵2<<4∴在圆外的是点B,在圆上的是点M.故答案为:点B,点M.点评:本题考查了点与圆的位置关系:①点P在⊙O上;②点P在⊙O内;③点P在⊙O外,及勾股定理的运用.5.一点到圆周上点的最大距离为18,最短距离为2,则这个圆的半径为.【答案】10或8【解析】分点在圆内和圆外两种情况,当点在圆内时,最大距离与最小距离的和等于直径,然后求出半径;当点在圆外时,最大距离与最小距离的差等于直径,然后求出半径.解:当点在圆内时,圆的直径为18+2=20,所以半径为10.当点在圆外时,圆的直径为18﹣2=16,所以半径为8.故答案是:10或8.点评:本题考查的是点与圆的位置关系,根据点到圆的最大距离和最小距离,求出圆的直径,然后得到圆的半径.6.两个圆的直径比是2:5,这两个圆的周长之比是,面积比是.【答案】2:5;4:25【解析】利用所有的圆都相似得到直径比为2:5的两圆的相似比为2:5,据相似多边形的性质可以求得其周长之比和面积之比.解:∵直径比是2:5的两个圆相似,∴相似比为2:5,∵相似多边形周长的比等于相似比,面积的比等于相似比的平方,∴两圆的周长之比为2:5,面积的比等于4:25,故答案为2:5;4:25.点评:本题考查了圆的认识,解题的关键是判定两圆相似并利用相似多边形的性质得到面积之比和周长之比.7.一副斜边相等的直角三角板(∠DAC=45°,∠BAC=30°),按如图所示的方式在平面内拼成一个四边形.A,B,C,D四点在同一个圆上吗?请说明理由.【答案】A、B、C、D能在同一个圆上【解析】取AC的中点O,连接OB,OD,根据直角三角形斜边上中线性质得出OB=OD=AC=OA=OC,根据对圆的认识得出答案.解:A、B、C、D能在同一个圆上,理由是:取AC的中点O,连接OB,OD,∵∠B=∠D=90°,∴OD=AC=OA=OC,BO=AC=OA=OC,∴OA=OB=OC=OD,∴A、B、C、D在以O为圆心,以OA为半径的圆上,即A、B、C、D能在同一个圆上.点评:本题考查了直角三角形斜边上中线性质和对圆的认识的应用,注意:直角三角形斜边上中线等于斜边的一半.8.如何在操场上画出一个很大的圆?说一说你的方法.作图说明:已知点AB=4cm,到点A的距离小于2cm,到点B的距离小于3cm的所有点组成的图形.【答案】【解析】根据圆的定义解答即可.解:在操场上用一根很长的绳子,固定一头,拉紧后另一头旋转一周即可得到一个很大的圆.阴影部分就是到点A的距离小于2cm,到点B的距离小于3cm的所有点组成的图形点评:本题考查了圆的认识,关键是了解圆的定义.9.如图,△ABC和△ABD都为直角三角形,且∠C=∠D=90゜.求证:A、B、C、D四点在同一个圆上.【答案】见解析【解析】取弦AB的中点O,利用直角三角形斜边上的中线等于斜边的一半证得OA=OB=OC=OD后即可求证A、B、C、D四点在同一个圆上.证明:取弦AB的中点O,连接OC,OD,∵△ABC和△ABD都为直角三角形,且∠C=∠D=90゜∴DO,CO分别为Rt△ABD和Rt△BCD斜边上的中线,∴OA=OB=OC=OD.∴A、B、C、D四点在同一个圆上.点评:本题考查了圆的认识,求证几个点在同一个圆上就是证明这几个点到一个点的距离相等.10.如图所示,在△ABC中,AB=AC,任意延长CA到P,再延长AB到Q,使AP=BQ,求证:△ABC的外心O与点A、P、Q四点共圆.【答案】见解析【解析】先作△ABC的外接圆⊙O,并作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,证出BE=AF,OE=OF,再证Rt△OPF≌Rt△OQE,得到∠P=∠Q即可得到答案.证明:作△ABC的外接圆⊙O,并作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,∵O是△ABC的外心,∴OE=OF,OB=OA,由勾股定理得:BE2=OB2﹣OE2,AF2=OA2﹣OF2,∴BE=AF,∵AP=BQ,∴PF=QE,∵OE⊥AB,OF⊥AC∴∠OFP=∠OEQ=90°,∴Rt△OPF≌Rt△OQE,∴∠P=∠Q,∴O、A、P、Q四点共圆.即:△ABC的外心O与点A、P、Q四点共圆.点评:本题主要考查了四点共圆,勾股定理,全等三角形的性质和判定,确定圆的条件等知识点,作辅助线构造全等三角形证∠P=∠Q是解此题的关键.11.(2009•武汉模拟)如图,已知△ABC的外接圆⊙O的半径为1,D,E分别为AB,AC的中点,则sin∠BAC的值等于线段()A.BC的长B.DE的长C.AD的长D.AE的长【答案】B【解析】本题需将∠BAC构建到直角三角形中求解,过B作⊙O的直径,交⊙O于点F,由圆周角定理,知∠F=∠A;在Rt△BCF中,易求得sin∠F==,而DE是△ABC的中位线,即DE=,由此得解.解:过B作⊙O的直径BF,交⊙O于F,连接FC,则∠BCF=90°,Rt△BCF中,sin∠F==,∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,即DE=,∴sin∠A=sin∠F==DE.故选B.点评:本题主要考查的是三角形中位线定理、圆周角定理等知识点.12.下列命题中,真命题的个数是()①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆,并且只有一个外接圆;④三角形的外心到三角形的三个顶点距离相等.A.4个B.3个C.2个D.1个【答案】C【解析】在同一直线上三点不能作圆,即可判定①;一个圆可以作无数个圆,判断②即可;每个三角形都有一个外接圆,外接圆的圆心是三角形三边的垂直平分线的交点,该点到三角形的三个顶点距离相等,即可判断③④.解:经过不在同一条直线上三点可以作一个圆,∴①错误;任意一个圆一定有内接三角形,并且有多个内接三角形,∴②错误;任意一个三角形一定有一个外接圆,并且只有一个外接圆,∴③正确;三角形的外心是三角形三边的垂直平分线的交点,到三角形的三个顶点距离相等,∴④正确.故选C.点评:本题考查了确定圆的条件和三角形的外接圆与外心的应用,主要考查学生运用性质进行说理的能力,题目比较好,但是一道比较容易出错的题目.13.已知点P到⊙O的最长距离是3,最短距离是2,则⊙O的半径是()A.2.5B.0.5C.2.5或0.5D.无法确定【答案】C【解析】分两种情况进行讨论:①点P在圆内;②点P在圆外,进行计算即可.解:①点P在圆内;如图,∵AP=2,BP=3,∴AB=5,∴OA=2.5;②点P在圆外;如图,∵AP=3,BP=2,∴AB=1,∴OA=0.5.故选C.点评:本题考查了点和圆的位置关系,分类讨论是解此题的关键.14.已知⊙O的圆心在坐标原点,半径为5,点P的坐标为(﹣2,﹣4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.不能确定【答案】A【解析】根据两点间的距离公式求出OP的长,再与半径比较确定点A的位置.解:OP==2<5,所以点P在⊙O内.故选A.点评:本题考查的是点与圆的位置关系,知道O,P的坐标,求出OP的长,与圆的半径进行比较,确定点P的位置.15.⊙O的半径R=5cm,点P与圆心O的距离OP=3cm,则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.不确定【答案】C【解析】已知圆的半径是r,点到圆心的距离是d,点和圆的位置关系有三种:当r=d时,点在圆上,当r>d时,点在圆内,当r<d时,点在圆外,根据进行判断即可.解:∵⊙O的半径R=5cm,点P与圆心O的距离OP=3cm,5>3,∴点P与⊙O的位置关系是点P在圆内,故选C.点评:本题考查了点与圆的位置关系的应用,注意:当圆的半径是r,点到圆心的距离是d时,点和圆的位置关系有三种:①当r=d时,点在圆上,②当r>d时,点在圆内,③当r<d时,点在圆外.16.直角三角形两直角边长分别是,,那么它的外接圆的直径是()A.B.4C.2D.【答案】D【解析】首先根据勾股定理求得该直角三角形的斜边是2,再根据其外接圆直径就是斜边的长度进行计算即可.解:∵直角三角形两直角边长分别是,,∴该直角三角形的斜边长是:=2,∴该直角三角形的外接圆的直径是2.故选D.点评:本题综合考查了勾股定理、三角形外接圆圆心.解决此题的关键在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长是圆的直径.17.已知⊙O的半径为4cm,A为线段OP的中点,当OP=6cm时,点A与⊙O的位置关系是()A.A在⊙O内B.A在⊙O上C.A在⊙O外D.不能确定【答案】A【解析】知道OP的长,点A是OP的中点,得到OA的长与半径的关系,求出点A与圆的位置关系.解:因为OP=6cm,A是线段OP的中点,所以OA=3cm,小于圆的半径,因此点A在圆内.故选A.点评:本题考查的是点与圆的位置关系,根据OP的长和点A是OP的中点,得到OA=3cm,与圆的半径相等,可以确定点A的位置.18.已知点A的坐标为A(3,4),⊙A的半径为5,则原点O与⊙A的位置关系是()A.点O在⊙A内B.点O在⊙A上C.点O在⊙A外D.不能确定【答案】B【解析】本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;点在圆外;当d<r时,点在圆内;来确定点与圆的位置关系.解:∵点A的坐标为A(3,4),∴OA==5,∴根据点到圆心的距离等于半径,则知点在圆上.故选B.点评:本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.19.①直径是弦;②过三点一定可以作圆;③三角形的外心到三个顶点的距离相等;④半径相等的两个半圆是等弧.以上四种叙述正确的有()个.A.1B.2C.3D.4【答案】C【解析】根据直径、弦的定义即可判断①,根据不在同一直线上的三点一定可以作圆即可判断②,根据三角形外接圆的定义即可判断③;根据等弧的定义即可判断④.解:直径是弦,①正确;过不在同一直线上的三点一定可以作圆,②错误;三角形的外心到三个顶点的距离相等,③正确;半径相等的两个半圆是等弧,④正确;即正确的有3个,故选C.点评:本题考查了三角形的外接圆,圆的有关概念,确定圆的条件的应用,主要考查学生的理解能力和辨析能力,题目比较典型,但是比较容易出错.20.已知AB为⊙O的直径P为⊙O上任意一点,则点关于AB的对称点P′与⊙O的位置为()A.在⊙O内B.在⊙O外C.在⊙O上D.不能确定【答案】C【解析】圆是轴对称图形,直径所在的直线就是对称轴,从而得到圆上的点关于对称轴对称的点都在圆上求解.解:∵圆是轴对称图形,直径所在的直线就是对称轴,∴点P关于AB的对称点P′与⊙O的位置为:在⊙O上,故选C.点评:本题考查了点与圆的位置关系,利用了圆的对称性求解.。

初三数学圆精选练习题及答案

初三数学圆精选练习题及答案

初三数学圆精选练习题及答案1.正确答案为C。

圆的切线垂直于圆的半径。

2.正确答案为A。

AB>2CD。

3.图中能用字母表示的直角共有4个。

4.正确答案为B。

CD-AB=4cm,根据勾股定理可得AB与CD的距离为14cm。

5.正确答案为120°。

圆周角等于弧所对圆心角的两倍,2×60°=120°。

6.正确答案为130°。

圆周角等于圆心角的两倍,2×100°=200°,而∠ACB为圆周角减去弧所对圆心角,200°-70°=130°。

7.正确答案为B。

根据正弦定理可得S AOB=(1/2)×20×20×sin120°=503cm2.8.正确答案为D。

由于OA=AB,所以∠OAB=∠OBA=30°,而∠BCO=90°-∠OAB=60°,所以∠BOC=2∠BCO=120°。

又因为∠XXX∠OCA=30°,所以∠AOC=120°,所以∠BOD=60°-∠OAB=30°,∠XXX∠OED=∠XXX°。

9.正确答案为A。

根据勾股定理可得d=20√3,所以R2=(d/2)2+202=400,r2=(d/2)2+102=100,所以R=20,r=10,两圆内切。

10.正确答案为225°。

圆锥的侧面展开图为一个扇形,圆心角为360°-2arctan(5/3),约为225°。

11.若一条弦把圆分成1:3两部分,则劣弧所对的圆心角的度数为 $120^\circ$。

12.在圆 $\odot O$ 中,若直径 $AB=10$ cm,弦$CD=6$ cm,则圆心 $O$ 到弦 $CD$ 的距离为 $2\sqrt{19}$ cm。

13.在圆 $\odot O$ 中,弦 $AB$ 所对的圆周角等于其所在圆周的一半。

初三数学圆试题答案及解析

初三数学圆试题答案及解析

初三数学圆试题答案及解析1.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.【考点】1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.2.如图,AB是⊙O的直径,点C是圆上一点,,则 °.【答案】20.【解析】∵AB是⊙O的直径,∴.∵OA=OC,,∴.∴.【考点】1.圆周角定理;2.等腰三角形的性质.3.已知一个圆锥的底面半径为3 cm,母线长为10 cm,则这个圆锥的侧面积为 ()A.15π cm2B.30π cm2C.60π cm2D.3cm2【答案】B【解析】圆锥的侧面积=π×3×10=30π cm2.故选B.4.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长是A.4cm B.6cm C.8cm D.10cm【答案】C.【解析】连接OB;∵CD=10cm,∴OC=5cm;∵OM:OC=3:5,∴OM=3cm;Rt△OCP中,OC=OA=5cm,OM=3cm;由勾股定理,得:所以AB=2AM=8cm,故选C.考点: 1.垂径定理;2.勾股定理.5.如图,点A是半圆上一个三等分点,点B是的中点,点P是直径MN上一动点,若⊙O的半径为1,则AP+BP的最小值是.【答案】.【解析】本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.试题解析:作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN^的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴PA+PB=PA′+PB=A′B=.考点: 1.垂径定理;2.勾股定理;3.圆心角、弧、弦的关系;4.轴对称-最短路线问题.6.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(秒)(0≤t<3),连结EF,当t值为________秒时,△BEF是直角三角形.【答案】t=1或或.【解析】∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=,此时点E走过的路程是或,则运动时间是s或s.故答案是t=1或或.【考点】圆周角定理.7.如图,边长为1的小正方形构成的网格中,⊙O的半径为1,则图中阴影部分两个小扇形的面积之和为(结果保留π)【答案】.【解析】如图,根据正方形和圆的对称性,上方的小扇形与下方的红色小扇形面积相等,所以图中阴影部分两个小扇形的面积之和为四分之一半径为1的圆的面积,即.【考点】1.网格问题;2. 正方形和圆的对称性;3. 扇形的面积;4.转换思想的应用.8.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是A.猫先到达B地;B.老鼠先到达B地;C.猫和老鼠同时到达B地;D.无法确定.【答案】C.【解析】以AB为直径的半圆的长是:•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+b+c+d=(a+b+c+d)=•AB.故猫和老鼠行走的路径长相同.故选C.【考点】弧长公式.9.如图,已知在⊙O中,弦AB的长为8cm,半径为5 ㎝,过O作OC AB求点O与AB的距离.【答案】3cm.【解析】连接OA.根据垂径定理求得AC的长,再进一步根据勾股定理即可求得OC的长.试题解析:连接OA.如图:∵OC⊥AB,弦AB长为8cm,∴AC=4(cm).根据勾股定理,得OC=考点: 1.垂径定理;2.勾股定理.10.如图所示,内接于,,,则______.【答案】.【解析】由圆周角定理知:,由于,得到,所以:.故答案是.【考点】圆周角定理.11.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【答案】(1)详见解析;(2)6【解析】(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(6-x)2=25,从而求得x的值,由勾股定理得出AB的长.试题解析:(1)连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6-x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5-x)2+(6-x)2=25,化简得x2-11x+18=0,解得x1=2,x2=9.∵CD=6-x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5-2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.【考点】1.切线的判定和性质;2.勾股定理;3.矩形的判定和性质4.垂径定理12.如图MN=10是⊙O的直径,AE⊥MN于E,CF⊥MN于F,AE=4,CF=3,(1)在MN上找一点P,使PA+PC最短;(2)求出PA+PC最短的距离。

