统计学第四章课后题及答案解析

合集下载

统计学第五版第四章课后习题答案

统计学第五版第四章课后习题答案
如图所示:这家汽车零售店的10名销售人
员5月份销售的汽车数量平均为9.6辆,其中 汽车销量为10的销售员最多,在销量处于 中间位置的也是10,其上四分位数为12, 下四分位数为7.75,证明多数销售员的汽车 销量较高,在7辆以上,只有少数在7以下; 销量的标准差为4.17,则这十名销售员的汽 车销量围绕10辆有所波动,幵且极端值不 10相差较大。
如图所示:
大多网络用户的年龄为19岁,网络用户年
பைடு நூலகம்
龄的中间值为23岁,上四分位数为27岁, 下四分位数为19岁,说明年龄在19-23岁和 23-27岁的网络用户数量差丌多,网络用户 的平均年龄是24岁,证明有个别网络用户 的年龄较大,把整体平均数给拉高了,使整 体分布表现为右偏分布。
(3)、第一种排
答:我选择A组装方法,因为其单位时
间的平均产量比B、C组装方法高出很 多,波动性比B方法略大但比C方法小 很多,幵且A组装方法单位时间产量的 最小值也比B、C两组装方法的最大值 高出很多。可见A生产效率很高,所以 我选择A组装方法。
答: (1)、我认为应用标准差戒者离散系数来反
应投资的风险。 (2)、如图所示,高科技类股票的离散系数 较大,所以风险较大;而商业类股票的离散系 数较小,所以风险相对较小。如果选择风险小 的股票进行投资,应选择商业类股票。 (3)、如果进行股票投资,我希望能够获取 高收益,所以我会选择高科技类股票。
这20家企业利润
额的平均数为 426.67万元,标 准差为116.48, 说明这120家企业 盈利丌等且相差较 大,SK为正值, 所以这120家企业 利润的正离差值较 大,属于右偏分布 倾斜程度丌是很大, 且为扁平分布,数 据的分布较分散。
(1)、答:两位调查人员所得到的样本的平均身

统计学课后第四章习题答案

统计学课后第四章习题答案

统计学课后第四章习题答案第4章练习题1、一组数据中出现频数最多的变量值称为()A.众数B.中位数C.四分位数D.平均数2、下列关于众数的叙述,不正确的是()A.一组数据可能存在多个众数B.众数主要适用于分类数据C.一组数据的众数是唯一的D.众数不受极端值的影响3、一组数据排序后处于中间位置上的变量值称为()A.众数B.中位数C.四分位数D.平均数4、一组数据排序后处于25%和75%位置上的值称为()A.众数B.中位数C.四分位数D.平均数5、非众数组的频数占总频数的比例称为()A.异众比率B.离散系数C.平均差D.标准差6、四分位差是()A.上四分位数减下四分位数的结果B.下四分位数减上四分位数的结果C.下四分位数加上四分位数D.下四分位数与上四分位数的中间值7、一组数据的最大值与最小值之差称为()A.平均差B.标准差C.极差D.四分位差8、各变量值与其平均数离差平方的平均数称为()A.极差B.平均差C.方差D.标准差9、变量值与其平均数的离差除以标准差后的值称为()A.标准分数B.离散系数C.方差D.标准差10、如果一个数据的标准分数-2,表明该数据()A.比平均数高出2个标准差B.比平均数低2个标准差C.等于2倍的平均数D.等于2倍的标准差11、经验法则表明,当一组数据对称分布时,在平均数加减2个标准差的范围之内大约有()A.68%的数据B.95%的数据C.99%的数据D.100%的数据12、如果一组数据不是对称分布的,根据切比雪夫不等式,对于k=4,其意义是()A.至少有75%的数据落在平均数加减4个标准差的范围之内B. 至少有89%的数据落在平均数加减4个标准差的范围之内C. 至少有94%的数据落在平均数加减4个标准差的范围之内D. 至少有99%的数据落在平均数加减4个标准差的范围之内13、离散系数的主要用途是()A.反映一组数据的离散程度B.反映一组数据的平均水平C.比较多组数据的离散程度D.比较多组数据的平均水平14、比较两组数据离散程度最适合的统计量是()A.极差B.平均差C.标准差D.离散系数15、偏态系数测度了数据分布的非对称性程度。

统计学第四章课后习题答案

统计学第四章课后习题答案

第四章一.思考题1、一组数据的分布特征可以从哪几个方面进行测度?答:可以从三个方面进行测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢或聚集的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布的偏态和峰态。

2、怎样理解平均数在统计学中的地位?答:平均数在统计学中具有重要的地位,它是进行统计分析和统计推断的基础。

从统计学思想上看,平均数是一组数据的重心所在,是数据误差相互抵消后的必然结果。

3、简述四分位数的计算方法。

答:四分位数是一组数据排序后处于25%和75%位子上的值。

四分位数是通过3个点将全部数据等分成4分,其中每部分包含25%的数据。

中间的四分位数就是中位数,因此通常所说的四分位数是指处在25%位置上的数值和处在75%位置上的数值。

它是根据为分组数据计算四分位数时,首先对数据进行排序,然后确定四分位数所在的位置,该位置上的数据就是四分位数。

4、对于比率数据的平均数为什么采用几何平均?答:几何平均数是适用于特殊数据的一种平均数,主要适用于计算平均比率。

当所掌握的变量值本身是比率的形式时,采用几何平均法计算平均比率更为合理。

5、简述众数、中位数、平均数的特点和应用场合。

答:众数是数据中出现次数次数最多的变量值。

主要应用于分类数据。

中位数是一组数据排序后处于中间位置的变量值,其适用于顺序数据。

平均数也称均值,它是一组数据相加后除以数据个数的结果,是集中去世的主要测量值,它适用于数值型数据。

6、简述异众比率、四分位差、方差、标准差的使用场合。

答:异众比率主要适合测度分类数据的离散程度,对于顺序数据以及数值型数据也可以计算异众比率。

四分位差主要用于测度顺序数据的离散程度。

方差和标准差适用于测度数值型数据的离散程度。

7、标准分数有哪些用途?答:首先是比较不同单位和不同质数据的位置。

其次是和正态分布结合起来,求得概率和标准分值之间的对应关系。

还有就是在假设检验和估计中应用。

人大版统计学 习题加答案第四章 假设检验

人大版统计学 习题加答案第四章 假设检验

第四章 假设检验填空(5题/章),选择(5题/章),判断(5题/章),计算(3题/章) 一、填空1、在做假设检验时容易犯的两类错误是 和2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为 ,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为3、假设检验有两类错误,分别是 也叫第一类错误,它是指原假设H0是 的,却由于样本缘故做出了 H0的错误;和 叫第二类错误,它是指原假设H0是 的, 却由于样本缘故做出 H0的错误。

4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α,则α称为 。

5、 假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为 。

6、从一批零件中抽取100个测其直径,测得平均直径为5.2cm ,标准差为1.6cm ,想知道这批零件的直径是否服从标准直径5cm ,在显著性水平α下,否定域为7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000小时,则为不合格,那么可以提出的假设为 。

(用H 0,H 1表示)8、一般在样本的容量被确定后,犯第一类错误的概率为α,犯第二类错误的概率为β,若减少α,则β9、某厂家想要调查职工的工作效率,用方差衡量工作效率差异,工厂预计的工作效率为至少制作零件20个/小时,随机抽样30位职工进行调查,得到样本方差为5,试在显著水平为0.05的要求下,问该工厂的职工的工作效率 (有,没有)达到该标准。

KEY: 1、弃真错误,纳伪错误 2、双边检验,单边检验3、拒真错误,真实的,拒绝,取伪错误,不真实的,接受4、显著性水平5、小概率事件6、1.25>21α-z7、H 0:t≥1000 H 1:t <1000 8、增大 9、有二、 选择1、假设检验中,犯了原假设H 0实际是不真实的,却由于样本的缘故而做出的接受H 0的错误,此类错误是( )A 、α类错误B 、第一类错误C 、取伪错误D 、弃真错误 2、一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A 、0:5H μ=,1:5H μ≠B 、0:5H μ≠,1:5H μ>C 、0:5H μ≤,1:5H μ>D 、0:5H μ≥,1:5H μ< 3、一个95%的置信区间是指( ) A 、总体参数有95%的概率落在这一区间内 B 、总体参数有5%的概率未落在这一区间内C 、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D 、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增大样本容量,则犯两类错误的概率( ) A 、都增大 B 、都减小 C 、都不变 D 、一个增大一个减小5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。

