第二章 晶态和非晶态资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、层间嵌入某些离子、原子或分子 某些层状晶体层间是以Van De Wauls力结合, 容易在层间插入原子或分子材料,从而形成非整 比化合物。 3、晶体吸收某些小原子 氢等原子半径较小的离子或原子可以和许多 过渡金属形成可变的间隙型化合物,如PdHx、 Ni5Hx等。这些氢化物可以可逆地分解,从而恢复 到金属和氢气状态,因此是很好的储氢材料。此 外,Li、Be等原子或离子的半径也足够小,可形 成间隙型化合物。
第二章 晶态和非晶态材料的特性
2.1 2.2 2.3 2.4
来自百度文库
晶体特征的结构基础 非整比化合物材料 液晶材料 玻璃与陶瓷
2.1 晶体特征的结构基础 晶态物质有别于气体、液体的最典 型特征是具有点阵结构,正是由于本身 结构的特殊性,使晶体呈现出与其它物 质完全不同的特殊性质。
1、晶体的均匀性
由于晶体中原子排布的周期性规则,同时该周 期非常小,在宏观观察中不能分辨出晶体微观结构 中的不连续性,从而导致了晶体各部分具有相同的 密度、化学组成等性质。因此,从宏观角度看,晶 体具有均匀性。 气体、液体和玻璃体也有均匀性,但那是由于 原子杂乱无章的分布,即它们的均匀性来源于原子 的无序分布的统计性规律。两者之间有着实质的不 同。 晶体的均匀性是焓因素决定的; 非晶体的均匀性是由熵因素引起的。
晶体的外形既受内部结构(点阵排列方式) 制约,又在一定程度上受外因(温度、压力、 浓度、杂质)的影响。但同一种晶体的每两个 相应界面的夹角是不受外界条件的影响,保持 恒定不变。这个规律称为“晶面角守恒定律” 非晶体如玻璃体在从液相冷却时,形成的 固体表面圆滑,没有固定的外形。
4、晶体的熔点
晶体在受到热作用时,温度升高,组成晶体 的点阵上的原子或原子团而因振动加剧,当此振 动的能量(平动和转动)达到晶格能(晶格对原 子的束缚)时,晶体的结构被破坏,晶体开始熔 化。因晶体中各原子所处的环境相同,所以熔化 的温度也相同。所以晶体有一定的熔点,即在一 特定的温度下完全熔化。而非晶体由于各质点的 环境不同,原子或原子团所受的约束力不同。受 约束力小的部分在较低温度下开始熔化,而受约 束力大的部分此时仍不能自由运动,以固体形态 存在。
2、晶体的各向异性
由于晶体在各个方向上的点阵向量不同,导致 了晶体在不同方向上具有不同的物理性质,即各 向异性。最重要的各向异性包括电导率、膨胀系 数、折光率、机械强度等。
3、晶体的自范性
在适宜的外界条件下,晶体能自发生长出 晶面,晶棱等几何元素所转成的凸多面体,晶 体的这一性质即为晶体的自范性。 在理想的环境中,晶体可以生长成凸多面 体,此凸多面体的晶面数(F)、晶棱数(E)和顶点 数(V)之间的关系符合下式: F+V=E+2 如:四面体:F=4,V=4,E=6 八面体:F=8,V=6,E=12 三角双锥:?
非整比化合物在光学性能、半导体性、金属性、磁 性及化学反应活性等方面与整比化合物有很大的差异和 特点。因而成为重要的固体材料。
产生非整比化合物的情况有以下几类:
1、某种原子过多或短缺
如氧化亚铁,通常它的化学式可写为Fe1-xO, 晶体中部分Fe2+被氧化成三价( Fe3+ ),从而使 Fe:O的比值在1:1~2:3之间发生变化。 又如当将ZnO在1000K以上置于金属锌蒸汽环 境中可形成Zn 1+δO的半导体材料,同时晶体的颜 色也从白色转化为红色。
分子量为200~500,长度达几个纳米的分子才会 出现液晶形态。进而在液晶状态出现多种特殊的 性质和应用价值。液晶最常见的应用领域为各种 液晶显示器。
一些有机化合物晶体在加热过程中,当到达某 一温度T1时,熔化成黏稠状稍呈混浊的液体。继续 加热到更高温度T2时,将会变为透明液体。以偏光 显微镜观察,在上述温度区间T1~T2内液体有明显 的纹理,呈光学的各向异性,称之为液晶。
而塑晶能在恒定的温度下贮存热量或放热。但 此过程不是依靠固~液相变贮热,而是通过分子构 型的变化所发生的固~固相变贮热。
固体材料的升温和降温曲线
5、晶体的对称性
晶体的点阵结构决定了晶体的内部结构和理 想外形都具有对称性。
理想外形的对称性属于宏观对称性; 内部结构的对称性属于微观对称性。
2.2 非整比化合物材料
当晶体中出现空位或填隙原子,从而使化合物 的成份偏离整数比,这在晶体中是很普遍的现 象。有这种现象的晶体被称为非整比化合物, 即晶体的组成中各类原子的相对数目不能用几 个小整数比表示的化合物。
2、液晶的特性
液晶是一种介于固体与液体之间的物质状态, 同时具有液体的流动性和晶体的各向异性。如光 学、介电常数、折射率等。 液晶虽然不再有平移对称性这一晶体特征, 但是由于分子仍以平行方式排列,沿某一方向具 有晶体的长程有序特点。
并非所有的有机化合物分子都具有液晶态,
只有那些形状类似棒状,长宽比在4~8之间,
2.3 液晶材料
1888年奥地利植物学家F.Reinitzer首先发现 了液晶现象,但液晶技术和液晶材料直到20世
纪50年代以后,随着人们对物质结构和性质研
究的飞跃发展,逐渐加深了结构与性质关系的 了解,才使探索液晶奥秘的研究出现了重大突 破,也在实际应用中取得了可喜进展。
1、液晶和塑晶
通常物质有固、液、气三种状态,但对有些物 质,它们的固态和液态就很难区分(就像超临界状 态中气、液态不分)。存在许多中间状态,晶体和 液体之间存在着两种中间状态,类似晶体的液体和 类似液体的晶体,分别称为液晶和塑晶。
在晶体和液体之间出现中间状态是因为晶体 熔化时会产生两种无序运动:平动和转动。绝大
多数晶体在温度升高后,同时产生平动无序和转
动无序。具体表现为晶格消失,发生熔化现象。 但有一些材料,这两种作用并非同时产生,其中 一种运动比另一种运动相对容易,因而出现这种 转变的中间状态。
当晶体先失去平移对称性的特点,即晶体 点阵上的质点可以自由运动,物理性质上就变 成了液体;液晶就属于这种情况。 当晶体先开始转动无序,这时各质点依然 保持平移对称性,也保持了固体的形态,只有 在温度进一步升高后,发生了平移无序,此时 晶体才真正熔化。在这段温度范围内的材料称 为塑晶。
相关文档
最新文档