初三数学圆试题答案及解析

初三数学圆试题答案及解析

初三数学圆试题答案及解析1.已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O 于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.【答案】(1)证明见解析;(2).【解析】(1)连接OC,OA,先根据等腰三角形的性质得出∠ACO=∠CAO,再由PC是⊙O 的切线,C为切点得出∠PCO=90°,∠PCA+∠ACO=90°,应用三角形内角和定理和圆周角定理可得出∠ACO+∠PBC=90°,再根据∠PCA+∠ACO=90°即可得出结论.(2)根据相似三角形的判定定理得出△PAC∽△PCB,由相似三角形的对应边成比例即求得出结论.试题解析:解:(1)证明:如答图,连接OC,OA,∵OC=OA,∴∠ACO=∠CAO.∵PC是⊙O的切线,C为切点,∴PC⊥OC.∴∠PCO=90°,∠PCA+∠ACO=90°,在△AOC中,∠ACO+∠CAO+∠AOC=180°,∵∠AOC=2∠PBC,∴2∠ACO+2∠PBC=180°.∴∠ACO+∠PBC=90°.∵∠PCA+∠ACO=90°,∴∠PCA=∠PBC.(2)∵∠PCA=∠PBC,∠CPA=∠BPC,∴△PAC∽△PCB.∴.∵PA=3,PB=5,∴,解得.【考点】1.等腰三角形的性质;2.切线的性质;3.三角形内角和定理;4.圆周角定理;5.相似三角形的判定与性质.2.图①是电子屏幕的局部示意图,4×4网格的每个小正方形边长均为1,每个小正方形顶点叫做格点,点A,B,C,D在格点上,光点P从AD的中点出发,按图②的程序移动(1)请在图①中用圆规画出光点P经过的路径;(2)在图①中,所画图形是轴对称图形(填“轴对称”或“中心对称”),所画图形的周长是(结果保留π).【答案】(1)图形见解析(2)【解析】(1)根据旋转度数和方向分别作出弧即可;(2)根据图形的轴对称性解答;求出四次旋转的度数之和,然后根据弧长公式列式计算即可得解试题解析:(1)如图所示;(2)所画图形是轴对称图形;旋转的度数之和为270°+90°×2+270°=720°,所画图形的周长=.【考点】旋转变换3.已知在△ABC中,AB=AC=13,BC=10,如果以A为圆心r为半径的⊙A和以BC为直径的⊙D相交,那么r的取值范围()A.3<r<13B.5<r<17C.7<r<13D.7<r<17【答案】D.【解析】由题意得:BD=DC=5,AB=AC=13,由勾股定理得:AD=12,设⊙A的半径为r,根据两圆相交得:r-5<12<r+5,解答:7<r<17,故选D.【考点】圆与圆的位置关系.4. Rt△ABC中,∠C=90°,AC=5,BC=12,如果以点C为圆心,r为半径,且⊙C与斜边AB仅有一个公共点,那么半径r的取值范围是【答案】r=或5<r≤12.【解析】因为要使圆与斜边只有一个公共点,所以该圆和斜边相切或和斜边相交,但只有一个交点在斜边上.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.试题解析:根据勾股定理求得直角三角形的斜边是=13.当圆和斜边相切时,则半径即是斜边上的高,等于;当圆和斜边相交,且只有一个交点在斜边上时,可以让圆的半径大于短直角边而小于长直角边,则5<r≤12.故半径r的取值范围是r=或5<r≤12.【考点】直线与圆的位置关系.5.半径为4cm,圆心角为60°的扇形的面积为 cm2.【答案】.【解析】直接利用扇形面积公式求出即可:半径为4cm,圆心角为60°的扇形的面积为:(cm2).【考点】扇形面积的计算.6.如图,已知⊙O上依次有A,B,C,D四个点,,连接AB,AD,BD,弦AB不经过圆心O.延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系【答案】(1);(2)证明见解析;(3)在⊙O上存在点P(不同于点B),使得PG=PF,此时PB⊥AE.【解析】(1)要求劣弧BD的长,根据弧长公式,只需求圆心角∠BOD的度数,所以,需要连接OB、OD.由同弧所对的圆周角等于圆心角的一半,可得所对的圆心角为2400,所以∠BOD=1200.利用弧长公式直接计算可解.(2)连接AC,则BF是△ACE的中位线,再根据弧弦关系定理,证得AC=BD即可.(3)作∠DBF的平分线交⊙O于点P,连接PG,PB,则由SAS可证△PBG≌△PGB,从而得到PG-PF,此时,由∠FBE=∠CAE和∠DBA=∠FBE可得∠PBA=∠PBE=900,即 PB⊥AE.试题解析:解:(1)如答图1,连接OB、OD,∵∠DAB=1200,∴所对的圆心角为2400.∴∠BOD=1200.∵⊙O的半径为3,∴劣弧的长为.(2)证明:如答图2,连接AC,∵AB=BE,∴B是AE的中点.∵F是EC的中点, ∴BF是△EAC的中位线.∴BF=.∵,∴,即.∴BD=AC.∴BF=.(3)在⊙O上存在点P(不同于点B),使得PG=PF,此时PB⊥AE.理由如下:如答图3,作∠DBF的平分线交⊙O于点P,连接PG,PB,则∵G是BD的中点,由(2)BF=,∴BG=BF.又∵PB=PB,∠PBG=∠PBF,∴△PBG≌△PGB(SAS).∴PG-PF.由(2)BF是△EAC的中位线,∴BF∥AC.∴∠FBE=∠CAE.∴,∴∠CAB=∠DBA.∴∠DBA=∠FBE.∴∠PBA=∠PBE=900,即 PB⊥AE.【考点】1.圆周角定理;2.弧长计算;3.三角形的中位线的性质;4.弧弦关系定理;5.全等三角形的判定和性质;6.垂直的判定.7.如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是.【答案】28°.【解析】根据圆周角定理即可推出∠AOB=2∠ACB,再代入∠AOB+∠ACB=84°通过计算即可得出结果.试题解析:∵∠AOB=2∠ACB,∠AOB+∠ACB=84°∴3∠ACB=84°∴∠ACB=28°.【考点】圆周角定理.8.如图,AB是⊙O的直径,点C是圆上一点,,则 °.【答案】20.【解析】∵AB是⊙O的直径,∴.∵OA=OC,,∴.∴.【考点】1.圆周角定理;2.等腰三角形的性质.9.如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F.(1)求证:OE∥AB;(2)求证:;(3)若,求的值.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】(1)根据等腰梯形的等腰三角形的性质,可得∠B=∠C=∠OEC.,从而判定OE∥AB. (2)要证明,只需证明四边形OEHF是平行四边形,要证明OEHF是平行四边形,已知它有一组对边平行,只需再说明另一组对边平行,由已知EH⊥AB和圆切线的性质即可得到. (3)要求,只要证明△EHB∽△DEC,再根据相似三角形的性质来求即可.(1)在等腰梯形ABCD中,AB=DC,∴∠B=∠C.∵OE=OC,∴∠OEC=∠C. ∴∠B=∠OEC.∴OE∥AB.(2)如图,连接OF.∵⊙O与AB切于点F,∴OF⊥AB.∵EH⊥AB,∴OF∥EH.又∵OE∥AB,∴四边形OEHF为平行四边形.∴EH=OF,∴.(3)如图,连接DE.∵CD是直径,∴∠DEC=90°.∴∠DEC=∠EHB.又∵∠B=∠C,∴△EHB∽△DEC. ∴.∵,设,则,∴. ∴.【考点】1.等腰梯形和等腰三角形的性质;2.平行的判定;3.圆切线的性质;4.圆周角定理;5.相似三角形的判定和性质;6.勾股定理.10.已知圆锥的底面直径和母线长都是10cm,则圆锥的侧面积为.【答案】50πcm2【解析】∵底面圆的半径为5cm,则底面周长为10πcm,∴圆锥的侧面积为×10π×10=50πcm2.11.如图,AB是⊙O的直径,若∠BDC=40°,则∠AOC的度数为()A.80°B.100°C.140°D.无法确定【答案】B.【解析】根据同弧所对圆心角是圆周角的2倍,先求得∠BOC=2∠BDC=80°,再进一步求得∠AOC的度数.∵∠BOC=2∠BDC=80°,∴∠AOC=180°-∠BOC=180°-80°=100°.故选:B.考点:圆周角定理.12.如图,经过原点的⊙P与两坐标轴分别交于点A(2,0)和点B(0,2), C是优弧上的任意一点(不与点O,B重合),则tan∠BCO的值为()A.B.C.D.【答案】A.【解析】连结AB,根据正切的定义得到tan∠A=,再根据圆周角定理得∠C=∠A,所以tan∠BCO=.故选A.【考点】圆周角定理.13.如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从点A出发绕侧面一周,再回到点A的最短的路线长是A.B.C.D.3【答案】C.【解析】圆锥的侧面展开图是扇形,从A点出发绕侧面一周,再回到A点的最短的路线即展开得到的扇形的弧所对直径,转化为求直径的长的问题.∵图扇形的弧长是2π,根据弧长公式得到2π=,∴n=120°即扇形的圆心角是120°,∴弧所对的弦长AA′=2×3sin60°=3,故选C.考点:1.圆锥的计算;2.平面展开-最短路径问题.14.如图,圆心B在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1).过点P(0,-7)的直线l与⊙B相交于C、D两点,则弦CD长的所有可能的整数值有_______个;它们是 .【答案】3个;8,9,10.【解析】∵点A的坐标为(0,1),圆的半径为5,∴点B的坐标为(0,﹣4),又∵点P的坐标为(0,﹣7),∴BP=3,①当CD垂直圆的直径AE时,CD的值最小,连接BC,在Rt△BCP中,CP= =4;故CD=2CP=8,②当CD经过圆心时,CD的值最大,此时CD=直径AE=10;所以,8≤CD≤10,综上可得:弦CD长的所有可能的整数值有:3个,分别是:8,9,10.【考点】垂径定理.15.操作与探究我们知道:过任意一个三角形的三个顶点能作一个圆,探究过四边形四个顶点作圆的条件。

初三数学【圆】试题及答案

初三数学【圆】试题及答案

圆一.选择题(共20小题)1.到圆心的距离大于半径的点的集合是()A.圆的内部B.圆的外部C.圆D.圆的外部和圆【分析】根据圆是到定点距离等于定长的点的集合,以及点和圆的位置关系即可解决.【解答】解:根据点和圆的位置关系,知圆的外部是到圆心的距离大于的所有点的集合;故选:B.【点评】此题考查圆的认识问题,理解圆上的点、圆内的点和圆外的点所满足的条件.2.如图,在⊙O中,分别将、沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是()A.8B.16 C.32D.32【分析】过O作OH⊥AB交⊙O于E,反向延长EO交CD于G,交⊙O于F,连接OA,OB,OD,根据平行线的性质得到EF⊥CD,根据折叠的性质得到OH=OA,推出△AOD 是等边三角形,得到D,O,B三点共线,且BD为⊙O的直径,求得∠DAB=90°,同理,∠ABC=∠ADC=90°,得到四边形ABCD是矩形,于是得到结论.【解答】解:过O作OH⊥AB交⊙O于E,反向延长EO交CD于G,交⊙O于F,连接OA,OB,OD,∵AB∥CD,∴EF⊥CD,∵分别将、沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=OA,∴∠HAO=30°,∴∠AOH=60°,同理∠DOG=60°,∴∠AOD=60°,∴△AOD是等边三角形,∵OA=OB,∴∠ABO=∠BAO=30°,∴∠AOB=120°,∴∠AOD+∠AOB=180°,∴D,O,B三点共线,且BD为⊙O的直径,∴∠DAB=90°,同理,∠ABC=∠ADC=90°,∴四边形ABCD是矩形,∴AD=AO=4,AB=AD=4,∴四边形ABCD的面积是16,故选:B.【点评】本题考查了垂径定理,圆周角定理,矩形的判定和性质,正确的作出辅助线是解题的关键.3.《九章算术》是我国古代著名数学暮作,书中记载:“今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O 的直径,弦AB⊥DC于E,ED=1寸,AB=10寸,求直径CD的长.”则CD=()A.13寸B.20寸C.26寸D.28寸【分析】连接OA构成直角三角形,先根据垂径定理,由DE垂直AB得到点E为AB的中点,由AB=10可求出AE的长,再设出圆的半径OA为x,表示出OE,根据勾股定理建立关于x的方程,求出方程的解即可得到x的值,即为圆的半径,把求出的半径代入即可得到答案.【解答】解:连接OA,∵AB⊥CD,且AB=10,∴AE=BE=5,设圆O的半径OA的长为x,则OC=OD=x∵DE=1,∴OE=x﹣1,在直角三角形AOE中,根据勾股定理得:x2﹣(x﹣1)2=52,化简得:x2﹣x2+2x﹣1=25,即2x=26,解得:x=13所以CD=26(寸).故选:C.【点评】此题考查了垂径定理的应用,注意利用圆的半径,弦的一半及弦心距所构成的直角三角形来解决实际问题,做此类题时要多观察,多分析,才能发现线段之间的联系.4.如图,AB是⊙O的直径,点D,C在⊙O上,∠DOC=90°,AC=2,BD=2,则⊙O 的半径为()A.B.C.D.【分析】作半径OE⊥AB,连接DE,作BF⊥DE于F,如图,利用等角的余角相等得到∠DOE=∠AOC,则DE=AC=2,利用三角形内角和可计算出∠BDE=135°,所以∠BDF=45°,从而可计算出DF=BF=2,利用勾股定理计算出BE=2,然后根据△BOE为等腰直角三角形可得到OB的长.【解答】解:作半径OE⊥AB,连接DE,作BF⊥DE于F,如图,∵∠DOC=90°,∠BOE=90°,∴∠DOE=∠AOC,∴DE=AC=2,∵∠BDE=180°﹣×90°=135°,∴∠BDF=45°,∴DF=BF=BD=×2=2,在Rt△BEF,BE==2,∵△BOE为等腰直角三角形,∴OB=×2=.故选:D.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.5.如图,在⊙O中,点C在优弧上,将沿BC折叠后刚好经过AB的中点D,连接AC,CD.则下列结论中错误的是()①AC=CD;②AD=BD;③+=;④CD平分∠ACBA.1B.2C.3D.4【分析】根据折叠的性质可得AD=CD;根据线段中点的定义可得AD=BD;根据垂径定理可作判断③;延长OD交⊙O于E,连接CE,根据垂径定理可作判断④.【解答】解:过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;∵点D是AB的中点,∴AD=BD,∵AC=CD',故②正确;∴=,由折叠得:=,∴+=;故③正确;延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:A.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.6.如图,四边形ABCD为⊙O的内接四边形,∠BCD=110°,则∠BOD的度数是()A.70°B.120C.140°D.160°【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理解答即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∠BCD=110°,∴∠A=180°﹣∠BCD=70°,由圆周角定理得,∠BOD=2∠A=140°,故选:C.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.7.如图,⨀O的两条弦AB、CD相交于点E,AC和DB的延长线交于点P,下列结论中成立的是()A.PC•CA=PB•BD B.CE•AE=BE•EDC.CE•CD=BE•BA D.PB•PD=PC•P A【分析】利用相似三角形的性质即可解决问题.【解答】解:∵∠P=∠P,∠A=∠D,∴△P AB∽△PDC,∴=,∴PB•PD=PC•P A,故选:D.【点评】本题考查相似三角形的判定,相交弦定理等知识,解题的关键是正确寻找相似三角形解决问题.8.在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B 在⊙A内时,实数a的取值范围是()A.a>2B.a>8C.2<a<8D.a<2或a>8【分析】首先确定OB的取值范围,然后根据点A所表示的实数写出a的取值范围,即可得到正确选项.【解答】解:∵⊙A的半径为3,若点B在⊙A内,∴OB<3,∵点A所表示的实数为5,∴2<a<8,故选:C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.9.下列语句中正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;④三点确定一个圆.A.1个B.2个C.3个D.4个【分析】利用确定圆的条件、垂径定理及圆心角、弧、弦之间的关系逐一作出判断即可得到答案.【解答】解:①同圆或等圆中,相等的圆心角所对的弧相等,故不符合题意;②平分弦(弦不是直径)的直径垂直于弦;故不符合题意;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;故符合题意;④不在一条直线上的三点确定一个圆,故不符合题意,故选:A.【点评】本题考查了确定圆的条件、垂径定理及圆心角、弧、弦之间的关系等有关的基础知识,虽然不很难,但很容易出错.10.已知圆心O到直线l的距离为d,⊙O的半径r=6,若d是方程x2﹣x﹣6=0的一个根,则直线l与圆O的位置关系为()A.相切B.相交C.相离D.不能确定【分析】先根据d是方程x2﹣x﹣6=0的一个根求出d的值,再由直线和圆的位置关系即可得出结论.【解答】解∵d是方程x2﹣x﹣6=0的一个根,∴d=3.∵当d=3,r=6时,d<r,∴直线于圆相交.故选:B.【点评】本题考查的是直线与圆的位置关系,熟知设⊙O的半径为r,圆心O到直线l 的距离为d.当d<r时,直线l和⊙O相交;当d=r时直线l和⊙O相切;当d>r时,直线l和⊙O相离是解答此题的关键.11.下列语句中,正确的是()A.同一平面上三点确定一个圆B.菱形的四个顶点在同一个圆上C.三角形的外心是三角形三边垂直平分线的交点D.三角形的外心到三角形三边的距离相等【分析】根据确定圆的条件,三角形的外心的定义,以及圆内接四边形的对角互补的性质对各选项分析判断后利用排除法.【解答】解:A、同一平面上三点必须不在同一直线上才可以确定一个圆,故本选项错误;B、菱形的对角相等,但不一定互补,所以四个顶点不一定在同一个圆上,故本选项错误;C、三角形的外心是三角形三边中垂线的交点,是外心定义,正确;D、三角形的外心到三角形三个定点的距离相等,到三边的距离不一定相等,故本选项错误.故选:C.【点评】本题主要考查了三角形的外心的定义,确定圆的条件,圆内接四边形的对角互补的性质,都是基础知识,需熟练掌握.12.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的半径是()A.3cm B.3cm C.6cm D.6cm【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理求得OB,从而得出光盘的半径.【解答】解:设圆心为O,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°,∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的半径是3cm.故选:B.【点评】此题考查了切线的性质,切线长定理,含30°直角三角形的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.13.下列说法中,正确的是()A.经过半径的端点并且垂直于这条半径的直线是这个圆的切线B.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.90°的圆周角所对的弦是直径D.如果两个圆心角相等,那么它们所对的弦相等【分析】根据切线的判定定理,垂径定理,圆周角定理以及弧、弦、圆心角之间的关系判断即可.【解答】解:A、经过半径的外端并且垂直于这条半径的直线是圆的切线,故不符合题意;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故不符合题意;C、90°的圆周角所对的弦是这个圆的直径,故符合题意;D、在同圆或等圆中,如果两个圆心角相等,那么它们所对的弦相等,所对的弧也相等,故不符合题意;故选:C.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.用到的知识点有切线的判定定理,垂径定理,圆周角定理以及弧、弦、圆心角之间的关系.判断命题的真假关键是要熟悉课本中的性质定理.14.如图,四边形ABCD是矩形,点P是△ABD的内切圆的圆心,过P作PE⊥BC,PF⊥CD,垂足分别为点E、F,则四边形PECF和矩形ABCD的面积之比等于()A.1:2B.2:3C.3:4D.无法确定【分析】延长EP交AD于M,延长FP交AB于N,如图,设AD=a,AB=b,BD=c,⊙P的半径为r,利用平行线的性质得到PM⊥AD,PN⊥AB,再根据切线的性质得到PM =PN=r,根据直角三角形的内切圆半径的计算方法得到r=,所以PE•PF=•,利用完全平方公式和平方差公式得到PE•PF=ab,然后计算四边形PECF和矩形ABCD的面积之比.【解答】解:延长EP交AD于M,延长FP交AB于N,如图,设AD=a,AB=b,BD =c,⊙P的半径为r,∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∵PE⊥BC,PF⊥CD,∴PM⊥AD,PN⊥AB,∵点P是△ABD的内切圆的圆心∴PM=PN=r,∴r=,∴PF=a﹣=,PE=b﹣=,∴PE•PF=•==,而a2+b2=c2,∴PE•PF==ab,∴四边形PECF和矩形ABCD的面积之比=ab:ab=1:2.故选:A.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了切线的性质和矩形的性质.15.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C 的半径长是()A.11B.10C.9D.8【分析】如图,设⊙A,⊙B,⊙C的半径为x,y,z.构建方程组即可解决问题.【解答】解:如图,设⊙A,⊙B,⊙C的半径为x,y,z.由题意:,解得,故选:C.【点评】本题考查两圆的位置关系,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.16.已知⊙O1与⊙O2交于A、B两点,且⊙O2经过⊙O1的圆心O1点,点C在⊙O1上.如图所示,∠AO2B=80°,则∠ACB=()A.100°B.40°C.80°D.70°【分析】在优弧AB上取一点E,连接AE,BE,AO1,BO1.利用圆周角定理,圆内接四边形的性质即可解决问题.【解答】解:在优弧AB上取一点E,连接AE,BE,AO1,BO1.∵∠AEB=∠AO2B,∠AO2B=80°,∴∠AEB=40°,∵∠AEB+∠AO1B=180°,∴∠AO1B=180°﹣∠AEB=140°,∴∠ACB=∠AO1B=70°,故选:D.【点评】本题考查圆周角定理,圆内接四边形的性质,相交两圆的性质等知识,教育的关键是学会添加常用辅助线,属于中考常考题型.17.如图,点O是正五边形ABCDE的中心,则∠AOB的度数是()A.65°B.70°C.72°D.78°【分析】由正五边形的性质即可得出答案.【解答】解:∵点O是正五边形ABCDE的中心,∴∠AOB=360°÷5=72°.故选:C.【点评】本题考查了正多边形和圆、正五边形的性质;熟记正五边形的中心角的计算方法是解题的关键.18.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9C.3πD.6π【分析】直接利用弧长公式计算即可.【解答】解:该莱洛三角形的周长=3×=3π.故选:C.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).也考查了等边三角形的性质.19.如图,在Rt△ABC中,∠ABC=90°,AB=4cm,BC=3cm,分别以A,C为圆心,以的长为半径作圆.将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为()cm2A.6﹣πB.6﹣πC.πD.6﹣π【分析】根据阴影的面积=△ABC的面积﹣两个扇形的面积和扇形的面积公式计算即可.【解答】解:∵∠B=90°,∴∠A+∠C=90°,设∠A=α,∠B=C=β,则α+β=90°,∵∠B=90°,AB=4cm,BC=3cm,∴AC===5cm,∴阴影的面积为×3×4﹣﹣=(6﹣π)cm2.故选:B.【点评】本题考查的是扇形面积的计算,掌握扇形的面积公式:S=是解题的关键.20.已知圆锥的底面半径为2cm,母线长为3cm,则该圆锥的侧面积为()A.18πB.12πC.6πD.3π【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径是2cm,则底面周长=4πcm,圆锥的侧面积=×4π×3=6πcm2.故选:C.【点评】本题考查圆锥的侧面积,解题的关键是记住圆锥是侧面积公式.二.填空题(共6小题)21.如图,在矩形ABCD中,AB=4cm,AD=12cm,动点P以每秒1cm的速度从点C 沿折线C﹣D﹣A匀速运动,到点A运动停止.以P为圆心作半径为cm的⊙P,当⊙P 与对角线BD相切时,点P的运动时间为4﹣2或6s.【分析】由矩形的性质和直角三角形的性质得出∠ADB=30°,∠BDC=60°,分两种情况①当⊙P与对角线BD相切,点P在CD上时;②当⊙P与对角线BD相切,点P 在AD上时;由直角三角形的性质即可得出答案.【解答】解:∵四边形ABCD是矩形,∴∠ADC=∠A=90°,CD=AB=4,∴BD===8=2AB,∴∠ADB=30°,∠BDC=60°,①当⊙P与对角线BD相切,点P在CD上时,如图1所示:设QD为E,连接PE,则PE⊥BD,∴∠DPE=30°,∴DE=PE=1,∴PD=2DE=2,∴CP=4﹣2,∵动点P以每秒1cm的速度从点C沿折线C﹣D﹣A匀速运动,∴点P的运动时间为4﹣2(秒),②当⊙P与对角线BD相切,点P在AD上时,如图2所示:设QD为F,连接PF,则PF⊥BD,∵∠ADB=30°,∴PD=2PF=2,∴CD+PD═6,∵动点P以每秒1cm的速度从点C沿折线C﹣D﹣A匀速运动,∴点P的运动时间为6秒;综上所述,⊙P与对角线BD相切时,点P的运动时间为4﹣2(秒)或6秒;故答案为:4﹣2或6.【点评】本题考查了切线的性质、矩形的性质、直角三角形的性质等知识;熟练掌握切线的性质和直角三角形的性质是解题的关键.22.如图,菱形ABCD,∠B=60°,AB=4,⊙O内切于菱形ABCD,则⊙O的半径为.【分析】作辅助线,构建直角△AOB,分别计算OA、OB的长,根据面积法可得OE的长.【解答】解:设AB和BC上的切点分别为E、F,连接OA、OE、OB、OF,则OE⊥AB,OF⊥BC,∵⊙O内切于菱形ABCD,∴OE=OF,∴OB平分∠ABC,∵∠ABC=60°,∴∠ABO=30°,同理得∠BAO=60°,∴∠AOB=90°,∴AO=AB=2,OB=2,∴S△AOB=AB•OE=AO•OB,4OE=2×,OE=,故答案为:.【点评】本题考查切线的性质、菱形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.如图,已知⊙O与Rt△AOB的斜边交于C,D两点,C、D恰好是AB的三等分点,若⊙O的半径等于5,则AB的长为3.【分析】过O作OH⊥AB,由陈经理得到CH=DH,推出△AOB是等腰直角三角形,得到OH=AH,设AC=CD=BD=x,根据勾股定理即可得到结论.【解答】解:过O作OH⊥CD,∴CH=DH,∵AC=BD=AB,∴AH=BH,∴△AOB是等腰直角三角形,∴OH=AH,设AC=CD=BD=x,∴AH=OH=1.5x,∴CH2+OH2=OC2,∴(x)2+(x)2=52,∴x=,∴AB=3,故答案为:3.【点评】本题考查了勾股定理,等腰直角三角形的判定和性质,垂径定理,正确的作出辅助线是解题的关键.24.已知⊙O1的半径长为4,⊙O2的半径长为r,圆心距O1O2=6,当⊙O1与⊙O2外切时,r的长为2.【分析】根据两圆的位置关系和数量之间的联系解答即可.【解答】解:∵⊙O1的半径长为4,⊙O2的半径长为r,圆心距O1O2=6,当⊙O1与⊙O2外切时,∴r+4=6,解得:r=2,故答案为:2;【点评】本题考查的是圆与圆的位置关系与数量之间的联系,关键是根据两圆外切⇔d =R+r解答.25.一个圆柱的高缩小2 倍,底面半径扩大2 倍,表面积不变.错误.(判断对错)【分析】根据圆柱的表面积即可得到结论.【解答】解:设原圆柱的高为h,底面半径为r,现在的圆柱的高为h,底面半径为2r,∴原表面积=2πr2•h,现在的表面积=2π•(2r)2h=4πr2h,∴表面积发生了变化,故答案为:错误.【点评】本题考查了圆柱的计算,正确的计算圆柱的表面积是解题的关键.26.如图,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,使∠EAF=90°,tan∠AEF=,则点F 与点C的最小距离为3﹣1.【分析】如图取AB的中点G,连接FG,FC,GC,由△F AG∽△EAD,推出FG:DE =AF:AE=1:3,因为DE=3,可得FG=1,推出点F的运动轨迹是以G为圆心1为半径的圆,再利用两点之间线段最短即可解决问题.【解答】解:如图取AB的中点G,连接FG.FC.GC.∵∠EAF=90°,tan∠AEF=,∴=,∵AB=6,AG=GB,∴AG=GB=3,∵AD=9,∴==,∴=,∵四边形ABCD是矩形,∴∠BAD=∠B═∠EAF=90°,∴∠F AG=∠EAD,∴△F AG∽△EAD,∴FG:DE=AF:AE=1:3,∵DE=3,∴FG=1,∴点F的运动轨迹是以G为圆心1为半径的圆,∵GC==3,∴FC≥GC﹣FG,∴FC≥3﹣1,∴CF的最小值为3﹣1.故答案为3﹣1.【点评】本题考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.三.解答题(共1小题)27.如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,过A作AD⊥CD,D为垂足.(1)求证:∠DAC=∠BAC;(2)若AC=6,cos∠BAC=,求⊙O的直径.【分析】(1)连接BC,OC,根据圆周角定理和弦切角定理可证得∠DAC=∠BAC;(2)根据已知条件得,从而求得AB的长.【解答】证明:(1)连接BC,OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵直线CD与⊙O相切于点C,∴∠ACD=∠B,∠OCD=90°,∵AD⊥CD,∴∠D AC+∠ACD=90°,∴∠DAC=∠BAC;(2)∵cos∠BAC=,∴=,∵AC=6,∴AB=10,故⊙O的直径为10.【点评】本题考查了弦切角定理和圆周角定理以及解直角三角形,是基础知识要熟练掌握.第21页(共21页)。