统计学课后习题集答案解析第四章动态数列

统计学课后习题集答案解析第四章动态数列

第四章动态数列一﹑单项选择题1.下列动态数列中属于时点数列的是A.历年在校学生数动态数列B.历年毕业生人数动态数列C.某厂各年工业总产值数列D.某厂各年劳动生产率数列2.构成动态数列的两个基本要素是A.主词和宾词B.变量和次数C.分组和次数D.现象所属的时间及其指标值3.动态数列中各项指标数值可以相加的是A.相对数动态数列B.平均数动态数列C.时期数列D.时点数列4.最基本的动态数列是A.指数数列B.相对数动态数列C.平均数动态数列D.绝对数动态数列5.动态数列中,指标数值的大小与其时间长短没有直接关系的是A.时期数列B.时点数列C.相对数动态数列D.平均数动态数列6.动态数列中,指标数值是经过连续不断登记取得的数列是A.时期数列B.时点数列C.相对数动态数列D.平均数动态数列7.下列动态数列中属于时期数列的是A.企业历年职工人数数列B.企业历年劳动生产率数列C.企业历年利税额数列D.企业历年单位产品成本数列8.动态数列中,各项指标数值不可以相加的是A.相对数动态数列B.绝对数动态数列C.时期数列D.时点数列9.动态数列中,指标数值大小与其时间长短有关的是A.相对数动态数列B.绝对数动态数列C.时期数列D.时点数列10.动态数列中,指标数值是通过一次登记取得的数列是A.相对数动态数列B.绝对数动态数列C.时期数列D.时点数列11.编制动态数列的最基本原则是保证数列中各项指标必须具有A.可加性B.可比性C.连续性D.一致性12.基期为某一固定时期水平的增长量是A.累计增长量B.逐期增长量C.平均增长量D.年距增长量13.基期为前期水平的增长量是A.累计增长量B.逐期增长量C.平均增长量D.年距增长量14.累计增长量与逐期增长量之间的关系是A.累计增长量等于相应的各个逐期增长量之和B.累计增长量等于相应的各个逐期增长量之差C.累计增长量等于相应的各个逐期增长量之商D.累计增长量等于相应的各个逐期增长量之积15.平均增长量等于A.累计增长量B.逐期增长量C.逐期增长量之和除以逐期增长量的项D.以上均不对16.动态数列中的发展水平是指A.总量指标B.相对指标C.平均指标D.以上指标均可17.进行动态分析的基础指标是A.发展水平B.平均发展水平C.增长量D.平均增长量18.动态数列的分析指标主要包括两个类别,即A.发展水平和发展速度B.水平指标和速度指标C.平均发展水平和平均发展速度D.增长量和增长速度19.序时平均数和一般平均数的共同点在于两者A.都是根据动态数列计算B.都是根据变量数列计算C.都是反映现象的一般水平D.均可以消除现象波动的影响20.根据时期数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法21.根据间隔相等连续时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法22.根据间隔不相等连续时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法23.根据间隔相等间断时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法24.根据间隔不相等间断时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法25.序时平均数计算中,“首未折半法”运用于A.时期数列的资料B.间隔相等的时点数列资料C.间隔不等的时点数列资料D.由两个时点数列构成的相对数动态数列26.将研究对象在不同时间上的数量差异抽象化,从动态上说明现象在某一时期内发展的一般水平的方法是A.一般平均数B.序时平均数C.平均发展速度D.平均增长速度27.间隔不相等的间断时点数列计算平均发展水平,应采取A.以每次变动持续的时间长度对各时点水平加权平均B.用各间隔长度对各间隔的平均水平加权平均C.对各时点水平简单算术平均D.以数列的总速度按几何平均法计算28.根据采用的对比基期不同发展速度有A.环比发展速度与定基发展速度B.环比发展速度与环比增长速度C.定基发展速度与定基增长速度D.环比增长速度与定基增长速度29.发展速度的计算方法可以表述为A.报告期水平与基期水平之差B.增长量与基期水平之差C.报告期水平与基期水平之比D.增长量与基期水平之比30.基期为前一期水平的发展速度是A.定基发展速度B.环比发展速度C.年距发展速度D.平均发展速度31.基期为某一固定期水平的发展速度是A.定基发展速度B.环比发展速度C.年距发展速度D.平均发展速度32.定基发展速度和环比发展速度的关系是两个相邻时期的定基发展速度A.之商等于相应的环比发展速度B.之差等于相应的环比发展速度C.之和等于相应的环比发展速度D.之积等于相应的环比发展速度33.增长速度是A.动态数列水平之差B.动态数列水平之比C.增长量同发展速度之比D.增长量同作为比较基准的数列水平之比34.定基增长速度与环比增长速度的关系表现为A.定基增长速度等于各环比增长速度的连乘积B.定基增长速度等于各环比增长速度的连乘积的n次方根C.各环比增长速度连乘积加一等于定基增长速度加一D.定基增长速度等于各环比增长速度加一后的连乘积减一35.既然总速度是环比发展速度的连乘积,那么平均发展速度就应按A.简单算术平均数计算B.加权算术平均数计算C.几何平均数计算D.调和平均数计算36.发展速度与增长速度的关系是A.定基发展速度等于环比增长速度加一B.环比增长速度等于环比发展速度减一C.定基增长速度的连乘积等于定基发展速度D.环比增长速度的连乘积等于环比发展速度37.动态数列中的平均增长速度是A.各个时期环比增长速度的算术平均数B.各个时期环比增长速度的调和平均数C.各个时期环比增长速度的几何平均数D.各个时期环比增长速度的序时平均数38.采用几何平均法计算平均发展速度的理由是A.各期环比发展速度之积等于总速度B.各期环比发展速度之和等于总速度C.各期环比增长速度之积等于总速度D.各期环比增长速度之和等于总速度39.已知各期定基发展速度和时期数,而不知道各期水平要计算平均发展速度A.只能用水平法计算B.只能用累计法计算C.两种方法皆能计算D.两种方法都无法计算40.已知各时期发展水平之和与最初水平及时期数,要计算平均发展速度A.只能用水平法计算B.只能用累计法计算C.两种方法皆能计算D.两种方法都无法计算41.当动态数列分析目的是侧重于考察期未发展水平,则平均发展速度A.应采用算术平均法计算B.应采用调和平均法计算C.应采用几何平均法计算D.应采用方程式法计算42.当动态数列分析目的是侧重于考察整个时期中各年发展水平的总和,则平均发展速度A.应采用算术平均法计算B.应采用调和平均法计算C.应采用几何平均法计算D.应采用方程式法计算43.动态数列中的平均发展速度等于A.各时期定基发展速度的序时平均数B.各时期环比发展速度的序时平均数C.各时期环比发展速度的算术平均数D.各时期定基发展速度的算术平均数44.几何平均数所计算的平均发展速度的数值大小A.不受最初水平和最未水平的影响B.只受中间各期发展水平的影响C.只受最初水平和最未水平的影响D.既受最初水平和最未水平的影响,又受中间各期发展水平的影响45.累计法计算平均发展速度的实质是从最初水平出发A.按平均增长量增长,经过n期,正好达到最未水平B.按平均发展速度发展,经过n期,正好达到第n期实际水平C.按平均发展速度计算得到的各期理论水平之和正好等于各期的实际水平总和D.按平均发展速度发展得到的各期理论水平之和正好等于最未期的实际水平46.直线趋势方程Y C=a+bx中a和b的意义是A.a是截距,b表示X=0的趋势值B.a表示最初发展水平的趋势值,b表示平均发展水平C.a表示最初发展水平的趋势值,b表示平均发展速度D.a是直线的截距,表示最初发展水平的趋势值;b是直线的斜率,表示按最小平方法计算的平均增长量47.用最小平方法配合趋势直线方程Y C=a+bx在什么条件下,a=Y;b=ΣXY/ΣX2A.ΣX=0B.Σ(Y-Y)=0C.ΣY=0D.Σ(Y-Y)2=最小值二﹑多项选择题1.构成动态数列的两个基本要素是A.变量B.次数C.现象所属的时间D.现象所属的范围E.反映现象的统计指标数值2.动态数列按研究任务不同可以分为A.绝对数动态数列B.平均数动态数列C.相对数动态数列D.时期数列E.时点数列3.动态数列的作用表现在A.描述现象变化的过程B.说明现象发展的速度和趋势C.探索现象发展变化的规律性D.对现象的发展进行预测E.反映现象总体的分布特征4.时期数列的特点A.数列中各个指标数值可以相加B.数列中指标数值大小与其时期长短无直接关系C.数列中各个指标数值不能相加D.数列中指标数值大小与其时期长短有直接关系E.数列中指标数值通常是通过连续不断登记而取得的5.时点数列的特点A.数列中各个指标数值可以相加B.数列中指标数值大小与其间隔长短无直接关系C.数列中各个指标数值不能相加D.数列中指标数值大小与其间隔长短有直接关系E.数列中指标数值通常是通过间断登记而取得的6.下列动态数列中,各项指标数值不能相加的有A.绝对数动态数列B.相对数动态数列B.平均数动态数列D.时期数列E.时点数列7.下列数列中,属于两个时期对比构成的相对数动态数列有A.全员劳动生产率动态数列B.百元产值利润率动态数列C.职工人数动态数列D.计划完成程度动态数列E.出勤率动态数列8.下列数列中属于时期数列的有A.历年年未人口总数B.历年出生人数B.历年工业增加值D.各月商品库存量E.各月未银行存款余额9.下列数列中属于时点数列的有A.高校每年毕业生人数B.高校每年在校学生数C.银行每月未银行存款余额D.商店各月商品库存额E.我国历年外汇储备量10.编制动态数列应遵循的原则有A.时期长短应该相等B.指标的经济内容应该相同C.总体范围应该一致D.指标的计算方法应该一致E.指标的计算价格和计量单位应该一致11.动态数列中的水平分析指标有A.发展水平B.平均发展水平C.增长量D.平均增长量E.平均发展速度12.动态数列中的速度分析指标有A.平均发展水平B.增长速度C.平均发展速度D.平均增长速度E.发展速度13.下列指标中属于序时平均数的有A.平均发展水平B.平均增长量C.平均发展速度D.平均增长速度E.平均指标14.动态数列中的发展水平包括A.期初水平B.期未水平C.中间水平D.报告期水平E.基期水平15.将不同时期的发展水平加以平均所得到的平均数称为A.一般平均数B.算术平均数C.序时平均数D.动态平均数E.平均发展水平16.平均增长量的计算公式是A.逐期增长量之和/逐期增长量项数B.逐期增长量的序时平均数C.累计增长量/动态数列项数-1D.累计增长量/动态数列项数E.累计增长量/动态数列项数+117.定基发展速度与环比发展速度之间的关系表现为A.两个相邻时期的定基发展速度之商等于相应的环比发展速度B.定基发展速度等于相应的各个环比发展速度的连乘积C.定基发展速度等于环比发展速度加一D.定基发展速度等于环比增长速度加一后的连乘积E.环比发展速度乘积等于总速度18.增长速度和发展速度的关系为A.仅差一个基数B.发展速度=增长速度+1C.定基增长速度=各环比增长速度的连乘积C.定基发展速度=定基增长速度+1E.定基增长速度=各环比发展速度的连乘积-119.定基增长速度等于A.累计增长量除以基期发展水平B.定基发展速度减去一C.总速度减去一D.环比增长速度的连乘积E.逐期增长量除以前期发展水平20.环比增长速度等于A累计增长量除以基期发展水平B.环比发展速度减去一C.定基发展速度减去一D.环比增长速度的连乘积E.逐期增长量除以前期发展水平21.动态数列中的发展水平可以是A.总量指标B.相对指标C.平均指标D.变异指标E.样本指标22.增长1%的绝对值等于A.累计增长量除以定基发展速度B.逐期增长量除以环比发展速度C.逐期增长量除以环比增长速度×100D.累计增长量除以定基增长速度×100E.固定期水平除以10023.计算平均发展速度的方法有A.几何平均法B.水平法C.方程式法D.累计法E.序时平均法24.平均发展速度从广义上讲属于A.静态平均数B.动态平均数C.序时平均数D.几何平均数E.调和平均数25.计算平均发展速度的几何平均法和方程式法的区别是A.数理依据不同B.侧重点不同C.适用条件不同D.适用范围不同E.对资料要求不同26.常用的长期趋势测定的方法有A.时距扩大法B.移动平均法C.分段平均法D.最小平方法E.季节比率法27.直线趋势方程Y c=a+bx的参数b是表示A.趋势值B.趋势线的截距C.趋势线的斜率D.当X=0时的Yc的数值E.当X每变动一个单位时Y c平均增减的数值三﹑填空题1.动态数列一般由两个基本要素构成,即和。

统计学 贾俊平第四版第四章课后答案(目前最全)

统计学 贾俊平第四版第四章课后答案(目前最全)

第四章统计数据的概括性描述4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。

(2)根据定义公式计算四分位数。

(3)计算销售量的标准差。

(4)说明汽车销售量分布的特征。

解:(1)(2)(3)(4)说明汽车销售分部的特征答:10名销售人员的在5月份销售的汽车数量较为集中。

4.2 随机抽取25个网络用户,得到他们的年龄数据如下:单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:1、排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄从频数看出,众数Mo有两个:19、23;从累计频数看,中位数Me=23。

(2)根据定义公式计算四分位数。

Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。

(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。

如需看清楚分布形态,需要进行分组。

为分组情况下的直方图:为分组情况下的概率密度曲线:分组:1、确定组数:()l g 25l g ()1.3981115.64l g (2)l g 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:4.3 某银行为缩短顾客到银行办理业务等待的时间。

统计学第四章习题答案 贾俊平

统计学第四章习题答案 贾俊平

第四章 统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下: 2 4 7 10 10 10 12 12 14 15 要求:(1)计算汽车销售量的众数、中位数与平均数。

(2)根据定义公式计算四分位数。

(3)计算销售量的标准差。

(4)说明汽车销售量分布的特征。

解:Statistics汽车销售数量 10 Missing0 Mean 9、60 Median 10、00Mode10 Std 、 Deviation 4、169 Percentiles25 6、25 50 10、00 75单位:周岁19 15 29 25 24 23 21 38 22 18 30 20 19 19 16 23 27 22 34 24 41 20 3117 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布与累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。

Q1位置=25/4=6、25,因此Q1=19,Q3位置=3×25/4=18、75,因此Q3=27,或者,由于25与27都只有一个,因此Q3也可等于25+0、75×2=26、5。

(3)计算平均数与标准差;Mean=24、00;Std、Deviation=6、652(4)计算偏态系数与峰态系数:Skewness=1、080;Kurtosis=0、773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6、652、呈右偏分布。

如需瞧清楚分布形态,需要进行分组。

1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4、3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图::一种就是所有颐客都进入一个等待队列:另—种就是顾客在三千业务窗口处列队3排等待。

统计学第四章课后题及答案解析

统计学第四章课后题及答案解析

第四章一、单项选择题1.由反映总体单位某一数量特征的标志值汇总得到的指标是()A.总体单位总量B.质量指标C.总体标志总量D.相对指标2.各部分所占比重之和等于1或100%的相对数()A.比例相对数B.比较相对数C.结构相对数D.动态相对数3.某企业工人劳动生产率计划提高5%,实际提高了10%,则提高劳动生产率的计划完成程度为()A.104.76%B.95.45%C.200%D.4.76%4.某企业计划规定产品成本比上年度降低10%实际产品成本比上年降低了14.5%,则产品成本计划完成程度()A.14.5%B.95%C.5%D.114.5%5.在一个特定总体内,下列说法正确的是( )A.只存在一个单位总量,但可以同时存在多个标志总量B.可以存在多个单位总量,但必须只有一个标志总量C.只能存在一个单位总量和一个标志总量D.可以存在多个单位总量和多个标志总量6.计算平均指标的基本要求是所要计算的平均指标的总体单位应是()A.大量的B.同质的C.有差异的D.不同总体的7.几何平均数的计算适用于求()A.平均速度和平均比率B.平均增长水平C.平均发展水平D.序时平均数8.一组样本数据为3、3、1、5、13、12、11、9、7这组数据的中位数是()A.3B.13C.7.1D.79.某班学生的统计学平均成绩是70分,最高分是96分,最低分是62分,根据这些信息,可以计算的测度离散程度的统计量是()A.方差B.极差C.标准差D.变异系数10.用标准差比较分析两个同类总体平均指标的代表性大小时,其基本的前提条件是( )A.两个总体的标准差应相等B.两个总体的平均数应相等C.两个总体的单位数应相等D.两个总体的离差之和应相等11.已知4个水果商店苹果的单价和销售额,要求计算4个商店苹果的平均单价,应采用()A.简单算术平均数B.加权算术平均数C.加权调和平均数D.几何平均数12.算术平均数、众数和中位数之间的数量关系决定于总体次数的分布状况。

《统计学原理》第四章习题及答案

《统计学原理》第四章习题及答案
高11%,执 行结果提高13%,,则总产值计划完成提高 程度为(C ) 113% 113% 111% A、13%-11% B、 C、 D 1、 1
111%
111%
113%
17:权数对算术平均数的影响作用,实质上取 决于( A)。 A、作为权数的各组单位数占总体单位数比重的 大小 B、各组标志值占总体标志总量比重的大小 C、标志值本身的大小 D、标志值数量的多少
《统计学原理》第四章习题
一.判断题部分 1:同一个总体,时期指标值的大小与时期 长短成正比,时点指标值的大小与时点间 隔成反比。( × ) 2:全国粮食总产量与全国人口对比计算的 人均粮食产量是平均指标。( × )
3:根据分组资料计算算术平均数,当各组 单位数出现的次数均相等时,按加权算数 平均数计算的结果与按简单算数平均数计 算的结果相同。( √ ) 4:同一总体的一部分数值与另一部分数值 对比得到的相对指标是比较相对指标。 (×)
26、第一批产品废品率1%,第二批产品 废品率1.5%,第三批产品废品率2%, 第一批产品数量占总数的25%,第二批 产品数量占总数的30%,则平均废品率 为(C)。
A、1.5% C、1.6% B、4% D、4.5%
27、某企业工人劳动生产率,计划提高5 %,实际提高了10%,则提高劳动生产 率的计划完成程度为(A)。 A、104.76% B、95.45% C、200% D、76%
A . 500 700 600 500 700 600 110 % 115 % 105 %
110 % 500 115 % 700 105 % 600 B . 500 700 600
110 % 115 % 105 % C . 3 10 % 15 % 5 % D . 3

统计学习题第四章数据分布特征的描述习题答案

统计学习题第四章数据分布特征的描述习题答案

第四章 静态指标分析法(一)一、填空题1、数据分布集中趋势的测度值(指标)主要有、和。

其中和用于测度品质数据集中趋势的分布特征,用于测度数值型数据集中趋势的分布特征。

2、标准差是反映的最主要指标(测度值)。

3、几何平均数是计算和的比较适用的一种方法。

4、当两组数据的平均数不等时,要比较其数据的差异程度大小,需要计算。

5、在测定数据分布特征时,如果M M e X 0==,则认为数据呈分布。

6、当一组工人的月平均工资悬殊较大时,用他们工资的比其算术平均数更能代表全部工人工资的总体水平。

二.选择题单选题:1.反映的时间状况不同,总量指标可分为( )A 总量指标和时点总量指标B 时点总量指标和时期总量指标C 时期总量指标和时间指标D 实物量指标和价值量指标2、某厂1999年完成产值200万元,2000年计划增长10%,实际完成了231万元,超额完成( )A 5.5%B 5%C 115.5%D 15.5%3、在同一变量数列中,当标志值(变量值)比较大的次数较多时,计算出来的平均数( )A 接近标志值小的一方B 接近标志值大的一方C 接近次数少的一方D 接近哪一方无法判断4、在计算平均数时,权数的意义和作用是不变的,而权数的具体表现( )A 可变的B 总是各组单位数C 总是各组标志总量D 总是各组标志值 5、1998年某厂甲车间工人的月平均工资为520元,乙车间工人的月平均工资为540元,1999年各车间的工资水平不变,但甲车间的工人占全部工人的比重由原来的40%提高到了60%,则1999年两车间工人的总平均工资比1998年( )A 提高B 不变C 降低D 不能做结论 6、在变异指标(离散程度测度值)中,其数值越小,则( )A 说明变量值越分散,平均数代表性越低B 说明变量值越集中,平均数代表性越高C 说明变量值越分散,平均数代表性越高D 说明变量值越集中,平均数代表性越低7、有甲、乙两数列,已知甲数列:07.7,70==甲甲σX ;乙数列:41.3,7==乙乙σX 根据以上资料可直接判断( )A 甲数列的平均数代表性大B 乙数列的平均数代表性大C 两数列的平均数代表性相同D 不能直接判别8、杭州地区每百人手机拥有量为90部,这个指标是 ( )A 、比例相对指标B 、比较相对指标C 、结构相对指标D 、强度相对指标 9、某组数据呈正态分布,计算出算术平均数为5,中位数为7,则该数据分布为 ( ) A 、左偏分布 B 、右偏分布 C 、对称分布 D 、无法判断10、加权算术平均数的大小 ( )A 主要受各组标志值大小的影响,与各组次数多少无关;B 主要受各组次数多少的影响,与各组标志值大小无关;C 既与各组标志值大小无关,也与各组次数多少无关;D 既与各组标志值大小有关,也受各组次数多少的影响11、已知一分配数列,最小组限为30元,最大组限为200元,不可能是平均数的为 ( ) A 、50元 B 、80元 C 、120元 D 、210元12、比较两个单位的资料,甲的标准差小于乙的标准差,则 ( ) A 两个单位的平均数代表性相同 B 甲单位平均数代表性大于乙单位C 乙单位平均数代表性大于甲单位D 不能确定哪个单位的平均数代表性大 13、若单项数列的所有标志值都增加常数9,而次数都减少三分之一,则其算术平均数 ( ) A 、增加9 B 、增加6C 、减少三分之一 D 、增加三分之二 14、如果数据分布很不均匀,则应编制( )A 开口组B 闭口组C 等距数列D 异距数列 15、计算总量指标的基本原则是:( ) A 总体性B 全面性C 同质性D 可比性16、某企业的职工工资分为四组:800元以下;800-1000元;1000—1500元;1500以上,则1500元以上这组组中值应近似为()A1500元 B 1600元 C 1750元D 2000元 17、统计分组的首要问题是( )A 选择分组变量和确定组限B 按品质标志分组C 运用多个标志进行分组,形成一个分组体系D 善于运用复合分组18、某连续变量数列,其末组为开口组,下限为200,又知其邻组的组中值为170,则末组组中值为( )A 230B 260C 185D 215 19、分配数列中,靠近中间的变量值分布的次数少,靠近两端的变量值分布的次数多,这种分布的类型是( )A 钟型分布B U 型分布C J 型分布D 倒J 型分布 20、要了解上海市居民家庭的开支情况,最合适的调查方式是:() A 普查B 抽样调查C 典型调查D 重点调查21、已知两个同类企业的职工平均工资的标准差分别为5元和6元,而平均工资分别为3000元,3500元则两企业的工资离散程度为 ( )A 甲大于乙B 乙大于甲C 一样的D 无法判断 22、加权算术平均数的大小取决于( )A 变量值B 频数C 变量值和频数D 频率23、如果所有标志值的频数都减少为原来的1/5,而标志值仍然不变.那么算术平均数( ) A 不变 B 扩大到5倍 C 减少为原来的1/5 D 不能预测其变化 24、 计算平均比率最好用 ( )A 算术平均数B 调和平均数C 几何平均数D 中位数25、若两数列的标准差相等而平均数不同,在比较两数列的离散程度大小时,应采用() A 全距 B 平均差 C 标准差 D 标准差系数26、若n=20,∑∑==2080,2002x x ,标准差为( )A 2B 4C 1.5D 327、已知某总体3215,3256==eMM,则数据的分布形态为( )A左偏分布B正态分布 C 右偏分布DU型分布28、一次小型出口商品洽谈会,所有厂商的平均成交额的方差为156.25万元,标准差系数为14.2%,则平均成交额为( )万元A11 B 177.5 C 22.19 D 8826、欲粗略了解我国钢铁生产的基本情况,调查了上钢、鞍钢等十几个大型的钢铁企业,这是()A普查B重点调查C典型调查D抽样调查多选题:1.某企业计划2000年成本降低率为8%,实际降低了10%。