九年级数学上册《圆》练习题及答案解析

九年级数学上册《圆》练习题及答案解析

九年级数学上册《圆》练习题及答案解析学校:___________姓名:___________班级:___________一、单选题1.下列说法正确的是()A.直径是弦,弦是直径B.过圆心的线段是直径C.圆中最长的弦是直径D.直径只有二条2.下列语句不正确的有()个.①直径是弦;①优弧一定大于劣弧;①长度相等的弧是等弧;①半圆是弧.A.1B.2C.3D.43.如图,在①O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦.A.2B.3C.4D.54.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等5.下列由实线组成的图形中,为半圆的是()A.B.C.D.6.下列说法正确的是()A.平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .若一条直线与一个圆有公共点,则二者相交二、填空题7.如图,已知在Rt△ABC 中,①ACB =90°,分别以AC ,BC ,AB 为直径作半圆,面积分别记为S 1,S 2,S 3,若S 3=9π,则S 1+S 2等于_____.8.如图,Rt ABC 中,90ACB ∠=︒,以点C 为圆心,BC 为半径的圆交AB 于D ,交AC 于点E ,40BCD ∠=︒,则A ∠=______.9.如图,圆中扇子对应的圆心角α(180α)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则βα-的度数是__________.10.数学家赵爽在注解《周髀算经》时给出了“赵爽弦图”,如图所示,它是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,若直角三角形较短直角边长为6,大正方形的边长为10,则小正方形的边长为________.11.如图,在O 中,AB 为直径,8AB =,BD 为弦,过点A 的切线与BD 的延长线交于点C ,E 为线段BD 上一点(不与点B 重合),且OE DE =.(1)若35B ∠=︒,则AD 的长为______(结果保留π);(2)若6AC =,则DE BE=______.三、解答题12.如图,在Rt ABC 中,90ACB ∠=︒,以AC 为直径作O ,交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点E .(1)求证:DF 是O 的切线;(2)若2CF =,4DF =,求O 的半径.13.如图,点A ,B 分别在①DPE 两边上,且PA PB =,点C 在①DPE 平分线上.(1)连接AC ,BC ,求证:AC BC =;(2)连接AB 交PC 于点O ,若60APB ∠=︒,6PA =,求PO 的长;(3)若PO OC ,且点O 是PAB △的外心,请直接写出四边形P ACB 的形状.参考答案与解析:1.C【详解】解:A 、直径是弦,但弦不一定是直径,不符合题意;B 、过圆心的弦是直径,但线段不一定是直径,不符合题意;C 、圆中最长的弦是直径,符合题意;D 、直径有无数条,不符合题意,故选C .2.B【分析】根据圆的概念、等弧的概念、垂径定理、弧、弦直径的关系定理判断即可.【详解】解:①直径是弦,①正确;①在同圆或等圆中,优弧大于劣弧,①错误;①在同圆或等圆中,长度相等的弧是等弧,①错误;①半圆是弧,①正确;故不正确的有2个.故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.B【详解】根据弦的概念,AB 、BC 、EC 为圆的弦,共有3条弦.故选B.4.B【分析】根据圆的相关概念、圆周角定理及其推论进行逐一分析判断即可.【详解】解:A.在同圆或等圆中,劣弧一定比优弧短,故本选项说法错误,不符合题意;B.面积相等的圆是等圆,故本选项说法正确,符合题意;C.能完全重合的弧才是等弧,故本选项说法错误,不符合题意;D.必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误,不符合题意.故选:B .【点睛】本题主要考查了圆周角定理及其推论、等弧、等圆、以及优弧和劣弧等知识,解题关键是理解各定义的前提条件是在同圆或等圆中.5.B【分析】根据半圆的定义即可判断.【详解】半圆是直径所对的弧,但是不含直径,故选B .【点睛】此题主要考查圆的基本性质,解题的根据熟知半圆的定义.6.B【分析】利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可【详解】A 、平分弦(不是直径)的直径垂直于弦,故本选项错误;B 、半圆或直径所对的圆周角是直角,故本选项正确;C 、同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D 、若一条直线与一个圆有公共点,则二者相交或相切,故本选项错误,故选B .【点睛】本题考查直线与圆的位置关系,垂径定理,圆心角、弧、弦的关系,圆周角定理.能清楚的知道每个定理的条件和它对应的结论是解题的关键.7.9π.【分析】根据勾股定理和圆的面积公式,可以得到S 1+S 2的值,从而可以解答本题.【详解】解:①①ACB =90°,①AC 2+BC 2=AB 2,①S 1=π(2AC )2×12,S 2=π(2BC )2×12,S 3=π(2AB )2×12, ①S 1+S 2=π(2AC )2×12+π(2BC )2×12=π(2AB )2×12=S 3, ①S 3=9π,①S 1+S 2=9π,故答案为:9π.【点睛】本题考查勾股定理,解答本题的关键是利用数形结合的思想解答.8.20°.【分析】由半径相等得CB=CD,则①B=①CDB,在根据三角形内角和计算出①B=12(180°-①BCD)=70°,然后利用互余计算①A的度数.【详解】解:①CB=CD,①①B=①CDB,①①B+①CDB+①BCD=180°,①①B=12(180°-①BCD)=12(180°-40°)=70°,①①ACB=90°,①①A=90°-①B=20°.故答案为20°.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了三角形内角和定理.9.90°##90度【分析】根据题意得出α=0.6β,结合图形得出β=225°,然后求解即可.【详解】解:由题意可得:α:β=0.6,即α=0.6β,①α+β=360°,①0.6β+β=360°,解得:β=225°,①α=360°-225°=135°,①β-α=90°,故答案为:90°.【点睛】题目主要考查圆心角的计算及一元一次方程的应用,理解题意,得出两个角度的关系是解题关键.10.2【分析】在Rt①ABC中,根据勾股定理求出AC,即可求出CD.【详解】解:如图,①若直角三角形较短直角边长为6,大正方形的边长为10,①AB =10,BC =AD =6,在Rt ①ABC 中,AC 8,①CD =AC ﹣AD =8﹣6=2.故答案为:2.【点睛】本题主要考查了勾股定理,熟练掌握勾股定理是解决问题的关键.11. 149π 2539 【分析】(1)根据圆周角定理求出①AOD =70°,再利用弧长公式求解;(2)解直角三角形求出BC ,AD ,BD ,再利用相似三角形的性质求出DE ,BE ,可得结论.【详解】解:(1)①270AOD ABD ∠=∠=︒,①AD 的长704141809ππ⋅⋅==; 故答案为:149π; (2)连接AD ,①AC 是切线,AB 是直径,①AB AC ⊥,①10BC ,①AB 是直径,①90ADB ∠=︒,①AD CB ⊥,①1122AB AC BC AD ⋅⋅=⋅⋅,①245 AD=,①325 BD==,①OB OD=,EO ED=,①EDO EOD OBD ∠=∠=∠,①DOE DBO△∽△,①DO DE DB DO=,①43245DE=,①52 DE=,①325395210 BE BD DE=-=-=,①5252393910DEBE==.故答案为:25 39.【点睛】本题主要考查圆的相关知识,相似三角形的判定和性质,解直角三角形等知识,熟练掌握各性质及判定定理,正确寻找相似三角形解决问题是解题的关键.12.(1)见解析(2)3【分析】(1)连接OD、CD,由AC为①O的直径知①BCD是直角三角形,结合E为BC的中点知①CDE=①DCE,由①ODC=①OCD且①OCD+①DCE=90°可得答案;(2)设①O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.(1)解:如图,连接OD、CD.①AC为①O的直径,①①ADC=90°,①①CDB=90°,即①BCD是直角三角形,①E为BC的中点,①BE=CE=DE,①①CDE=①DCE,①OD=OC,①①ODC=①OCD,①①ACB=90°,①①OCD+①DCE=90°,①①ODC+①CDE=90°,即OD①DE,①DE是①O的切线;(2)解:设①O的半径为r,①①ODF=90°,①OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,①①O的半径为3.【点睛】本题主要考查了圆切线的判定与性质,等腰三角形的性质与判定,直角三角形斜边上的中线,勾股定理等等,熟知圆切线的性质与判定是解题的关键.13.(1)证明见解析(2)(3)正方形,理由见解析【分析】(1)证明①P AC①①PBC即可得到结论;(2)根据已知条件得到①APC=①BPC=30°,OP①AB于O,求得AO=3,再利用勾股定理即可得到结论;P A B C在以O为圆心,OP为半径的圆上,再证明①APB=①PBC=①BCA=①CAP=90°,可得(3)先证明,,,OBP BPC POB根据正方形的判定定理即可得到结论.四边形APBC为矩形,再证明45,90,(1)证明:①点C在①DPE平分线上,① APC BPC ∠=∠ ,又①P A =PB ,PC =PC ,①①P AC ①①PBC (SAS );.AC BC(2)解:①,,60,PA PB APOBPO APB ①①APC =①BPC =30°,OP ①AB 于O ;①P A =6,①AO =3, 22633 3.OP(3) 解:如图,①点O 是①P AB 的外心,①OA =OB =OP ,而OP =OC , ,,,P A B C 在以O 为圆心,OP 为半径的圆上,,AB PC 为圆的直径,①①APB =①PBC =①BCA =①CAP =90°,①四边形APBC 为矩形,PC 平分,APB ∠45,APC BPC,OP OB 45,90,OBP BPC POB①四边形APBC 为正方形.【点睛】本题考查了圆的综合题,全等三角形的判定和性质,正方形的判定,圆的确定,圆周角定理,正确的识别图形是解题的关键.。

初三数学圆的试题及答案

初三数学圆的试题及答案

初三数学圆的试题及答案一、选择题(每题3分,共15分)1. 圆的半径为5,圆心到圆上任意一点的距离称为圆的半径,这种说法()A. 正确B. 圆的半径是圆心到圆上任意一点的距离C. 错误D. 无法判断2. 已知圆的半径为4厘米,圆心到圆上一点的距离为2厘米,那么这个点()A. 一定在圆内B. 一定在圆上C. 一定在圆外D. 不能确定3. 圆的周长公式是()A. C = πrB. C = 2πrC. C = πdD. C = 2πd4. 圆的面积公式是()A. S = πr²B. S = 2πrC. S = πdD. S = πd²5. 已知圆的直径为10厘米,那么这个圆的半径是()A. 5厘米B. 10厘米C. 20厘米D. 15厘米二、填空题(每题2分,共10分)6. 圆的直径是半径的________倍。

7. 如果一个圆的半径为3,则其周长为________厘米。

8. 圆的面积与半径的平方成________比。

9. 一个圆的半径增加1厘米,其面积增加________平方厘米。

10. 圆心角为60°的扇形面积是同半径圆面积的________。

三、简答题(每题5分,共10分)11. 圆的切线有哪些性质?12. 圆的内接四边形有哪些性质?四、计算题(每题10分,共20分)13. 已知一个圆的半径为7厘米,求这个圆的周长和面积。

14. 已知一个扇形的半径为8厘米,圆心角为120°,求这个扇形的弧长和面积。

五、应用题(每题15分,共30分)15. 一个圆形花坛的直径为20米,求这个花坛的周长和面积。

16. 一个圆环,内圆半径为3厘米,外圆半径为5厘米,求这个圆环的面积。

答案:1. C2. C3. B4. A5. A6. 27. 18.848. 正9. 6π10. 1/611. 圆的切线性质:①切线垂直于过切点的半径;②过圆心的直线与切线垂直;③切线与圆只有一个公共点。

部编数学九年级上册专题24.1圆【七大题型】(人教版)(解析版)含答案

部编数学九年级上册专题24.1圆【七大题型】(人教版)(解析版)含答案

专题24.1 圆【七大题型】【人教版】【题型1 圆的概念】 (1)【题型2 圆的有关概念】 (4)【题型3 确定圆的条件】 (6)【题型4 点与圆的位置关系】 (9)【题型5 圆中角度的计算】 (12)【题型6 圆中线段长度的计算】 (15)【题型7 圆相关概念的应用】 (18)定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.【题型1 圆的概念】【例1】(2022•金沙县一模)下列说法中,不正确的是( )A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心【分析】利用圆的对称性质逐一求解可得.【解答】解:A.圆既是轴对称图形又是中心对称图形,正确;B.圆有无数条对称轴,正确;C.圆的每一条直径所在直线都是它的对称轴,此选项错误;D.圆的对称中心是它的圆心,正确;故选:C.【变式1-1】(2022•武昌区校级期末)由所有到已知点O 的距离大于或等于2,并且小于或等于3的点组成的图形的面积为( )A .4πB .9πC .5πD .13π【分析】根据题意、利用圆的面积公式计算即可.【解答】解:由所有到已知点O 的距离大于或等于2,并且小于或等于3的点组成的图形的面积为以3为半径的圆与以2为半径的圆组成的圆环的面积,即π×32﹣π×22=5π,故选:C .【变式1-2】(2022•杭州模拟)现有两个圆,⊙O 1的半径等于篮球的半径,⊙O 2的半径等于一个乒乓球的半径,现将两个圆的周长都增加1米,则面积增加较多的圆是( )A .⊙O 1B .⊙O 2C .两圆增加的面积是相同的D .无法确定【分析】先由L =2πR 计算出两个圆半径的伸长量,然后再计算两个圆增加的面积,然后进行比较大小即可.【解答】解:设⊙O 1的半径等于R ,变大后的半径等于R ′;⊙O 2的半径等于r ,变大后的半径等于r ′,其中R >r .由题意得,2πR+1=2πR ′,2πr +1=2πr ′,解得R ′=R +12π,r ′=r +12π;所以R ′﹣R =12π,r ′﹣r =12π,所以,两圆的半径伸长是相同的,且两圆的半径都伸长12π.∴⊙O 1的面积=πR 2,变大后的面积=π(R +12π)2,面积增加了π(R +12π)2−πR 2=R +14π,⊙O 2的面积=πr 2,变大后的面积=π(r +12π)2,面积增加了π(r +12π)2−πr 2=r +14π,∵R >r ,∴R +14π>r +14π,∴⊙O 1的面积增加的多.故选:A .【变式1-3】(2022•浙江)如图,AB 是⊙O 的直径,把AB 分成几条相等的线段,以每条线段为直径分别画小圆,设AB =a ,那么⊙O 的周长l =πa .计算:(1)把AB 分成两条相等的线段,每个小圆的周长l 2=12πa =12l ;(2)把AB 分成三条相等的线段,每个小圆的周长l 3= 13l ;(3)把AB 分成四条相等的线段,每个小圆的周长l 4= 14l ;(4)把AB 分成n 条相等的线段,每个小圆的周长l n = 1n l .结论:把大圆的直径分成n 条相等的线段,以每条线段为直径分别画小圆,那么每个小圆周长是大圆周长的 1n .请仿照上面的探索方法和步骤,计算推导出每个小圆面积与大圆面积的关系.【分析】把大圆的直径分成n 条相等的线段,以每条线段为直径分别画小圆,那么每个小圆周长是l n =π(1n a )=1n l ,即每个小圆周长是大圆周长的1n ;根据圆的面积公式求得每个小圆的面积和大圆的面积后比较.【解答】解:(2)13l ;(3)14l ;(4)1n l ;1n ;每个小圆面积=π(12•1n a )2=14•πa 2n 2,而大圆的面积=π(12•a )2=14πa 2即每个小圆的面积是大圆的面积的1.n2【题型2 圆的有关概念】【例2】(2022•远安县期末)下列说法:①弦是直线;②圆的直径被该圆的圆心平分;③过圆内一点P的直径仅有一条;④弧是圆的一部分.其中正确的有( )A.1个B.2个C.3个D.4个【分析】根据弦,直径,弧的定义一一判断即可.【解答】解:①弦是直线,错误,弦是线段.②圆的直径被该圆的圆心平分,正确.③过圆内一点P的直径仅有一条,错误,点P是圆心时,直径有无数条.④弧是圆的一部分,正确.故选:B.【变式2-1】(2022图木舒克月考)有一个圆的半径为5,则该圆的弦长不可能是( )A.1B.4C.10D.11【分析】根据直径是圆中最长的弦,判断即可.【解答】解:∵一个圆的半径为5,∴圆中最长的弦是10,∴弦长不可能为11,故选:D.【变式2-2】(2022•嘉鱼县期末)如右图中有 1 条直径,有 4 条弦,以点A为端点的优弧有 2 条,有劣弧 2 条.【分析】根据直径、弦、优弧及劣弧的概念解答即可得.【解答】解:图中直径只有AB这1条,弦有AC、AB、CD、BC这4条,以点A为端点的优弧有ACD、ADC 这2条,劣弧有AC、AD这2条,故答案为:1、4、2、2.【变式2-3】(2022仪征市期末)如图,⊙O的半径为6,△OAB的面积为18,点P为弦AB上一动点,当OP长为整数时,P点有 4 个.【分析】解法一:过点P最长的弦是12,根据已知条件,△OAB的面积为18,可以求出AB<12,根据三角形面积可得OC=OP的长有两个整数:5,6,且OP=6是P在A或B点时,每一个值都有两个点P,所以一共有4个.解法二:根据面积可知,OA上的高为6,也就是说OA与OB互相垂直,然后算出OC长度即可.【解答】解:解法一:过O作OC⊥AB于C,则AC=BC,设OC=x,AC=y,∵AB是⊙O的一条弦,⊙O的半径为6,∴AB≤12,∵△OAB的面积为18,+y2=362y⋅x=18,则y=18x,∴x2+(18x)2=36,解得x=∴OC=4,∴4<OP≤6,∵点P为弦AB上一动点,当OP长为整数时,OP=5或6,P点有4个.解法二:设△AOB中OA边上的高为h,则12×OAℎ=18,即12×6ℎ=18,∴h=6,∵OB=6,∴OA⊥OB,即∠AOB=90°,∴AB=OC=同理得:点P为弦AB上一动点,当OP长为整数时,OP=5或6,P点有4个.故答案为:4.【题型3 确定圆的条件】【例3】(2022•绥中县一模)小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是( )A.①B.②C.③D.均不可能【分析】要确定圆的大小需知道其半径.根据垂径定理知第①块可确定半径的大小.【解答】解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:A.【变式3-1】(2022春•射阳县校级期末)平面直角坐标系内的三个点A(1,0)、B(0,﹣3)、C(2,﹣3) 能 确定一个圆(填“能”或“不能”).【分析】根据三个点的坐标特征得到它们不共线,于是根据确定圆的条件可判断它们能确定一个圆.【解答】解:∵B(0,﹣3)、C(2,﹣3),∴BC∥x轴,而点A(1,0)在x轴上,∴点A、B、C不共线,∴三个点A(1,0)、B(0,﹣3)、C(2,﹣3)能确定一个圆.故答案为:能.【变式3-2】(2022•西城区期末)如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为 (2,1) .【分析】根据图形得出A、B、C的坐标,再连接AB,作线段AB和线段BC的垂直平分线MN、EF,两线交于Q,则Q是圆弧的圆心,最后求出点Q的坐标即可.【解答】解:从图形可知:A点的坐标是(0,2),B点的坐标是(1,3),C点的坐标是(3,3),连接AB,作线段AB和线段BC的垂直平分线MN、EF,两线交于Q,则Q是圆弧的圆心,如图,∴Q点的坐标是(2,1),故答案为:(2,1).【变式3-3】(2022•任城区校级月考)将图中的破轮子复原,已知弧上三点A,B,C.(1)画出该轮的圆心;(2)若△ABC是等腰三角形,底边BC=16cm,腰AB=10cm,求圆片的半径R.【分析】(1)根据垂径定理,分别作弦AB和AC的垂直平分线交点即为所求;(2)连接AO,OB,利用垂径定理和勾股定理可求出圆片的半径R.【解答】解:(1)如图所示:分别作弦AB和AC的垂直平分线交点O即为所求的圆心;(2)连接AO,OB,BC,BC交OA于D.∵BC=16cm,∴BD=8cm,∵AB=10cm,∴AD=6cm,设圆片的半径为R,在Rt△BOD中,OD=(R﹣6)cm,∴R2=82+(R﹣6)2,cm,解得:R=253cm.∴圆片的半径R为253【题型4 点与圆的位置关系】【例4】(2022秋•宜州区期末)如已知:如图,△ABC中,∠C=90°,AC=2cm,BC=4cm,CM是中线,以C长为半径画圆,则点A、B、M与⊙C的关系如何?【分析】点与圆的位置关系由三种情况:设点到圆心的距离为d,则当d=R时,点在圆上;当d>R时,点在圆外;当d<R时,点在圆内.【解答】解:根据勾股定理,有AB=cm);∵CA=2cm,∴点A在⊙O内,∵BC=4cm,∴点B在⊙C外;由中线定理得:CM=∴M点在⊙C上.【变式4-1】(2022春•龙湖区校级月考)⊙O的面积为25πcm2,⊙O所在的平面内有一点P,当PO =5cm 时,点P在⊙O上;当PO <5cm 时,点P在⊙O内;当PO >5cm 时,点P在⊙O外.【分析】根据圆的面积求出圆的半径,然后确定圆上点,圆内点以及圆外的到圆心的距离.【解答】解:因为圆的面积为25πcm2,所以圆的半径为5cm.当点P到圆心的距离等于5cm时,点P在⊙O上,此时OP=5cm.当点P到圆心的距离小于5cm时,点P在⊙O内,此时OP<5cm.当点P到圆心的距离大于5cm时,点P在⊙O外,此时OP>5cm.故答案分别是:PO=5cm,PO<5cm,PO>5cm.【变式4-2】(2022•广东模拟)如图,已知⊙A的半径为1,圆心的坐标为(4,3).点P(m,n)是⊙A 上的一个动点,则m2+n2的最大值为 36 .【分析】由于圆心A的坐标为(4,3),点P的坐标为(m,n),利用勾股定理可计算出OA=5,OP=这样把m2+n2理解为点P与原点的距离的平方,利用图形可得到当点P运动到射线OA上时,点P离圆点最远,即m2+n2有最大值,然后求出此时的PO长即可.【解答】解:作射线OA交⊙O于P′点,如图,∵圆心A的坐标为(4,3),点P的坐标为(m,n),∴OA5,OP=∴m2+n2是点P点圆点的距离的平方,∴当点P运动到P′处,点P离圆点最远,即m2+n2有最大值,此时OP=OA+AP′=5+1=6,则m2+n2=36.故答案为:36.【变式4-3】(2022秋•金牛区期末)如图.A(3,0).动点B到点M(3,4)的距离为1,连接BO,BO 的中点为C,则线段AC的最小值为 2 .【分析】先确定AC最小值时点B的位置:过B作BD∥AC交x轴于D,由图可知:当BD经过M时,线段BD的长最小,此时AC有最小值,根据勾股定理和三角形中位线定理可得AC的长.【解答】解:过B作BD∥AC交x轴于D,∵C是OB的中点,∴OA=AD,BD,∴AC=12∴当BD取最小值时,AC最小,由图可知:当BD经过M时,线段BD的长最小,此时AC有最小值,∵A(3,0),∴D(6,0),∵M(3,4),∴DM==5,∴BD=5﹣1=4,BD=2,即线段AC的最小值为2;∴AC=12故答案为:2.【题型5 圆中角度的计算】【例5】(2022•江宁区校级期中)如图,BD=OD,∠AOC=114°,求∠AOD的度数.【分析】设∠B=x,根据等腰三角形的性质,由BD=OD得∠DOB=∠B=x,再根据三角形外角性质得∠ADO=2x,则∠A=∠ADO=2x,然后根据三角形外角性质得2x+x=114°,解得x=38°,最后利用三角形内角和定理计算∠AOD的度数.【解答】解:设∠B=x,∵BD=OD,∴∠DOB=∠B=x,∴∠ADO=∠DOB+∠B=2x,∵OA=OD,∴∠A=∠ADO=2x,∵∠AOC=∠A+∠B,∴2x+x=114°,解得x=38°,∴∠AOD=180°﹣∠OAD﹣∠ADO=180°﹣4x=180°﹣4×38°=28°.【变式5-1】(2022•汉阳区校级月考)如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.已知AB=2DE,∠AEC=25°,求∠AOC的度数.【分析】求∠AOC的度数,可以转化为求∠C与∠E的问题.【解答】解:连接OD,∵AB=2DE=2OD,∴OD=DE,又∵∠E=25°,∴∠DOE=∠E=25°,∴∠ODC=50°,同理∠C=∠ODC=50°∴∠AOC=∠E+∠OCE=75°.【变式5-2】(2022•金牛区期末)如图,AB为⊙O的直径,AD∥OC,∠AOD=84°,则∠BOC= 48° .【分析】根据半径相等和等腰三角形的性质得到∠D=∠A,利用三角形内角和定理可计算出∠A,然后根据平行线的性质即可得到∠BOC的度数.【解答】解:∵OD=OC,∴∠D=∠A,∵∠AOD=84°,(180°﹣84°)=48°,∴∠A=12又∵AD∥OC,∴∠BOC=∠A=48°.故答案为:48°.【变式5-3】(2022•大丰市月考)如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O 上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q.是否存在点P,使得QP=QO;若存在,求出相应的∠OCP的大小;若不存在,请简要说明理由.【分析】点P是直线l上的一个动点,因而点P与线段AO有三种位置关系,在线段AO上,点P在OB 上,点P在OA的延长线上.分这三种情况进行讨论即可.【解答】解:①根据题意,画出图(1),在△QOC中,OC=OQ,∴∠OQC=∠OCP,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠AOC=30°,∴∠QPO=∠OCP+∠AOC=∠OCP+30°,在△OPQ中,∠QOP+∠QPO+∠OQC=180°,即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,整理得,3∠OCP=120°,∴∠OCP=40°.②当P在线段OA的延长线上(如图2)∵OC=OQ,∴∠OQP=(180°﹣∠QOC)×1①,2∵OQ=PQ,∴∠OPQ=(180°﹣∠OQP)×1②,2在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③,把①②代入③得∠QOC=20°,则∠OQP=80°∴∠OCP=100°;③当P在线段OA的反向延长线上(如图3),∵OC=OQ,∴∠OCP=∠OQC=(180°﹣∠COQ)×1①,2∵OQ=PQ,∴∠P=(180°﹣∠OQP)×1②,2∵∠AOC=30°,∴∠COQ+∠POQ=150°③,∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,①②③④联立得∠P=10°,∴∠OCP=180°﹣150°﹣10°=20°.故答案为:40°、20°、100°.【题型6 圆中线段长度的计算】【例6】(2022•潮安区模拟)如图,在△ABC中,∠C=90°,AB=10.若以点C为圆心,CA长为半径的圆恰好经过AB的中点D,则⊙C的半径为( )A .B .8C .6D .5【分析】连结CD ,根据直角三角形斜边中线定理求解即可.【解答】解:如图,连结CD ,∵CD 是直角三角形斜边上的中线,∴CD =12AB =12×10=5.故选:D .【变式6-1】(2022•海港区校级自主招生)如图,圆O 的周长为4π,B 是弦CD 上任意一点(与C ,D 不重合),过B 作OC 的平行线交OD 于点E ,则EO +EB = 2 .(用数字表示)【分析】根据圆的周长公式得到OD =2,根据等腰三角形的判定和性质定理即可得到结论.【解答】解:∵⊙O 的周长为4π,∴OD =2,∵OC =OD ,∴∠C =∠D ,∵BE ∥OC ,∴∠EBD =∠C ,∴∠EBD =∠D ,∴BE =DE ,∴EO +EB =OD =2,故答案为:2.【变式6-2】(2022•龙湖区校级开学)如图,已知AB 是⊙O 的直径,C 是⊙O 上的一点,CD ⊥AB 于D ,AD <BD ,若CD =2cm ,AB =5cm ,求AD 、AC 的长.【分析】由直径AB =5cm ,可得半径OC =OA =12AB =52cm ,分别利用勾股定理计算AD 、AC 的长.【解答】解:连接OC ,∵AB =5cm ,∴OC =OA =12AB =52cm ,Rt △CDO 中,由勾股定理得:DO =32cm ,∴AD =52−32=1cm ,由勾股定理得:AC ==则AD 的长为1cm ,AC .【变式6-3】(2022秋•邗江区期中)如图,半圆O 的直径AB =8,半径OC ⊥AB ,D 为弧AC 上一点,DE ⊥OC ,DF ⊥OA ,垂足分别为E 、F ,求EF 的长.【分析】连接OD ,利用三个角是直角的四边形是矩形判定四边形DEOF 是矩形,利用矩形的对角线相等即可得到所求结论.【解答】解:连接OD .∵OC ⊥AB DE ⊥OC ,DF ⊥OA ,∴∠AOC =∠DEO =∠DFO =90°,∴四边形DEOF是矩形,∴EF=OD.∵OD=OA∴EF=OA=4.【题型7 圆相关概念的应用】【例7】(2022秋•南岗区校级期中)某中学原计划修一个半径为10米的圆形花坛,为使花坛修得更加美观,决定向全校征集方案,在众多方案中最后选出两种方案:方案A如图1所示,先画一条直径,再分别以两条半径为直径修两个圆形花坛;方案B如图2所示,先画一条直径,然后在直径上取一点,把直径分成2:3的两部分,再以这两条线段为直径修两个圆形花坛;(花坛指的是图中实线部分)(1)如果按照方案A修,修的花坛的周长是 .(保留π)(2)如果按照方案B修,与方案A比,省材料吗?为什么?(保留π)(3)如果按照方案B修,学校要求在5天内完成,甲工人承包了此项工程,甲每天能完成工程的1,他15做了1天后,发现不能完成任务,就请乙来帮忙,乙的速度是甲的2倍,乙加入后,甲的速度也提高了1,结果正好按时完成任务,若修1米花坛可得到10元钱,修完花坛后,甲,乙各得到多少钱?(π取23)【分析】(l)根据圆的周长公式:c=xd,把数据代入公式求此直径是10米的两个圆的周长即可.(2)首先根据圆的周长公式:c=元d,求出直径是4米、和6米的圆的周长和,然后与图1进行比较.(3)求出乙的钱数,再用总钱数﹣乙是钱数,可得结论.【解答】解:(1)10÷2=5(米),2π×5×2=20π(米).故答案为:20π米.=8(米),8÷2=4(米),(2)10×2=20(米),20×223=12(米),12÷2=6(米),20×323方案B花坛周长:2π(4+6)=20π(米),20π=20π,方案B与A周长一样,用的材料一样.×2×(5﹣1)×20π×10=320(元).(3)乙的钱数=115甲的钱数=20π×10﹣320=280(元),答:修完花坛后,甲,乙分别得到320元和280元.【变式7-1】(2022•南岗区期末)一个压路机的前轮直径是1.7米,如果前轮每分钟转动6周,那么这台压路机10分钟前进( )米.A.51πB.102πC.153πD.204π【分析】首先根据圆的周长公式C=πd,求出前轮的底面圆周长,然后用前轮的底面周长乘每分钟转的周数(6周),求出1分钟前进多少米,再乘工作时间10分钟即可.【解答】解:前轮的底面圆周长:π×1.7=1.7π(米),1.7π×6×10=102π(米)故选:B.【变式7-2】(2022•罗田县校级模拟)一个塑料文具胶带如图所示,带宽为1cm,内径为4cm,外径为7cm,已知30层胶带厚1.5mm,则这卷胶带长 51.81 m.(π≈3.14,结果保留4位有效数字)【分析】首先求出胶带的体积,用胶带的体积除以一米长的胶带的体积即可求得.【解答】解:4÷2=2(cm),7÷2=3.5(cm),胶带的体积是:π(3.52﹣22)•1=8.25πcm3=8.25π×10﹣6(m3),一米长的胶带的体积是:0.01×1×5×10﹣5=5×10﹣7(m3),因而胶带长是:(8.25π×10﹣6)÷(5×10﹣7)≈51.81(m).故答案为:51.81.【变式7-3】(2022•张店区期末)如图,大圆和圆的半径都分别是4cm和2cm,两圆外切于点C,一只蚂蚁由点A开始ABCDEFCGA的顺序沿着两圆圆周不断地爬行,其中各点分别是两圆周的四等分点,蚂蚁直到行走2010πcm后才停下来.则这只蚂蚁停在点 E .【分析】首先求得蚂蚁由点A开始ABCDEFCGA的顺序走一周的路线长,然后确定走2010πcm是走了多少周,即可确定.【解答】解:A开始ABCDEFCGA的顺序转一周的路径长是:8π+4π=12πcm,蚂蚁直到行走2010πcm所转的周数是:2010π÷12π=167…6π.即转167周以后又走了6πcm.从A到B得路长是:2π,再到C的路线长也是2π,从C到D,到E的路线长是2π,则从A行走6πcm 到E点.故答案是:E.。