统计学 第四版 (贾俊平 著) 中国人民大学出版社 第四章课后答案

统计学 第四版 (贾俊平 著) 中国人民大学出版社 第四章课后答案
解: (1)
62.75
2 33.9375
82 64
(2) 可能的样本个数:
(3)由题可得所有样本的样本均值如下表:
第(3)小题图表
(4)利用SPSS软件得到Q-Q图:
(5)
x i 1

xi 64
m
62.75
33.9375 x 4.1193 2 n
0 4
(2) P(X≤2 )=
4.3 求标准正态分布的概率: (1)P ( 0 ≤ Z ≤ 1.2) ; (2)P ( -0.48 ≤ Z ≤ 0); (3)P (Z > 1.33)。
解: (1)P ( 0 ≤ Z ≤ 1.2) = P ( 1.2) -P ( 0 )= 0.3849 (2)P ( -0.48 ≤ Z ≤ 0 ) = P ( 0) -P (-0.48)= 0.1844 (3)P (Z > 1.33) = P ( -1.33) = 0.0918
(1 )
500 0.4 0.6 0.0219089 500
(2)
(3)由中心极限定理可知 p的分布近似正态分布
4.7 假设一个总体共有8个数值: 54,55,59,63,64,68,69,70.从该总体 中按重复抽样方式抽取n=2的随机样本。
(1)计算总体的均值和方差。 (2)一共有多少个可能的样本? (3)抽出所有可能的样本,并计算出每个样本的均值。 (4)画出样本均值的正态概率图,判断样本均值是否服从正态分布。 (5)计算所有样本均值的平均数和标准差,并与总体的均值和标准差进行对比得 到的结论是什么?
E ( x ) 200

n 50 5 100
(2 ) x
(3) 由中心极限定理可知 X 的概率分布近似服从正态分布

统计学课后习题答案第四章动态数列

统计学课后习题答案第四章动态数列

精选文档第四章动态数列一﹑单项选择题以下动向数列中属于时点数列的是A.历年在校学生数动向数列B.历年毕业生人数动向数列C.某厂各年工业总产值数列D.某厂各年劳动生产率数列组成动向数列的两个基本因素是A. 主词和宾词B. 变量和次数C. 分组和次数D. 现象所属的时间及其指标值动向数列中各项指标数值能够相加的是A.相对数动向数列B.均匀数动向数列C. 期间数列D. 时点数列最基本的动向数列是A.指数数列B.相对数动向数列C. 均匀数动向数列D. 绝对数动向数列动向数列中,指标数值的大小与其时间长短没有直接关系的是A. 期间数列B. 时点数列C. 相对数动向数列D. 均匀数动向数列动向数列中,指标数值是经过连续不停登记获得的数列是A.期间数列B.时点数列C. 相对数动向数列D. 均匀数动向数列以下动向数列中属于期间数列的是A.公司历年员工人数数列B.公司历年劳动生产率数列C.公司历年利税额数列D.公司历年单位产品成本数列动向数列中,各项指标数值不可以够相加的是A. 相对数动向数列B. 绝对数动向数列C. 期间数列D. 时点数列动向数列中,指标数值大小与其时间长短相关的是A.相对数动向数列B.绝对数动向数列C. 期间数列D. 时点数列动向数列中,指标数值是经过一次登记获得的数列是A.相对数动向数列B.绝对数动向数列C. 期间数列D. 时点数列编制动向数列的最基来源则是保证数列中各项指标一定拥有A. 可加性B. 可比性C. 连续性D. 一致性基期为某一固准期间水平的增添量是A.累计增添量B.逐期增添量C.均匀增添量D. 年距增添量基期为先期水平的增添量是A.累计增添量B.逐期增添量C.均匀增添量D. 年距增添量累计增添量与逐期增添量之间的关系是A.累计增添量等于相应的各个逐期增添量之和.A.精选文档B.C.累计增添量等于相应的各个逐期增添量之差D.累计增添量等于相应的各个逐期增添量之商E.累计增添量等于相应的各个逐期增添量之积F.均匀增添量等于G. A.累计增添量 B. 逐期增添量H. C.逐期增添量之和除以逐期增添量的项 D. 以上均不对I.动向数列中的发展水平是指J. A.总量指标B.相对指标K. C.均匀指标 D. 以上指标均可L.进行动向剖析的基础指标是M. A.发展水平B.均匀发展水平N. C. 增添量 D. 均匀增添量O.动向数列的剖析指标主要包含两个类型,即P.发展水平易发展速度B.水平指标和速度指标Q. C.均匀发展水平易均匀发展速度D.增添量和增添速度R.序时均匀数和一般均匀数的共同点在于二者S.都是依据动向数列计算B.都是依据变量数列计算T.都是反应现象的一般水平D.均能够除去现象颠簸的影响U.依据期间数列计算序时均匀数应采纳V. A.简单算术均匀法B.加权算术均匀法W. C.简单序时均匀法 D. 加权序时均匀法X.依据间隔相等连续时点数列计算序时均匀数应采纳Y.简单算术均匀法B.加权算术均匀法Z.简单序时均匀法D.加权序时均匀法AA.依据间隔不相等连续时点数列计算序时均匀数应采纳BB.简单算术均匀法B.加权算术均匀法CC.简单序时均匀法D.加权序时均匀法DD.依据间隔相等中断时点数列计算序时均匀数应采纳EE.简单算术均匀法B.加权算术均匀法FF. C.简单序时均匀法 D. 加权序时均匀法GG.依据间隔不相等中断时点数列计算序时均匀数应采纳HH. A.简单算术均匀法B.加权算术均匀法II. C. 简单序时均匀法 D. 加权序时均匀法JJ.序时均匀数计算中,“首未折半法”运用于KK. A.期间数列的资料B.间隔相等的时点数列资料LL.间隔不等的时点数列资料MM. D.由两个时点数列组成的相对数动向数列NN.将研究对象在不一样时间上的数目差异抽象化,从动向上说明现象在某一期间内发展的一般水平的方法是OO. A.一般均匀数B.序时均匀数PP. C. 均匀发展速度 D. 均匀增添速度QQ.间隔不相等的中断时点数列计算均匀发展水平,应采纳RR.以每次改动连续的时间长度对各时点水平加权均匀SS.用各间隔长度对各间隔的均匀水平加权均匀.精选文档对各时点水平简单算术均匀以数列的总速度按几何均匀法计算依据采纳的对照基期不一样发展速度有环比发展速度与定基发展速度环比发展速度与环比增添速度C.定基发展速度与定基增添速度环比增添速度与定基增添速度发展速度的计算方法能够表述为报告期水平与基期水平之差B.增添量与基期水平之差C.报告期水平与基期水平之比D. 增添量与基期水平之比基期为前一期水平的发展速度是A.定基发展速度B.环比发展速度C.年距发展速度D. 均匀发展速度基期为某一固按期水平的发展速度是A.定基发展速度B.环比发展速度C.年距发展速度D. 均匀发展速度定基发展速度和环比发展速度的关系是两个相邻期间的定基发展速度之商等于相应的环比发展速度之差等于相应的环比发展速度C.之和等于相应的环比发展速度D.之积等于相应的环比发展速度增添速度是A.动向数列水平之差B.动向数列水平之比增添量同发展速度之比增添量同作为比较基准的数列水平之比定基增添速度与环比增添速度的关系表现为定基增添速度等于各环比增添速度的连乘积B.定基增添速度等于各环比增添速度的连乘积的n次方根各环比增添速度连乘积加一等于定基增添速度加一定基增添速度等于各环比增添速度加一后的连乘积减一既然总速度是环比发展速度的连乘积,那么均匀发展速度就应按A. 简单算术均匀数计算B. 加权算术均匀数计算C.几何均匀数计算D. 调解均匀数计算发展速度与增添速度的关系是定基发展速度等于环比增添速度加一环比增添速度等于环比发展速度减一C.定基增添速度的连乘积等于定基发展速度D.环比增添速度的连乘积等于环比发展速度动向数列中的均匀增添速度是各个期间环比增添速度的算术均匀数各个期间环比增添速度的调解均匀数C.各个期间环比增添速度的几何均匀数.精选文档D.各个期间环比增添速度的序时均匀数采纳几何均匀法计算均匀发展速度的原因是各期环比发展速度之积等于总速度各期环比发展速度之和等于总速度各期环比增添速度之积等于总速度各期环比增添速度之和等于总速度已知各期定基发展速度和期间数,而不知道各期水平要计算均匀发展速度A.只好用水平法计算B.只好用累计法计算C. 两种方法皆能计算D. 两种方法都没法计算已知各期间发展水平之和与最先水平实期间数,要计算均匀发展速度A.只好用水平法计算B.只好用累计法计算C. 两种方法皆能计算D. 两种方法都没法计算当动向数列剖析目的是重视于观察期未发展水平,则均匀发展速度A.应采纳算术均匀法计算B.应采纳调解均匀法计算C. 应采纳几何均匀法计算D. 应采纳方程式法计算当动向数列剖析目的是重视于观察整个期间中各年发展水平的总和,则均匀发展速度A.应采纳算术均匀法计算B.应采纳调解均匀法计算应采纳几何均匀法计算D.应采纳方程式法计算动向数列中的均匀发展速度等于各期间定基发展速度的序时均匀数各期间环比发展速度的序时均匀数各期间环比发展速度的算术均匀数D.各期间定基发展速度的算术均匀数几何均匀数所计算的均匀发展速度的数值大小不受最先水平易最未水平的影响只受中间各期发展水平的影响只受最先水平易最未水平的影响既受最先水平易最未水平的影响,又受中间各期发展水平的影响累计法计算均匀发展速度的本质是从最先水平出发按均匀增添量增添,经过n期,正好达到最未水平B.按均匀发展速度发展,经过n期,正好达到第n期本质水平按均匀发展速度计算获得的各期理论水平之和正好等于各期的本质水平总和按均匀发展速度发展获得的各期理论水平之和正好等于最未期的本质水平直线趋向方程YC=a+bx中a和b的意义是是截距,b表示X=0的趋向值表示最先发展水平的趋向值,b表示均匀发展水平表示最先发展水平的趋向值,b表示均匀发展速度.是直线的截距,表示最先发展水平的趋向值;b是直线的斜率,表示按最小平方法计算的均匀增添量47. 用最小平方法配合趋向直线方程Y C=a+bx在什么条件下,a=Y;b=ΣXY/ΣX2A.ΣX=0B.Σ(Y-Y)=0C.ΣY=0D.Σ(Y-Y)2=最小值二﹑多项选择题组成动向数列的两个基本因素是A.变量B.次数C.现象所属的时间D.现象所属的范围E.反应现象的统计指标数值动向数列按研究任务不一样能够分为A.绝对数动向数列B.均匀数动向数列C.相对数动向数列D.期间数列E.时点数列动向数列的作用表此刻A.描绘现象变化的过程B.说明现象发展的速度和趋向探究现象发展变化的规律性对现象的发展进行展望反应现象整体的散布特色期间数列的特色数列中各个指标数值能够相加数列中指标数值大小与其期间长短无直接关系数列中各个指标数值不可以相加数列中指标数值大小与其期间长短有直接关系数列中指标数值往常是经过连续不停登记而获得的时点数列的特色数列中各个指标数值能够相加数列中指标数值大小与此间隔长短无直接关系数列中各个指标数值不可以相加数列中指标数值大小与此间隔长短有直接关系E.数列中指标数值往常是经过中断登记而获得的以下动向数列中,各项指标数值不可以相加的有A.绝对数动向数列B.相对数动向数列B.均匀数动向数列 D.期间数列时点数列以下数列中,属于两个期间对照组成的相对数动向数列有A.全员劳动生产率动向数列B.百元产值收益率动向数列C.员工人数动向数列D.计划达成程度动向数列出勤率动向数列以下数列中属于期间数列的有A.历年年未人口总数B.历年出生人数B.历年工业增添值 D.各月商品库存量各月未银行存款余额以下数列中属于时点数列的有A.高校每年毕业生人数B.高校每年在校学生数C.银行每个月未银行存款余额D.商铺各月商品库存额.我国历年外汇贮备量编制动向数列应依照的原则有期间长短应当相等B.指标的经济内容应当同样C.整体范围应当一致D.指标的计算方法应当一致E.指标的计算价钱和计量单位应当一致动向数列中的水平剖析指标有A.发展水平B.均匀发展水平C.增添量D.均匀增添量E.均匀发展速度动向数列中的速度剖析指标有A.均匀发展水平B.增添速度C.均匀发展速度D.均匀增添速度E.发展速度以下指标中属于序时均匀数的有A.均匀发展水平B.均匀增添量C.均匀发展速度D.均匀增添速度E.均匀指标动向数列中的发展水平包含A.期初水平B.期未水平C.中间水平D.报告期水平E.基期水平将不一样期间的发展水平加以均匀所获得的均匀数称为A.一般均匀数B.算术均匀数C.序时均匀数D.动向均匀数E.均匀发展水平均匀增添量的计算公式是逐期增添量之和/逐期增添量项数逐期增添量的序时均匀数C.累计增添量/动向数列项数-1D.累计增添量/动向数列项数累计增添量/动向数列项数+1定基发展速度与环比发展速度之间的关系表现为A.两个相邻期间的定基发展速度之商等于相应的环比发展速度定基发展速度等于相应的各个环比发展速度的连乘积C.定基发展速度等于环比发展速度加一D.定基发展速度等于环比增添速度加一后的连乘积环比发展速度乘积等于总速度增添速度和发展速度的关系为A.仅差一个基数B.发展速度=增添速度+1C.定基增添速度=各环比增添速度的连乘积C.定基发展速度=定基增添速度+1定基增添速度=各环比发展速度的连乘积-1定基增添速度等于A.累计增添量除以基期发展水平B.定基发展速度减去一C.总速度减去一D.环比增添速度的连乘积逐期增添量除从先期发展水平环比增添速度等于A累计增添量除以基期发展水平 B.环比发展速度减去一.精选文档C.定基发展速度减去一D.环比增添速度的连乘积逐期增添量除从先期发展水平动向数列中的发展水平能够是A.总量指标B.相对指标C.均匀指标D.变异指标E.样本指标增添1%的绝对值等于累计增添量除以定基发展速度逐期增添量除以环比发展速度C.逐期增添量除以环比增添速度×100D.累计增添量除以定基增添速度×100E. 固按期水平除以100计算均匀发展速度的方法有A.几何均匀法B.水平法C.方程式法D.累计法E.序时均匀法均匀发展速度从广义上讲属于A.静态均匀数B.动向均匀数C.序时均匀数D.几何均匀数E.调解均匀数计算均匀发展速度的几何均匀法和方程式法的差异是A.数理依照不一样B.重视点不一样C.合用条件不一样D.合用范围不一样E.对资料要求不一样常用的长久趋向测定的方法有A.时距扩大法B.挪动均匀法C.分段均匀法D.最小平方法E.季节比率法直线趋向方程Y c=a+bx的参数b是表示A.趋向值B.趋向线的截距C.趋向线的斜率D.当X=0时的Y c的数值当X每改动一个单位时Y c均匀增减的数值三﹑填空题1.动向数列一般由两个基本因素组成,即和。

统计学第四章课后题及答案解析

统计学第四章课后题及答案解析

第四章一、单项选择题1、由反映总体单位某一数量特征的标志值汇总得到的指标就是( )A、总体单位总量B、质量指标C、总体标志总量D、相对指标2、各部分所占比重之与等于1或100%的相对数( )A.比例相对数B.比较相对数C.结构相对数D.动态相对数3、某企业工人劳动生产率计划提高5%,实际提高了10%,则提高劳动生产率的计划完成程度为( )A、104、76%B、95、45%C、200%D、4、76%4、某企业计划规定产品成本比上年度降低10%实际产品成本比上年降低了14、5%,则产品成本计划完成程度( )A、14、5%B、95%C、5%D、114、5%5、在一个特定总体内,下列说法正确的就是( )A、只存在一个单位总量,但可以同时存在多个标志总量B、可以存在多个单位总量,但必须只有一个标志总量C、只能存在一个单位总量与一个标志总量D、可以存在多个单位总量与多个标志总量6、计算平均指标的基本要求就是所要计算的平均指标的总体单位应就是( )A、大量的B、同质的C、有差异的D、不同总体的7、几何平均数的计算适用于求( )A、平均速度与平均比率B、平均增长水平C、平均发展水平D、序时平均数8、一组样本数据为3、3、1、5、13、12、11、9、7这组数据的中位数就是( )A、3B、13C、7、1D、79、某班学生的统计学平均成绩就是70分,最高分就是96分,最低分就是62分,根据这些信息,可以计算的测度离散程度的统计量就是( )A、方差B、极差C、标准差D、变异系数10、用标准差比较分析两个同类总体平均指标的代表性大小时,其基本的前提条件就是( )A、两个总体的标准差应相等B、两个总体的平均数应相等C、两个总体的单位数应相等D、两个总体的离差之与应相等11、已知4个水果商店苹果的单价与销售额,要求计算4个商店苹果的平均单价,应采用( )A、简单算术平均数B、加权算术平均数C、加权调与平均数D、几何平均数12、算术平均数、众数与中位数之间的数量关系决定于总体次数的分布状况。

统计学第四章、第十章课后练习答案贾俊平第四版

统计学第四章、第十章课后练习答案贾俊平第四版

?统计学?第四版统计学? 第四章练习题答案4.1 〔1 〕众数:M0=10; 中位数:中位数位置=n+1/2=5.5 ,Me=10 ;平均数:x=∑xni=96 = 9 .6 102(2)QL 位置=n/4=2.5, QL=4+7/2=5.5;QU 位置=3n/4=7.5,QU=12 〔3〕s =∑( xi ? x )n ?1=156.4 = 4.2 9〔4〕由于平均数小于中位数和众数,所以汽车销售量为左偏分布。

4.2 〔1〕从表中数据可以看出,年龄出现频数最多的是19 和23,故有个众数,即M0=19 和M0=23。

将原始数据排序后,计算中位数的位置为:中位数位置= n+1/2=13,第13 个位置上的数值为23,所以中位数为Me=23 〔2〕QL 位置=n/4=6.25, QL==19;QU 位置=3n/4=18.75,QU=26.5 ∑x (3)平均数x =ni= 600/25=24,标准差s =∑( xi ? x )n ?12=1062 = 6.65 25 ? 1〔4〕偏态系数SK=1.08,峰态系数K=0.77 〔5〕分析:从众数、中位数和平均数来看,网民年龄在23-24 岁的人数占多数。

由于标准差较大,说明网民年龄之间有较大差异。

从偏态系数来看,年龄分布为右偏,由于偏态系数大于1,所以,偏斜程度很大。

由于峰态系数为正值,所以为尖峰分布。

4.3 〔1〕茎叶图如下:茎 5 6 7 叶5 678 13488 频数1 3 52∑x 〔2〕x =ni= 63/9=7, s =∑( xi ? x )n ?1=4.08 = 0.714 8〔3〕由于两种排队方式的平均数不同,所以用离散系数进展比拟。