初三圆试题及答案数学

初三圆试题及答案数学

初三圆试题及答案数学
一、选择题
1. 已知圆的半径为5,圆心到直线的距离为3,则直线与圆的位置关系是()
A. 相离
B. 相切
C. 相交
D. 圆内
答案:C
2. 圆的周长为62.8,则圆的半径是()
A. 10
B. 5
C. 3
D. 2
答案:A
二、填空题
1. 圆的直径为10,则圆的周长是______。

答案:31.4
2. 一个圆的面积为28.26平方厘米,那么它的半径是______。

答案:3厘米
三、解答题
1. 已知圆的半径为7,求圆的面积。

答案:圆的面积公式为S=πr²,所以面积S=3.14×7²=153.86平方
厘米。

2. 一个圆的直径增加2厘米,求圆的面积增加多少。

答案:设原圆的半径为r,则增加后的半径为r+1。

原圆面积为πr²,增加后的圆面积为π(r+1)²。

面积增加量为π(r+1)²-
πr²=π(2r+1)。

初三数学圆试题答案及解析

初三数学圆试题答案及解析

初三数学圆试题答案及解析1.在锐角△ABC中,a、b、c分别表示为∠A、∠B、∠C的对边,O为其外心,则O点到三边的距离之比为()A.a:b:cB.C.cosA:cosB:cosCD.sinA:sinB:sinC【答案】C【解析】此题可分别过三角形的三个顶点作⊙O的直径,在构建的直角三角形中,根据圆周角定理和三角形中位线定理来求得三条弦心距的比例关系.解:如图,过A作⊙O的直径AG,连接BG,设⊙O的半径为R;∵AG是⊙O的直径,∴∠ABG=90°;∵OD⊥AB,∴OD∥BG;又∵O是AG的中点,∴OD是△ABG的中位线,即BG=2OD;Rt△ABG中,∠G=∠C,∴BG=AG•cosG=2R•cosC;∴OD=R•cosC,即O到AB边的距离为R•cosC;同理可证得:OE=R•cosA,OF=R•cosB;∴点O到三边的距离之比为:(R•cosA):(R•cosB):(R•cosC)=cosA:cosB:cosC;故选C.点评:此题主要考查了三角形的外接圆、圆周角定理、三角形中位线定理、解直角三角形等知识的综合应用;能够正确的构建出与所求相关的直角三角形是解答此题的关键.2.△ABC的边长AB=1厘米,AC=厘米,BC=厘米,则其外接圆的半径是.【答案】厘米【解析】根据勾股定理的逆定理求出∠CAB=90°,根据直角三角形外接圆的半径等于斜边的一半求出即可.解:∵AB2+AC2=12+()2=3,BC2=()2=3,∴AB2+AC2=BC2,∴∠CAB=90°,∴△ABC的外接圆的半径等于AD(或BD或CD)的长,是BC=厘米,故答案为:厘米.点评:本题考查了勾股定理的逆定理,直角三角形的性质,三角形的外接圆等知识点,注意:直角三角形的外接圆的半径等于斜边的一半.3.若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为.【答案】或【解析】点P可能在圆内,也可能在圆外;当点P在圆内时,直径为最大距离与最小距离的和;当点P在圆外时,直径为最大距离与最小距离的差;再分别计算半径.解:若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b,若这个点在圆的内部或在圆上时,圆的直径为a+b,因而半径为;当此点在圆外时,圆的直径是a﹣b,因而半径是;故答案为:或.点评:本题考查了点与圆的位置关系,培养学生分类的思想及对点P到圆上最大距离、最小距离的认识.4.(2013•镇江二模)如图,△ABC的外接圆的圆心坐标为.【答案】(6,2)【解析】本题可先设圆心坐标为(x,y),再根据“三角形外接圆的圆心到三角形三顶点的距离相等”列出等式,化简即可得出圆心的坐标.解:设圆心坐标为(x,y);依题意得,A(4,6),B(2,4),C(2,0)则有==,即(4﹣x)2+(6﹣y)2=(2﹣x)2+(4﹣y)2=(2﹣x)2+y2,化简后得x=6,y=2,因此圆心坐标为(6,2).点评:本题考查了三角形外接圆的性质和两点之间的距离公式.解此类题目时要注意运用三角形的外接圆圆心到三角形三点的距离相等这一性质.5.在半径为1的⊙O中,弦AB长,则∠AOB的度数为.【答案】90°【解析】根据勾股定理的逆定理可以证明△OAB是直角三角形,由此即可得到∠AOB的度数.解:如图,在⊙O中,OA=OB=1cm,而AB=cm,∴OA2+OB2=AB2,∴△OAB是直角三角形,∴∠AOB=90°,故答案为90°.点评:考查了圆的性质及勾股定理的逆定理的应用,也可以利用垂径定理求解.6.若⊙O的半径为5,OP=4,则点P与⊙O的位置关系为.【答案】圆内【解析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).解:∵OP=4<6,故点P与⊙O的位置关系是点在圆内.故答案为圆内.点评:本题考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.7.一个直角三角形的两条直角边长是方程x2﹣7x+12=0的两个根,那么这个直角三角形外接圆的半径等于.【答案】2.5【解析】根据题意可知,直角三角形的两条直角边长是方程x2﹣7x+12=0的两个根,解可得方程x2﹣7x+12=0的两个根为3与4;故直角三角形外接圆的直径即斜边边长为5;故半径等于2.5.解:解可得方程x2﹣7x+12=0得,x 1=3,x2=4,∴斜边边长为5,即直角三角形外接圆的直径是5,∴半径等于2.5.点评:本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.8.如图,以△OAB的顶点O为圆心的⊙O交AB于点C、D,且AC=BD,OA与OB相等吗?为什么?【答案】OA=OB【解析】过O作OE⊥AB于E,则OE满足垂径定理得到CE=DE,然后利用线段的垂直平分线的性质即可得到OA=OB.答:OA=OB.理由如下:如图,过O作OE⊥AB于E,∵CD是⊙O的弦,OE⊥CD,∴CE=DE,∵AC=BD,∴AE=BE,∵OE⊥CD,∴OA=OB.点评:本题考查了垂径定理的知识,解题的关键是作出垂直于弦的半径.比较简单.9.如图,已知同心圆O,大圆的半径AO、BO分别交小圆于C、D,试判断四边形ABDC的形状.并说明理由.【答案】等腰梯形【解析】首先判断CD∥AB,然后利用半径相等证得其腰相等即可说明其是等腰梯形.证明:∵OA=OB,OC=OD∴∴CD∥AB,∴四边形ABDC是梯形,∵OA﹣OC=OB﹣OD即:CA=DB∴四边形ABDC是等腰梯形.点评:本题考查了圆的认识及等腰梯形的判定,解题的关键是了解等腰梯形的判定方法.10.(2009•武汉模拟)如图,已知△ABC的外接圆⊙O的半径为1,D,E分别为AB,AC的中点,则sin∠BAC的值等于线段()A.BC的长B.DE的长C.AD的长D.AE的长【答案】B【解析】本题需将∠BAC构建到直角三角形中求解,过B作⊙O的直径,交⊙O于点F,由圆周角定理,知∠F=∠A;在Rt△BCF中,易求得sin∠F==,而DE是△ABC的中位线,即DE=,由此得解.解:过B作⊙O的直径BF,交⊙O于F,连接FC,则∠BCF=90°,Rt△BCF中,sin∠F==,∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,即DE=,∴sin∠A=sin∠F==DE.故选B.点评:本题主要考查的是三角形中位线定理、圆周角定理等知识点.11.已知点P到⊙O的最长距离是3,最短距离是2,则⊙O的半径是()A.2.5B.0.5C.2.5或0.5D.无法确定【答案】C【解析】分两种情况进行讨论:①点P在圆内;②点P在圆外,进行计算即可.解:①点P在圆内;如图,∵AP=2,BP=3,∴AB=5,∴OA=2.5;②点P在圆外;如图,∵AP=3,BP=2,∴AB=1,∴OA=0.5.故选C.点评:本题考查了点和圆的位置关系,分类讨论是解此题的关键.12.已知⊙O的半径为5,点P在⊙O内,则OP的长度可能为()A.3B.5C.7D.8【答案】A【解析】当⊙O的半径是R,点P到圆心O的距离是d,当d=R时,点P在⊙O上,当d<R时,点P在⊙O内,当d>R时,点P在⊙O外,根据以上内容判断即可.解:∵点P在⊙O内,⊙O的半径为5,∴OP<5,A、3<5,故本选项正确;B、5=5,此时P在圆上,故本选项错误;C、7>5,此时P在圆外,故本选项错误;D、8>5,此时P在圆外,故本选项错误;故选A.点评:本题考查了点和圆的位置关系,注意:点P和圆O有三种位置关系:当⊙O的半径是R,点P到圆心O的距离是d,①当d=R时,点P在⊙O上,②当d<R时,点P在⊙O内,③当d>R时,点P在⊙O外.13.已知⊙O的圆心在坐标原点,半径为5,点P的坐标为(﹣2,﹣4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.不能确定【答案】A【解析】根据两点间的距离公式求出OP的长,再与半径比较确定点A的位置.解:OP==2<5,所以点P在⊙O内.故选A.点评:本题考查的是点与圆的位置关系,知道O,P的坐标,求出OP的长,与圆的半径进行比较,确定点P的位置.14.已知⊙O的半径为3cm,PO=5cm,则下列说法正确的是()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定【答案】B【解析】判断一个点圆的位置关系,主要看该点到圆心的距离与半径之间的关系.解:由题意知⊙O的半径为3cm,PO=5cm,可知点P到圆心的距离大于r,故点P在圆外,故选B.点评:本题考查了对点与圆的位置关系的判断.关键要熟练掌握若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.15.⊙O的半径R=5cm,点P与圆心O的距离OP=3cm,则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.不确定【答案】C【解析】已知圆的半径是r,点到圆心的距离是d,点和圆的位置关系有三种:当r=d时,点在圆上,当r>d时,点在圆内,当r<d时,点在圆外,根据进行判断即可.解:∵⊙O的半径R=5cm,点P与圆心O的距离OP=3cm,5>3,∴点P与⊙O的位置关系是点P在圆内,故选C.点评:本题考查了点与圆的位置关系的应用,注意:当圆的半径是r,点到圆心的距离是d时,点和圆的位置关系有三种:①当r=d时,点在圆上,②当r>d时,点在圆内,③当r<d时,点在圆外.16.如图,以Rt△ABC的顶点A为圆心,斜边AB的长为半径作⊙A,则点C与⊙A的位置关系是()A.点C在⊙A内B.点C在⊙A上C.点C在⊙A外D.不能确定【答案】A【解析】首先确定点与圆心之间的距离,然后确定其半径,通过比较二者即可得到结论.解:⊙A的半径为斜边AB,点C到点A的距离为线段AC,∵直角三角形中斜边永远大于直角边,∴AB>AC∴点C在○A内,故选A.点评:本题考查了点与圆的位置关系,解题的关键是确定圆的半径和点与圆心之间的距离之间的大小关系.17.下列给定的三点能确定一个圆的是()A.线段AB的中点C及两个端点B.角的顶点及角的边上的两点C.三角形的三个顶点D.矩形的对角线交点及两个顶点【答案】C【解析】三点在同一直线时,过三点不能确定一个圆,根据即可判断A、B、D,根据三角形确定三角形的三个顶点不在同一直线上,即过三角形的三个顶点可以作一个圆,且只有一个圆,即可判断C.解:A、线段AB的端点A、B和线段AB的中点C不能确定一个圆,故本选项错误;B、当角的两边上的一个点或两个点和角的顶点重合时就不能确定一个圆,故本选项错误;C、经过三角形的三个顶点作圆,有且只有一个圆,故本选项正确;D、矩形的对角线交点及两个顶点,如果这三个点在一条直线上,就不能确定一个圆,故本选项错误;故选C.点评:本题考查了确定圆的条件的应用,注意:不在同一直线上的三个点确定一个圆.18.如图,在以原点为圆心,2为半径的⊙O上有一点C,∠COA=45°,则C的坐标为()A.(,)B.(,﹣)C.(﹣,)D.(﹣,﹣)【答案】C【解析】作CB⊥OA于点B,根据半径为2,∠COA=45°确定点C的坐标即可;解:作CB⊥OA于点B,∵∠COA=45°,∴三角形BCO为等腰直角三角形,∵OA=2,∴OB=BC=,又∵点C位于第二象限,∴点C的坐标为:(﹣,),故选C.点评:本题考查了圆的认识,正确的构造直角三角形是解决此类题目的关键,注意点C所在的位置.19.已知⊙O半径为5,线段OP=6,A为OP的中点,点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定【答案】A【解析】OP=6,A为线段PO的中点,则OA=3,因而点A与⊙O的位置关系为:点在圆内.解:∵OA==3,∴OA<⊙O半径,∴点A与⊙O的位置关系为:点在圆内.故选A.点评:本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R时,点在圆外;当d<R时,点在圆内.20.下列说法中,正确的是()A.三点确定一个圆B.三角形有且只有一个外接圆C.四边形都有一个外接圆D.圆有且只有一个内接三角形【答案】B【解析】根据确定圆的条件逐一判断后即可得到答案.解:A、不在同一直线上的三点确定一个圆,故原命题错误;B、三角形有且只有一个外切圆,原命题正确;C、并不是所有的四边形都有一个外接圆,原命题错误;D、圆有无数个内接三角形.故选B.点评:本题考查了确定圆的条件,不在同一直线上的三点确定一个圆.。