第一种排队方式:v1=1.97/7.2=0.274;v2=0.714/7=0.102.由于v1>v2,说明第一种排队方式的离散程度大于第二种排队方式。

〔4〕选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方式。

《统计学概论》第四章课后练习题答案

《统计学概论》第四章课后练习题答案

《统计学概论》第四章课后练习题答案一、思考题1.相对指标有什么作用?P90-912.平均指标有什么作用?P963.为什么说算术平均是最基本平均指标计算方法?P974.强度相对数和平均指标有什么区别?强度相对指标与平均指标的区别主要表现在以下两点:(1)指标的含义不同。

强度相对指标说明的是某一现象在另一现象中发展的强度、密度或普遍程度;而平均指标说明的是现象发展的一般水平,计算方法不同。

(2)强度相对指标与平均指标,虽然都是两个有联系的总量指标之比,但是,强度相对指标分子与分母的联系,只表现为一种经济关系,而平均指标分子与分母的联系是一种内在的联系,即分子是分母(总体单位)所具有的标志,对比结果是对总体各单位某一标志值的平均。

5.时期指标和时点指标有什么区别?P876.为什么说总量指标是基础指标?P877.简述平均指标及其作用。

(2009.10)P96二、单项选择题1.某企业2006年产值比上年增加了150万元,这个指标是()。

A.时期指标B.时点指标C.相对指标D.平均指标2.2006年中国新增就业人数575万人,这个指标是()。

A.时期指标B.时点指标C.相对指标D.平均指标3.某地区2006年底常住人口为100万人,医疗机构500个,平均每个医疗结构可以服务2000人,这个指标是()。

A.平均指标B.强度相对指标C.比较相对指标D.比例相对指标4.研究2006年中国31省区直辖市经济发展情况,江苏省GDP为21645.8亿元,浙江省GDP为15742.51亿元,江苏省GDP与浙江省GDP相比为1:0.73,这个指标是()。

A.比较相对数B.强度相对数C.比例相对数D.结构相对数5.2006年浙江省人均GDP 为31874元/人,全国总的人均GDP 为16084元/人,浙江省是全国的1.98倍,这个指标是( )。

P 94A .比较相对数B .强度相对数C .比例相对数D .结构相对数【解析】全国人均GDP 和浙江省人均GDP 是不同空间下的同类指标数值,不是总体全部数值和总体部分数值的关系,因而“浙江省GDP/全国GDP”是一个比较相对数。

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案1.在下列句子中随机地取一个单词,以X 表示取到的单词包含的字母的个数,试写出X 的分布律,并求)(X E .Have a good time解:本题的随机试验属于古典概型.所给句子共4个单词,其中有一个单词含一个字母,有3个单词含4个字母,则X 的所有可能取值为1,4,有41)1(==X P ,43)4(==X P ,从而413434411)(=⋅+⋅=X E .2.在上述句子的13个字母中随机地取一个字母,以Y 表示取到的字母所在的单词所含的字母数,写出Y 的分布律,并求)(Y E .解:本题的随机试验属于古典概型.Y 的所有可能取值为1,4,样本空间Ω由13个字母组成,即共有13个样本点,则131)1(==Y P ,1312)4(==Y P ,从而1349131241311)(=⋅+⋅=Y E .3.一批产品有一、二、三等品及废品4种,所占比例分别为60%,20%,10%和10%,各级产品的出厂价分别为6元、8.4元、4元和2元,求产品的平均出厂价.解:设产品的出厂价为X (元),则X 的所有可能取值为6,8.4,4,2,由题设可知X 的分布律为X 68.442P6.02.01.01.0则16.51.021.042.08.46.06)(=⨯+⨯+⨯+⨯=X E (元).4.设随机变量X 具有分布:51)(==k X P ,5,4,3,2,1=k ,求)(X E ,)(2X E 及2)2(+X E .解:3)54321(51)(=++++=X E ,11)54321(51)(222222=++++=X E ,274)(4)()44()2(222=++=++=+X E X E X X E X E .5.设离散型随机变量X 的分布列为k k kk X P 21)!2)1((=-=, ,2,1=k ,问X 是否有数学期望.解:因为∑∑∞=∞==⋅-111212)1(k k k k kkk 发散,所以X 的数学期望不存在.6.设随机变量X 具有密度函数⎪⎩⎪⎨⎧≤≤-=其他.,0,22,cos 2)(2πππx x x f 求)(X E 及)(X D .解:因为x x 2cos 在]2,2[ππ-上为奇函数,所以0d cos 2d )()(222=⋅==⎰⎰-∞+∞-πππx x x x x f x X E ,2112d cos 2d )()(2222222-=⋅==⎰⎰-∞+∞-ππππx x x x x f x X E ,故2112)]([)()(222-=-=πX E X E X D .7.设随机变量X 具有密度函数⎪⎩⎪⎨⎧<<-≤<=其他.,0,21,2,10,)(x x x x x f 求)(X E 及)(X D .解:1d )2(d d )()(2112=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,67d )2(d d )()(2121322=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,61)]([)()(22=-=X E X E X D .8.设随机变量X 在)21,21(-上服从均匀分布,求)sin(X Y π=的数学期望与方差.解:由题可知X 的密度函数为⎪⎩⎪⎨⎧<<-=其他.,0,2121,1)(x x f 则0d 1sin d )(sin )][sin()(2121=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21d 1sin d )(sin )]([sin )(21212222=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21)]([)()(22=-=Y E Y E Y D .9.某正方形场地,按照航空测量的数据,它的边长的数学期望为350m ,又知航空测量的误差随机变量X 的分布列为X (m)30-20-10-0102030P05.008.016.042.016.008.005.0而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即X Y +=350,求场地面积的数学期望.解:设场地面积为S ,则2Y S =,16.01042.0016.0)10(08.0)20(05.030)(⨯+⨯+⨯-+⨯-+⨯-=X E 005.03008.020=⨯+⨯+,16.01042.0016.0)10(08.0)20(05.0)30()(222222⨯+⨯+⨯-+⨯-+⨯-=X E 18605.03008.02022=⨯+⨯+,故)350700(])350[()()(2222++=+==X X E X E Y E S E 122686350)(700)(22=++=X E X E .10.A ,B 两台机床同时加工零件,每生产一批较大的产品时,出次品的概率如下表所示:A 机床次品数X 0123概率P7.02.006.004.0B 机床次品数X 0123概率P8.006.004.010.0问哪一台机床加工质量较好.解:44.004.0306.022.017.00)(=⨯+⨯+⨯+⨯=X E ,8.004.0306.022.017.00)(22222=⨯+⨯+⨯+⨯=X E ,6064.0)]([)()(22=-=X E X E X D ,44.010.0304.0206.018.00)(=⨯+⨯+⨯+⨯=Y E ,12.110.0304.0206.018.00)(22222=⨯+⨯+⨯+⨯=Y E ,9264.0)]([)()(22=-=Y E Y E Y D ,)()(Y E X E =,但)()(Y D X D <,故A 机床加工质量较好.11.设随机变量X 与Y 相互独立,且方差存在,试证:22)]()[()()]([)()()(Y E X D Y D X E Y D X D XY D ++=,由此得出)()()(Y D X D XY D ≥.证:22)]([])[()(XY E XY E XY D -=222)]()([)(Y E X E Y X E -=2222)]([)]([)()(Y E X E Y E X E -=2222)]([)]([})]([)(}{)]([)({Y E X E Y E Y D X E X D -++=22)]()[()()]([)()(Y E X D Y D X E Y D X D ++=.因为)(X D ,)(Y D ,2)]([X E ,2)]([Y E 非负,所以)()()(Y D X D XY D ≥.12.已知随机变量X 的密度函数为⎩⎨⎧≤≤++=其他.,010,)(2x c bx x a x f又已知5.0)(=X E ,15.0)(=X D ,求a ,b ,c .解:c b a x c bx x a x x f ++=++==⎰⎰∞+∞-2131d )(d )(1102,c b a x c bx x a x x x f x X E 213141d )(d )()(5.0102++=++===⎰⎰∞+∞-,⎰⎰++-=-==∞+∞-1222d )()5.0(d )()]([)(15.0xc bx x a x x x f X E x X D 41314151-++=c b a ,解之得12=a ,12-=b ,3=c .13.设),(Y X 的分布律为(1)求)(X E 及)(Y E ;(2)设XYZ =,求)(Z E ;(3)设2)(Y X Z -=,求)(Z E .解:(1)2)13.00(3)1.001.0(2)1.01.02.0(1)(=++⨯+++⨯+++⨯=X E ,0)1.01.01.0(1)3.001.0(0)01.02.0()1()(=++⨯+++⨯+++⨯-=Y E ,(2)1.01)3.001.0(00)31(1.021(2.01)(⨯+++⨯+⨯-+⨯-+⨯-=Z E 1511.0311.021-=⨯+⨯+,(3)1.0)01(0)]1(3[1.0)]1(2[2.0)]1(1[)(2222⨯-+⨯--+⨯--+⨯--=Z E 51.0)13(1.0)12(1.0)11(3.0)03(0)02(22222=⨯-+⨯-+⨯-+⨯-+⨯-+.14.设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,0,10,20,3),(y x yx y x f求)(X E ,)(Y E ,)(Y X E +及)(22Y X E +.解:⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(911d d 31020=+⋅=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x yf Y E d d ),()(95d d 31020=+⋅=⎰⎰y x y x y ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(916d d 3)(1020=+⋅+=⎰⎰y x y x y x ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(2222613d d 3)(102022=+⋅+=⎰⎰y x y x y x .15.),(Y X 在区域}1,0,0|),{(≤+≥≥=y x y x y x D 上服从均匀分布,求)(X E ,)23(Y X E -及)(XY E .解:由题可知),(Y X 的联合密度函数为⎩⎨⎧≤≤-≤≤=其他.,0,10,10,2),(y y x y x f ⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(31d d 21010==⎰⎰-yy x x ,⎰⎰∞+∞-∞+∞--=-y x y x f y x Y X E d d ),()23()23(31d d )23(21010=-=⎰⎰-yy x y x ,⎰⎰∞+∞-∞+∞-=y x y x xyf XY E d d ),()(121d d 21010==⎰⎰-y y x xy .16.设二维随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧>+≤+=.1,0,1,1),(2222y x y x y x f π证明:随机变量X 与Y 不相关,也不相互独立.证:⎰⎰⎰⎰⋅=⋅=∞+∞-∞+∞-πθθππ201d d cos 1d d 1)(r r r y x x X E ,同理,0)(=Y E ,⎰⎰⎰⎰⋅⋅=⋅=∞+∞-∞+∞-πθθθππ201d d sin cos 1d d 1)(r r r r y x xy XY E ,0)()()(),cov(=-=Y E X E XY E Y X ,故随机变量X 与Y 不相关.当11≤≤-x 时,ππ21112d 1d ),()(22x y y y x f x f x x X -===⎰⎰---∞+∞-,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2x x x f X π同理,⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2y y y f Y π易得)()(),(y f x f y x f Y X ≠,故随机变量X 与Y 不相互独立.17.设随机变量1X ,2X 的概率密度分别为⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x f x ,⎩⎨⎧≤>=-.0,0,0,e 4)(42y y y f y 试用数学期望的性质求:(1))(21X X E +及)32(221X X E -;(2)又设1X ,2X 相互独立,求)(21X X E .解:由题可知1X ~)2(E ,2X ~)4(E ,则21)(1=X E ,41)(2=X E ,161)(2=X D ,81)]([)()(22222=+=X E X D X E .(1)43)()()(2121=+=+X E X E X X E ,85)(3)(2)32(221221=-=-X E X E X X E .(2)81)()()(2121==X E X E X X E .18.(1)设1X ,2X ,3X 及4X 独立同在)1,0(上服从均匀分布,求)51(41∑=k k kX D ;(2)已知随机变量X ,Y 的方差分别为25和36,相关系数为4.0,求Y X U 23+=的方差.解:(1)由题易得121)(=i X D ,)51(41∑=k k kX D )(5141∑==k kkX D )](4)(3)(2)([514321X D X D X D X D +++=21)4321(121512222=+++⋅=.(2)由已知25)(=X D ,36)(=Y D ,4.0)()(),cov(==Y D X D Y X XY ρ,得12),cov(=Y X ,)2,3cov(2)2()3()23()(Y X Y D X D Y X D U D ++=+=513),cov(232)(2)(322=⋅⋅++=Y X Y D X D .19.一民航送客车载有20位旅客自机场开出,旅客有10个车站可以下车,如果到达一个车站没有旅客下车就不停车,以X 表示停车的次数,求)(X E (设每位旅客在各个车站下车是等可能的,并设各旅客是否下车相互独立).解:引入随机变量⎩⎨⎧=站无人下车.,在第站有人下车;,在第i i X i 01,10,,2,1 =i .易知1021X X X X +++= .按题意,任一旅客在第i 站不下车的概率为9.0,因此20位旅客都不在第i 站下车的概率为209.0,在第i 站有人下车的概率为209.01-,也就是209.0)0(==i X P ,209.01)1(-==i X P ,10,,2,1 =i .由此209.01)(-=i X E ,10,,2,1 =i .进而)()()()()(10211021X E X E X E X X X E X E +++=+++= 784.8)9.01(1020=-=(次).20.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求)(X E .解:引入随机变量⎩⎨⎧=号盒子.号球未放入第第号盒子号球放入第第i i i i X i ,0,,1,n i ,,2,1 =,则n X X X X +++= 21,显然n X P i 1)1(==,则nX P i 11)0(-==,n i ,,2,1 =,从而nX E i 1)(=,n i ,,2,1 =,于是1)()()()()(2121=+++=+++=n n X E X E X E X X X E X E .21.设随机变量),(Y X 的分布律为试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.证:0)25.00(2)025.0(1)025.0()1()25.00(2)(=+⨯++⨯++⨯-++⨯-=X E ,5)25.00025.0(4)025.025.00(1)(=+++⨯++++⨯=Y E ,0)4(25.0)8(0225.0125.0)1(02)(⨯-+⨯-+⨯+⨯+⨯-+⨯-=XY E 025.0804=⨯+⨯+,所以0)()()(),cov(=-=Y E X E XY E Y X ,故X 与Y 不相关.易知25.025.00)2(=+=-=X P ,5.0025.025.00)1(=+++==Y P ,0)1,2(==-=Y X P ,有)1()2()1,2(=-=≠=-=Y P X P Y X P ,故X 与Y 不相互独立.22.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤+=其他.,0,10,10,),(y x y x y x f 求)(X E ,)(Y E ,)(X D ,)(Y D ,)(XY E ,),cov(Y X 及XY ρ.解:127d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,125d d )(d d ),()(1010222=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,得127)(=Y E ,14411)(=Y D ,31d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ.23.设X ~),(2σμN ,Y ~),(2σμN ,且X ,Y 相互独立.求Y X Z βα+=1和Y X Z βα-=2的相关系数(α,β是不为0的常数).解:由题可知μ==)()(Y E X E ,2)()(σ==Y D X D ,则2222)]([)()(σμ+=+=X E X D X E ,2222)]([)()(σμ+=+=Y E Y D Y E ,μβαβα)()()(1+=+=Y X E Z E ,μβαβα)()()(2-=-=Y X E Z E ,222221)()()()()(σβαβαβα+=+=+=Y D X D Y X D Z D ,222222)()()()()(σβαβαβα+=+=-=Y D X D Y X D Z D ,)()])([()(222221Y X E Y X Y X E Z Z E βαβαβα-=-+=))(()()(22222222σμβαβα+-=-=Y E X E ,222212121)()()()(),cov(σβα-=-=Z E Z E Z Z E Z Z ,22222121)()(),cov(21βαβαρ+-==Z D Z D Z Z Z Z .24.设),(Y X 的联合概率密度为⎩⎨⎧≤≤≤≤--=.,0,10,10,2),(其他y x y x y x f (1)求),cov(Y X ,XY ρ和)32(Y X D -;11(2)X 与Y 是否独立?解:(1)125d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,41d d )2(d d ),()(1010222=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,61d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,125)(=Y E ,14411)(=Y D ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ,)3,2cov(2)3()2()32(Y X Y D X D Y X D -+-+=-144155),cov(12)(3)(222=-+=Y X Y D X D .(2)当10≤≤x 时,x y y x y y x f x f X -=--==⎰⎰∞+∞-23d )2(d ),()(10,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(x x x f X 同理,⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(y y y f Y 因为)()(),(y f x f y x f Y X ≠,故X 与Y 不相互独立.。

统计学课后答案

统计学课后答案

第四章 抽样分布与参数估计3.某地区粮食播种面积5000亩,按不重复抽样方法随机抽取了100亩进行实测,调查结果,平均亩产450公斤,亩产量标准差为52公斤。

试以95%的置信度估计该地区粮食平均亩产量和总产量的置信区间。

解:已知X =450公斤,n =100(大样本),n/N=1/50,11≈-Nn,不考虑抽样方式的影响,用重复抽样计算。

s =52公斤,1-α=95%,α=5%。

这时查标准正态分布表,可得临界值:96.1025.02/==z z α该地区粮食平均亩产量的置信区间是:1005296.14502⨯±=±nsz x α=[439.808,460.192] (公斤) 总产量的置信区间是:[439.808⨯5000,460.192⨯5000] (公斤) =[2199040,2300960](公斤)4.已知某种电子管使用寿命服从正态分布。

从一批电子管中随机抽取16只,检测结果,样本平均寿命为1490小时,标准差为24.77小时。

试以95%的置信度估计这批电子管的平均寿命的置信区间。

解:(1)已知X =1490小时,n =16,s =24.77小时,1-α=95%,α=5%。

这时查t 分布表,可得 2.13145)1(2/=-n t α该批电子管的平均寿命的置信区间是:1677.2413145.214902⨯±=±nst x α=[ 1476.801,1503.199](小时)因此,这批电子管的平均寿命的置信区间在1476.801小时与1503.199小时之间。

6.采用简单随机重复抽样的方法,从2 000件产品中抽查200件,其中合格品190件。

要求:(1)计算合格品率及其抽样平均误差。

(2)以95.45%的置信度,对合格品率和合格品数量进行区间估计。

(3)如果极限误差为2.31%,则其置信度是多少? 解:(1)合格品率:P=190/200⨯100%=95% 抽样平均误差:np p p )1()(-=σ=0.015(2)%3%95%100015.02%95)(22/02275.02/±=⨯⨯±=±==p Z P Z Z σαα]19601840[]2000%982000%92[(%]98%92[,,的置信区为:件合格品数量,:合格品率的置信区间为=⨯⨯)(3)%64.87)(8764.01,54.1%31.2%100015.0%31.2)(2/2/2/==-==⨯⨯==∆z F Z Z p Z ασααα查表得7.从某企业工人中随机抽选部分进行调查,所得工资分布数列如下:试求:(1)以95.45%的置信度估计该企业工人平均工资的置信区间,以及该企业工人中工资不少于800元的工人所占比重的置信区间;(2)如果要求估计平均工资的允许误差范围不超过30元,估计工资不少于800元的工人所占比重的允许误差范围不超过10%,置信度仍为95.45%,试问至少应抽多少工人? 解(1)通过EXCEL 计算可得: X =816元,n =50人,s =113.77元。

统计学第四章课后题及答案解析

统计学第四章课后题及答案解析

第四章一、单项选择题1.由反映总体单位某一数量特征的标志值汇总得到的指标是()A.总体单位总量B.质量指标C.总体标志总量D.相对指标2.各部分所占比重之和等于1或100%的相对数()A.比例相对数 B.比较相对数 C.结构相对数 D.动态相对数3.某企业工人劳动生产率计划提高5%,实际提高了10%,则提高劳动生产率的计划完成程度为()A.104.76%B.95.45%C.200%D.4.76%4.某企业计划规定产品成本比上年度降低10%实际产品成本比上年降低了14.5%,则产品成本计划完成程度()A.14.5%B.95%C.5%D.114.5%5.在一个特定总体内,下列说法正确的是( )A.只存在一个单位总量,但可以同时存在多个标志总量B.可以存在多个单位总量,但必须只有一个标志总量C.只能存在一个单位总量和一个标志总量D.可以存在多个单位总量和多个标志总量6.计算平均指标的基本要求是所要计算的平均指标的总体单位应是()A.大量的B.同质的C.有差异的D.不同总体的7.几何平均数的计算适用于求()A.平均速度和平均比率B.平均增长水平C.平均发展水平D.序时平均数8.一组样本数据为3、3、1、5、13、12、11、9、7这组数据的中位数是()A.3B.13C.7.1D.79.某班学生的统计学平均成绩是70分,最高分是96分,最低分是62分,根据这些信息,可以计算的测度离散程度的统计量是()A.方差B.极差C.标准差D.变异系数10.用标准差比较分析两个同类总体平均指标的代表性大小时,其基本的前提条件是( )A.两个总体的标准差应相等B.两个总体的平均数应相等C.两个总体的单位数应相等D.两个总体的离差之和应相等11.已知4个水果商店苹果的单价和销售额,要求计算4个商店苹果的平均单价,应采用()A.简单算术平均数B.加权算术平均数C.加权调和平均数D.几何平均数12.算术平均数、众数和中位数之间的数量关系决定于总体次数的分布状况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学第四章课后题及答案解析以下是为大家整理的统计学第四章课后题及答案解析的相关范文,本文关键词为统计学,第四章,课后,答案,解析,第四章,练习题,单项选择,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。