中考数学圆的综合综合经典题含详细答案

中考数学圆的综合综合经典题含详细答案

中考数学圆的综合综合经典题含详细答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)253 8.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC .设⊙O 的半径为r .在Rt △AHC 中,tan ∠ACH =tan ∠G =AH HC =34,∵AH =33,∴HC =43,在Rt △HOC 中,∵OC =r ,OH =r ﹣33,HC =43,∴222(33)(43)r r -+=,∴r =2536,∵GM ∥AC ,∴∠CAH =∠M ,∵∠OEM =∠AHC ,∴△AHC ∽△MEO ,∴AH HC EM OE =,∴33432536EM =,∴EM =2538. 点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.3.如图,AB 为O 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O 的切线,理由见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE ∽即可解决问题.【详解】()1解:结论:DE 是O 的切线.理由:连接OD .CDB ADE ∠=∠,ADC EDB ∴∠=∠,//CD AB ,CDA DAB ∴∠=∠,OA OD =,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠, AB 是直径,90ADB ∴∠=,90ADB ODE ∴∠=∠=,DE OD ∴⊥,DE ∴是O 的切线.()2//CD AB ,ADC DAB ∴∠=∠,CDB DBE ∠=∠,AC BD ∴=,AC BD ∴=,DCB DAB ∠=∠,EDB DAB ∠=∠,EDB DCB ∴∠=∠,CDB ∴∽DBE ,CD DB BD BE∴=, 2BD CD BE ∴=⋅,2AC CD BE ∴=⋅.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.4.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若PC=25,sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD的面积为6×4=24,Rt△CED的面积为12×4×2=4,扇形ABE的面积为12π×42=4π,∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.5.如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).38313 24313n+ 【解析】 分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为323 ∴a 13.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1. ∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭. ∵h 32,∴1=32-1)2+14a 22, 解得a 283 . (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2,即1=(nh -1)2+212n a ⎛⎫ ⎪⎝⎭ . ∵h =32 a n ,∴1=14a n 2+2312n na ⎛⎫- ⎪ ⎪⎝⎭, 解得a n =24331n n + .6.如图1,已知AB 是⊙O 的直径,AC 是⊙O 的弦,过O 点作OF ⊥AB 交⊙O 于点D ,交AC 于点E ,交BC 的延长线于点F ,点G 是EF 的中点,连接CG(1)判断CG 与⊙O 的位置关系,并说明理由;(2)求证:2OB 2=BC •BF ;(3)如图2,当∠DCE =2∠F ,CE =3,DG =2.5时,求DE 的长.【答案】(1)CG 与⊙O 相切,理由见解析;(2)见解析;(3)DE =2【解析】【分析】(1)连接CE ,由AB 是直径知△ECF 是直角三角形,结合G 为EF 中点知∠AEO =∠GEC =∠GCE ,再由OA =OC 知∠OCA =∠OAC ,根据OF ⊥AB 可得∠OCA +∠GCE =90°,即OC ⊥GC ,据此即可得证;(2)证△ABC ∽△FBO 得BC AB BO BF =,结合AB =2BO 即可得; (3)证ECD ∽△EGC 得EC ED EG EC =,根据CE =3,DG =2.5知32.53DE DE =+,解之可得.【详解】解:(1)CG 与⊙O 相切,理由如下:如图1,连接CE ,∵AB 是⊙O 的直径,∴∠ACB =∠ACF =90°,∵点G 是EF 的中点,∴GF =GE =GC ,∴∠AEO =∠GEC =∠GCE ,∵OA =OC ,∴∠OCA =∠OAC ,∵OF ⊥AB ,∴∠OAC +∠AEO =90°,∴∠OCA +∠GCE =90°,即OC ⊥GC ,∴CG 与⊙O 相切;(2)∵∠AOE =∠FCE =90°,∠AEO =∠FEC ,∴∠OAE =∠F ,又∵∠B =∠B ,∴△ABC ∽△FBO , ∴BC AB BO BF=,即BO •AB =BC •BF , ∵AB =2BO ,∴2OB 2=BC •BF ;(3)由(1)知GC =GE =GF ,∴∠F =∠GCF ,∴∠EGC =2∠F ,又∵∠DCE =2∠F ,∴∠EGC =∠DCE ,∵∠DEC =∠CEG ,∴△ECD ∽△EGC , ∴EC ED EG EC=, ∵CE =3,DG =2.5, ∴32.53DE DE =+,整理,得:DE2+2.5DE﹣9=0,解得:DE=2或DE=﹣4.5(舍),故DE=2.【点睛】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.7.如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积.【答案】(1)详见解析;(2)32π.【解析】【分析】(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的判定定理证明;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,3PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.【详解】证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴BD CD,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD 平分∠BAC ,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD 为等边三角形,∴∠ODB=60°,3 ,∴∠BDF=30°,∵BC ∥DF ,∴∠DBP=30°,在Rt △DBP 中,PD=123 ,3, 在Rt △DEP 中,∵37∴22(7)(3)- =2,∵OP ⊥BC ,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE ,∠BED=∠AEC ,∴△BDE ∽△ACE ,∴AE :BE=CE :DE ,即AE :5=17 ,∴AE=577∵BE ∥DF , ∴△ABE ∽△AFD , ∴BE AE DF AD= ,即5757125DF = , 解得DF=12,在Rt △BDH 中,BH=123, ∴阴影部分的面积=△BDF 的面积﹣弓形BD 的面积=△BDF 的面积﹣(扇形BOD 的面积﹣△BOD 的面积)=22160(23)3123(23)23604π⨯⨯-3﹣2π.【点睛】考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.8.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)【答案】(1)证明见解析 (2)233π- 【解析】【分析】 (1)连接OD ,只要证明OD ∥AC 即可解决问题;(2)连接OE ,OE 交AD 于K .只要证明△AOE 是等边三角形即可解决问题.【详解】(1)连接OD .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAD =∠DAC ,∴∠ODA =∠DAC ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∴BC 是⊙O 的切线.(2)连接OE ,OE 交AD 于K .∵AE DE =,∴OE ⊥AD .∵∠OAK =∠EAK ,AK =AK ,∠AKO =∠AKE =90°,∴△AKO ≌△AKE ,∴AO =AE =OE ,∴△AOE是等边三角形,∴∠AOE =60°,∴S 阴=S 扇形OAE ﹣S △AOE 260233604π⋅⋅=-⨯22233π=. 【点睛】本题考查了切线的判定、扇形的面积、等边三角形的判定和性质、平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.9.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF =3,求阴影部分的面积.【答案】(1)详见解析;(2)6334π-. 【解析】【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC,∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º∴∠PCA=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠PCA=∠ABC ;(2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B,∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形,∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º,∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA,同理,CF =FM,∴AM =2CF=23,Rt △ACM 中,易得AC=23×32=3=OC, ∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º,∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB,连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =3∵△CDO ≌△EDO(AAS),∴332 ∴1332ABM S AB MO ∆=⨯= 同样,易求93AOE S ∆=, 260333602BOE S ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形933633332ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.10.如图1,等腰直角△ABC 中,∠ACB=90°,AC=BC ,过点A ,C 的圆交AB 于点D ,交BC于点E ,连结DE(1)若AD=7,BD=1,分别求DE ,CE 的长(2)如图2,连结CD ,若CE=3,△ACD 的面积为10,求tan ∠BCD(3)如图3,在圆上取点P 使得∠PCD=∠BCD (点P 与点E 不重合),连结PD ,且点D 是△CPF 的内心①请你画出△CPF ,说明画图过程并求∠CDF 的度数②设PC=a ,PF=b ,PD=c ,若(a-2c )(b-2c )=8,求△CPF 的内切圆半径长.【答案】(1)DE=1,CE=32;(2)tan ∠BCD=14;(3)①135°;②2. 【解析】【分析】 (1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出114522DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF 是直角,再求证四边形PKDN 是正方形,最后以△PCF 面积不变性建立等量关系,结合已知(a-2c )(b-2c )=8,消去字母a ,b 求出c 值,即求出△CPF 的内切圆半径长为22c . 【详解】(1)由图可知:设BC=x .在Rt △ABC 中,AC=BC .由勾股定理得:AC 2+BC 2=AB 2,∵AB=AD+BD ,AD=7,BD=1,∴x 2+x 2=82,解得:x=42. ∵⊙O 内接四边形,∠ACD=90°,∴∠ADE=90°,∴∠EDB=90°,∵∠B=45°,∴△BDE 是等腰直角三形.∴DE=DB ,又∵DB=1,∴DE=1,又∵CE=BC-BE ,∴CE=42232-=.(2)如图所示:在△DCB 中过点D 作DM ⊥BE ,设BE=y ,则DM=12y , 又∵CE=3,∴BC=3+y ,∵S △ACB =S ACD +S DCB , ∴()1114242103y y 222⨯=+⨯+⨯, 解得:y=2或y=-11(舍去).∴EM=1,CM=CE+ME=1+3=4,又∵∠BCD=∠MCD ,∴tan ∠BCD=tan ∠MCD , 在Rt △DCM 中,tan ∠MCD=DM CM =14, ∴tan ∠BCD=14. (3)①如下图所示:过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D 切线PF 交CB的延长线于点F .∵∠CAD=45°,∴∠CPD=∠CAD=45°,又∵点D 是CPF ∆的内心,∴PD 、CD 、DF 都是角平分线,∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD∴∠CPF=90°∴∠PCF+∠PFC=90° ∴114522DCF CFD PCF PFC ∠+∠=∠+∠=︒ ∴∠CDF=180°-∠DCF-∠CFD F=90°+45°=135°,即∠CDF 的度数为135°.②如下图所示过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m ,∵点D 是△PCF 的内心,∴DM=DN=DK ,又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°,∴∠DCF+∠CFD=45°,又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线,∴∠PCF=2∠DCF ,∠PFC=2∠DFC ,∴∠PCF+∠PFC=90°,∴∠CPF=90°.在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°,∴四边形PKDN 是矩形,又∵KD=ND ,∴四边形PKDN 是正方形.又∵∠MBD=∠BDM=45°,∠BDM=∠KDP ,∴∠KDP=45°.∵PC=a ,PF=b ,PD=c ,∴PN=PK=C 2,∴NF=b c 2-,CK=a c 2-, 又∵CK=CM ,FM=FN ,CF=CM+FM ,∴CF=a b +,又∵S △PCF =S △PDF +S △PDC +S △DCF ,∴1111ab a c b c (a b 222222=⨯+⨯++-)×c 2,化简得:)2a b c c +-------(Ⅰ),又∵若(c )(c )=8化简得:()2ab a b 2c 8++=------(Ⅱ), 将(Ⅰ)代入(Ⅱ)得:c 2=8,解得:c =c =-∴2==, 即△CPF 的内切圆半径长为2.【点睛】本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.11.如图,已知AB 是⊙O 的直径,BC 是弦,弦BD 平分∠ABC 交AC 于F ,弦DE ⊥AB 于H ,交AC 于G .①求证:AG =GD ;②当∠ABC 满足什么条件时,△DFG 是等边三角形?③若AB=10,sin∠ABD=35,求BC的长.【答案】(1)证明见解析;(2)当∠ABC=60°时,△DFG是等边三角形.理由见解析;(3)BC的长为145.【解析】【分析】(1)首先连接AD,由DE⊥AB,AB是O的直径,根据垂径定理,即可得到AD AE=,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,证得∠ADE=∠ABD,又由弦BD平分∠ABC,可得∠DBC=∠ABD,根据等角对等边的性质,即可证得AG=GD;(2)当∠ABC=60°时,△DFG是等边三角形,根据半圆(或直径)所对的圆周角是直角与三角形的外角的性质,易求得∠DGF=∠DFG=60°,即可证得结论;(3)利用三角函数先求出tan∠ABD34=,cos∠ABD=45,再求出DF、BF,然后即可求出BC.【详解】(1)证明:连接AD,∵DE⊥AB,AB是⊙O的直径,∴AD AE=,∴∠ADE=∠ABD,∵弦BD平分∠ABC,∴∠DBC=∠ABD,∵∠DBC=∠DAC,∴∠ADE=∠DAC,∴AG=GD;(2)解:当∠ABC=60°时,△DFG是等边三角形.理由:∵弦BD平分∠ABC,∴∠DBC=∠ABD=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠ABC=30°,∴∠DFG=∠FAB+∠DBA=60°,∵DE⊥AB,∴∠DGF=∠AGH=90°﹣∠CAB=60°,∴△DGF 是等边三角形;(3)解:∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,∵∠DAC =∠DBC =∠ABD ,∵AB =10,sin ∠ABD =35, ∴在Rt △ABD 中,AD =AB•sin ∠ABD =6,∴BD =22AB BD -=8,∴tan ∠ABD =34AD BD =,cos ∠ABD =4=5BD AB , 在Rt △ADF 中,DF =AD•tan ∠DAF =AD•tan ∠ABD =6×34=92, ∴BF =BD ﹣DF =8﹣92=72, ∴在Rt △BCF 中,BC =BF•cos ∠DBC =BF•cos ∠ABD =72×45=145. ∴BC 的长为:145.【点睛】此题考查了圆周角定理、垂径定理、直角三角形的性质、三角函数的性质以及勾股定理等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想与转化思想的应用,注意辅助线的作法.12.如图,AB 是O 的直径,弦CD AB ⊥于点E ,过点C 的切线交AB 的延长线于点F ,连接DF .(1)求证:DF 是O 的切线;(2)连接BC ,若30BCF ∠=︒,2BF =,求CD 的长.【答案】(1)见解析;(2)3【解析】【分析】(1) 连接OD,由垂径定理证OF为CD的垂直平分线,得CF=DF,∠CDF=∠DCF,由∠CDO=∠OCD,再证∠CDO +∠CDB=∠OCD+∠DCF=90°,可得OD⊥DF,结论成立.(2) 由∠OCF=90°, ∠BCF=30°,得∠OCB=60°,再证ΔOCB为等边三角形,得∠COB=60°,可得∠CFO=30°,所以FO=2OC=2OB,FB=OB= OC =2,在直角三角形OCE中,解直角三角形可得CE,再推出CD=2CE.【详解】(1)证明:连接OD∵CF是⊙O的切线∴∠OCF=90°∴∠OCD+∠DCF=90°∵直径AB⊥弦CD∴CE=ED,即OF为CD的垂直平分线∴CF=DF∴∠CDF=∠DCF∵OC=OD,∴∠CDO=∠OCD∴∠CDO +∠CDB=∠OCD+∠DCF=90°∴OD⊥DF∴DF是⊙O的切线(2)解:连接OD∵∠OCF=90°, ∠BCF=30°∴∠OCB=60°∵OC=OB∴ΔOCB为等边三角形,∴∠COB=60°∴∠CFO=30°∴FO=2OC=2OB∴FB=OB= OC =2在直角三角形OCE中,∠CEO=90°∠COE=60°CE3∠==sin COEOC2∴CF3==∴CD=2 CF23【点睛】本题考核知识点:垂径定理,切线,解直角三角形. 解题关键点:熟记切线的判定定理,灵活运用含有30°角的直角三角形性质,巧解直角三角形.13.如图,AB是半圆⊙O的直径,点C是半圆⊙O上的点,连接AC,BC,点E是AC的中点,点F是射线OE上一点.(1)如图1,连接FA,FC,若∠AFC=2∠BAC,求证:FA⊥AB;(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接FA,FG,FG与AC相交于点P,且AF=FG.①试猜想∠AFG和∠B的数量关系,并证明;②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE=36.【解析】【分析】(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为AG AG,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵AG AG,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA=2∠ABC.②如图2﹣1中,连接AG,作FH⊥AG于H.∵BD=OE,∠CDB=∠AEO=90°,∠B=∠AOE,∴△CDB≌△AEO(AAS),∴CD=AE,∵EC=EA,∴AC=2CD.∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 22221AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 603AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=, ∴PE 3. 【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.14.设C 为线段AB 的中点,四边形BCDE 是以BC 为一边的正方形,以B 为圆心,BD 长为半径的⊙B 与AB 相交于F 点,延长EB 交⊙B 于G 点,连接DG 交于AB 于Q 点,连接AD .求证:(1)AD 是⊙B 的切线;(2)AD =AQ ;(3)BC 2=CF×EG .【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】()1连接BD ,由DC AB ⊥,C 为AB 的中点,由线段垂直平分线的性质,可得AD BD =,再根据正方形的性质,可得90ADB ∠=;()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得122.52G CDG BDG BCD ∠=∠=∠=∠=,继而求得67.5ADQ AQD ∠=∠=,由等角对等边,可证得AD AQ =; ()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠,90DCF E ∠=∠=,即可证得Rt DCF ∽Rt GED ,根据相似三角形的对应边成比例,即可证得结论.【详解】证明:()1连接BD ,四边形BCDE 是正方形,45DBA ∴∠=,90DCB ∠=,即DC AB ⊥,C 为AB 的中点,CD ∴是线段AB 的垂直平分线,AD BD ∴=,45DAB DBA ∴∠=∠=,90ADB ∴∠=,即BD AD ⊥,BD 为半径,AD ∴是B 的切线;()2BD BG =,BDG G ∴∠=∠,//CD BE ,CDG G ∴∠=∠,122.52G CDG BDG BCD ∴∠=∠=∠=∠=, 9067.5ADQ BDG ∴∠=-∠=,9067.5AQB BQG G ∠=∠=-∠=, ADQ AQD ∴∠=∠,AD AQ ∴=;()3连接DF ,在BDF 中,BD BF =,BFD BDF ∴∠=∠,又45DBF ∠=,67.5BFD BDF ∴∠=∠=,22.5GDB ∠=, 在Rt DEF 与Rt GCD 中,67.5GDE GDB BDE DFE ∠=∠+∠==∠,90DCF E ∠=∠=,Rt DCF ∴∽Rt GED ,CF CD ED EG∴=, 又CD DE BC ==,2BC CF EG ∴=⋅.【点睛】本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.15.如图1,D 是⊙O 的直径BC 上的一点,过D 作DE ⊥BC 交⊙O 于E 、N ,F 是⊙O 上的一点,过F 的直线分别与CB 、DE 的延长线相交于A 、P ,连结CF 交PD 于M ,∠C =12∠P . (1)求证:PA 是⊙O 的切线;(2)若∠A =30°,⊙O 的半径为4,DM =1,求PM 的长;(3)如图2,在(2)的条件下,连结BF 、BM ;在线段DN 上有一点H ,并且以H 、D 、C 为顶点的三角形与△BFM 相似,求DH 的长度.【答案】(1)证明见解析;(2)PM =43﹣2;(3)满足条件的DH 的值为632- 或122311+. 【解析】【分析】(1)如图1中,作PH ⊥FM 于H .想办法证明∠PFH=∠PMH ,∠C=∠OFC ,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD ,PD 即可解决问题;(3)分两种情形①当△CDH ∽△BFM 时,DH CD FM BF =. ②当△CDH ∽△MFB 时,DH CD FB MF=,分别构建方程即可解决问题; 【详解】(1)证明:如图1中,作PH ⊥FM 于H .∵PD ⊥AC ,∴∠PHM =∠CDM =90°,∵∠PMH =∠DMC ,∴∠C =∠MPH ,∵∠C =12∠FPM ,∴∠HPF =∠HPM , ∵∠HFP+∠HPF =90°,∠HMP+∠HPM =90°,∴∠PFH =∠PMH ,∵OF =OC ,∴∠C =∠OFC ,∵∠C+∠CMD =∠C+∠PMF =∠C+∠PFH =90°,∴∠OFC+∠PFC =90°,∴∠OFP =90°,∴直线PA 是⊙O 的切线.(2)解:如图1中,∵∠A =30°,∠AFO =90°,∴∠AOF =60°,∵∠AOF =∠OFC+∠OCF ,∠OFC =∠OCF ,∴∠C =30°,∵⊙O 的半径为4,DM =1,∴OA =2OF =8,CD =3DM =3 ,∴OD =OC ﹣CD =4﹣3 ,∴AD =OA+OD =8+4﹣3 =12﹣3 ,在Rt △ADP 中,DP =AD•tan30°=(12﹣3 )×33 =43 ﹣1, ∴PM =PD ﹣DM =4 3﹣2.(3)如图2中,由(2)可知:BF =12BC =4,FM 3BF =3,CM =2DM =2,CD 3 , ∴FM =FC ﹣CM =3﹣2, ①当△CDH ∽△BFM 时,DH CD FM BF = , ∴34432=- ,∴DH =632 ②当△CDH ∽△MFB 时,DH CD FB MF =, ∴34432DH =-,∴DH 1223+ , ∵DN ()22443833--=-,∴DH <DN ,符合题意,综上所述,满足条件的DH 的值为62- 或1211+. 【点睛】 本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.。

人教版九年级数学上册《圆》真题精选(含答案解析)

人教版九年级数学上册《圆》真题精选(含答案解析)

拓视野•真题备选1.(20XX •无锡中考)如图,A,B,C 是。

O 上的三点,且/ABC=70 ,则/ AOC 勺度数是()【解析】选B.根据圆周角定理,同弧所对的圆周角等于它所对的圆心角的一半 ,/ ABC-Z2AOC,vZ ABC=70 ,•••/ AOC=140 .2. (20XX •济南中考)如图,AB 是。

O 的直径,C 是。

O 上一点,AB=10,AC=6,ODL BC,垂足为D,则 BD 的长为()【解析】选C. v AB 是直径,因此Z C 是直角,v ODL BC,根据垂径定理,BDhBC 所以BD=4.3. (20XX •临沂中考)如图,o O 中,Z CBO=45 , Z CAO=15 ,则Z AOB 的度数是A.35B.140 °C.70D.70° 或 140A.2B.3C.4D.6C.45°【解析】选B.连接0C 延长AC 与。

O 交于点D, •••△ BOC 为等腰三角形, :丄 BOC=180 -2 / CBO=180 -2 X 45° =90° , v/ CAO=15 ,二/ COD=30 ,•••/ AOB=60 .4. (20XX •乐山中考)如图,圆心在y 轴的负半轴上,半径为5的。

B 与y 轴的正半轴交于点 A(0,1),过点P(0,-7)的直线I 与。

B 相交于C,D 两点,则弦CD 的长所有可能的整数值有()A.1个 C.3个【解析】选C.半径为5的。

B 与y 轴的正半轴交于点A(0,1),可知OB=4所以点B(0,-4).因 为 P(0,-7),BP=3.当弦 CD 丄AB 时,弦 CD 最短.连接 BC,由勾股定理得 CP= :=.,=4,由垂径定理可知 CD=2CP=8当弦CD 是。

B 的直径时,CD=10.所以8< C 氐10,所以CD 的整数值为:8,9,10共三个. 5.(20XX •枣庄中考)如图,已知线段OA 交。

初三圆经典试题及答案

初三圆经典试题及答案

初三圆经典试题及答案一、选择题1. 已知圆的半径为r,圆心为O,点P在圆上,则OP的长度为()。

A. rB. 2rC. r/2D. 无法确定答案:A2. 下列说法中,正确的是()。

A. 圆的半径是直径的一半B. 圆的直径是半径的两倍C. 圆的半径和直径相等D. 圆的周长是直径的四倍答案:B3. 圆的周长公式为()。

A. C = 2πrB. C = πrC. C = 4πrD. C = 2πd答案:A4. 圆的面积公式为()。

A. S = πr^2B. S = 2πrC. S = πdD. S = 4πr答案:A5. 如果一个圆的半径增加1倍,那么它的面积将增加()倍。

A. 1B. 2C. 4D. 8答案:C二、填空题6. 已知圆的半径为3cm,那么它的直径为_______cm。

答案:67. 圆的周长与直径的比值为______。

答案:π8. 如果一个圆的周长为12πcm,那么它的半径为_______cm。

答案:69. 圆的面积与半径的平方成正比,比例常数为______。

答案:π10. 已知圆的半径为5cm,那么它的面积为_______cm²。

答案:25π三、解答题11. 已知圆的半径为4cm,求圆的周长和面积。

解答:根据圆的周长公式C = 2πr,代入r = 4cm,得:C = 2π × 4 = 8π cm根据圆的面积公式S = πr^2,代入r = 4cm,得:S = π × 4^2 = 16π cm²12. 已知圆的直径为10cm,求圆的半径和面积。

解答:根据直径与半径的关系d = 2r,得:r = d / 2 = 10 / 2 = 5 cm根据圆的面积公式S = πr^2,代入r = 5cm,得:S = π × 5^2 = 25π cm²13. 已知一个圆的周长比另一个圆的周长大6πcm,且大圆的半径比小圆的半径大3cm,求两个圆的半径。