第四章练习题一、单项选择题1.由反映总体单位某一数量特征的标志值汇总得到的指标是()A.总体单位总量b.质量指标c.总体标志总量D.相对指标2.各部分所占比重之和等于1或100%的相对数()A.比例相对数b.比较相对数c.结构相对数D.动态相对数3.某企业工人劳动生产率计划提高5%,实际提高了10%,则提高劳动生产率的计划完成程度为()A.104.76%b.95.45%c.200%D.4.76%4.某企业计划规定产品成本比上年度降低10%实际产品成本比上年降低了14.5%,则产品成本计划完成程度()A.14.5%b.95%c.5%D.114.5%5.在一个特定总体内,下列说法正确的是()A.只存在一个单位总量,但可以同时存在多个标志总量b.可以存在多个单位总量,但必须只有一个标志总量c.只能存在一个单位总量和一个标志总量D.可以存在多个单位总量和多个标志总量6.计算平均指标的基本要求是所要计算的平均指标的总体单位应是()A.大量的b.同质的c.有差异的D.不同总体的7.几何平均数的计算适用于求()A.平均速度和平均比率b.平均增长水平c.平均发展水平D.序时平均数8.一组样本数据为3、3、1、5、13、12、11、9、7这组数据的中位数是()A.3b.13c.7.1D.79.某班学生的统计学平均成绩是70分,最高分是96分,最低分是62分,根据这些信息,可以计算的测度离散程度的统计量是()A.方差b.极差c.标准差D.变异系数10.用标准差比较分析两个同类总体平均指标的代表性大小时,其基本的前提条件是()A.两个总体的标准差应相等b.两个总体的平均数应相等c.两个总体的单位数应相等D.两个总体的离差之和应相等11.已知4个水果商店苹果的单价和销售额,要求计算4个商店苹果的平均单价,应采用()A.简单算术平均数b.加权算术平均数c.加权调和平均数D.几何平均数12.算术平均数、众数和中位数之间的数量关系决定于总体次数的分布状况。

在对称的钟形分布中()A.算术平均数=中位数=众数b.算术平均数>中位数>众数c.算术平均数算术平均数>众数二、多项选择题1.下列属于时点指标的有()A.某地区人口数b.某地区死亡人口数c.某地区出生人口数D.某地区生产总值e.某地区的学校数2.下列属于时期指标的有()A.工业总产值b.商品销售额c.职工人数D.生猪存栏数e.商品库存额3.下列属于强度相对指标的有()A.人均国民收入b.人口平均年龄c.粮食亩产量D.人口密度e.人均粮食产量4.相对指标中,分子分母可以互换位置的有()A.结构相对数b.比例相对数c.部分强度相对数D.比较相对数e.动态相对数5.下列指标中属于平均指标的有()A.人均国民收入b.人口平均年龄c.粮食亩产量D.人口密度e.人口自然增长率6.下列属于数值平均数的有()A.算术平均数b.调和平均数c.中位数D.几何平均数e.众数7.下列属于平均指标的有()A.人均国民收入b.人口平均年龄c.粮食亩产量D.人口密度e.人均粮食产量三、填空题1.总量指标的局限性表现在_________。

2.检查长期计划的完成情况时,若计划任务规定的是长期计划应达到的总水平,检查计划完成程度应采用_________法。

3.某企业工人劳动生产率计划提高5%,实际提高了10%,则提高劳动生产率的计划完成程度为_________4.某企业计划规定产品成本比上年度降低10%实际产品成本比上年降低了14.5%,则产品成本计划完成程度为_________5.权数有两种表现形式,一种是频数形式,一种是_________形式。

6.各个变量值与其算术平均数的离差和为_________。

7.平均指标说明变量数列中变量值的_______,而变异度指标则说明变量值的________。

8.众数是变量数列中_________的标志值。

9.用几何平均数求银行贷款的平均年利率时,应首先求贷款的_________,在此基础上再求平均年利率。

10.是非标志的平均数是_________,是非标志的标准差是_________。

四、判断题1.某企业6月末实有生产设备1730台,是时期指标()2.结构相对指标和比例相对指标,是反映现象总体内部组成情况的相对指标,因此,说明的问题是一样的,只是表现形式不同()3.20XX年我国第一、二、三产业结构比为15.2:53:31.8,这是比较相对指标()4.计划完成程度相对指标大于100%一定都是超额完成计划,小于100%一定是未完成计划()5.某企业的产值计划在去年的基础上提高10%,计划执行的结果仅提高5%。

产值的计划任务仅完成一半()6.人均国民生产总值是平均指标,人口死亡率和流通费用率是相对指标()7.权数的作用在于绝对数的多少,而不在于次数的分布的结构()8.由职工人数和职工工资额资料,可用调和平均数方法计算平均工资()9.中位数是根据各个变量值计算的,不受极端变量值位置的影响()10.在甲乙两组变量数列中,若x甲≠x乙,?甲>?乙,说明甲的平均指标的代表性低于乙的代表性()五、名词解释1.总量指标2.相对指标3.时期指标4.时点指标5.强度相对数6.比较相对数7.比例相对数8.平均指标9.变异指标10.是非标志六、简答题1.时期指标和时点指标的区别是什么?2.强度相对指标和算术平均指标的区别是什么?3.相对指标的作用是什么?4.总量指标的作用是什么?5.实物指标和价值指标的优缺点是什么?6.简述平均指标的特点是什么?平均指标的作用是什么?7.加权算术平均数和加权调和平均数的区别和联系?8.如何理解权术的意义?在什么情况下应用简单算术平均数和加权算术平均数9.应用平均指标应注意的问题是什么?10.变异指标的意义和作用是什么?七、计算题1.分别已知某企业资料如下:(1)已知计划实际完成情况如表4-23所示:表4-23按计划完成百分比分组(%)80—9090—100100—110110—120实际产值(万元)6857126184根据以上资料,计算该企业的平均计划完成百分比。

(2)已知计划任务情况如表4-24所示:表4-24按计划完成百分比分组(%)80—9090—100100—110110—120计划产值(万元)7060120XX0根据以上资料,计算企业的平均计划完成百分比。

2.某局所属15个企业产量计划完成情况如表4-25所示:表4-25计划完成程度(%)90-100100-110110—120合计企业数58215计划总任务数(万件)1008001001000根据以上资料,分别以企业数和计划任务数计算企业的平均产量计划完成程度,并比较说明在所给条件下哪种方法更恰当?为什么?3.某企业按五年计划规定,某产品最后一年产量应达到200万吨,各年实际生产情况如表4-26所示:第一年160第二年165第三一季年16540第四年二季40三季45四季45一季50第五年二季50三季55四季60产量试计算该产品五年计划完成程度和提前完成五年计划指标的时间。

4.某地区“十五”计划规定五年固定资产投资额300亿元,各年实际投资完成情况如表4-27所示:(其中,20XX年1-7月累计实际投资40亿元)表4-2720XX年固定资产投资额(亿元)6020XX年6220XX年6820XX年7020XX年73试计算该地区“十五”时期固定资产投资额计划完成程度和提前完成“十五”计划的时间。

5.甲乙两个企业生产三种商品的单位成本和总成本资料如表4-28所示:表4-28产品名称Abc单位成本(元)152030总成本(元)甲企业乙企业210032553000150015001500要求:比较两企业的总平均成本哪个高?并分析其原因。

6.某乡甲乙两个村的粮食生产情况如表4-29所示:表4-29按耕地自然条件分组山地丘陵地平原地甲村乙村平均亩产(千克/粮食产量(千克)平均亩产(千克/播种面积(亩)亩)亩)10025000150125015015000020XX00400500000450750试分别计算甲乙两个村的平均亩产。

根据表列资料及计算结果比较分析哪一个村的生产经营管理工作做得好,并简述作出这一结论的理由。

7.甲、乙两单位工人的生产情况资料如表4-30所示:表4-30日产量(件/人)123合计甲单位工人数(人)1206020200乙单位总产量(件)3012030180试分析:(1)哪个单位工人的生产水平高(2)哪个单位工人的生产水平整齐8.某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件,标准差为9.6件;乙组工人日产量资料如4-31所示:表4-31日产量(件)15253545工人数(人)15383413要求:(1)计算乙组平均每个工人的日产量和标准差;(2)比较甲、乙两生产小组哪个组的日产量更具有代表性?第四章综合指标分析一、单项选择1.c2.c3.A4.b5.A6.b7.A8.D9.b10.b11.c12.A二、多项选择题1.Ae2.Ab3.ADe4.bcD5.bc6.AbD7.bc三、填空三、填空题1.总量指标的局限性表现在__不同总体缺乏可比性_______。

2.检查长期计划的完成情况时,若计划任务规定的是长期计划应达到的总水平(或总工作量),检查计划完成程度应采用_累计法________法。

3.某企业工人劳动生产率计划提高5%,实际提高了10%,则提高劳动生产率的计划完成程度为_104.76%________4.某企业计划规定产品成本比上年度降低10%,实际产品成本比上年降低了14.5%,则产品成本计划完成程度为_95.15%________5.权数有两种表现形式,一种是频数形式,一种是__比重_______形式。

6.各个变量值与其算术平均数的离差和为___0______。

7.平均指标说明变量数列中变量值的_集中趋势离中趋势______,而变异度指标则说明变量值的_离中趋势________。

8.众数是变量数列中__頻数最多_______的标志值。

9.用几何平均数求银行贷款的平均年利率时,应首先求贷款的_各年利率________,在最后,小编希望文章对您有所帮助,如果有不周到的地方请多谅解,更多相关的文章正在创作中,希望您定期关注。

谢谢支持!。

相关文档
最新文档