初三圆试题及答案数学

初三圆试题及答案数学

初三圆试题及答案数学初三数学圆的试题及答案如下:1. 已知圆的半径为5,求圆的面积。

答案:圆的面积公式为A=πr²,将半径r=5代入公式,得到A=π×5²=25π。

2. 若点A(3,4)在圆x²+y²=25内,则该圆的直径是多少?答案:点A(3,4)在圆x²+y²=25内,说明该点到圆心的距离小于半径。

圆的半径为5,因此直径为2×5=10。

3. 已知圆的直径为10,求该圆的周长。

答案:圆的周长公式为C=πd,将直径d=10代入公式,得到C=π×10=10π。

4. 已知圆的周长为6π,求该圆的半径。

答案:圆的周长公式为C=2πr,将周长C=6π代入公式,得到6π=2πr,解得r=3。

5. 已知圆的半径为4,求该圆的直径。

答案:圆的直径为半径的2倍,因此直径d=2×4=8。

6. 已知圆的直径为12,求该圆的面积。

答案:圆的半径为直径的一半,即r=12÷2=6。

将半径代入面积公式A=πr²,得到A=π×6²=36π。

7. 若点B(-2,-3)在圆x²+y²=16外,则该圆的半径是多少?答案:点B(-2,-3)在圆x²+y²=16外,说明该点到圆心的距离大于半径。

圆的半径为4,因此该点到圆心的距离大于4。

8. 已知圆的半径为5,求该圆的直径。

答案:圆的直径为半径的2倍,因此直径d=2×5=10。

9. 已知圆的周长为8π,求该圆的半径。

答案:圆的周长公式为C=2πr,将周长C=8π代入公式,得到8π=2πr,解得r=4。

10. 已知圆的直径为8,求该圆的面积。

答案:圆的半径为直径的一半,即r=8÷2=4。

将半径代入面积公式A=πr²,得到A=π×4²=16π。

以上就是初三数学圆的试题及答案,涵盖了圆的面积、周长、半径和直径等基本概念和计算方法。

初三圆经典真题及答案详解

初三圆经典真题及答案详解

初三圆经典真题及答案详解圆经典重难点真题一、选择题(共10小题)1.(2015•安顺)如右图,$\odot O$的直径AB垂直于弦CD,垂足为E,$\angle A=22.5^\circ$,OC=4,CD的长为()A.2B.4C.4D.82.(2015•酒泉)$\triangle ABC$为$\odot O$的内接三角形,若$\angle AOC=160^\circ$,则$\angle ABC$的度数是()A.80°B.160°C.100°D.80°或100°3.(2015•兰州)如右图,已知经过原点的$\odot P$与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则$\angle ACB=$A.80°B.90°C.100°D.无法确定4.(2015•包头)如右图,在$\triangle ABC$中,AB=5,AC=3,BC=4,将$\triangle ABC$绕点A逆时针旋转30°后得到$\triangle ADE$,点B经过的路径为$\pi$,则图中阴影部分的面积为()5.(2015•XXX自主招生)如右图,直径为10的$\odotA$经过点C(,5)和点O(,0),B是y轴右侧$\odot A$优弧上一点,则$\angle OBC$的正弦值为()A。

$\frac{1}{2}$ B。

$\frac{\sqrt{3}}{2}$ C。

$\frac{\sqrt{2}}{2}$ D。

$\frac{1}{\sqrt{2}}$6.(2015•XXX自主招生)将AB于点D折叠,若AD=4,DB=5,则BC的长是()A.3B.8C.5D.27.(2015•齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤58.(2015•衢州)如右图,已知$\triangle ABC$,AB=BC,以AB为直径的圆交AC于点D,过点D的$\odot O$的切线交BC于点E.若CD=5,CE=4,则$\odot O$的半径是()A.3B.4C.5D.69.(2014•舟山)如图,$\odot O$的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.810.(2015•海南)如右图,将$\odot O$沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则$\angle APB$的度数为()A.45°B.30°C.75°D.60°二、填空题(共5小题)11.(2015•黔西南州)如右图,AB是$\odot O$的直径,CD为$\odot O$的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则$\odot O$的半径为______。

初三圆形几何试题及答案

初三圆形几何试题及答案

初三圆形几何试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是圆的直径?A. 通过圆心的线段B. 连接圆上两点的线段C. 圆的周长D. 圆的面积答案:A2. 圆的周长公式是?A. C = 2πrB. C = πrC. C = 4πrD. C = 2πd答案:A3. 如果一个圆的半径是5cm,那么它的直径是多少?A. 10cmB. 5cmC. 15cmD. 20cm答案:A4. 圆的面积公式是?A. A = πr²B. A = 2πrC. A = πdD. A = 4πr²答案:A5. 圆的内接四边形的对角线具有什么性质?A. 相等B. 垂直C. 平行D. 相交于圆心答案:A6. 圆的内切圆的半径与外接圆的半径相比,哪个更大?A. 内切圆B. 外接圆C. 相等D. 无法确定答案:B7. 圆的切线与半径垂直吗?A. 是B. 否答案:A8. 圆的切线与圆相交于几个点?A. 1B. 2C. 3D. 0答案:A9. 圆的切线与圆心的距离等于什么?A. 圆的半径B. 圆的直径C. 圆的周长D. 圆的面积答案:A10. 圆的切线与圆的半径相交于哪个点?A. 圆心B. 圆上任意一点C. 圆的边缘D. 圆的中心答案:C二、填空题(每题3分,共30分)1. 一个圆的直径是8cm,那么它的半径是_______cm。

答案:42. 圆的周长与直径的比值被称为______。

答案:π3. 如果一个圆的周长是31.4cm,那么它的半径是_______cm。

答案:54. 圆的面积与半径的平方成正比,比例系数是______。

答案:π5. 圆的内接三角形的三个内角之和等于______度。

答案:1806. 圆的外接三角形的三个顶点都在圆的边缘上,这样的三角形被称为______三角形。

答案:外接7. 圆的内切三角形的三个顶点都在圆的边缘上,这样的三角形被称为______三角形。

答案:内切8. 圆的切线与半径相交于圆的______。

初三数学圆试题答案及解析

初三数学圆试题答案及解析

初三数学圆试题答案及解析1.若两圆的半径分别是1cm和4cm,圆心距为5cm,则这两圆的位置关系是()A.内切B.相交C.外切D.外离【答案】C.【解析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),外离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差). 因此,∵两圆的半径分别是1cm和4cm,圆心距为5cm,∴两圆圆心距离等于两圆半径之和.∴⊙O1和⊙O2的位置关系是外切.故选C.【考点】两圆的位置关系.2.如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形ABC.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).【答案】(1).(2)0°≤α≤60°.(3)【解析】(1)连接OA,如下图1,根据条件可求出AB,然后AC的高BH,求出BH就可以求出△ABC的面积.(2)如下图2,首先考虑临界位置:当点A与点Q重合时,线段AB与圆O只有一个公共点,此时α=0°;当线段AB所在的直线与圆O相切时,线段AB与圆O只有一个公共点,此时α=60°.从而定出α的范围.(3)设AO与PM的交点为D,连接MQ,如下图3,易证AO∥MQ,从而得到△PDO∽△PMQ,△BMQ∽△BAO,又PO=OQ=BQ,从而可以求出MQ、OD,进而求出PD、DM、AM、CM的值.试题解析:(1)连接OA,过点B作BH⊥AC,垂足为H,如图1所示.∵AB与⊙O相切于点A,∴OA⊥AB.∴∠OAB=90°.∵OQ=QB=1, ∴OA=1.∴AB=.∵△ABC 是等边三角形, ∴AC=AB=,∠CAB=60°.∵sin ∠HAB=,∴HB=AB•sin ∠HAB=.∴S △ABC =AC•BH=.∴△ABC 的面积为.(2)①当点A 与点Q 重合时,线段AB 与圆O 只有一个公共点,此时α=0°;②当线段A 1B 所在的直线与圆O 相切时,如图2所示,线段A 1B 与圆O 只有一个公共点,此时OA 1⊥BA 1,OA 1=1,OB=2,∴cos ∠A 1OB=.∴∠A 1OB=60°. ∴当线段AB 与圆O 只有一个公共点(即A 点)时,α的范围为:0°≤α≤60°.(3)连接MQ ,如图3所示.∵PQ 是⊙O 的直径, ∴∠PMQ=90°.∵OA ⊥PM , ∴∠PDO=90°. ∴∠PDO=∠PMQ . ∴△PDO ∽△PMQ .∴∵PO=OQ=PQ . ∴PD=PM ,OD=MQ .同理:MQ=AO ,BM=AB .∵AO=1,∴MQ=.∴OD=.∵∠PDO=90°,PO=1,OD=,∴PD=.∴PM=.∴DM=.∵∠ADM=90°,AD=A0﹣OD=,∴AM=.∵△ABC是等边三角形,∴AC=AB=BC,∠CAB=60°.∵BM=AB,∴AM=BM.∴CM⊥AB.∵AM=,∴BM=,AB=.∴AC=.∴CM=.∴CM的长度为.【考点】圆的综合题.3.圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是A.B.C.D.【答案】B=∏RL=【解析】根据圆锥的侧面积公式求解.S侧【考点】圆锥的侧面积4.如图,四边形ABCD是⊙O的内接正方形,点P是上不同于点C的任意一点,则∠BPC的大小是()A.45°B.60°C.75°D.90°【答案】A.【解析】连接OB、OC,根据正方形的性质,得∠BOC=90°,再根据圆周角定理,得.故选A.【考点】1.圆周角定理;2.正多边形和圆.5.如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)当BF=5,时,求BD的长.【答案】(1)证明见解析;(2)9.【解析】(1)连接,证明即可证明CF为⊙O的切线.(2)连接,由∽得到,在Rt△BEF和Rt△ABD中应用锐角三角函数定义即可求得BD的长.试题解析:(1)如图,连接.∵, ∴又∵∴又∵,∴∴OC∥DB.∵CE⊥DB,∴.又∵为⊙的半径,∴为⊙O的切线.(2)如图,连接.在Rt△BEF中,∠BEF=90°, BF=5,,∴.∵OC∥BE, ∴∽.∴设⊙的半径为r, ∴∴.∵AB为⊙O直径,∴.∴.∵, ∴.∴∴∴.【考点】1.圆周角定理;2.切线的判定和性质;3.相似三角形的判定和性质;4.锐角三角函数定义.6.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为A.4 B.6 C. D.【答案】C.【解析】连接OD,∵DF为圆O的切线,∴OD⊥DF,∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵OD=OC,∴△OCD为等边三角形,∴∠CDO=∠A=60°,∠ABC=∠DOC=60°,∴OD∥AB,又O为BC的中点,∴D为AC的中点,即OD为△ABC的中位线,∴OD∥AB,∴DF⊥AB,在Rt△AFD中,∠ADF=30°,AF=2,∴AD=4,即AC=8,∴FB=AB-AF=8-2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选C.【考点】1.切线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理;5.圆周角定理.7.已知扇形的半径为4cm,圆心角为120º,则此扇形的弧长是 .【答案】cm.【解析】根据弧长公式求出扇形的弧长.=,试题解析:l扇形则扇形的弧长=cm.【考点】弧长的计算.8.如图所示,在⊙O中,=,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC.(1)求证:AC2=AB·AF;(2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分的面积.【答案】(1)证明见解析(2) cm2【解析】(1)证明:∵=,∴∠ACD=∠ABC,又∠BAC=∠CAF,∴△ACF∽△ABC,∴=,即AC2=AB·AF;(2)解:连接OA,OC,过O作OE⊥AC,垂足为点E,如图所示:∵∠ABC=60°,∴∠AOC=120°,又OA=OC,∴∠AOE=∠COE=×120°=60°,在Rt△AOE中,OA=2cm,∴OE=OAcos60°=1cm,∴AE==cm,∴AC=2AE=2cm,则S阴影=S扇形OAC-S△AOC=-×2×1=cm2.9.如图,在平面直角坐标系中,⊙A与y轴相切于点,与x轴相交于M、N两点.如果点M的坐标为,求点N的坐标.【答案】N(, 0).【解析】连接AB、AM、过A作AC⊥MN于C,设⊙A的半径是R,根据切线性质得出AB=AM=R,求出CM=R﹣,AC=,MN=2CM,由勾股定理得出方程R2=(R﹣)2+()2,求出方程的解即可.试题解析:连接AB、AM,过点A作AC⊥MN于点C.∵⊙A与y轴相切于点B(0,),∴AB⊥y轴.又∵AC⊥MN,x 轴⊥y轴,∴四边形BOCA为矩形.∴AC=OB=,OC=BA.∵AC⊥MN,∴∠ACM=90°,MC=CN.∵M(,0),∴OM=.在 Rt△AMC中,设AM=r.根据勾股定理得:.即,求得r=.∴⊙A的半径为.即AM=CO=AB=.∴MC=CN=2.∴N(,0).【考点】1.切线的性质,2.坐标与图形性质,3.勾股定理,4.垂径定理.10.半径为6cm和4cm的两圆相切,则它们的圆心距为()A.2cm B.5cm C.2cm或5cm D.2cm或10cm【答案】D.【解析】已知两圆的半径,分两种情况:①当两圆外切时;②当两圆内切时;即可求得两圆的圆心距.∵两圆半径分别为3cm和2cm,∴当两圆外切时,圆心距为6+4=10cm;当两圆内切时,圆心距为6-4=2cm.故选D.考点: 圆与圆的位置关系.11.如图所示,⊙O1、⊙O2的圆心O1、O2在直线l上,⊙O1的半径为2,⊙O2的半径为3,O1O2=8,⊙O1以每秒1个单位的速度沿直线l向右平移运动,7秒后停止运动,此时⊙O1与⊙O2的位置关系是().A.外切B.相交C.内切D.内含【答案】D.【解析】7s后两圆刚好内切,所以外切、相交、内切都有,没有内含.故选D.考点: 圆与圆的位置关系.12.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为度.【答案】55.【解析】如图,连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°.∴.∴∠C和∠AOB是同弧所对的圆周角和圆心角,∴∠C=∠AOB=55°.【考点】1.切线的性质;2.多边形内角和定理;3.圆周角定理.13.如图,⊙O1和⊙O2内切,它们的半径分别为3和1,过O1作⊙O2的切线,切点为A,则O1A的长为______________.【答案】.【解析】连接过切点的半径,构造直角三角形,根据两圆内切,得到两圆的圆心距,再根据勾股定理进行计算.试题解析:连接O2A,根据切线的性质,得∠O2AO1=90°,根据两圆内切,得O1O2=3-1=2,根据勾股定理,得O1A=.考点: 1.相切两圆的性质;2.切线的性质.14.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF 并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=.其中正确的是 (写出所有正确结论的序号). 【答案】①②④. 【解析】①由AB 是⊙O 的直径,弦CD ⊥AB ,根据垂径定理可得:=,DG=CG ,继而证得△ADF ∽△AED ;②由=,CF=2,可求得DF 的长,继而求得CG=DG=4,则可求得FG=2;③由勾股定理可求得AG 的长,即可求得tan ∠ADF 的值,继而求得tan ∠E=; ④首先求得△ADF 的面积,由相似三角形面积的比等于相似比,即可求得△ADE 的面积,继而求得S △DEF =.①∵AB 是⊙O 的直径,弦CD ⊥AB , ∴=,DG=CG , ∴∠ADF=∠AED , ∵∠FAD=∠DAE (公共角), ∴△ADF ∽△AED ;故①正确;②∵=,CF=2,∴FD=6, ∴CD=DF+CF=8, ∴CG=DG=4, ∴FG=CG ﹣CF=2;故②正确;③∵AF=3,FG=2,∴AG==,∴在Rt △AGD 中,tan ∠ADG==, ∴tan ∠E=; 故③错误;④∵DF=DG+FG=6,AD==, ∴S △ADF =DF•AG=×6×=, ∵△ADF ∽△AED ,∴, ∴=,∴S △AED =, ∴S △DEF =S △AED ﹣S △ADF =;故④正确.故答案为:①②④.【考点】1. 相似三角形的判定与性质;2.垂径定理;3.圆周角定理.15. 如图,已知⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,OM ⊥AB 于点M ,则sin∠CBD的值等于()A.3B.﹣3C.D.【答案】A.【解析】试题解析:连接OA、OB,由于OM⊥AB,根据垂径定理易证得∠BOM=∠AOB,而由圆周角定理可得∠BCD=∠AOB=∠BOM,因此∠CBD=∠OBM,只需求得∠OBM的正弦值即可;在Rt△OBM中,由垂径定理可得BM=4,已知⊙O的半径OB=5,由勾股定理可求得OM=3,即可求出∠OBM即∠CBD得正弦值,由此得解.选A.考点: (1)圆周角定理;(2)勾股定理;(3)垂径定理.16.如图,⊙O是△ABC的外接圆,已知∠ABO=30º,则∠ACB的大小为()A.50ºB.45ºC.30ºD.60º【答案】D.【解析】∵OA=OB,∠ABO=30°,∴∠BAO=∠ABO=30°(等边对等角).∴∠AOB=120°(三角形内角和定理)。

初三数学圆测试题和答案

初三数学圆测试题和答案

、选择题1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆 在三角形的一条边上的三角形是直角三角形,其中真命题共有A. 0个B. 1个C. 2个D. 3个3. 如图,四边形 ABCD 内接于O O 若它的一个外角/ DCE=704. 如图,O O 的直径为10,弦AB 的长为8, M 是弦AB 上的动点,贝U OM 的长的取值范围() A.3 < OMS 5B.4 < OMC 5C.3 V OM k 5D.4 V OM k 55. 如图,O O 的直径 AB 与弦CD 的延长线交于点 E ,若DE=OB / AOC=84,则/ E 等于()&已知O O 与O Q 外切于点 A , O O 的半径R=2, O O 的半径r=1 ,若半径为 4的O C 与O O 、O O 都相 切,则满足条件的O C 有() A.2个B.4个C.5个D.6个9•设O O 的半径为2,圆心O 到直线的距离OP=m 且m 使得关于x 的方程「丄 - ■:-" - '■有实数根,则直线「与O O 的位置关系为()圆练习2.同一平面内两圆的半径是R 和r ,圆心距是d ,若以R 、r 、d 为边长,能围成一个三角形,则这两个圆A.外离 的位置关系是()B.相切C.相交D.内含 A.35C.110OOB.70(3题图) (4题图) ③相等的圆心角所对的弦相等 ④外心,则/ BOD=()A.42B.28C.216.如图, O, AD 丄 BC 于点 D, AD=2cm AB=4cm AC=3cm 则 O O 的直径是() A.2cmB.4cmC.6cmD.8cm7.如图, 影部分的面积为圆心角都是 90 的扇形OAB 与扇形OCD 叠放在一起,OA=3 OC=1分别连结 AC BD,则图中阴1— JIA. 1C.--D.-ox J D△ ABC 内接于O (5题图) (6题图)10 .如图,把直角厶ABC 的斜边AC 放在定直线上,按顺时针的方向在直线 J 上转动两次,使它转到△ A 2B 2C 2的位置,设AB= -,BC=1,则顶点A 运动到点 A 的位置时,点 A 所经过的路线为()、填空题11. 某圆柱形网球筒,其底面直径是 10cm,长为80cm,将七个这样的网球筒如图所示放置并包装侧面,则需 _________________ 液'的包装膜(不计接缝,洱取3).12.如图,在“世界杯”足球比赛中,甲带球向对方球门 PQ 进攻,当他带球冲到 A 点时,同样乙已经助攻冲到B 点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门 •仅从射门角度考虑,应选择 _________种射门方式•13. 如果圆的内接正六边形的边长为 __________ 6cm,则其外接圆的半径为14如图,直角坐标系中一条圆弧经过网格点在圆的圆心坐标为 _______________.15•如图,两条互相垂直的弦将O O 分成四部分,相对的两部分面积之和分别记为S 、S 2,若圆心到两弦的距离分别为 2和3,则|S 1-S 2|= _____________ .A.相离或相切B.相切或相交C.相离或相交D.无法确定£回A.I 八丿71C."A 、B 、C,其中,B 点坐标为(4 , 4),则该圆弧所(15题图)(11题图)... .... 」..亠,: 丄—L —■ (14 题图)、解答题16.为了探究三角形的内切圆半径r与周长■'、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究• O O 是厶ABC 的内切圆,切点分别为点D E 、F.(1)用刻度尺分别量出表中未度量的△ ABC 的长,填入空格处,并计算出周长」和面积S.(结果精确到0.1厘米)ACBCAB rIS图甲0.6图乙1.0(2)观察图形,利用上表实验数据分析.猜测特殊三角形的r 与.、S 之间关系,并证明这种关系对任意三角形 (图 丙)是否也成立17•如图,以等腰三角形」二匚的一腰-兀为直径的O O 交底边占二于点匸,交于点了,连结-迄,并过 点丄-作二匸丄…-,垂足为三.根据以上条件写出三个正确结论 (除-匸—丄-----_-- -- __-外)是:(1) ____________ ;⑵ _________________ ;⑶ _________________19•如图是一纸杯,它的母线AC 和 EF 延长后形成的立体图形是圆锥, 该圆锥的侧面展开图形是扇形 OAB 经测 量,纸杯上开口圆的直径是 6cm,下底面直径为4cm 母线长为EF=8cm.求扇形OAB 的圆心角及这个纸杯的表面积 (面 积计算结果用 表示).18•如图,要在直径为 50厘米的圆形木板上截出四个大小相同的圆形凳面 .问怎样才能截出直径最大的凳面,最大直径是多少厘米? C20. 如图,在△ ABC 中,/ BCA =90°,以BC 为直径的O 位置关系,并说明理由•21. 有这样一道习题:如图 1,已知OA 和OB 是O O 的半径,并且 OAL OB P 是OA 上任一点(不与O A 重合), BP 的延长线交O O 于Q,过Q 点作O O 的切线交OA 的延长线于 R.说明:RP=RQ.请探究下列变化:变化一:交换题设与结论•已知:如图1, OA 和 OB 是O O 的半径,并且 OALOB P 是OA 上任一点(不与 O A 重合),BP 的延长线交O O 于Q R 是OA 的延长线上一点,且 RP=RQ.说明:RQ 为O O 的切线•变化二:运动探求•⑴ 如图2,若0A 向上平移,变化一中的结论还成立吗?(只需交待判断)答: ___________ .⑵如图3,如果P 在0A 的延长线上时,BP 交O 0于Q,过点Q 作O 0的切线交0A 的延长线于R,原题中的结 论还成立吗?为什么?PQ 与O O的22. (深圳南山区)如图,在平面直角坐标系中,矩形A BC0的面积为15,边0A比0C大2.E为BC的中点,以0E为直径的O 0'交芒轴于D点,过点D作DF丄AE于点F.(1) 求0A 0C的长;(2) 求证:DF为O 0'的切线;(3) 小明在解答本题时,发现△ A0E是等腰三角形•由此,他断定:“直线BC上一定存在除点E以外的点卩,使厶A0P也是等腰三角形,且点P一定在O 0'夕卜”.你同意他的看法吗?请充分说明理由•答案与解析:一、选择题1.B2.C3.D4.A5.B6.C7.C提示:易证得△ AOC^A BOD屯~^QA£ +儿创-_^aoco =鴻如-徭OCT =Q次(F 1 八)二2酒8.D 9.B 10.B、填空题11.12000 12.第二种13.6cm 14.(2 , 0)4X 6=24)ED二DC , (2) / BAD2 CAD ⑶ DE是°° 的切线(以及ADL BC,弧BD=M DG等).18. 设计方案如左图所示,在右图中,易证四边形OAO C为正方形,00 +0' B=25,所以圆形凳面的最大直径为25^ -1)厘米.15.24(提示:如图,由圆的对称性可知'一•「一'- L等于e的面积,即为三、解答题16.(1) I 略;由图表信息猜测,得并且对一般三角形都成立•连接OA OB OC运用面积法证明:亡~ £」处十十脸丄胆OD十十丄AB~OF2 2 217.(1)19. 扇形OAB的圆心角为45°,纸杯的表面积为44打. 解:设扇形OAB的圆心角为n°弧长AB等于纸杯上开口圆周长:弧长CD等于纸杯下底面圆周长: MT OF180=2TV -12丿可列方程组180珂■ OF *------- =4L 180,解得(9F = 16所以扇形OAB的圆心角为45°, OF等于16cm纸杯表面积=纸杯侧面积+纸杯底面积=扇形OAB的面积-扇形OCD的面积+纸杯底面积即S纸杯表面积=-x 6TT x 0^4 — x OF2 21 1 <4— x67rx(8 + 16) — x4zrxl6 + 7T 一2v 2 1220.连接OR CP 则/ OPC M OCP.由题意知厶ACR是直角三角形,又Q是AC的中点,因此QP=QC / QPC M QCR. 而/ OCP y QCP=90,所以/ OPC+/ QPC=90 即OPL PQ PQ与O O相切.21.解:连接OQ•/ OQ=OB •••/ OBP2 OQP 为O O的切线,• OQL QROQP/ PQR=90OBP+Z OPB=90PQR/ OPB/ OPB与/ QPR为对顶角OPB2 QPR PQR/ QPRRP=RQ一、连接OQ证明OQL QR •/ QR 即/ 而/ 故/ 又•••• /变化变化、(1)结论成立(2)结论成立,连接OQ 证明/ B=/ OQB则/ P=/ PQR所以RQ=PR.22.(1)在矩形OAB(中,设OC=x则OA=x+2依题意得x(x+2) = 15解得:叫二巧(不合题意,舍去)•••0C=3 0A=55(2) 连结O D,在矩形OABC中,OC=AB / 0CB2 ABC=90 , CE=BE=••• △ OCE^A ABE • EA=EO「./ 仁/2在O O'中,•/ O ' O= O' D 1 = / 3•••/ 3= / 2 • O' D// AE, •/ DF丄AE • DF 丄O' D又•••点D在O O'上,O' D为O O'的半径,• DF为O O'切线.(3) 不同意.理由如下:①当AO=AF时,以点A为圆心,以AO为半径画弧交BC于P i和P4两点过P i 点作P i H丄OA于点H, P i H=OC=3 T AP=OA=5• AH=4, • OH =1求得点P i(1 , 3)同理可得:F4(9 , 3)②当OA=OP寸,同上可求得:P2(4 , 3) , P3( 4, 3)因此,在直线BC上,除了E点外,既存在O O'内的点P i,又存在O O'外的点P2、P3、P4, 它们分别使△ AOP为等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆经典重难点真题一.选择题(共10小题)1.(2015•安顺)如右图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2 B.4 C.4D.82.(2015•酒泉)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°3.(2015•兰州)如右图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定4.(2015•包头)如右图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()A.πB.πC.πD.π5.(2015•黄冈中学自主招生)如右图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的正弦值为()A.B.C.D.6.(2015•黄冈中学自主招生)将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3 B.8 C. D.27.(2015•齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10 B.8<AB≤10 C.4≤AB≤5 D.4<AB≤58.(2015•衢州)如右图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3 B.4 C.D.9.(2014•舟山)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.810.(2015•海南)如右图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°二.填空题(共5小题)11.(2015•黔西南州)如右图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.12.(2015•宿迁)如图,四边形ABCD是⊙O的内接四边形,若∠C=130°,则∠BOD=°.13.(2015•南昌)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为.14.(2015•青岛)如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=.15.(2015•甘南州)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是.三.解答题(共5小题)16.(2015•永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.17.(2015•安徽)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.18.(2015•滨州)如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.19.(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.20.(2014•湖州)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.参考答案与试题解析一.选择题(共10小题)1.(2015•安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD 的长为()A.2 B.4 C.4D.8【考点】垂径定理;等腰直角三角形;圆周角定理.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.2.(2015•酒泉)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°【考点】圆周角定理.【分析】首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.【解答】解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.【点评】此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.3.(2015•兰州)如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定【考点】圆周角定理;坐标与图形性质.【分析】由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB=90°.【解答】解:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.故选B.【点评】此题考查了圆周角定理.此题比较简单,解题的关键是观察图形,得到∠AOB与∠ACB是优弧AB所对的圆周角.4.(2015•包头)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()A.πB.πC.πD.π【考点】扇形面积的计算;勾股定理的逆定理;旋转的性质.【分析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.【解答】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积==,故选:A.【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.5.(2015•黄冈中学自主招生)如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B 是y轴右侧⊙A优弧上一点,则∠OBC的正弦值为()A.B.C.D.【考点】圆周角定理;坐标与图形性质;锐角三角函数的定义.【分析】首先连接AC,OA,由直径为10的⊙A经过点C(0,5)和点O(0,0),可得△OAC 是等边三角形,继而可求得∠OAC的度数,又由圆周角定理,即可求得∠OBC的度数,则可求得答案.【解答】解:连接AC,OA,∵点C(0,5)和点O(0,0),∴OC=5,∵直径为10,∴AC=OA=5,∴AC=OA=OC,∴△OAC是等边三角形,∴∠OAC=60°,∴∠OBC=∠OAC=30°,∴∠OBC的正弦值为:sin30°=.故选A.【点评】此题考查了圆周角定理、等边三角形的判定与性质以及三角函数的知识.此题难度不大,解题的关键是注意数形结合思想的应用,注意辅助线的作法.6.(2015•黄冈中学自主招生)将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3 B.8 C. D.2【考点】圆周角定理;翻折变换(折叠问题);射影定理.【专题】计算题.【分析】若连接CD、AC,则根据同圆或等圆中,相等的圆周角所对的弦相等,求得AC=CD;过C作AB的垂线,设垂足为E,则DE=AD,由此可求出BE的长,进而可在Rt△ABC中,根据射影定理求出BC的长.【解答】解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选A.【点评】此题考查的是折叠的性质、圆周角定理、以及射影定理;能够根据圆周角定理来判断出△ACD是等腰三角形,是解答此题的关键.7.(2015•齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10 B.8<AB≤10 C.4≤AB≤5 D.4<AB≤5【考点】直线与圆的位置关系;勾股定理;垂径定理.【分析】此题可以首先计算出当AB与小圆相切的时候的弦长.连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB=8.若大圆的弦AB与小圆有公共点,即相切或相交,此时AB≥8;又因为大圆最长的弦是直径10,则8≤AB≤10.【解答】解:当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∴AB=2=8.∵大圆的弦AB与小圆有公共点,即相切或相交,∴8≤AB≤10.故选:A.【点评】本题综合考查了切线的性质、勾股定理和垂径定理.此题可以首先计算出和小圆相切时的弦长,再进一步分析有公共点时的弦长.8.(2015•衢州)如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3 B.4 C.D.【考点】切线的性质.【专题】压轴题.【分析】首先连接OD、BD,判断出OD∥BC,再根据DE是⊙O的切线,推得DE⊥OD,所以DE⊥BC;然后根据DE⊥BC,CD=5,CE=4,求出DE的长度是多少;最后判断出BD、AC的关系,根据勾股定理,求出BC的值是多少,再根据AB=BC,求出AB的值是多少,即可求出⊙O的半径是多少.【解答】解:如图1,连接OD、BD,,∵AB是⊙O的直径,∴∠ADB=90°,∴BD⊥AC,又∵AB=BC,∴AD=CD,又∵AO=OB,∴OD是△ABC的中位线,∴OD∥BC,∵DE是⊙O的切线,∴DE⊥OD,∴DE⊥BC,∵CD=5,CE=4,∴DE=,∵S△BCD=BD•CD÷2=BC•DE÷2,∴5BD=3BC,∴,∵BD2+CD2=BC2,∴,解得BC=,∵AB=BC,∴AB=,∴⊙O的半径是;.故选:D.【点评】此题主要考查了切线的性质,要熟练掌握,解答此题的关键是要明确:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.9.(2014•舟山)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.8【考点】垂径定理;勾股定理.【专题】计算题.【分析】根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.【解答】解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.【点评】本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.10.(2015•海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°【考点】圆周角定理;含30度角的直角三角形;翻折变换(折叠问题).【专题】计算题;压轴题.【分析】作半径OC⊥AB于D,连结OA、OB,如图,根据折叠的性质得OD=CD,则OD=OA,根据含30度的直角三角形三边的关系得到∠OAD=30°,接着根据三角形内角和定理可计算出∠AOB=120°,然后根据圆周角定理计算∠APB的度数.【解答】解:作半径OC⊥AB于D,连结OA、OB,如图,∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,∴OD=CD,∴OD=OC=OA,∴∠OAD=30°,而OA=OB,∴∠CBA=30°,∴∠AOB=120°,∴∠APB=∠AOB=60°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了含30度的直角三角形三边的关系和折叠的性质.二.填空题(共5小题)11.(2015•黔西南州)如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.【考点】垂径定理;勾股定理.【分析】连接OC,由垂径定理得出CE=CD=2,设OC=OA=x,则OE=x﹣1,由勾股定理得出CE2+OE2=OC2,得出方程,解方程即可.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,CD⊥AB,∴CE=CD=2,∠OEC=90°,设OC=OA=x,则OE=x﹣1,根据勾股定理得:CE2+OE2=OC2,即22+(x﹣1)2=x2,解得:x=;故答案为:.【点评】本题考查了垂径定理、勾股定理、解方程;熟练掌握垂径定理,并能进行推理计算是解决问题的关键.12.(2015•宿迁)如图,四边形ABCD是⊙O的内接四边形,若∠C=130°,则∠BOD=100°.【考点】圆周角定理;圆内接四边形的性质.【专题】计算题.【分析】先根据圆内接四边形的性质得到∠A=180°﹣∠C=50°,然后根据圆周角定理求∠BOD.【解答】解:∵∠A+∠C=180°,∴∠A=180°﹣130°=50°,∴∠BOD=2∠A=100°.故答案为100.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了圆内接四边形的性质.13.(2015•南昌)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为110°.【考点】圆周角定理.【分析】根据圆周角定理求得∠BOC=100°,进而根据三角形的外角的性质求得∠BDC=70°,然后根据邻补角求得∠ADC的度数.【解答】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+⊂BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案为110°.【点评】本题考查了圆心角和圆周角的关系及三角形外角的性质,圆心角和圆周角的关系是解题的关键.14.(2015•青岛)如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=40°.【考点】圆内接四边形的性质;三角形内角和定理.【专题】计算题.【分析】先根据三角形外角性质计算出∠EBF=∠A+∠E=85°,再根据圆内接四边形的性质计算出∠BCD=180°﹣∠A=125°,然后再根据三角形外角性质求∠F.【解答】解:∵∠A=55°,∠E=30°,∴∠EBF=∠A+∠E=85°,∵∠A+∠BCD=180°,∴∠BCD=180°﹣55°=125°,∵∠BCD=∠F+∠CBF,∴∠F=125°﹣85°=40°.故答案为40°.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的任意一个外角等于它的内对角.也考查了三角形外角性质.15.(2015•甘南州)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是6.【考点】垂径定理;勾股定理.【专题】压轴题.【分析】连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.【解答】解:连接AO,∵半径是5,CD=1,∴OD=5﹣1=4,根据勾股定理,AD===3,∴AB=3×2=6,因此弦AB的长是6.【点评】解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.三.解答题(共5小题)16.(2015•永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.【考点】垂径定理;勾股定理;菱形的判定.【分析】(1)证明△ABD≌△ACD,得到∠BAD=∠CAD,根据等腰三角形的性质即可证明;(2)菱形,证明△BFE≌△CDE,得到BF=DC,可知四边形BFCD是平行四边形,易证BD=CD,可证明结论;(3)设DE=x,则根据CE2=DE•AE列方程求出DE,再用勾股定理求出CD.【解答】(1)证明:∵AD是直径,∴∠ABD=∠ACD=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD,∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:∵AD是直径,AB=AC,∴AD⊥BC,BE=CE,∵CF∥BD,∴∠FCE=∠DBE,在△BED和△CEF中,∴△BED≌△CEF,∴CF=BD,∴四边形BFCD是平行四边形,∵∠BAD=∠CAD,∴BD=CD,∴四边形BFCD是菱形;(3)解:∵AD是直径,AD⊥BC,BE=CE,∴CE2=DE•AE,设DE=x,∵BC=8,AD=10,∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD===2.【点评】本题主要考查了圆的有关性质:垂径定理、圆周角定理,三角形全等的判定与性质,菱形的判定与性质,勾股定理,三角形相似的判定与性质,熟悉圆的有关性质是解决问题的关键.17.(2015•安徽)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.【考点】圆周角定理;勾股定理;解直角三角形.【专题】计算题.【分析】(1)连结OQ,如图1,由PQ∥AB,OP⊥PQ得到OP⊥AB,在Rt△OBP中,利用正切定义可计算出OP=3tan30°=,然后在Rt△OPQ中利用勾股定理可计算出PQ=;(2)连结OQ,如图2,在Rt△OPQ中,根据勾股定理得到PQ=,则当OP的长最小时,PQ的长最大,根据垂线段最短得到OP⊥BC,则OP=OB=,所以PQ长的最大值=.【解答】解:(1)连结OQ,如图1,∵PQ∥AB,OP⊥PQ,∴OP⊥AB,在Rt△OBP中,∵tan∠B=,∴OP=3tan30°=,在Rt△OPQ中,∵OP=,OQ=3,∴PQ==;(2)连结OQ,如图2,在Rt△OPQ中,PQ==,当OP的长最小时,PQ的长最大,此时OP⊥BC,则OP=OB=,∴PQ长的最大值为=.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了勾股定理和解直角三角形.18.(2015•滨州)如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.【考点】圆周角定理;含30度角的直角三角形;等腰直角三角形;弧长的计算.【分析】(1)首先根据AB是⊙O的直径,可得∠ACB=∠ADB=90°,然后在Rt△ABC中,求出∠BAC的度数,即可求出∠BOC的度数;最后根据弧长公式,求出的长即可.(2)首先根据CD平分∠ACB,可得∠ACD=∠BCD;然后根据圆周角定理,可得∠AOD=∠BOD,所以AD=BD,∠ABD=∠BAD=45°;最后在Rt△ABD中,求出弦BD的长是多少即可.【解答】解:(1)如图,连接OC,OD,,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ABC中,∵,∴∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,∴的长=.(2)∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠AOD=∠BOD,∴AD=BD,∴∠ABD=∠BAD=45°,在Rt△ABD中,BD=AB×sin45°=10×.【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了含30度角的直角三角形,以及等腰直角三角形的性质和应用,要熟练掌握.(3)此题还考查了弧长的求法,要熟练掌握,解答此题的关键是要明确:①弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).②在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.19.(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.【考点】切线的性质;扇形面积的计算.【专题】证明题.【分析】(1)连接OD,根据已知和切线的性质证明△OCD为等腰直角三角形,得到∠DOC=45°,根据S阴影=S△OCD﹣S扇OBD计算即可;(2)连接AD,根据弦、弧之间的关系证明DB=DE,证明△AMD≌△ABD,得到DM=BD,得到答案.【解答】(1)解:如图,连接OD,∵CD是⊙O切线,∴OD⊥CD,∵OA=CD=2,OA=OD,∴OD=CD=2,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,∴DE=DM.【点评】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.20.(2014•湖州)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.【考点】垂径定理;勾股定理.【专题】几何综合题.【分析】(1)过O作OE⊥AB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD;(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,再根据勾股定理求出CE及AE 的长,根据AC=AE﹣CE即可得出结论.【解答】(1)证明:过O作OE⊥AB于点E,则CE=DE,AE=BE,∴BE﹣DE=AE﹣CE,即AC=BD;(2)解:由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∴OE=6,∴CE===2,AE===8,∴AC=AE﹣CE=8﹣2.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.。

相关文档
最新文档